JP2007172854A - Method of manufacturing foamed insulated wire - Google Patents

Method of manufacturing foamed insulated wire Download PDF

Info

Publication number
JP2007172854A
JP2007172854A JP2005364481A JP2005364481A JP2007172854A JP 2007172854 A JP2007172854 A JP 2007172854A JP 2005364481 A JP2005364481 A JP 2005364481A JP 2005364481 A JP2005364481 A JP 2005364481A JP 2007172854 A JP2007172854 A JP 2007172854A
Authority
JP
Japan
Prior art keywords
extruder
foam
insulated wire
gas
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005364481A
Other languages
Japanese (ja)
Inventor
Tomonori Kondo
智紀 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005364481A priority Critical patent/JP2007172854A/en
Publication of JP2007172854A publication Critical patent/JP2007172854A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a foamed insulated wire which is coated by a foamed insulator with less surface unevenness and outside diameter variation by using a thermoplastic resin compound in a dried condition, on which a porous body is added as a foaming nucleating agent. <P>SOLUTION: The method of manufacturing the foamed insulated wire supplies the thermoplastic resin compound in the dried condition, on which the porous body such as zeolite, silica, activated carbon, or silica gel is added as the foaming nucleating agent, to an extruder, extrudes the foamed insulator outward of a conductor by continuously injecting foamed gas to the extruder by a gas injection part provided with a gas pressure control means 20. Thereby, the injected foamed gas is effectively adsorbed to the porous body and is dispersed, and thus a huge foaming cell is not likely to be formed, and the wire of the excellent foamed insulator with the less surface unevenness (surface roughness) and outside diameter variation enabling to provide fine foam is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表面凹凸や外径変動などの少ない優れた発泡絶縁体が被覆された発泡絶縁電線の製造方法に関するものである。   The present invention relates to a method for producing a foam insulated wire coated with an excellent foam insulator with less surface irregularities and outer diameter fluctuations.

近年種々の電子機器で使用される絶縁電線の場合、例えば高周波用の同軸ケーブルでは、使用周波数帯域がGHzオーダーに達している。GHz帯域では、低周波数帯域よりも減衰量の小さいケーブル特性が要求されるため、内部導体(中心導体)上に被覆される絶縁体にあっては、発泡形成することが行われている(特許文献1〜2)。
特許3227091号 特許2668198号
In the case of insulated wires used in various electronic devices in recent years, for example, in a high-frequency coaxial cable, the used frequency band has reached the GHz order. In the GHz band, a cable characteristic having a smaller attenuation than that in the low frequency band is required. Therefore, foaming is performed on the insulator coated on the inner conductor (center conductor) (patent) Literatures 1-2).
Japanese Patent No. 3227091 Japanese Patent No. 2668198

この絶縁体としては、ポリエチレン系樹脂の他に、熱可塑性フッ素系樹脂、例えばテトラフロロエチレン−ヘキサフロロプロピレン共重合体(FEP)やテトラフロロエチレン−パーフロロアルキルビニルエーテル共重合体(PFA)なども用いられている。   As the insulator, in addition to polyethylene resin, thermoplastic fluororesin such as tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) are also used. It is used.

このような絶縁体の発泡にあたっては、押出時の加熱により発泡する化学物質を樹脂コンパウンド中に充填させて行う化学発泡法や、押出時に外部から窒素ガスや炭酸ガスなどを樹脂コンパウンド中に導入させて行う物理発泡法が採用されている。
しかし、これらの方法のみでは、高発泡度で均一かつ微細な発泡絶縁体を得ることは困難な状況にある。
For foaming such insulators, chemical foaming is performed by filling the resin compound with a chemical substance that is foamed by heating during extrusion, or nitrogen gas or carbon dioxide gas is introduced into the resin compound from the outside during extrusion. The physical foaming method is used.
However, it is difficult to obtain a uniform and fine foam insulator with a high foaming degree only by these methods.

このため、樹脂コンパウンド中に発泡の核となる物質、即ち、発泡核剤を予め添加して、発泡を促進することが提案されている。例えば、物理発泡法において、発泡核剤として窒化ホウ素(BN)を使用することが知られている。窒化ホウ素の場合、熱可塑性フッ素系樹脂の押出温度付近で熱的に安定で反応性が低く、優れた誘電特性を示す。   For this reason, it has been proposed that a foaming nucleus, that is, a foaming nucleating agent is added in advance to the resin compound to promote foaming. For example, it is known to use boron nitride (BN) as a foam nucleating agent in the physical foaming method. In the case of boron nitride, it is thermally stable near the extrusion temperature of the thermoplastic fluorine-based resin, has low reactivity, and exhibits excellent dielectric properties.

しかしながら、窒化ホウ素の使用による発泡では、高発泡度化などの点に限界があるため、窒化ホウ素に加えて無機金属塩を添加して発泡度を改善したり、微細発泡度化させることなどが試みられている(特許文献3)。
特開平01−172431号
However, foaming by using boron nitride has limitations in terms of increasing the degree of foaming. Therefore, it is possible to improve the foaming degree by adding an inorganic metal salt in addition to boron nitride, or to make the foaming degree finer. Attempts have been made (Patent Document 3).
Japanese Patent Laid-Open No. 01-172431

このような状況下にあって、本発明者は、種々の試験を行ったところ、多孔質体を発泡核剤として添加した熱可塑性樹脂コンパウンドを乾燥状態にして押出機に供給し、押出機には発泡ガスをガス圧制御手段を備えたガス注入部により連続的に注入して発泡絶縁体を導体外方に押し出した場合、注入された発泡ガスが多孔質体に効果的に吸着されて分散されるため、巨大発泡セルができ難く、発泡の微細化が可能で、表面の凹凸(表面荒れ)や外径変動などの少ない、優れた発泡絶縁体の電線が得られることを見い出した。
特に熱可塑性樹脂コンパウンドのベース樹脂として、熱可塑性フッ素系樹脂、例えばテトラフロロエチレン−ヘキサフロロプロピレン共重合体(FEP)やテトラフロロエチレン−パーフロロアルキルビニルエーテル共重合体(PFA)などを用い、また、使用する多孔質体のゼオライトやシリカを、特定の大きさの範囲で、かつ特定の質量%の範囲で添加する一方、配合材料を十分な乾燥状態で取り扱い、さらに、発泡ガス(窒素ガスや炭酸ガスなど)を安定して供給すれば、より一層効果的であることが分った。
Under such circumstances, the present inventor conducted various tests and found that the thermoplastic resin compound added with the porous material as a foam nucleating agent was supplied in a dry state to the extruder, and the extruder was supplied. In the case where the foaming gas is continuously injected by the gas injection part equipped with the gas pressure control means and the foamed insulator is pushed out of the conductor, the injected foamed gas is effectively adsorbed by the porous body and dispersed. Therefore, it has been found that it is difficult to form a huge foam cell, the foam can be made finer, and an excellent foamed insulator electric wire with less surface irregularities (surface roughness) and outer diameter fluctuation can be obtained.
In particular, as the base resin of the thermoplastic resin compound, a thermoplastic fluorine-based resin such as tetrafluoroethylene-hexafluoropropylene copolymer (FEP) or tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) is used. While adding the zeolite or silica of the porous body to be used in a specific size range and a specific mass% range, the compounded material is handled in a sufficiently dry state, and further, a foaming gas (nitrogen gas or It has been found that a more stable supply of carbon dioxide etc. is even more effective.

