JP4694225B2 - Method for reducing water absorption of coaxial cable and method for reducing tan δ of coaxial cable - Google Patents

Method for reducing water absorption of coaxial cable and method for reducing tan δ of coaxial cable Download PDF

Info

Publication number
JP4694225B2
JP4694225B2 JP2005066888A JP2005066888A JP4694225B2 JP 4694225 B2 JP4694225 B2 JP 4694225B2 JP 2005066888 A JP2005066888 A JP 2005066888A JP 2005066888 A JP2005066888 A JP 2005066888A JP 4694225 B2 JP4694225 B2 JP 4694225B2
Authority
JP
Japan
Prior art keywords
foaming
coaxial cable
mass
tan
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005066888A
Other languages
Japanese (ja)
Other versions
JP2006249219A (en
Inventor
智紀 近藤
知久 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005066888A priority Critical patent/JP4694225B2/en
Publication of JP2006249219A publication Critical patent/JP2006249219A/en
Application granted granted Critical
Publication of JP4694225B2 publication Critical patent/JP4694225B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Communication Cables (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、吸湿性が小さく、誘電特性の改善を図った同軸ケーブルの吸水量を低減する方法及び同軸ケーブルのtanδを低減する方法に関するものである。 The present invention relates to a method for reducing the amount of water absorption of a coaxial cable that has low hygroscopicity and improved dielectric characteristics, and a method for reducing tan δ of the coaxial cable .

近年、ケーブルの使用周波数帯域が広がり、GHz帯域まで拡大してきている。一方、使用周波数が高くなるほど、ケーブル絶縁体部分の損失(誘電損)が大きくなるため、この損失の目安となる誘電特性(例えばtanδ)の小さいものが求められている。   In recent years, the frequency band used for cables has expanded and has expanded to the GHz band. On the other hand, the higher the frequency used, the greater the loss (dielectric loss) of the cable insulator portion. Therefore, a low dielectric characteristic (for example, tan δ) that is a measure of the loss is required.

このような誘電特性を小さくする方法として、従来から、ベース樹脂を発泡させることがよく行われている。発泡方法としては、大別すると二通りある。一つはガス(例えばフロン、窒素、二酸化炭素、炭化水素などのガス)をベース樹脂中に導入して発泡させるガス発泡であり、もう一つは、ベース樹脂中に有機化合物などの発泡剤を添加して熱分解したときに得られるガスにより発泡させる化学発泡である。   Conventionally, as a method for reducing such dielectric characteristics, it is often performed to foam a base resin. There are two types of foaming methods. One is gas foaming by introducing gas (for example, gas such as chlorofluorocarbon, nitrogen, carbon dioxide, hydrocarbon) into the base resin, and the other is foaming agent such as organic compound in the base resin. It is chemical foaming that is foamed with a gas obtained when added and thermally decomposed.

ガス発泡の場合、化学発泡に比較して高発泡度の発泡体が得られるという利点がある。一方、化学発泡では、ガス発泡のように、高発泡させることは困難ではあるが、発泡セル(核)を微細で均一に形成し易いという利点がある。   In the case of gas foaming, there is an advantage that a foam having a high foaming degree can be obtained as compared with chemical foaming. On the other hand, chemical foaming, like gas foaming, is difficult to achieve high foaming, but has an advantage that foamed cells (nuclei) can be formed finely and uniformly.

このような化学発泡にあたっては、通常ベース樹脂の押出温度と混練温度によって、発泡剤として用いる化合物を適宜選択している。例えばポリエチレンでは、主にアゾジカルボンアミド(ADCA、例えば特許文献1〜3参照)や4、4’−オキシビス(ベンゼンスルホニルヒドラジド)(OBSH)が用いられている。さらに、必要により発泡助剤も添加している。発泡助剤は、発泡剤の分解温度を下げたり、発泡加工温度に幅を持たせる働きがあり、従来から使用されている。
特開平05−002939号公報 特開2000−225638号公報 特開2001−191388号公報
In such chemical foaming, a compound used as a foaming agent is usually selected as appropriate depending on the extrusion temperature and kneading temperature of the base resin. For example, in polyethylene, azodicarbonamide (ADCA, see, for example, Patent Documents 1 to 3) and 4,4′-oxybis (benzenesulfonylhydrazide) (OBSH) are mainly used. Further, if necessary, a foaming assistant is also added. Foaming assistants have been used conventionally because they have a function of lowering the decomposition temperature of the foaming agent and increasing the foaming processing temperature.
JP 05-002939 A JP 2000-225638 A JP 2001-191388 A

ところが、化学発泡の場合、発泡セルが微細で均一に形成されるという利点があるものの、発泡剤の化合物が熱分解されて、発泡ガスが生成される反応が起こると同時に、一般的には副反応も起こり、発泡残渣となる副生成物が生成される。発泡ガスは窒素ガス、二酸化炭素ガス、一酸化炭素ガスが主であるため、必然的に発泡残渣として極性官能基のある化合物が発生し、発泡体の誘電特性を悪化させるようになるという問題があった。   However, in the case of chemical foaming, there is an advantage that the foamed cells are finely and uniformly formed. However, the foaming agent compound is thermally decomposed to generate a foaming gas, and at the same time, generally a secondary cell is formed. A reaction also occurs, and a by-product that becomes a foaming residue is generated. Since the foaming gas is mainly nitrogen gas, carbon dioxide gas, or carbon monoxide gas, a compound having a polar functional group is inevitably generated as a foaming residue, which deteriorates the dielectric properties of the foam. there were.