本発明は、この観点に立ってなされたもので、ベース樹脂に特定の多孔質体を発泡核剤として添加して、優れた特性の発泡絶縁体が被覆された発泡絶縁電線の製造方法を提供するものである。   The present invention has been made in view of this point of view, and provides a method for producing a foam insulated wire in which a specific porous body is added as a foam nucleating agent to a base resin, and a foam insulation having excellent characteristics is coated. To do.

請求項1記載の本発明は、多孔質体を発泡核剤として添加した熱可塑性樹脂コンパウンドを乾燥状態にして押出機に供給し、当該押出機には発泡ガスをガス圧制御手段を備えたガス注入部により連続的に注入して発泡絶縁体を導体外方に押し出すことを特徴とする発泡絶縁電線の製造方法にある。   According to the first aspect of the present invention, a thermoplastic resin compound added with a porous material as a foam nucleating agent is supplied in a dry state to an extruder, and the extruder is provided with a gas having a gas pressure control means. In the method for producing a foam insulated wire, the foam insulation is continuously injected by an injection portion and the foam insulation is pushed out of the conductor.

請求項2記載の本発明は、前記熱可塑性樹脂コンパウンドのベース樹脂がテトラフロロエチレン−ヘキサフロロプロピレン共重合体、又はテトラフロロエチレン−パーフロロアルキルビニルエーテル共重合体などの熱可塑性フッ素系樹脂であることを特徴とする請求項1記載の発泡絶縁電線の製造方法にある。   In the second aspect of the present invention, the base resin of the thermoplastic resin compound is a thermoplastic fluororesin such as a tetrafluoroethylene-hexafluoropropylene copolymer or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. It exists in the manufacturing method of the foam insulated wire of Claim 1 characterized by the above-mentioned.

請求項3記載の本発明は、前記多孔質体がゼオライト、シリカ、活性炭、又はシリカゲルであることを特徴とする請求項1、又は2記載の発泡絶縁電線の製造方法にある。   A third aspect of the present invention is the method for producing a foam insulated wire according to the first or second aspect, wherein the porous body is zeolite, silica, activated carbon, or silica gel.

請求項4記載の本発明は、前記多孔質体がメジアン径1〜10μmのゼオライトで、前記熱可塑性樹脂コンパウンドのベース樹脂に対して0.1〜1質量%添加することを特徴とする請求項1又は2記載の発泡絶縁電線の製造方法にある。   The present invention according to claim 4 is characterized in that the porous body is zeolite having a median diameter of 1 to 10 μm, and 0.1 to 1% by mass is added to the base resin of the thermoplastic resin compound. It exists in the manufacturing method of the foam insulated wire of 1 or 2.

請求項5記載の本発明は、前記多孔質体がメジアン径1〜10μmのシリカで、前記熱可塑性樹脂コンパウンドのベース樹脂に対して0.2〜1.5質量%添加することを特徴とする請求項1又は2記載の発泡絶縁電線の製造方法にある。   The present invention according to claim 5 is characterized in that the porous body is silica having a median diameter of 1 to 10 μm, and 0.2 to 1.5 mass% is added to the base resin of the thermoplastic resin compound. It exists in the manufacturing method of the foam insulated wire of Claim 1 or 2.

請求項6記載の本発明は、前記乾燥状態の熱可塑性樹脂コンパウンドが収納される外部貯留部、当該外部貯留部から前記押出機のホッパに接続されたコンパウンド輸送管路及び前記押出機のホッパ間を気密状態にして、前記乾燥状態の熱可塑性樹脂コンパウンドを押出機に供給することを特徴とする請求項1、2、3、4又は5記載の発泡絶縁電線の製造方法にある。   According to a sixth aspect of the present invention, there is provided an external storage part in which the thermoplastic resin compound in the dry state is stored, a compound transport pipe connected from the external storage part to a hopper of the extruder, and a hopper of the extruder 6. The method for producing a foam insulated wire according to claim 1, wherein the dried thermoplastic resin compound is supplied to an extruder.

請求項7記載の本発明は、前記押出機のホッパが乾燥部付きのホッパからなることを特徴とする請求項1、2、3、4、5又は6記載の発泡絶縁電線の製造方法にある。   The present invention according to claim 7 is the method for producing a foam insulated wire according to claim 1, wherein the hopper of the extruder is a hopper with a drying section. .

請求項8記載の本発明は、前記ガス注入部のガス圧制御手段がエアコンプレッサ、バッファタンクが内蔵されたガス昇圧機からなることを特徴とする請求項1、2、3、4、5、又は7記載の発泡絶縁電線の製造方法にある。   The present invention according to claim 8 is characterized in that the gas pressure control means of the gas injection section comprises an air compressor and a gas booster with a built-in buffer tank. Or it exists in the manufacturing method of the foam insulated wire of 7 description.