一方、発泡剤と共に発泡助剤を用いると、上記のように、発泡剤の分解温度を下げることができ、低温発泡が可能となるが、低温での発泡では、発泡体の吸湿性が高くなるという問題がある。   On the other hand, when a foaming aid is used together with the foaming agent, as described above, the decomposition temperature of the foaming agent can be lowered and low-temperature foaming is possible. There is a problem.

このような状況下にあって、本発明者等は、種々の試験を行い、以下のよう点を見い出した。先ず、上記したように、発泡剤の熱分解によって発泡残渣が発生するわけであるが、その残渣成分も熱分解温度によって異なり、その結果として、得られる発泡体の特性(誘電特性や吸湿性など)も左右されるのではないかと着想した。   Under such circumstances, the present inventors conducted various tests and found the following points. First, as described above, a foaming residue is generated by thermal decomposition of the foaming agent, but the residue component also varies depending on the thermal decomposition temperature, and as a result, characteristics of the resulting foam (dielectric characteristics, hygroscopicity, etc.) ) Also inspired me.

そこで、発泡剤、特にアゾジカルボンアミド(ADCA)において、熱分解温度で発泡させる一方、これと発泡助剤(酸化亜鉛など)の有無により、発泡体の特性がどのように左右されるのかを調べたところ、発泡助剤の添加無しに比較して、適量の発泡助剤を添加した場合、良好な特性の発泡体が得られることを見い出した。特に、発泡助剤を添加した上で、発泡剤を高温領域(200〜240℃)で発泡させると、良好な結果が得られることも分かった。また、この際ベース樹脂のポリエチレン(PE)にあって、特定の特性を有するものを用いれば、誘電特性(例えばtanδ)や吸湿性が小さい他に、外径変動も小さく、均一性に富む発泡セルが得られることが分かった。   Therefore, while the foaming agent, especially azodicarbonamide (ADCA), is foamed at the thermal decomposition temperature, it was investigated how the properties of the foam depended on the presence of foaming aid (such as zinc oxide). As a result, it was found that a foam having good characteristics can be obtained when an appropriate amount of foaming aid is added as compared with the case where no foaming aid is added. In particular, it has also been found that good results can be obtained by adding a foaming aid and foaming the foaming agent in a high temperature region (200 to 240 ° C.). In this case, if the base resin polyethylene (PE) having specific characteristics is used, in addition to low dielectric characteristics (for example, tan δ) and hygroscopicity, the outer diameter fluctuation is small, and the foam is rich in uniformity. It turns out that a cell is obtained.

本発明は、この点に立ってなされたもので、基本的には、ベース樹脂のPE系樹脂に対して、適量の発泡剤、即ちADCAと亜鉛化合物の発泡助剤を添加し、200〜240℃下で押し出し発泡させて、tanδや吸湿性に優れた同軸ケーブルの吸水量を低減する方法及び同軸ケーブルのtanδを低減する方法を提供するものである。 The present invention has been made in this respect. Basically, an appropriate amount of a foaming agent, that is, a foaming aid of ADCA and a zinc compound, is added to the PE resin of the base resin. An object of the present invention is to provide a method of reducing the water absorption of a coaxial cable excellent in tan δ and hygroscopicity by extruding and foaming at 0 ° C. and a method of reducing tan δ of the coaxial cable .

請求項1記載の本発明は、ポリエチレン樹脂100質量部に0.4〜0.8質量
部の発泡剤のアゾジカルボンアミドと当該発泡剤に対して5〜15質量%の酸化亜鉛を発泡助剤として適量添加し、200〜240℃下で押し出し発泡させるこ
とを特徴とする同軸ケーブルの吸水量を低減する方法にある。
The present invention according to claim 1 is a foaming aid comprising 100 parts by mass of polyethylene resin and 0.4 to 0.8 parts by mass of azodicarbonamide as a foaming agent and 5 to 15% by mass of zinc oxide based on the foaming agent. In the method of reducing the water absorption amount of the coaxial cable, an appropriate amount is added and extruded and foamed at 200 to 240 ° C.

請求項2記載の本発明は、ポリエチレン樹脂100質量部に0.4〜0.8質量
部の発泡剤のアゾジカルボンアミドと当該発泡剤に対して5〜15質量%の酸化亜鉛を発泡助剤として適量添加し、200〜240℃下で押し出し発泡させるこ
とを特徴とする同軸ケーブルのtanδを低減する方法にある。
The present invention according to claim 2 is a foaming aid comprising 100 parts by mass of polyethylene resin and 0.4 to 0.8 parts by mass of azodicarbonamide as a foaming agent and 5 to 15% by mass of zinc oxide based on the foaming agent. A method for reducing tan δ of a coaxial cable, which is characterized by adding an appropriate amount as described above and extruding and foaming at 200 to 240 ° C.

本発明の請求項1、2になる同軸ケーブルの吸水量を低減する方法及び同軸ケーブルのtanδを低減する方法によると、ポリエチレン樹脂100質量部に0.4〜0.8質量部の発泡剤のADCAと当該発泡剤に対して5〜15質量%の亜鉛化合物を発泡助剤として適量添加し、200〜240℃下で押し出し発泡させるため、誘電特性、tanδが小さく、かつ、吸湿性の小さい、優れた特性の同軸ケーブルが得られる。
即ち、同軸ケーブルの絶縁体としたとき、誘電特性が小さいと、その分だけケーブルの使用周波数帯域が広がり、GHz帯域までの使用にあってケーブル絶縁体部分の損失が最小限に抑えることができる。また、吸湿性の小さいと、季節の移り変わりなどによる湿度変動による影響が受け難く、安定したケーブル性能が得られる。
According to the method of reducing the tanδ of the method and coaxial cable to reduce the water absorption of the coaxial cable made in claim 1 of the present invention, the blowing agent of 0.4 to 0.8 parts by weight of polyethylene resins to 100 parts by mass A suitable amount of zinc compound of 5 to 15% by mass with respect to ADCA and the foaming agent is added as a foaming aid and extruded and foamed at 200 to 240 ° C., so that dielectric properties, tan δ are small, and hygroscopicity is small. A coaxial cable with excellent characteristics can be obtained.
In other words, when the dielectric property of the coaxial cable is small, the use frequency band of the cable is expanded by that amount, and the loss of the cable insulation portion can be minimized in use up to the GHz band. . Also, if the hygroscopicity is small, it is difficult to be affected by humidity fluctuations due to seasonal changes, and stable cable performance can be obtained.

図1は、本発明に係る同軸ケーブルの一例を示したものである。図中、1は撚線導体などの導体(内部導体)、2は本発明の同軸ケーブルの製造方法により、導体1上に被覆された発泡体からなる絶縁体、3は金属編組やコルゲート銅パイプなどからなる金属層(外部導体)、4は無鉛PVCなどからなるシースである。このケーブル外径は、特に限定されないが、約1.6mm程度のものとして形成される。なお、必要に応じて絶縁体2と金属層3の間に金属ラミネートテープ、例えばアルミ箔とペット(PET)樹脂などとのアルミペットや銅箔とペット樹脂などとの銅ペットテープを入れることができる。 FIG. 1 shows an example of a coaxial cable according to the present invention. In the figure, 1 is a conductor (internal conductor) such as a stranded wire conductor, 2 is an insulator made of foam coated on the conductor 1 by the method for manufacturing a coaxial cable of the present invention, and 3 is a metal braid or corrugated copper pipe. 4 is a sheath made of lead-free PVC or the like. The outer diameter of the cable is not particularly limited, but is formed as about 1.6 mm. If necessary, a metal laminate tape, for example, an aluminum pet made of aluminum foil and PET (PET) resin, or a copper pet tape made of copper foil and PET resin may be inserted between the insulator 2 and the metal layer 3. it can.

上記絶縁体の場合、特に限定されないが、ベース樹脂として、ポリエチレン(PE)系樹脂を用い、このPE系樹脂100質量部に発泡剤のADCAと当該発泡剤に対して5〜15質量%の亜鉛化合物を発泡助剤として適量添加し、200〜240℃下で押し出し発泡させて形成する。これにより、誘電特性、例えばtanδが小さく、かつ、吸湿性の小さい優れた特性を有する発泡体が得られる。つまり、導体1上にこの発泡体からなる絶縁体を被覆し、外部導体を施した後、シースを被覆すれば、本発明の同軸ケーブルが得られる。   In the case of the insulator, although not particularly limited, a polyethylene (PE) -based resin is used as a base resin, and 100 parts by mass of the PE-based resin is 5 to 15% by mass of zinc with respect to the blowing agent ADCA and the blowing agent. It is formed by adding an appropriate amount of a compound as a foaming aid and extruding and foaming at 200 to 240 ° C. As a result, it is possible to obtain a foam having excellent characteristics with low dielectric characteristics, for example, tan δ and low hygroscopicity. That is, the coaxial cable of the present invention can be obtained by covering the conductor 1 with the insulator made of the foam, coating the outer conductor, and then covering the sheath.