本発明の発泡絶縁電線の製造方法によると、上記のような構成により、注入された発泡ガスが多孔質体に効果的に吸着されて熱可塑性樹脂コンパウンド中に分散される。そして、この多孔質体が発泡核剤として機能するため、急激な発泡、所謂突沸のような現象が抑制され、安定した発泡が得られる。また、発泡ガスの高い注入効率が得られる。結果として、巨大発泡セルができ難く、発泡の微細化が可能で、表面の凹凸(表面荒れ)や外径変動などの少ない発泡絶縁体の電線を得ることができる。   According to the manufacturing method of the foam insulated wire of the present invention, the injected foam gas is effectively adsorbed by the porous body and dispersed in the thermoplastic resin compound by the above configuration. And since this porous body functions as a foam nucleating agent, a phenomenon such as rapid foaming, so-called bumping, is suppressed, and stable foaming is obtained. Further, high injection efficiency of the foaming gas can be obtained. As a result, it is difficult to form a huge foam cell, and it is possible to obtain a foamed insulating wire that can be finely foamed and has less surface irregularities (surface roughness) and fluctuations in outer diameter.

本発明電線の発泡絶縁体に用いる熱可塑性樹脂コンパウンドのベース樹脂としては、熱可塑性樹脂であれば、特に問わないが、熱可塑性フッ素系樹脂、例えばテトラフロロエチレン−ヘキサフロロプロピレン共重合体(FEP)やテトラフロロエチレン−パーフロロアルキルビニルエーテル共重合体(PFA)などを用いるものとする。発泡に適する特性としては、ASDTM−D1238−70に従って測定したメルトインデックス(MI、190℃、2.16Kgf)が14〜30g/10分のものが好ましい。これらのFEPやPFAの場合、通常のものでは、端末官能基の存在により誘電特性などの点に問題があるため、好ましくは端末官能基に対してフッ素化処理などを施して安定化させたものの使用が望ましい。このようなフッ素化処理を施したFEPの市販品としては、三井デュポンフロロケミカル社製の5100J(商品名、MI=22)、PFAの市販品としては、三井デュポンフロロケミカル社製の440HP−J(商品名、MI=15)などを挙げることができる。   The base resin of the thermoplastic resin compound used for the foam insulation of the electric wire of the present invention is not particularly limited as long as it is a thermoplastic resin. However, a thermoplastic fluororesin such as tetrafluoroethylene-hexafluoropropylene copolymer (FEP) ) And tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA). Properties suitable for foaming are preferably those having a melt index (MI, 190 ° C., 2.16 Kgf) measured according to ASDTM-D1238-70 of 14-30 g / 10 min. In the case of these FEPs and PFAs, the usual ones have a problem in terms of dielectric properties due to the presence of terminal functional groups, and thus preferably stabilized by subjecting the terminal functional groups to fluorination treatment or the like. Use is desirable. As a commercial product of FEP subjected to such fluorination treatment, 5100J (trade name, MI = 22) manufactured by Mitsui DuPont Fluorochemical Co., Ltd., and as a commercial product of PFA, 440HP-J manufactured by Mitsui DuPont Fluorochemical Co., Ltd. (Product name, MI = 15).

これらのベース樹脂に添加される発泡核剤の多孔質体としては、ゼオライト、シリカ、活性炭、又はシリカゲルなどが使用できる。電線用絶縁体として使用する場合、これらの多孔質体の大きさ(粒径)は、メデアン径(d50)で1〜10μm、好ましくは1〜5μmのものがよい。その理由は、1μm未満のサブミクロンになると、二次凝集が生じて実質的に発泡に寄与する粒子数が減少するため、発泡の微細化が得られなくなるからである。また、逆に10μmを超えるようになると、二次凝集の場合と同様単位体積中の発泡に寄与する粒子数が減少するため、やはり発泡の微細化が得られなくなるからである。そして、発泡核剤の比表面積にもよるが、ベース樹脂に対する添加量としては、0.1〜1.5質量%が望ましい。特にゼオライトの場合、メデアン径で1〜10μmで0.1〜1.0質量%が好ましい。シリカの場合、メデアン径で1〜10μmで0.1〜1.5質量%が好ましい。   As the porous body of the foam nucleating agent added to these base resins, zeolite, silica, activated carbon, silica gel or the like can be used. When used as an insulator for electric wires, the size (particle diameter) of these porous bodies is 1 to 10 μm, preferably 1 to 5 μm in median diameter (d50). The reason is that, when the submicron is less than 1 μm, secondary aggregation occurs and the number of particles that substantially contribute to foaming is reduced, so that finer foaming cannot be obtained. On the other hand, if the thickness exceeds 10 μm, the number of particles contributing to foaming in the unit volume decreases as in the case of secondary aggregation, and it is impossible to obtain finer foaming. And although it also depends on the specific surface area of the foam nucleating agent, the amount added to the base resin is preferably 0.1 to 1.5% by mass. Particularly in the case of zeolite, the median diameter is preferably 1 to 10 μm and 0.1 to 1.0% by mass. In the case of silica, the median diameter is preferably 1 to 10 μm and 0.1 to 1.5% by mass.

この多孔質体が添加されたベース樹脂は、熱可塑性樹脂コンパウンドとして、押出の前に混合するわけであるが、その際乾燥が不十分であると、特に多孔質体に水分が付着したままであると、後述する試験から明らかになったように、発泡セル径の微細化が得られなくなる。勿論、多孔質体の機能、即ち窒素ガスや炭酸ガスなどの発泡ガスの吸着作用も低下する。また、吸着された水分が発泡時蒸発して発泡作用を促進するようになるため、発泡制御自体が困難となる。水分の蒸発があると、発泡ガス注入のガス圧の制御も困難となる。結果として発泡度の大きな変動が生じるようになる。さらに、水分吸着は季節や日時などによっても変動するため、この点でも安定した発泡度の確保が困難となる。さらにまた、電線では絶縁体中に水分が残存するようなことになると、種々の特定低下を招く原因ともなる。これらのことから、本発明では、押出の前に熱可塑性樹脂コンパウンドを十分乾燥させ、かつ、この乾燥状態で押出機側に供給することが必要とされる。   The base resin to which the porous body is added is mixed as a thermoplastic resin compound before extrusion. At that time, if the drying is insufficient, in particular, moisture remains attached to the porous body. If it exists, as will become clear from the test described later, the foamed cell diameter cannot be reduced. Of course, the function of the porous body, that is, the adsorption action of the foaming gas such as nitrogen gas or carbon dioxide gas is also lowered. In addition, since the adsorbed moisture evaporates at the time of foaming and promotes the foaming action, the foam control itself becomes difficult. If moisture evaporates, it becomes difficult to control the gas pressure for injecting the foaming gas. As a result, a large variation in the degree of foaming occurs. Furthermore, since moisture adsorption varies depending on the season and date, it is difficult to secure a stable foaming degree in this respect as well. Furthermore, in the electric wire, when moisture remains in the insulator, it may cause various specific deteriorations. For these reasons, the present invention requires that the thermoplastic resin compound be sufficiently dried before extrusion and supplied to the extruder side in this dried state.