本発明で用いる発泡剤としては、アゾ化合物系のものの使用が望ましく、例えば、上記したアゾジカルボンアミド(azodicarbonamide=ADCA)を挙げることができる。特に、平均粒径10μm以下、より好ましくは平均粒径5μm以下の粒径の細かいものの使用が好ましい。その理由は、粒径が細かいほど微細な発光セルが得られるためである。   As the foaming agent used in the present invention, it is desirable to use an azo compound type, and examples thereof include the above-mentioned azodicarbonamide (ADCA). In particular, it is preferable to use a fine particle having an average particle size of 10 μm or less, more preferably an average particle size of 5 μm or less. The reason is that a finer light emitting cell is obtained as the particle size is smaller.

そして、このADCAの添加量は、通常用いられる範囲であれば、特に限定されないが、例えば、50%程度の発泡度を得る場合には、PE系樹脂100質量部に対して、0.4〜0.8質量部とすることが望ましい。この場合、0.4質量部未満では十分な発泡効果が得られないからであり、また、0.8質量部を超えるようになると、発泡度及び発泡セル径、外径変動の制御が難しくなるからである。   And the addition amount of this ADCA will not be specifically limited if it is the range used normally, For example, when obtaining a foaming degree of about 50%, with respect to 100 mass parts of PE resin, it is 0.4- It is desirable to set it as 0.8 mass part. In this case, if the amount is less than 0.4 parts by mass, a sufficient foaming effect cannot be obtained. If the amount exceeds 0.8 parts by mass, it is difficult to control the degree of foaming, the foam cell diameter, and the outer diameter fluctuation. Because.

本発明で用いる発泡助剤としては、特に限定されないが、亜鉛化合物(ZnO)の使用が望ましい。そして、その添加量は、発泡剤に対して5〜15質量%とすることが望ましい。5質量%未満では得られる発泡体に対して、十分なtanδや吸湿性の低減効果が得られないからであり、また、5質量%を超えても、tanδや吸湿性のより良い低減効果が得られず、さらに、コスト及びtanδ、εrの上昇要因となるからである。   Although it does not specifically limit as a foaming adjuvant used by this invention, Use of a zinc compound (ZnO) is desirable. And the addition amount is desirable to be 5-15 mass% with respect to a foaming agent. If the amount is less than 5% by mass, a sufficient tan δ or hygroscopic reduction effect cannot be obtained with respect to the obtained foam, and if it exceeds 5% by mass, a better tan δ or hygroscopic reduction effect can be obtained. This is because it is not obtained, and further increases the cost and tan δ and εr.

このような適量の発泡剤と発泡助剤をPE系樹脂に添加した上で、200〜240℃下で押し出し発泡させるのは、後述する実施例から明らかなように、200℃未満ではtanδや吸湿性を十分に低減させることができないからである。また、240℃を超える温度では、発泡剤の熱分解温度が高いほど、得られる発泡体の特性を低下させる組成の分解残渣が少なくなると推測されるが、この高温下だと、押出機中で樹脂が滞留している間に種々の分解反応が促進される危険があるからである。さらに、用いるPE系樹脂にあっても、後述するように、溶融破断張力と溶融破断速度が発泡に適合した範囲か外れるものが多くなるからでもある。   The addition of such appropriate amounts of foaming agent and foaming aid to the PE resin and extrusion foaming at 200-240 ° C. is evident from the examples described below, at temperatures below 200 ° C., tan δ and moisture absorption. This is because the property cannot be sufficiently reduced. In addition, at temperatures exceeding 240 ° C., it is presumed that the higher the thermal decomposition temperature of the foaming agent, the smaller the decomposition residue of the composition that lowers the properties of the resulting foam, but at this high temperature, This is because there is a risk that various decomposition reactions are promoted while the resin is retained. Further, even in the PE-based resin to be used, as will be described later, there are many cases where the melt breaking tension and the melt breaking speed are out of the range suitable for foaming.

このような適量の発泡剤と発泡助剤が添加されるPE系樹脂の場合、得られる発泡体の外径変動を小さく抑え、かつ、発泡セルの均一性を良好なものとするためには、密度が0.935g/cm3 以上、200〜240℃の温度下における溶融破断張力が0.05g以上、200〜240℃の温度下における溶融破断速度が50m/min以上であるものの使用が望ましい。 In the case of a PE-based resin to which such an appropriate amount of foaming agent and foaming aid are added, in order to suppress fluctuations in the outer diameter of the obtained foam and to make the foam cell uniform, It is desirable to use a material having a density of 0.935 g / cm 3 or more, a melt breaking tension at a temperature of 200 to 240 ° C. of 0.05 g or more, and a melt breaking rate of 50 m / min or more at a temperature of 200 to 240 ° C.

このようなPE系樹脂の特性(条件)は、単独の樹脂で満たすものであってもよく、また、複数の樹脂の併用によって満たすものであてもよい。このような特性を満たす市販品としては、ZC023(商品名、宇部丸善ポリエチレン社製)、Cab658(商品名、宇部興産社製)、2070(商品名、宇部興産社製)、Hz−5305E(商品名、三井化学社製)、Cab658と2070とのブレンド品、2070とB028とのブレンド品などが挙げられる。   Such characteristics (conditions) of the PE-based resin may be satisfied by a single resin, or may be satisfied by a combination of a plurality of resins. Commercially available products satisfying such characteristics include ZC023 (trade name, manufactured by Ube Maruzen Polyethylene), Cab658 (trade name, manufactured by Ube Industries), 2070 (trade name, manufactured by Ube Industries), Hz-5305E (product) Name, manufactured by Mitsui Chemicals, Inc.), a blended product of Cab658 and 2070, a blended product of 2070 and B028, and the like.

なお、上記PE系樹脂以外のベース樹脂としては、ポリプロピレン(PP)、ブテン−1、ペンテン−1、ヘキセン−1、ヘプテン−1などのポリオレフィン系炭化水素モノマーの単独重合体、これらの2種類以上のモノマーの共重合体、例えばエチレン−プロピレン共重合体、エチレン−ブテン−1共重合体など、或いはこれらのオレフィン系炭化水素モノマーと少量のビニルエステル系モノマーやアクリレート系モノマーとの共重合体、例えばエチレン−酢酸ビニル共重合体(EVA)、エチレン−エチルアクリレート共重合体(EEA)などを挙げることができる。そして、これらを単独で用いたり、又は2種以上のブレンド品(混合物)として用いることも可能である。   The base resin other than the PE resin is a homopolymer of a polyolefin hydrocarbon monomer such as polypropylene (PP), butene-1, pentene-1, hexene-1 or heptene-1, or two or more of these. Copolymers of these monomers, such as ethylene-propylene copolymers, ethylene-butene-1 copolymers, etc., or copolymers of these olefinic hydrocarbon monomers with a small amount of vinyl ester monomers or acrylate monomers, Examples thereof include an ethylene-vinyl acetate copolymer (EVA) and an ethylene-ethyl acrylate copolymer (EEA). And it is also possible to use these alone or as a blended product (mixture) of two or more.

本発明のベース樹脂組成物には、必要により他の添加剤、例えば酸化防止剤、銅害防止剤、架橋助剤、分散剤、無機フィラーなどを適宜添加することができる。   If necessary, other additives such as antioxidants, copper damage inhibitors, crosslinking aids, dispersants, inorganic fillers and the like can be appropriately added to the base resin composition of the present invention.

〈試験例〉
先ず、表1に示す配合からなるマスターバッチ(MB1、MB2)を、130℃でロールにより混練して作成した。このときのPE系樹脂はZC023(商品名、宇部丸善ポリエチレン社製)である。その特性は密度が0.940g/cm3 以上、200〜240℃の温度下における溶融破断張力が0.05〜0.09g、200〜240℃の温度下における溶融破断速度が85.5〜113.8m/min以上である。
<Test example>
First, master batches (MB1, MB2) having the composition shown in Table 1 were prepared by kneading with a roll at 130 ° C. The PE resin at this time is ZC023 (trade name, manufactured by Ube Maruzen Polyethylene). Its properties are 0.940 g / cm 3 or more of density, 0.05 to 0.09 g of melt fracture tension at a temperature of 200 to 240 ° C., and 85.5 to 113 of melt fracture rate at a temperature of 200 to 240 ° C. .8 m / min or more.

次に、このMB1とPE系樹脂を、表2に示す配合で単軸押出機を用いて、回転数80rpm、150℃で混練して、発泡用樹脂混和物を作成した。引き続き、同様にして、表3に示す配合により、発泡助剤入りの樹脂混和物と助剤無しの樹脂混和物を得た作成した。なお、上記表1〜3において、配合数値は質量部数を表す。   Next, this MB1 and PE resin were kneaded at a rotational speed of 80 rpm and 150 ° C. using a single screw extruder with the formulation shown in Table 2 to prepare a foamed resin mixture. Subsequently, in the same manner, a resin blend containing a foaming aid and a resin blend without an aid were prepared by blending shown in Table 3. In addition, in the said Tables 1-3, a compounding numerical value represents a mass part number.

Figure 0004694225
Figure 0004694225

Figure 0004694225
Figure 0004694225

Figure 0004694225
Figure 0004694225

上記のようにして得られた、発泡助剤入りの樹脂混和物と助剤無しの樹脂混和物について、表4に示すように、発泡温度を変えて(160℃〜240℃)、発泡させ、得られた発泡体について、吸水量(吸湿性)とtanδ(誘電特性)の評価を行った。   About the resin blend containing the foaming aid and the resin blend without the aid obtained as described above, as shown in Table 4, the foaming temperature was changed (160 ° C. to 240 ° C.), and foamed. The resulting foam was evaluated for water absorption (hygroscopicity) and tan δ (dielectric properties).