このような多孔質体の添加された熱可塑性樹脂コンパウンドに対しては、必要により、その他の添加物、例えば、酸化防止剤、銅害防止剤、難燃剤、分散剤、無機フィラー、架橋剤、架橋助剤などを適宜添加することができる。   For the thermoplastic resin compound to which such a porous body is added, if necessary, other additives such as antioxidants, copper damage inhibitors, flame retardants, dispersants, inorganic fillers, crosslinking agents, A crosslinking aid or the like can be appropriately added.

図1は、本発明に係る発泡絶縁電線の製造方法により得られた発泡絶縁電線の一例を示したものである。この発泡絶縁電線は発泡同軸ケーブルの場合で、図中、1は撚線導体などの内部導体、2は本発明の熱可塑性樹脂コンパウンドを、押出成形により、導体1上に被覆させた発泡絶縁体、3は金属編組やコルゲート銅パイプなどからなる金属層(外部導体)、4はポリエチレンなどからなるシース、5a,5bは必要により施される、厚さ50μm程度の内スキン層、外スキン層である。このケーブル外径は、特に限定されないが、約3〜50mm程度のものとして形成される。なお、必要に応じて絶縁体2と金属層3の間にアルミテープなどを入れることもできる。   FIG. 1 shows an example of a foam insulated wire obtained by the method for producing a foam insulated wire according to the present invention. This foam insulated wire is a foam coaxial cable. In the figure, 1 is an internal conductor such as a stranded wire conductor, 2 is a foam insulator in which the thermoplastic resin compound of the present invention is coated on the conductor 1 by extrusion molding. 3 is a metal layer (outer conductor) made of metal braid or corrugated copper pipe, 4 is a sheath made of polyethylene or the like, 5a and 5b are an inner skin layer and an outer skin layer with a thickness of about 50 μm, if necessary. is there. The outer diameter of the cable is not particularly limited, but is formed as about 3 to 50 mm. In addition, an aluminum tape etc. can also be put between the insulator 2 and the metal layer 3 as needed.

図2は、本発明に係る発泡絶縁電線の製造方法を実施するための押出装置系の一例を示したものである。10は第1押出機、11は第1押出機10の乾燥部(ドライヤー)付きのホッパ(樹脂供給口)、12はホッパ11のヒータなどの内蔵された乾燥部、13は乾燥状態の熱可塑性樹脂コンパウンドが収納される、好ましくは真空乾燥などの乾燥手段が付設された外部貯留部(外部ホッパ)、14は外部貯留部13から第1押出機10のホッパ11に接続されたコンパウンド輸送管路である。これらの外部貯留部13、コンパウンド輸送管路14及び第1押出機10の乾燥部付きのホッパ11間は気密状態に保持されるように構成してある。つまり、乾燥状態で外部貯留部13に供給された熱可塑性樹脂コンパウンドは、第1押出機10の乾燥部付きのホッパ11に乾燥状態を維持したままで供給されるようになっている。   FIG. 2 shows an example of an extrusion apparatus system for carrying out the method for manufacturing a foam insulated wire according to the present invention. 10 is a first extruder, 11 is a hopper (resin supply port) with a drying unit (dryer) of the first extruder 10, 12 is a built-in drying unit such as a heater of the hopper 11, and 13 is a thermoplastic in a dry state An external storage unit (external hopper) in which a resin compound is stored, preferably provided with a drying means such as vacuum drying, and 14 is a compound transport pipeline connected from the external storage unit 13 to the hopper 11 of the first extruder 10. It is. The space between the external reservoir 13, the compound transport pipe 14 and the hopper 11 with the drying unit of the first extruder 10 is maintained in an airtight state. That is, the thermoplastic resin compound supplied to the external storage unit 13 in a dry state is supplied to the hopper 11 with a drying unit of the first extruder 10 while maintaining the dry state.

15は第1押出機10のガス注入部、20は第1押出機10のガス圧制御手段で、エアコンプレッサ21、バッファタンクが内蔵されたガス昇圧機22からなる。30は発泡ガスの窒素ガスや炭酸ガスなどが充填されたガスボンベ(例えば2個)である。ここでは、ガスボンベ30から供給された発泡ガスの元圧を、ガス昇圧機22で使用圧の数倍に昇圧し、内蔵のバッファタンクに導き、使用圧として第1押出機10のガス注入部15に安定して注入するようにしてある。これにより、ガス圧の変動を抑えた安定したガス供給が得られる。   Reference numeral 15 denotes a gas injection unit of the first extruder 10, and 20 denotes a gas pressure control means of the first extruder 10, which includes an air compressor 21 and a gas booster 22 having a built-in buffer tank. Reference numeral 30 denotes a gas cylinder (for example, two) filled with a foaming gas such as nitrogen gas or carbon dioxide gas. Here, the original pressure of the foaming gas supplied from the gas cylinder 30 is increased to several times the operating pressure by the gas booster 22 and led to the built-in buffer tank, and the operating pressure is the gas injection section 15 of the first extruder 10. So that it can be injected stably. Thereby, the stable gas supply which suppressed the fluctuation | variation of gas pressure is obtained.

40は外スキン層形成用の第2押出機、41は第2押出機40のクロスヘッド、50は内スキン層形成用の第3押出機、51は第3押出機50のクロスヘッド、60は電線の走行ラインで、61は導体の送出部、62は張力調整用のダンサ、63,64は予熱部、65水槽などの冷却部、66は巻取用のキャプスタン、67は張力調整用のダンサ、68は電線(電線中間品)の巻取部である。ここでは、外スキン層の形成後、一旦電線中間品として巻き取っているが、巻き取らず、引き続き、外スキン層の外周に金属層(外部導体)及びシースを被覆することもできる。   40 is a second extruder for forming an outer skin layer, 41 is a crosshead of the second extruder 40, 50 is a third extruder for forming an inner skin layer, 51 is a crosshead of the third extruder 50, and 60 is 61 is a conductor feeding section, 62 is a tension adjusting dancer, 63 and 64 are preheating sections, a cooling section such as a 65 water tank, 66 is a winding capstan, and 67 is a tension adjusting section. A dancer 68 is a winding part for an electric wire (intermediate electric wire product). Here, after the outer skin layer is formed, it is once wound up as an electric wire intermediate product. However, the outer skin layer can be continuously covered with a metal layer (outer conductor) and a sheath without being wound up.

このように構成された押出装置系により、発泡絶縁電線を製造するには、先ず、他の押出機によりベース樹脂と多孔質体を混練させて熱可塑性樹脂コンパウンドとし、上記したように、外部貯留部13に真空乾燥などの乾燥手段が付設してあるときには、ここで、80℃程度に加熱して真空乾燥させて、不要なガス、特に水分を除去する。   In order to produce a foam insulated wire by the extruder system configured as described above, first, the base resin and the porous body are kneaded with another extruder to obtain a thermoplastic resin compound, and as described above, the external storage When a drying means such as vacuum drying is attached to the unit 13, heating is performed at about 80 ° C. and vacuum drying is performed to remove unnecessary gas, particularly moisture.

そして、この乾燥済みの熱可塑性樹脂コンパウンドを、第1押出機10のホッパ11に送る。このホッパ11部分でも付設の乾燥部12により乾燥を継続させて、不要な水分などが極力混入されないように制御する。   Then, the dried thermoplastic resin compound is sent to the hopper 11 of the first extruder 10. The hopper 11 is also continuously dried by the attached drying unit 12 so that unnecessary moisture is prevented from being mixed as much as possible.

この状態から、第1押出機10を駆動させると共に、ガスボンベ30から発泡ガスをガス昇圧機22側に供給し、このガス昇圧機22及びエアコンプレッサ21を制御して、発泡ガスを第1押出機10のガス注入部15に注入する。一方、電線の走行ライン60も駆動させて、導体を送り出せば、所望の内スキン層5a、発泡絶縁体2、外スキン層5bを順次被覆することができる。内スキン層5aも設けることで、内部導体1と発泡絶縁体2との密着性が向上するため、絶縁体の引抜力の改善が図られる。外スキン層5bを設けると、外観の凹凸が抑制できると共に、VSWR(Voltage Standing Wave Ratio)が改善され、また、ガス抜きの防止機能が得られるため、発泡制御が容易となる。なお、これらの各スキン層材料としては、通常ポリエチレン(例えば低密度ポリエチレン)を用い、その層厚が厚過ぎると発泡絶縁体全体の発泡度が低下する恐れがあり、また、薄過ぎると加工(被覆)自体が困難となるため、50μm程度がよい。これらのスキン層はいずれか一方のみを設けてもよく、また、発泡絶縁体と同時押出する他、それぞれを単独で押し出すこともできる。   From this state, the first extruder 10 is driven, and the foaming gas is supplied from the gas cylinder 30 to the gas booster 22 side, and the gas booster 22 and the air compressor 21 are controlled to supply the foaming gas to the first extruder. 10 gas injection portions 15 are injected. On the other hand, if the electric wire running line 60 is also driven and the conductor is fed out, the desired inner skin layer 5a, foamed insulator 2 and outer skin layer 5b can be sequentially coated. Since the inner skin layer 5a is also provided, the adhesion between the inner conductor 1 and the foamed insulator 2 is improved, so that the pull-out force of the insulator can be improved. When the outer skin layer 5b is provided, unevenness in appearance can be suppressed, VSWR (Voltage Standing Wave Ratio) can be improved, and a function of preventing degassing can be obtained, so that foam control is facilitated. In addition, as each of these skin layer materials, polyethylene (for example, low density polyethylene) is usually used. If the layer thickness is too thick, the foaming degree of the entire foamed insulator may be lowered. (Coating) itself is difficult, so about 50 μm is preferable. Any one of these skin layers may be provided, and in addition to coextrusion with the foamed insulator, each may be extruded alone.

本発明に係る発泡絶縁電線の製造方法による場合、上記発泡同軸ケーブルに限定されず、通常の発泡絶縁電線を製造することができる。   When it is based on the manufacturing method of the foam insulated wire which concerns on this invention, it is not limited to the said foamed coaxial cable, A normal foam insulated wire can be manufactured.

〈実施例、比較例〉
先ず、表1〜表5に示す配合からなる熱可塑性樹脂コンパウンド(実施例1〜32、比較例1〜14)を用いて、図1とほぼ同構造からなる、各サンプルの発泡同軸ケーブルを製造した。各サンプルケーブルの製造にあたっては、図2に示す押出装置系を用いた。ここで、内部導体の外径は0.9mm、発泡絶縁体の外径は2.3〜2.4mm、ケーブル全体の外径は3.0mmである。より具体的には、窒素ガスによるガス発泡で発泡絶縁体を被覆した後、コルゲート構造の外部導体とポリオレフィン又はPVCなどのシースを施した。そして、絶縁体材料として、内部導体の外周にFEP又はPFAの内スキン層を設け、発泡絶縁体の外周にはFEP又はPFAのの外スキン層を設けた。なお、熱可塑性樹脂コンパウンドの乾燥にあったては、上記したように、外部貯留部の乾燥手段などにより、80℃程度に加熱して真空乾燥させた。
<Examples and comparative examples>
First, using the thermoplastic resin compounds (Examples 1 to 32 and Comparative Examples 1 to 14) having the compositions shown in Tables 1 to 5, a foamed coaxial cable of each sample having substantially the same structure as FIG. 1 is manufactured. did. In the production of each sample cable, an extrusion apparatus system shown in FIG. 2 was used. Here, the outer diameter of the inner conductor is 0.9 mm, the outer diameter of the foamed insulator is 2.3 to 2.4 mm, and the outer diameter of the entire cable is 3.0 mm. More specifically, after covering the foamed insulator by gas foaming with nitrogen gas, a corrugated outer conductor and a sheath such as polyolefin or PVC were applied. As the insulator material, an inner skin layer of FEP or PFA was provided on the outer periphery of the inner conductor, and an outer skin layer of FEP or PFA was provided on the outer periphery of the foamed insulator. In addition, when drying the thermoplastic resin compound, as described above, it was heated to about 80 ° C. and vacuum-dried by the drying means of the external storage unit.