上記発泡にあたっては、先ず、各樹脂混和物を単軸押出機を用いて、回転数3rpm、滞留時間10分で押し出した。次に、この押出発泡された樹脂を130℃でプレス脱気した後ペレット化し、140℃で外径2mm×高さ100mm前後の棒状体に成形した。この後、この成形された棒状体を、一旦真空乾燥機により60℃、1mmHg以下、72時間で乾燥させた。吸湿は24℃、100%RHのデシケータ(容器)に密封して行った。吸水量の測定、tanδ(Δtanδ)の測定は乾燥後、デシケータに密封してから数時間毎にサンプルの棒状体を取り出して、以下の方法により、測定した。   In the foaming, first, each resin mixture was extruded using a single screw extruder at a rotation speed of 3 rpm and a residence time of 10 minutes. Next, this extruded foamed resin was press degassed at 130 ° C. and then pelletized, and formed into a rod-like body having an outer diameter of 2 mm × height of about 100 mm at 140 ° C. Thereafter, the formed rod-shaped body was once dried by a vacuum dryer at 60 ° C. and 1 mmHg or less for 72 hours. Moisture absorption was performed by sealing in a desiccator (container) at 24 ° C. and 100% RH. The water absorption amount and tan δ (Δtan δ) were measured by the following method after drying and sealing the sample in a desiccator and then removing the sample rods every few hours.

〈吸水量測定〉 カールフィシャー水分測定法により行った。サンプル加熱温度:150℃、サンプル加熱時間:15min、水分検出時間:10min。
〈tanδ測定〉 空洞共振摂動法により行った。サンプルの棒状体は上記の如く、外径2mm×高さ100mm前後とした。なお、このtanδ測定では具体的にはΔtanδ値を求めた。
<Measurement of Water Absorption> The measurement was performed by the Karl Fischer moisture measurement method. Sample heating temperature: 150 ° C., sample heating time: 15 min, moisture detection time: 10 min.
<Tan δ Measurement> The measurement was performed by a cavity resonance perturbation method. As described above, the sample rod-shaped body had an outer diameter of 2 mm and a height of around 100 mm. In this tan δ measurement, specifically, a Δ tan δ value was obtained.

表4から、発泡助剤入りの樹脂混和物の場合、助剤無しの樹脂混和物に比較して、各発泡温度領域において、温度が高くなるほど、吸水量、及びtanδ数値が小さくなることが分かる。なお、助剤無しの樹脂混和物では、発泡温度が160℃、180℃ではADCAが殆ど分解し難いため、試験を省略した。   From Table 4, it can be seen that, in the case of a resin blend containing a foaming aid, the amount of water absorption and the tan δ value decrease as the temperature increases in each foaming temperature region, compared to the resin blend without an aid. . In the case of the resin mixture without an auxiliary agent, ADCA hardly hardly decomposes at a foaming temperature of 160 ° C. or 180 ° C., so the test was omitted.

表5では、発泡助剤入りの樹脂混和物の発泡剤量及び発泡助剤量を変えて(発泡剤量0.4質量部と発泡助剤量0.02質量部、発泡剤量0.8質量部と発泡助剤量0.12質量部)、上記表4の場合と同様にして、吸水量とtanδの評価を行った。なお、発泡剤の添加量に対して、発泡助剤の添加量は、5〜15質量%としてある。この表5から、発泡剤量及び発泡助剤量が少ない場合(下限値)でも、逆に多い発泡剤量及び発泡助剤量が多い場合(上限値)でも、実用的な吸水量、tanδ数値が得られることが分かる。   In Table 5, the amount of foaming agent and the amount of foaming aid of the resin admixture containing the foaming aid were changed (foaming agent amount 0.4 parts by weight, foaming aid amount 0.02 parts by weight, foaming agent amount 0.8 The water absorption amount and tan δ were evaluated in the same manner as in the case of Table 4 above. In addition, the addition amount of a foaming adjuvant is 5-15 mass% with respect to the addition amount of a foaming agent. From Table 5, even when the amount of foaming agent and the amount of foaming aid is small (lower limit value), on the contrary, when the amount of foaming agent and the amount of foaming aid is large (upper limit value), the practical water absorption amount, tan δ value It can be seen that

Figure 0004694225
Figure 0004694225

Figure 0004694225
Figure 0004694225

表6〜7では、上記ZC023以外の他のPE系樹脂1〜6を用い、上記表1〜3と同様にして、発泡助剤入りの樹脂混和物を作り、これらの樹脂混和物を、押出機により、200℃、220℃、240℃の加熱温度で、それぞれ導体(内部導体)上に絶縁体厚0.51mm、発泡度50%で押出被覆させた。この後、外部導体とシースを施して、同軸ケーブルを得た。なお、内部導体は0.203mmφの7本の裸軟銅撚線である。   In Tables 6 to 7, using other PE-based resins 1 to 6 other than ZC023, as in Tables 1 to 3, resin blends containing foaming assistants were prepared, and these resin blends were extruded. Each of the conductors (inner conductors) was extrusion coated with an insulator thickness of 0.51 mm and a foaming degree of 50% at a heating temperature of 200 ° C., 220 ° C., and 240 ° C. using a machine. Thereafter, an outer conductor and a sheath were applied to obtain a coaxial cable. The inner conductor is 7 bare soft copper stranded wires with a diameter of 0.203 mm.