また、用いたベース樹脂である熱可塑性樹脂は、熱可塑性フッ素系樹脂のテトラフロロエチレン−ヘキサフロロプロピレン共重合体〔FEP、5100J(商品名)、MI=22、三井デュポンフロロケミカル社製〕、テトラフロロエチレン−パーフロロアルキルビニルエーテル共重合体〔PFA、440HP−J(商品名、MI=15)、三井デュポンフロロケミカル社製〕である。用いた多孔質体のゼオライト(メジアン径1〜10μm、昭和化成社製)、シリカ(メジアン径1〜10μm、昭和化成社製〕である。
なお、比較例13のサンプルケーブルではガス圧制御手段、即ちバッファタンク内蔵のガス昇圧機を用いず、また、比較例14では第1押出機に非乾燥状態の熱可塑性樹脂コンパウンドを供給した場合である。また、配合材料の数値は質量%を表す。
Further, the thermoplastic resin which is the base resin used is a tetrafluoroethylene-hexafluoropropylene copolymer (FEP, 5100J (trade name), MI = 22, manufactured by Mitsui Dupont Fluoro Chemical Co., Ltd.), a thermoplastic fluorine-based resin. It is a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer [PFA, 440HP-J (trade name, MI = 15), manufactured by Mitsui Dupont Chemical Co., Ltd.]. It is the zeolite (median diameter 1-10 micrometers, Showa Kasei Co., Ltd.) and the silica (median diameter 1-10 micrometers, Showa Kasei Co., Ltd.) of the porous body used.
The sample cable of Comparative Example 13 does not use the gas pressure control means, that is, the gas booster with a built-in buffer tank. In Comparative Example 14, the non-dried thermoplastic resin compound is supplied to the first extruder. is there. Moreover, the numerical value of a compounding material represents the mass%.

各サンプルケーブルについて、表1〜表6に示す特性試験を行い、その特性〔発泡度、発泡体厚さ、平均発泡セル径(平均、標準偏差)、外観(表面荒れ)、外径変動幅〕を求めた。   About each sample cable, the characteristic test shown in Table 1-Table 6 is performed, and the characteristic [foaming degree, foam thickness, average foam cell diameter (average, standard deviation), appearance (surface roughness), outer diameter fluctuation range] Asked.

〈発泡度試験〉
サンプルケーブルの発泡絶縁体を取り出し、発泡度は、発泡度=(1−発泡後の比重/発泡前の比重)×100の式により求めた。ここで、発泡度はいずれも50%程度としてある。
<Foaming degree test>
The foam insulation of the sample cable was taken out, and the foaming degree was determined by the formula: foaming degree = (1-specific gravity after foaming / specific gravity before foaming) × 100. Here, the degree of foaming is about 50%.

〈発泡体厚さ試験〉
サンプルケーブルの発泡絶縁体を取り出し、直接測定した。各サンプルとも概ね700μm前後の厚さとしてある。
<Foam thickness test>
The foam insulation of the sample cable was taken out and measured directly. Each sample has a thickness of about 700 μm.

〈発泡セル径試験〉
サンプルケーブルの発泡絶縁体断面をSEM(走査型電子顕微鏡)により画像撮影して観察し、コンピュータプログラムで発泡セルを認識させ、統計データ処理により平均発泡セル径(μm)を求め、また、その標準偏差も求めた。
<Foamed cell diameter test>
A cross section of the foam insulation of the sample cable was photographed and observed with a scanning electron microscope (SEM), the foam cell was recognized by a computer program, and the average foam cell diameter (μm) was obtained by statistical data processing. Deviations were also determined.

〈外観試験〉
サンプルケーブルの外観を目視により観察し、表面に凹凸(表面荒れ)の殆どない場合を「良好」と表示し、表面に凹凸が多数ある場合を「不良」と表示した。
<Appearance test>
The appearance of the sample cable was visually observed, and “good” was displayed when there was almost no unevenness (surface roughness) on the surface, and “bad” was displayed when there were many irregularities on the surface.

〈外径変動幅試験〉
サンプルケーブルの外観をSEMにより画像撮影して観察し、表面の外径変動幅(μm)を画像処理により求めた。
<Outer diameter fluctuation range test>
The external appearance of the sample cable was imaged and observed by SEM, and the outer diameter fluctuation width (μm) of the surface was obtained by image processing.

Figure 2007172854
Figure 2007172854

Figure 2007172854
Figure 2007172854

Figure 2007172854
Figure 2007172854

Figure 2007172854
Figure 2007172854

Figure 2007172854
Figure 2007172854

上記の表1〜表5から明らかなように、本発明の発泡同軸ケーブルの場合(実施例1〜32)、全ての特性において良好であることが分かる。特に、発泡度50%において、発泡セル径が140μm(平均)未満であることが分る。つまり、これは発泡絶縁体厚さ(700μm前後)の約1/5未満で、発泡の微細化が得られていることが分る。   As apparent from Tables 1 to 5 above, in the case of the foamed coaxial cable of the present invention (Examples 1 to 32), it can be seen that all the characteristics are good. In particular, it can be seen that the foamed cell diameter is less than 140 μm (average) at a foaming degree of 50%. In other words, this is less than about 1/5 of the thickness of the foamed insulator (around 700 μm), and it can be seen that finer foaming is obtained.

これに対して、本発明の条件を欠く発泡同軸ケーブルの場合(比較例1〜14)、いずれの点において問題があることが分る。
つまり、比較例1、3、5、7は多孔質体の添加量が本発明要件より少ない場合で、発泡セル径が140μm(平均)以上となり、外観不良(表面荒れ)で、外径変動幅が大きくなることが分る。一方、比較例2、4、6、8は多孔質体の添加量が本発明要件より多い場合で、発泡セル径や外観、外径変動幅において本発明と同等のものが得られるものの、増量の割り改善効果が小さく、コストアップを招き、また、増量による電気特性低下の懸念があることが分る。
On the other hand, in the case of the foamed coaxial cable lacking the conditions of the present invention (Comparative Examples 1 to 14), it can be seen that there is a problem in any point.
That is, Comparative Examples 1, 3, 5, and 7 are cases where the amount of the porous material added is less than the requirement of the present invention, the foamed cell diameter is 140 μm (average) or more, the appearance is poor (surface roughness), and the outer diameter fluctuation range. Can be seen to be large. On the other hand, Comparative Examples 2, 4, 6, and 8 are cases where the amount of the porous material added is larger than the requirements of the present invention, and although the foamed cell diameter, appearance, and outer diameter fluctuation range are equivalent to the present invention, It can be seen that the effect of improving the cracking rate is small, resulting in an increase in cost, and there is a concern that the electrical characteristics may be lowered due to the increase in the amount.

比較例9、11は添加量が本発明要件を満たす0.5質量%であるが、本発明要件より粒径の小さい場合(0.5μm)には、発泡セル径がそれほど大きくはないが、発泡セル分布(標準偏差)が広くなり、最終的にはそれが大きな外径変動になっていることが分る。これは粒径が0.5μm程度では二次凝集により発生した発泡セルが合体して連続気泡となるためと推測される。一方、比較例10、12は添加量が本発明要件を満たす0.5質量%であるが、本発明要件より粒径の大きい場合(20μm)には、巨大な発泡セルになることが分る。これは粒径の大きさにより単位体積当たりの粒子数が少なくなるため、一つの発泡セルに発泡ガスが集中するようになって、巨大な発泡セルに発達するものと推測される。つまり、多孔質体の粒径には十分留意する必要がある。   In Comparative Examples 9 and 11, the addition amount is 0.5% by mass that satisfies the requirements of the present invention, but when the particle size is smaller than the requirements of the present invention (0.5 μm), the foamed cell diameter is not so large. It can be seen that the foam cell distribution (standard deviation) is widened, and finally it has a large outer diameter variation. This is presumed that when the particle size is about 0.5 μm, the foamed cells generated by the secondary aggregation are combined to form open cells. On the other hand, in Comparative Examples 10 and 12, the addition amount is 0.5% by mass that satisfies the requirements of the present invention, but when the particle size is larger than the requirements of the present invention (20 μm), it can be seen that the cells become huge foam cells. . This is presumed that the number of particles per unit volume decreases depending on the size of the particle size, so that the foaming gas concentrates in one foam cell and develops into a huge foam cell. That is, it is necessary to pay sufficient attention to the particle size of the porous body.

比較例13はバッファタンク内蔵のガス昇圧機がない場合である。このため、発泡ガス圧の変動があり(17〜18.5MPa)、その結果発泡セル密度、セル径が共に長手方向に変動して、大きな外径変動幅生じることが分る。比較例14は樹脂コンパウンドを乾燥処理しなかった場合である。多孔質体に吸着している水分が蒸発して過発泡となる恐れがある。このため、発泡を抑えるべく、発泡ガス圧を低く抑えて(13MPa)、発泡させたが、このガス圧が押出樹脂圧に近くなり、押出機のスクリュー回転による樹脂圧の変動の影響を大きく受けて発泡が変動した。この結果外観不良で、外径変動幅が大きくなることが分る。残留水分があると、季節や日時によって発泡制御が大きく左右される懸念もある。このため、樹脂コンパウンドの乾燥処理は本発明では必須の条件となる。   Comparative Example 13 is a case where there is no gas booster with a built-in buffer tank. For this reason, there is a fluctuation in the foaming gas pressure (17 to 18.5 MPa), and as a result, it can be seen that both the foamed cell density and the cell diameter fluctuate in the longitudinal direction, resulting in a large outer diameter fluctuation range. Comparative Example 14 is a case where the resin compound was not dried. There is a possibility that the moisture adsorbed on the porous body evaporates and becomes excessively foamed. For this reason, in order to suppress foaming, the foaming gas pressure was kept low (13 MPa), and foaming was performed. The foaming fluctuated. As a result, it can be seen that the outer diameter fluctuation range becomes large due to poor appearance. If there is residual moisture, there is a concern that foam control is greatly influenced by the season and date. For this reason, the drying treatment of the resin compound is an essential condition in the present invention.

本発明に係る発泡絶縁電線の製造方法により得られた発泡絶縁電線の一例を示した縦断端面図である。It is the vertical end view which showed an example of the foam insulated wire obtained by the manufacturing method of the foam insulated wire which concerns on this invention. 本発明に係る発泡絶縁電線の製造方法を実施するための押出装置系の一例を示した概略説明図である。It is the schematic explanatory drawing which showed an example of the extrusion apparatus system for enforcing the manufacturing method of the foam insulated wire which concerns on this invention.

符号の説明Explanation of symbols

1・・・内部導体、2・・・発泡絶縁体、3・・・金属層(外部導体)、4・・・シース、5a・・・内スキン層、5b・・・外スキン層、10・・・第1押出機、11・・・第1押出機のホッパ(樹脂供給口)、12・・・ホッパの乾燥部、13・・・外部貯留部(外部ホッパ)、14・・・コンパウンド輸送管路、20・・・ガス圧制御手段、21・・・エアコンプレッサ、22・・・ガス昇圧機、30・・・ガスボンベ、40・・・第2押出機、50・・・第3押出機、60・・・電線の走行ライン
DESCRIPTION OF SYMBOLS 1 ... Internal conductor, 2 ... Foam insulator, 3 ... Metal layer (outer conductor), 4 ... Sheath, 5a ... Inner skin layer, 5b ... Outer skin layer, 10 * .... First extruder, 11 ... Hopper (resin supply port) of the first extruder, 12 ... Drying part of the hopper, 13 ... External storage part (external hopper), 14 ... Compound transportation Pipe line, 20 ... gas pressure control means, 21 ... air compressor, 22 ... gas booster, 30 ... gas cylinder, 40 ... second extruder, 50 ... third extruder , 60 ... Electric wire running line

Claims (8)