用いたPE系樹脂1〜6の表中における特性評価(溶融破断張力と溶融破断速度)にあたっては、キャピラリーレオメータ(東洋精機社製)を用いた。この測定装置において、測定温度:190℃、ピストンスピード:10mm/min、タイムスケール:10min(初速度から最高速度200m/minまで加速するのに要する時間)、加速度:約20m/min2 {(最高速度−初速度)/タイムスケール}、キャピラリー:外径2.095mm×高さ8.03mmである。 A capillary rheometer (manufactured by Toyo Seiki Co., Ltd.) was used for evaluating the characteristics (melting rupture tension and melt rupture speed) in the table of the PE resins 1 to 6 used. In this measuring apparatus, measurement temperature: 190 ° C., piston speed: 10 mm / min, time scale: 10 min (time required to accelerate from the initial speed to the maximum speed of 200 m / min), acceleration: about 20 m / min 2 {(maximum Speed−initial speed) / time scale}, capillary: outer diameter 2.095 mm × height 8.03 mm.

上記の発泡絶縁体の被覆された同軸ケーブルにおいて、外径変動、発泡セルの状態を評価し、合わせて総合評価を行った。   In the coaxial cable covered with the above foamed insulator, the outer diameter fluctuation and the state of the foamed cell were evaluated, and comprehensive evaluation was performed.

〈外径変動〉 外径変動の評価は次の基準により行った。「小」:外径変動幅が発泡絶縁体厚さの5%未満であるもの。「中」:外径変動幅が発泡絶縁体厚さの5%以上10%未満であるもの。「大」:外径変動幅が発泡絶縁体厚さの10%以上であるもの。   <Outer diameter fluctuation> The outer diameter fluctuation was evaluated according to the following criteria. “Small”: The fluctuation width of the outer diameter is less than 5% of the thickness of the foamed insulator. “Medium”: The outer diameter fluctuation width is 5% or more and less than 10% of the thickness of the foamed insulator. “Large”: The outer diameter fluctuation width is 10% or more of the thickness of the foamed insulator.

〈発泡セルの状態〉 発泡セルの状態評価は次の基準により行った。「○」:連泡(連続した発泡)がなく、平均発泡セル径が80μm以下であり、かつ、セル径のバラツキが小さいもの。「×」:連泡があるもの、平均発泡セル径が80μmより大きいもの、セル径のバラツキが大きいもののいずれかであるもの。   <State of foamed cell> The state of the foamed cell was evaluated according to the following criteria. “◯”: No bubble (continuous foaming), average foamed cell diameter of 80 μm or less, and small variation in cell diameter. “X”: One having continuous bubbles, one having an average foamed cell diameter of more than 80 μm, or one having a large variation in cell diameter.

Figure 0004694225
Figure 0004694225

Figure 0004694225
Figure 0004694225

上記表6〜7から、本発明で用いるPE系樹脂にあっては、その特性が、密度0.935g/cm3 以上、前記200〜240℃の温度下における溶融破断張力0.05g以上、当該200〜240℃の温度下における溶融破断速度50m/min以上であること(表中のA、B、G、Hの場合)により、外径変動が小さく、発泡セルの状態も均一で、発泡セルも小さいことが分かる。 From Tables 6 to 7, the PE resin used in the present invention has a density of 0.935 g / cm 3 or more, a melt breaking tension of 0.05 g or more at the temperature of 200 to 240 ° C., The melt fracture rate at a temperature of 200 to 240 ° C. is 50 m / min or more (in the case of A, B, G, and H in the table), the fluctuation of the outer diameter is small, the state of the foam cell is uniform, and the foam cell Is also small.

本発明に係る高周波用同軸ケーブルの一例を示した縦断端面図である。1 is a longitudinal end view showing an example of a high-frequency coaxial cable according to the present invention.

符号の説明Explanation of symbols

1・・・導体(内部導体)、2・・・絶縁体、3・・・金属層(外部導体)、4・・・シース
DESCRIPTION OF SYMBOLS 1 ... Conductor (inner conductor), 2 ... Insulator, 3 ... Metal layer (outer conductor), 4 ... Sheath

Claims (2)