多孔質体を発泡核剤として添加した熱可塑性樹脂コンパウンドを乾燥状態にして押出機に供給し、当該押出機には発泡ガスをガス圧制御手段を備えたガス注入部により連続的に注入して発泡絶縁体を導体外方に押し出すことを特徴とする発泡絶縁電線の製造方法。 A thermoplastic resin compound added with a porous material as a foam nucleating agent is supplied in a dry state to an extruder, and a foaming gas is continuously injected into the extruder by a gas injection unit equipped with a gas pressure control means. A method for producing a foam insulated wire, characterized by extruding a foam insulation outward of a conductor. 前記熱可塑性樹脂コンパウンドのベース樹脂がテトラフロロエチレン−ヘキサフロロプロピレン共重合体、又はテトラフロロエチレン−パーフロロアルキルビニルエーテル共重合体などの熱可塑性フッ素系樹脂であることを特徴とする請求項1記載の発泡絶縁電線の製造方法。 The base resin of the thermoplastic resin compound is a thermoplastic fluororesin such as a tetrafluoroethylene-hexafluoropropylene copolymer or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. Manufacturing method for foam insulated wires. 前記多孔質体がゼオライト、シリカ、活性炭、又はシリカゲルであることを特徴とする請求項1、又は2記載の発泡絶縁電線の製造方法。 The method for producing a foam insulated wire according to claim 1 or 2, wherein the porous body is zeolite, silica, activated carbon, or silica gel. 前記多孔質体がメジアン径1〜10μmのゼオライトで、前記熱可塑性樹脂コンパウンドのベース樹脂に対して0.1〜1質量%添加することを特徴とする請求項1又は2記載の発泡絶縁電線の製造方法。 3. The foam insulated wire according to claim 1, wherein the porous body is zeolite having a median diameter of 1 to 10 μm and is added in an amount of 0.1 to 1 mass% with respect to a base resin of the thermoplastic resin compound. Production method. 前記多孔質体がメジアン径1〜10μmのシリカで、前記熱可塑性樹脂コンパウンドのベース樹脂に対して0.2〜1.5質量%添加することを特徴とする請求項1又は2記載の発泡絶縁電線の製造方法。 3. The foam insulation according to claim 1, wherein the porous body is silica having a median diameter of 1 to 10 [mu] m and is added in an amount of 0.2 to 1.5% by mass based on the base resin of the thermoplastic resin compound. Electric wire manufacturing method. 前記乾燥状態の熱可塑性樹脂コンパウンドが収納される外部貯留部、当該外部貯留部から前記押出機のホッパに接続されたコンパウンド輸送管路及び前記押出機のホッパ間を気密状態にして、前記乾燥状態の熱可塑性樹脂コンパウンドを押出機に供給することを特徴とする請求項1、2、3、4又は5記載の発泡絶縁電線の製造方法。 An external storage part in which the thermoplastic resin compound in the dry state is stored, a compound transport pipeline connected from the external storage part to the hopper of the extruder and an hopper of the extruder are in an airtight state, and the dry state 6. The method for producing a foam insulated wire according to claim 1, wherein the thermoplastic resin compound is supplied to an extruder. 前記押出機のホッパが乾燥部付きのホッパからなることを特徴とする請求項1、2、3、4、5又は6記載の発泡絶縁電線の製造方法。 The method for producing a foam insulated wire according to claim 1, wherein the hopper of the extruder is a hopper with a drying section. 前記ガス注入部のガス圧制御手段がエアコンプレッサ、バッファタンクが内蔵されたガス昇圧機からなることを特徴とする請求項1、2、3、4、5、又は7記載の発泡絶縁電線の製造方法。
8. The production of a foam insulated wire according to claim 1, wherein the gas pressure control means of the gas injection part comprises an air compressor and a gas booster with a built-in buffer tank. Method.
JP2005364481A 2005-12-19 2005-12-19 Method of manufacturing foamed insulated wire Pending JP2007172854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005364481A JP2007172854A (en) 2005-12-19 2005-12-19 Method of manufacturing foamed insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005364481A JP2007172854A (en) 2005-12-19 2005-12-19 Method of manufacturing foamed insulated wire

Publications (1)

Publication Number Publication Date
JP2007172854A true JP2007172854A (en) 2007-07-05

Family

ID=38299165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005364481A Pending JP2007172854A (en) 2005-12-19 2005-12-19 Method of manufacturing foamed insulated wire

Country Status (1)

Country Link
JP (1) JP2007172854A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018122759A1 (en) * 2016-12-29 2018-07-05 Sabic Global Technologies B.V. Extrusion process for coating wire, and wires made therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018122759A1 (en) * 2016-12-29 2018-07-05 Sabic Global Technologies B.V. Extrusion process for coating wire, and wires made therefrom
CN110234490A (en) * 2016-12-29 2019-09-13 沙特基础工业全球技术有限公司 Extrusion method and the thus wire rod for preparing for coated wire

Similar Documents

Publication Publication Date Title
JP5975334B2 (en) Foamed resin molded body, foamed insulated wire and cable, and method for producing foamed resin molded body
JP3457543B2 (en) Nucleating agent for foaming, foam, and method for producing foam
US6335490B1 (en) Insulating material for coaxial cable, coaxial cable and method for producing coaxial cable
US8901184B2 (en) Foamed resin molded article, foam insulated wire, cable and method of manufacturing foamed resin molded article
JPH11213766A (en) Foamed electric wire
US8207447B2 (en) PTFE porous body, PTFE mixture, method for producing PTFE porous body, and electric wire/cable using PTFE porous body
KR20010012611A (en) Cable with impact-resistant coating
JP4875613B2 (en) Coaxial cable with foam insulation
CN101821820A (en) Highly foamed coaxial cable
JP2008019379A (en) Masterbatch for foaming resin composition, foamed coaxial cable and method for producing the same
JP2008021585A (en) Foamed coaxial cable
JP4879613B2 (en) Resin composition, foamed resin composition, molded article and electric wire
US20140367143A1 (en) Coaxial cable
JP2007172854A (en) Method of manufacturing foamed insulated wire
JP2007188742A (en) Foam insulated wire and its manufacturing method
JP2005343916A (en) Expandable nucleating agent and high-frequency coaxial cable using the same
JP3227091B2 (en) Insulating material for coaxial cable, coaxial cable, and method of manufacturing coaxial cable
JP4694225B2 (en) Method for reducing water absorption of coaxial cable and method for reducing tan δ of coaxial cable
JP2007237645A (en) Foam molding method, foamed coaxial cable, and manufacturing method therefor
JP5168253B2 (en) Method for producing water-containing water-absorbing polymer-containing resin composition, water-containing water-absorbing polymer-containing resin composition, method for producing porous material and porous material using the same, method for producing insulated wire, insulated wire and coaxial cable
JP2004349160A (en) Insulating material for high-frequency coaxial cable
JP2007090787A (en) Foaming method, foamed coaxial cable and manufacturing method of the foamed coaxial cable
JP2001067944A (en) Fluororesin-coated electric wire and manufacture of fluororesin-coated electric wire
JP3344307B2 (en) Fine-diameter foamed electric wire and method of manufacturing the same
JP2007242589A (en) Foamed coaxial cable