ポリエチレン樹脂100質量部に0.4〜0.8質量部の発泡剤のアゾジカルボンアミドと当該発泡剤に対して5〜15質量%の酸化亜鉛を発泡助剤として適量添加し、200〜240℃下で押し出し発泡させることを特徴とする同軸ケーブルの吸水量を低減する方法。 An appropriate amount of 0.4 to 0.8 parts by mass of azodicarbonamide as a foaming agent and 5 to 15% by mass of zinc oxide based on the foaming agent as a foaming aid is added to 100 parts by mass of polyethylene resin , and 200 to 240 ° C. A method for reducing the water absorption of a coaxial cable, characterized by being extruded and foamed underneath. ポリエチレン樹脂100質量部に0.4〜0.8質量部の発泡剤のアゾジカルボンアミドと当該発泡剤に対して5〜15質量%の酸化亜鉛を発泡助剤として適量添加し、200〜240℃下で押し出し発泡させることを特徴とする同軸ケーブルのtanδを低減する方法。 An appropriate amount of 0.4 to 0.8 parts by mass of azodicarbonamide as a foaming agent and 5 to 15% by mass of zinc oxide based on the foaming agent as a foaming aid is added to 100 parts by mass of polyethylene resin , and 200 to 240 ° C. A method for reducing tan δ of a coaxial cable, characterized by being extruded and foamed under.
JP2005066888A 2005-03-10 2005-03-10 Method for reducing water absorption of coaxial cable and method for reducing tan δ of coaxial cable Expired - Fee Related JP4694225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066888A JP4694225B2 (en) 2005-03-10 2005-03-10 Method for reducing water absorption of coaxial cable and method for reducing tan δ of coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066888A JP4694225B2 (en) 2005-03-10 2005-03-10 Method for reducing water absorption of coaxial cable and method for reducing tan δ of coaxial cable

Publications (2)

Publication Number Publication Date
JP2006249219A JP2006249219A (en) 2006-09-21
JP4694225B2 true JP4694225B2 (en) 2011-06-08

Family

ID=37090044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066888A Expired - Fee Related JP4694225B2 (en) 2005-03-10 2005-03-10 Method for reducing water absorption of coaxial cable and method for reducing tan δ of coaxial cable

Country Status (1)

Country Link
JP (1) JP4694225B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121990A (en) * 2010-12-08 2012-06-28 Hitachi Cable Ltd Resin composition and foam insulated wire
JP2012121995A (en) 2010-12-08 2012-06-28 Hitachi Cable Ltd Resin composition and foam insulated wire
JP5689692B2 (en) * 2011-01-12 2015-03-25 株式会社フジクラ Foamed electric wire and transmission cable having the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305144A (en) * 1987-06-05 1988-12-13 Showa Denko Kk Ethylene polymer mixture
JPH06345888A (en) * 1993-06-04 1994-12-20 Dainichiseika Color & Chem Mfg Co Ltd Thermoplastic resin composition for forming molding
JPH10251460A (en) * 1997-03-14 1998-09-22 Nippon Unicar Co Ltd Foamable resin composition for foamed insulating polyethylene covering and foamed insulating polyethylene covered wire produced by covering with the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63305144A (en) * 1987-06-05 1988-12-13 Showa Denko Kk Ethylene polymer mixture
JPH06345888A (en) * 1993-06-04 1994-12-20 Dainichiseika Color & Chem Mfg Co Ltd Thermoplastic resin composition for forming molding
JPH10251460A (en) * 1997-03-14 1998-09-22 Nippon Unicar Co Ltd Foamable resin composition for foamed insulating polyethylene covering and foamed insulating polyethylene covered wire produced by covering with the same

Also Published As

Publication number Publication date
JP2006249219A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP5975334B2 (en) Foamed resin molded body, foamed insulated wire and cable, and method for producing foamed resin molded body
KR100461263B1 (en) Coaxial high-frequency cable and dielectric material thereof
US8901184B2 (en) Foamed resin molded article, foam insulated wire, cable and method of manufacturing foamed resin molded article
EP2648191B1 (en) Insulated wire and cable
JP4875613B2 (en) Coaxial cable with foam insulation
JP2008019379A (en) Masterbatch for foaming resin composition, foamed coaxial cable and method for producing the same
JP4694225B2 (en) Method for reducing water absorption of coaxial cable and method for reducing tan δ of coaxial cable
JP2006022276A (en) Composition for insulator and high-foaming insulator and coaxial cable for high frequency using the composition
JP5420662B2 (en) Foamed electric wire and transmission cable having the same
JP5426948B2 (en) Foamed electric wire and transmission cable having the same
JP5298148B2 (en) Foamed coaxial cable
JP5303639B2 (en) Manufacturing method of foamed wire
JP3344307B2 (en) Fine-diameter foamed electric wire and method of manufacturing the same
JP2007237645A (en) Foam molding method, foamed coaxial cable, and manufacturing method therefor
JP5420663B2 (en) Foamed electric wire and transmission cable having the same
JP2001325834A (en) Dc power cable
JP2006224446A (en) Manufacturing method of extruded foam and coaxial cable
JP2921091B2 (en) Electric wires and cables
JP2007242589A (en) Foamed coaxial cable
JP2006252820A (en) Foam coaxial cable
JP2007138006A (en) Resin composition for expansion, method for expansion molding, expanded coaxial cable and method for producing expanded coaxial cable
JP2007172854A (en) Method of manufacturing foamed insulated wire
JPH052938A (en) Electric wire with foamed insulator and its manufacture
JP5689692B2 (en) Foamed electric wire and transmission cable having the same
EP3524428A1 (en) Multi-layer insulated wire and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4694225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees