JP4693624B2 - Implementation method - Google Patents

Implementation method Download PDF

Info

Publication number
JP4693624B2
JP4693624B2 JP2005365180A JP2005365180A JP4693624B2 JP 4693624 B2 JP4693624 B2 JP 4693624B2 JP 2005365180 A JP2005365180 A JP 2005365180A JP 2005365180 A JP2005365180 A JP 2005365180A JP 4693624 B2 JP4693624 B2 JP 4693624B2
Authority
JP
Japan
Prior art keywords
heat
filler
metal
bonding material
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005365180A
Other languages
Japanese (ja)
Other versions
JP2007173317A (en
Inventor
英士 徳平
仁昭 伊達
浩基 内田
稔 石鍋
淳 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005365180A priority Critical patent/JP4693624B2/en
Publication of JP2007173317A publication Critical patent/JP2007173317A/en
Application granted granted Critical
Publication of JP4693624B2 publication Critical patent/JP4693624B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Description

本発明は、半導体素子などの発熱体で発生した熱を、ヒートシンク、ヒートスプレッダなどの放熱体へ伝導させて放射するために、熱伝導接合材を介して発熱体と放熱体とを実装する方法に関する。   The present invention relates to a method of mounting a heating element and a heat dissipation body via a heat conductive bonding material in order to conduct and radiate heat generated in the heating element such as a semiconductor element to a heat dissipation element such as a heat sink and a heat spreader. .

電子機器に使用される半導体素子では、近年、その高集積化、高速化などにより発熱量が著しく多くなっており、半導体素子から発せられる熱を効率良く外部へ放散する必要がある。この熱放散の一手法として、半導体素子にヒートシンクを取り付け、半導体素子で発生した熱をヒートシンクに伝えて放熱することが知られている。この際、半導体素子とヒートシンクとをそのまま接触させた場合には、それらの接合面に空隙が生じるため、熱伝導性が低下することになる。そこで、この空隙を埋めて接合界面の熱抵抗を低減して熱伝導性を向上させるために、半導体素子とヒートシンクとの間に、熱伝導性の接合材を介在させて放熱効率を高くすることが行われている。   2. Description of the Related Art In recent years, semiconductor elements used in electronic devices have a remarkably large amount of heat generated due to their high integration and high speed, and it is necessary to efficiently dissipate heat generated from the semiconductor elements to the outside. As one method of heat dissipation, it is known that a heat sink is attached to a semiconductor element, and heat generated in the semiconductor element is transmitted to the heat sink to dissipate heat. At this time, when the semiconductor element and the heat sink are brought into contact with each other as they are, voids are formed on the joint surfaces thereof, and the thermal conductivity is lowered. Therefore, in order to improve the thermal conductivity by filling the gap and reducing the thermal resistance of the bonding interface, a thermal conductive bonding material is interposed between the semiconductor element and the heat sink to increase the heat dissipation efficiency. Has been done.

このような熱的接続に使用される熱伝導接合材としては、放熱グリースと呼ばれるペースト状のもの、放熱シートまたは熱伝導性シートと呼ばれるシートタイプのものなどがある。これらは、熱伝導性が良好な無機フィラーをベースとなる樹脂に分散させて、ペースト状またはシート状にしたものである。また、銀、銅などの金属フィラーを充填した導電性ペーストも使用されている。しかしながら、これらの接合材は何れも充填されたフィラー同士の接触によって熱を伝えるので、熱抵抗が大きい。   Examples of the heat conductive bonding material used for such a thermal connection include a paste-like material called a heat radiation grease, and a sheet type material called a heat radiation sheet or a heat conductive sheet. These are obtained by dispersing an inorganic filler having good thermal conductivity in a base resin to form a paste or a sheet. In addition, a conductive paste filled with a metal filler such as silver or copper is also used. However, since all of these bonding materials transmit heat by contact between the filled fillers, the thermal resistance is large.

また、他の熱伝導接合材として、熱硬化性樹脂にはんだフィラーを充填させた接合材がある(例えば、特許文献1参照)。熱硬化性樹脂としてエポキシ系樹脂(硬化温度:約150〜200℃)を使用し、はんだフィラーとしてSn−Biはんだ(融点:138℃)を用いた場合には、樹脂の硬化温度においてはんだフィラーも溶融する。この結果、接合材中のフィラー同士、及びフィラーと発熱体または放熱体との間が、接触ではなく、はんだによって金属接合されるために、熱が伝わりやすくなって、熱抵抗を低減できる。
特開2004−335872号公報
As another heat conductive bonding material, there is a bonding material in which a thermosetting resin is filled with a solder filler (see, for example, Patent Document 1). When an epoxy resin (curing temperature: about 150 to 200 ° C.) is used as the thermosetting resin and Sn—Bi solder (melting point: 138 ° C.) is used as the solder filler, the solder filler is also used at the resin curing temperature. Melt. As a result, the filler in the bonding material and between the filler and the heating element or the heat radiating body are not bonded to each other but are metal-bonded by solder, so that heat is easily transmitted and thermal resistance can be reduced.
JP 2004-335872 A

しかしながら、上述した手法では、実装時に加熱処理が必要である、硬化温度が高い、硬化時間が長いなどの使用条件の制約が大きく、量産性が要求される用途には適用しにくいという問題があり、改善の余地がある。   However, the above-described method has a problem that it is difficult to apply to applications requiring mass productivity because heat treatment is required at the time of mounting, the curing conditions are high, the curing conditions are long, and the usage time is long. There is room for improvement.

本発明は斯かる事情に鑑みてなされたものであり、このような使用条件の制約が無く、量産性の用途に容易に適用でき、低熱抵抗化及び高信頼性が実現可能な実装方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a mounting method that can be easily applied to mass-productive applications without any restrictions on such use conditions, and that can realize low thermal resistance and high reliability. The purpose is to do.

本発明に係る実装方法は、自身の動作によって発熱する発熱体に、熱伝導接合材を介して放熱体を実装する方法において、前記発熱体及び/または前記放熱体に、前記発熱体の動作時の温度より融点が低い金属を少なくとも含む熱伝導性フィラーを熱硬化性樹脂中に分散させてなる前記熱伝導接合材を塗布し、前記発熱体と前記放熱体とを、前記熱伝導接合材を介在させて位置合わせし、前記発熱体を動作させて、前記発熱体から発生する熱によって、前記金属を溶融させるとともに、前記熱硬化性樹脂を硬化させることを特徴とする。 The mounting method according to the present invention is a method of mounting a heat dissipating member on a heat generating element that generates heat by its own operation via a heat conductive bonding material, wherein the heat generating element and / or the heat dissipating element is operated during operation of the heat generating element. Applying the heat conductive bonding material in which a heat conductive filler containing at least a metal having a melting point lower than the temperature is dispersed in a thermosetting resin, the heat generating body and the heat radiating body, the heat conductive bonding material It is characterized by interposing and aligning, operating the heating element , melting the metal with the heat generated from the heating element , and curing the thermosetting resin .

本発明の実装方法では、発熱体の動作時の温度より融点が低い低融点金属を少なくとも含む熱伝導性フィラーを熱硬化性樹脂中に分散させてなる熱伝導接合材を、発熱体、放熱体の一方または両方に塗布し、この塗布した熱伝導接合材を介在させて発熱体と放熱体とを位置合わせし、発熱体を動作させてその動作時の熱によって低融点金属を溶融させ、低熱抵抗の接合を実現するとともに、発熱体の動作時の熱によって熱硬化性樹脂の硬化を行う。発熱体の動作時に低融点金属を溶融させるので、実装時に特別な加熱処理は不要である。よって、短時間で簡便に実装を行える。この結果、量産性に優れている。また、熱伝導接合材中の熱伝導性フィラーは接触でなく、低融点金属によって金属接続されるので、熱が伝わりやすくて熱抵抗は低くなり、良好な放熱特性が得られる。また、熱硬化性樹脂の硬化のための特別な加熱処理は不要であり、量産性に優れている。 In the mounting method of the present invention, a heat conductive bonding material in which a heat conductive filler containing at least a low melting point metal having a melting point lower than the temperature at which the heat generating element operates is dispersed in a thermosetting resin. Is applied to one or both of them, and the heat-generating body and the heat-dissipating body are aligned by interposing the applied heat-conducting bonding material, the heat-generating body is operated, and the low melting point metal is melted by the heat at the time of operation. Resistor bonding is realized, and the thermosetting resin is cured by heat during operation of the heating element. Since the low melting point metal is melted during operation of the heating element, no special heat treatment is required during mounting. Therefore, mounting can be performed easily in a short time. As a result, it is excellent in mass productivity. Further, since the heat conductive filler in the heat conductive bonding material is not contacted but is metal-connected by a low melting point metal, heat is easily transmitted and the thermal resistance is lowered, and good heat dissipation characteristics are obtained. Moreover, the special heat processing for hardening of a thermosetting resin is unnecessary, and it is excellent in mass-productivity.

本発明に係る実装方法は、前記金属の融点が、60〜100℃であることを特徴とする。   The mounting method according to the present invention is characterized in that the melting point of the metal is 60 to 100 ° C.

本発明の実装方法では、熱伝導接合材に含まれる低融点金属の融点が60〜100℃である。よって、半導体素子などの発熱体の動作時の熱によって、この低融点金属は容易に溶融する。   In the mounting method of the present invention, the melting point of the low melting point metal contained in the heat conductive bonding material is 60 to 100 ° C. Therefore, the low melting point metal is easily melted by heat during operation of a heating element such as a semiconductor element.

本発明に係る実装方法は、前記金属が、In−Sn−Bi合金、及びIn−Bi合金から選ばれる少なくとも1種類の合金であることを特徴とする。   The mounting method according to the present invention is characterized in that the metal is at least one kind of alloy selected from an In—Sn—Bi alloy and an In—Bi alloy.

本発明の実装方法では、熱伝導接合材に含まれる融点が60〜100℃の低融点金属として、In−Sn−Bi合金、In−Bi合金を使用する。よって、発熱体の動作時に容易に溶融する。   In the mounting method of the present invention, an In—Sn—Bi alloy or an In—Bi alloy is used as the low melting point metal having a melting point of 60 to 100 ° C. contained in the heat conductive bonding material. Therefore, it melts easily during operation of the heating element.

本発明に係る実装方法は、前記熱硬化性樹脂が、マイクロカプセル型硬化剤を含有していることを特徴とする。   The mounting method according to the present invention is characterized in that the thermosetting resin contains a microcapsule type curing agent.

本発明の実装方法では、熱硬化性樹脂がマイクロカプセル型硬化剤を含有している。発熱体の動作時にカプセルが融けて中の硬化剤が流出し、熱硬化性樹脂が硬化する。よって、常温で反応する硬化剤も使用可能であり、その使用範囲が広くなる。   In the mounting method of the present invention, the thermosetting resin contains a microcapsule type curing agent. During operation of the heating element, the capsule melts and the curing agent therein flows out, and the thermosetting resin is cured. Therefore, a curing agent that reacts at room temperature can be used, and the range of use is widened.

本発明の実装方法では、発熱体の動作時の温度より融点が低い低融点金属を少なくとも含む熱伝導性フィラーを熱硬化性樹脂中に分散させてなる熱伝導接合材を、発熱体、放熱体の一方または両方に塗布し、この塗布した熱伝導接合材を介在させて発熱体と放熱体とを位置合わせし、発熱体を動作させてその動作時の熱によって低融点金属を溶融させるとともに、発熱体の動作時の熱によって熱硬化性樹脂を硬化させるようにしたので、実装のための特別な加熱処理が不要となって量産性に優れており、しかも、低熱抵抗化を実現することができる。 In the mounting method of the present invention, a heat conductive bonding material in which a heat conductive filler containing at least a low melting point metal having a melting point lower than the temperature at which the heat generating element operates is dispersed in a thermosetting resin. Is applied to one or both of the above, and the heating element and the radiator are aligned by interposing the applied heat conductive bonding material, the heating element is operated, and the low melting point metal is melted by the heat during the operation , Since the thermosetting resin is cured by the heat generated during the operation of the heating element, no special heat treatment for mounting is required, making it excellent in mass productivity and achieving low thermal resistance. it can.

以下、本発明をその実施の形態を示す図面を参照して具体的に説明する。図1は、本発明に係る実装方法の工程の一例を示す図である。   Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof. FIG. 1 is a diagram showing an example of the steps of the mounting method according to the present invention.

まず、発熱体であるシリコンチップ(半導体素子)1の一面(上面)に、熱伝導接合材2を塗布する(図1(a))。シリコンチップ1の他面(下面)には、複数のバンプ11が形成され、各バンプ11は、回路基板3の各電極31と接続されている。また、シリコンチップ1と回路基板3との間は封止樹脂32により封止されている。   First, the heat conductive bonding material 2 is applied to one surface (upper surface) of a silicon chip (semiconductor element) 1 that is a heating element (FIG. 1A). A plurality of bumps 11 are formed on the other surface (lower surface) of the silicon chip 1, and each bump 11 is connected to each electrode 31 of the circuit board 3. The space between the silicon chip 1 and the circuit board 3 is sealed with a sealing resin 32.

熱伝導接合材2は、低融点金属からなる第1のフィラー21と、熱伝導性に優れる第2のフィラー22と、ベース樹脂としての熱硬化性樹脂23とから構成されている。熱伝導接合材2におけるフィラー(第1のフィラー21及び第2のフィラー22)の充填量は、良好な熱伝導性を得るために50体積%以上であることが好ましい。   The heat conductive bonding material 2 is composed of a first filler 21 made of a low melting point metal, a second filler 22 having excellent heat conductivity, and a thermosetting resin 23 as a base resin. The filling amount of the filler (the first filler 21 and the second filler 22) in the heat conductive bonding material 2 is preferably 50% by volume or more in order to obtain good heat conductivity.

第1のフィラー21は、シリコンチップ1の動作時の発熱温度より低い融点(約60〜100℃)を有する金属フィラーであり、具体的には、例えばIn−Sn−Bi合金、In−Bi合金などからなる金属フィラーを使用できる。   The first filler 21 is a metal filler having a melting point (about 60 to 100 ° C.) lower than the heat generation temperature during operation of the silicon chip 1. Specifically, for example, an In—Sn—Bi alloy or an In—Bi alloy is used. The metal filler which consists of etc. can be used.

第2のフィラー22は、融点が300℃以上で熱伝導性に優れた金属フィラー、無機フィラーを使用する。具体的には、第2のフィラー22として、銅、銀、金、アルミニウムなどの金属フィラー、アルミナ、シリカ、窒化アルミニウム、窒化ホウ素、酸化亜鉛などのの無機フィラーを使用できる。また、これらの金属フィラーまたは無機フィラーの表面を金属被覆したフィラーも使用できる。この際、被覆する金属としては、In−Sn−Bi合金、In−Bi合金などを使用できる。このような構成であれば、第1のフィラー21が溶融した際に第1のフィラー21との濡れ性が良い。   As the second filler 22, a metal filler or an inorganic filler having a melting point of 300 ° C. or higher and excellent thermal conductivity is used. Specifically, as the second filler 22, a metal filler such as copper, silver, gold, or aluminum, or an inorganic filler such as alumina, silica, aluminum nitride, boron nitride, or zinc oxide can be used. Moreover, the filler which metal-coated the surface of these metal fillers or an inorganic filler can also be used. At this time, as a metal to be coated, an In—Sn—Bi alloy, an In—Bi alloy, or the like can be used. With such a configuration, wettability with the first filler 21 is good when the first filler 21 is melted.

熱硬化性樹脂23は、シリコンチップ1の動作時の発熱温度より低い温度(約60〜100℃)で硬化する樹脂であり、主剤としてのエポキシ樹脂とマイクロカプセル型の硬化剤とを含んでいる。   The thermosetting resin 23 is a resin that cures at a temperature (about 60 to 100 ° C.) lower than the heat generation temperature during the operation of the silicon chip 1, and includes an epoxy resin as a main agent and a microcapsule-type curing agent. .

次に、このような熱伝導接合材2を介在させて、シリコンチップ1と放熱体であるヒートシンク4との位置合わせを行った後(図1(b))、両者を接合させる(図1(c))。この際、加熱処理は施さない。   Next, after aligning the silicon chip 1 and the heat sink 4 as a heat dissipating member with the heat conductive bonding material 2 interposed therebetween (FIG. 1B), the two are bonded (FIG. 1 ( c)). At this time, heat treatment is not performed.

その後、接合後のシリコンチップ1の作動試験を行うためにシリコンチップ1を動作させる。このシリコンチップ1の動作時に、シリコンチップ1から発生する熱によって、第1のフィラー21が溶融して第2のフィラー22同士、第2のフィラー22とシリコンチップ1及びヒートシンク4との間が金属接続されると共に、熱硬化性樹脂23が硬化する(図1(d))。   Thereafter, the silicon chip 1 is operated in order to perform an operation test of the bonded silicon chip 1. During the operation of the silicon chip 1, the first filler 21 is melted by heat generated from the silicon chip 1, and the second filler 22 and the space between the second filler 22 and the silicon chip 1 and the heat sink 4 are metal. While being connected, the thermosetting resin 23 is cured (FIG. 1D).

以上のように、本発明では、シリコンチップ1(発熱体)の動作時の熱を利用することによって、低熱抵抗化を実現するためには必須の金属接続を行う。また、この動作時の熱を利用してベース材である熱硬化性樹脂23の硬化を行う。よって、低熱抵抗化を実現するために従来例では不可欠であった加熱処理を無くすことができて、実装処理を簡便に行えるため、量産性に優れている。また、併せて低熱抵抗化も実現できている。   As described above, in the present invention, metal connection essential for realizing a low thermal resistance is performed by using heat during operation of the silicon chip 1 (heating element). Further, the thermosetting resin 23, which is a base material, is cured using the heat during this operation. Therefore, the heat treatment that has been indispensable in the prior art for realizing a low thermal resistance can be eliminated, and the mounting process can be easily performed, which is excellent in mass productivity. In addition, a low thermal resistance can be realized.

なお、上記実施の形態では、発熱体(シリコンチップ1)に熱伝導接合材2を塗布することとしたが、これとは異なり、放熱体(ヒートシンク4)に熱伝導接合材2を塗布しても良く、また、発熱体(シリコンチップ1)及び放熱体(ヒートシンク4)の両方に熱伝導接合材2を塗布するようにしても良い。   In the above embodiment, the heat conductive bonding material 2 is applied to the heating element (silicon chip 1). However, unlike this, the heat conductive bonding material 2 is applied to the heat radiating body (heat sink 4). Alternatively, the heat conductive bonding material 2 may be applied to both the heat generating body (silicon chip 1) and the heat radiating body (heat sink 4).

以下、実施例に基づき本発明をより具体的に説明する。但し、本発明は、以下の実施例に限定されるものではない。   Hereinafter, based on an Example, this invention is demonstrated more concretely. However, the present invention is not limited to the following examples.

(実施例1)
以下の成分からなる熱伝導接合材2を作製した。
熱伝導性フィラー
・In−Sn−Bi合金(第1のフィラー21)(融点:60℃、平均粒径:10μ m)
・表面を銀メッキした銅(第2のフィラー22)(平均粒径:35μm)
樹脂(熱硬化性樹脂23)
・主剤1:ビスフェノールF型エポキシ(EXA−830LVP,大日本インキ)
50重量部
・主剤2:ナフタレン型エポキシ(HP−4032D,大日本インキ)
50重量部
・硬化剤:酸無水物(KRM−291−5,旭電化)
100重量部
・促進剤:イミダゾール(HX−3921 HP,旭化成ケミカルズ)
1重量部
Example 1
A heat conductive bonding material 2 composed of the following components was produced.
Thermally conductive filler In-Sn-Bi alloy (first filler 21) (melting point: 60 ° C., average particle size: 10 μm)
・ Silver plated copper (second filler 22) (average particle size: 35 μm)
Resin (thermosetting resin 23)
・ Main agent 1: Bisphenol F type epoxy (EXA-830LVP, Dainippon Ink)
50 parts by weight-Main agent 2: Naphthalene type epoxy (HP-4032D, Dainippon Ink)
50 parts by weight ・ Curing agent: acid anhydride (KRM-291-5, Asahi Denka)
100 parts by weight-Accelerator: Imidazole (HX-3922 HP, Asahi Kasei Chemicals)
1 part by weight

上記成分を有する樹脂に対して、上記熱伝導性フィラーを50体積%添加して熱伝導接合材2を作製した。なお、In−Sn−Bi合金(第1のフィラー21)と銀メッキ銅(第2のフィラー22)との配合比率は1:1とした。   The heat conductive bonding material 2 was produced by adding 50% by volume of the heat conductive filler to the resin having the above components. Note that the mixing ratio of the In—Sn—Bi alloy (first filler 21) and the silver-plated copper (second filler 22) was 1: 1.

作製した熱伝導接合材2を用いて、前述した実装工程の手順(図1(a)〜(d)参照)に従って、シリコンチップ1及びヒートシンク4を実装させた。そして、得られた実装品(図1(d)参照)の熱特性を測定した。   The silicon chip 1 and the heat sink 4 were mounted using the manufactured heat conductive bonding material 2 in accordance with the mounting process procedure described above (see FIGS. 1A to 1D). And the thermal characteristic of the obtained mounting product (refer FIG.1 (d)) was measured.

接合部の熱抵抗を測定した結果、0.06℃・cm2 /Wと極めて低い熱抵抗で接合できていることを確認できた。 As a result of measuring the thermal resistance of the bonded portion, it was confirmed that the bonding was possible with an extremely low thermal resistance of 0.06 ° C. · cm 2 / W.

(比較例1)
第1のフィラーとしてIn−Sn−Bi合金(融点:60℃)の代わりにSn−Bi合金(融点:138℃)を用いた以外は実施例1と成分が同じである熱伝導接合材を作製し、その作製した熱伝導接合材を用いて、実施例1と同様にシリコンチップとヒートシンクとの実装を行い、その実装品の熱特性を測定した。
(Comparative Example 1)
A heat conductive bonding material having the same components as in Example 1 except that an Sn—Bi alloy (melting point: 138 ° C.) was used instead of the In—Sn—Bi alloy (melting point: 60 ° C.) as the first filler was produced. Then, using the heat conductive bonding material produced, the silicon chip and the heat sink were mounted in the same manner as in Example 1, and the thermal characteristics of the mounted product were measured.

その結果、接合部の熱抵抗は0.2℃・cm2 /Wであり、実施例1と比較して高かった。これは、シリコンチップの動作時の温度が最大100℃であるため、熱伝導接合材中のSn−Bi合金(第1のフィラー)が溶融せずに、金属接続が得られなかったことに起因すると考えられる。 As a result, the thermal resistance of the joint was 0.2 ° C. · cm 2 / W, which was higher than that of Example 1. This is because the temperature at the time of operation of the silicon chip is 100 ° C. at the maximum, so that the Sn—Bi alloy (first filler) in the heat conductive bonding material did not melt and metal connection could not be obtained. I think that.

以上の本発明の実施の形態または実施例に関し、更に以下の付記を開示する。
(付記1) 自身の動作によって発熱する発熱体に、熱伝導接合材を介して放熱体を実装する方法において、前記発熱体及び/または前記放熱体に、前記発熱体の動作時の温度より融点が低い金属を少なくとも含む熱伝導性フィラーを熱硬化性樹脂中に分散させてなる前記熱伝導接合材を塗布し、前記発熱体と前記放熱体とを、前記熱伝導接合材を介在させて位置合わせし、前記発熱体を動作させて前記金属を溶融させることを特徴とする実装方法。
(付記2) 前記金属の融点は、60〜100℃であることを特徴とする付記1記載の実装方法。
(付記3) 前記金属は、In−Sn−Bi合金、及びIn−Bi合金から選ばれる少なくとも1種類の合金であることを特徴とする付記1または2記載の実装方法。
(付記4) 前記熱伝導性フィラーは、銅、銀、金、若しくはアルミニウムの金属フィラー、アルミナ、シリカ、窒化アルミニウム、窒化ホウ素、若しくは酸化亜鉛の無機フィラー、または、これらのフィラー表面を金属被覆したフィラーを含むことを特徴とする付記1乃至3の何れかに記載の実装方法。
(付記5) 前記熱硬化性樹脂は、前記発熱体の動作時の温度より低い温度で硬化することを特徴とする付記1乃至4の何れかに記載の実装方法。
(付記6) 前記熱硬化性樹脂は、マイクロカプセル型硬化剤を含有していることを特徴とする付記1乃至5の何れかに記載の実装方法。
(付記7) 前記熱硬化性樹脂の硬化温度は、60〜100℃であることを特徴とする付記1乃至6の何れかに記載の実装方法。
(付記8) 前記熱伝導接合材における前記熱伝導性フィラーの割合が50体積%以上であることを特徴とする付記1乃至7の何れかに記載の実装方法。
The following supplementary notes are further disclosed with respect to the above-described embodiments or examples of the present invention.
(Supplementary Note 1) In a method of mounting a heat dissipation body on a heating element that generates heat by its own operation via a heat conductive bonding material, the melting point of the heating element and / or the radiator is higher than the operating temperature of the heating element. The heat conductive bonding material formed by dispersing a heat conductive filler containing at least a low metal in a thermosetting resin is applied, and the heating element and the heat dissipation body are positioned with the heat conductive bonding material interposed therebetween. A mounting method comprising: combining and melting the metal by operating the heating element.
(Additional remark 2) The melting point of the said metal is 60-100 degreeC, The mounting method of Additional remark 1 characterized by the above-mentioned.
(Supplementary note 3) The mounting method according to Supplementary note 1 or 2, wherein the metal is at least one kind of alloy selected from an In-Sn-Bi alloy and an In-Bi alloy.
(Supplementary Note 4) The thermally conductive filler is a metal filler of copper, silver, gold, or aluminum, an inorganic filler of alumina, silica, aluminum nitride, boron nitride, or zinc oxide, or the surface of these fillers is metal-coated. 4. The mounting method according to any one of appendices 1 to 3, further comprising a filler.
(Additional remark 5) The said thermosetting resin hardens | cures at temperature lower than the temperature at the time of operation | movement of the said heat generating body, The mounting method in any one of Additional remark 1 thru | or 4 characterized by the above-mentioned.
(Additional remark 6) The said thermosetting resin contains the microcapsule type hardening | curing agent, The mounting method in any one of Additional remark 1 thru | or 5 characterized by the above-mentioned.
(Additional remark 7) The mounting temperature in any one of additional remark 1 thru | or 6 characterized by the curing temperature of the said thermosetting resin being 60-100 degreeC.
(Additional remark 8) The mounting method in any one of additional remark 1 thru | or 7 characterized by the ratio of the said heat conductive filler in the said heat conductive joining material being 50 volume% or more.

本発明に係る実装方法の工程の一例を示す図である。It is a figure which shows an example of the process of the mounting method which concerns on this invention.

符号の説明Explanation of symbols

1 シリコンチップ(発熱体)
2 熱伝導接合材
4 ヒートシンク(放熱体)
21 第1のフィラー(金属)
22 第2のフィラー
23 熱硬化性樹脂

1 Silicon chip (heating element)
2 Thermal conductive bonding material 4 Heat sink (heat radiator)
21 First filler (metal)
22 Second filler 23 Thermosetting resin

Claims (4)

自身の動作によって発熱する発熱体に、熱伝導接合材を介して放熱体を実装する方法において、
前記発熱体及び/または前記放熱体に、前記発熱体の動作時の温度より融点が低い金属を少なくとも含む熱伝導性フィラーを熱硬化性樹脂中に分散させてなる前記熱伝導接合材を塗布し、
前記発熱体と前記放熱体とを、前記熱伝導接合材を介在させて位置合わせし、
前記発熱体を動作させて、前記発熱体から発生する熱によって、前記金属を溶融させるとともに、前記熱硬化性樹脂を硬化させることを特徴とする実装方法。
In a method of mounting a heat sink on a heating element that generates heat by its own operation via a heat conductive bonding material,
The heat conductive bonding material formed by dispersing a heat conductive filler containing at least a metal having a melting point lower than a temperature during operation of the heat generator in a thermosetting resin is applied to the heat generator and / or the heat radiator. ,
The heating element and the radiator are aligned with the heat conductive bonding material interposed therebetween,
A mounting method comprising operating the heating element to melt the metal and curing the thermosetting resin by heat generated from the heating element .
前記金属の融点は、60〜100℃であることを特徴とする請求項1記載の実装方法。   The mounting method according to claim 1, wherein the melting point of the metal is 60 to 100 ° C. 前記金属は、In−Sn−Bi合金、及びIn−Bi合金から選ばれる少なくとも1種類の合金であることを特徴とする請求項1または2記載の実装方法。   The mounting method according to claim 1, wherein the metal is at least one alloy selected from an In—Sn—Bi alloy and an In—Bi alloy. 前記熱硬化性樹脂は、マイクロカプセル型硬化剤を含有していることを特徴とする請求項1乃至の何れかに記載の実装方法。 The thermosetting resin is, mounting method according to any one of claims 1 to 3, characterized by containing a microcapsule-type curing agent.
JP2005365180A 2005-12-19 2005-12-19 Implementation method Expired - Fee Related JP4693624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005365180A JP4693624B2 (en) 2005-12-19 2005-12-19 Implementation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005365180A JP4693624B2 (en) 2005-12-19 2005-12-19 Implementation method

Publications (2)

Publication Number Publication Date
JP2007173317A JP2007173317A (en) 2007-07-05
JP4693624B2 true JP4693624B2 (en) 2011-06-01

Family

ID=38299511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005365180A Expired - Fee Related JP4693624B2 (en) 2005-12-19 2005-12-19 Implementation method

Country Status (1)

Country Link
JP (1) JP4693624B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539683A (en) * 2007-09-11 2010-12-16 ダウ コーニング コーポレーション Composite materials, heat dissipation materials containing the composite materials, and methods for their preparation and use
WO2023037862A1 (en) * 2021-09-09 2023-03-16 デクセリアルズ株式会社 Thermally conductive composition and thermally conductive sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201448A (en) * 2000-12-27 2002-07-19 Ricoh Co Ltd Electroconductive adhesive
JP2005112961A (en) * 2003-10-07 2005-04-28 Shin Etsu Chem Co Ltd Curable organopolysiloxane composition and semiconductor apparatus
JP2005530887A (en) * 2002-06-25 2005-10-13 ダウ・コーニング・コーポレイション Thermal interface material and method and use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179832A (en) * 1993-12-24 1995-07-18 Toyota Motor Corp Conductive adhesive
JP2658967B2 (en) * 1994-04-22 1997-09-30 日本電気株式会社 Supporting member for electronic package assembly and electronic package assembly using the same
JPH09293952A (en) * 1996-04-26 1997-11-11 Kyocera Corp Manufacture of wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201448A (en) * 2000-12-27 2002-07-19 Ricoh Co Ltd Electroconductive adhesive
JP2005530887A (en) * 2002-06-25 2005-10-13 ダウ・コーニング・コーポレイション Thermal interface material and method and use thereof
JP2005112961A (en) * 2003-10-07 2005-04-28 Shin Etsu Chem Co Ltd Curable organopolysiloxane composition and semiconductor apparatus

Also Published As

Publication number Publication date
JP2007173317A (en) 2007-07-05

Similar Documents

Publication Publication Date Title
US7952192B2 (en) Melting temperature adjustable metal thermal interface materials and packaged semiconductors including thereof
Licari et al. Adhesives technology for electronic applications: materials, processing, reliability
US6114413A (en) Thermally conducting materials and applications for microelectronic packaging
JP4776192B2 (en) Thermal interface adhesive
JP4086822B2 (en) HEAT CONDUCTIVE STRUCTURE AND METHOD FOR PRODUCING HEAT CONDUCTIVE STRUCTURE
WO2017111945A1 (en) Adhesive polymer thermal interface material with sintered fillers for thermal conductivity in micro-electronic packaging
JP2007189154A (en) Heat conductive bonding material, and packaging method
JP6508193B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2007511101A (en) Electronic packaging materials for use with LOW-K dielectric containing semiconductor devices
JP4412578B2 (en) Thermally conductive material, thermally conductive joined body using the same, and manufacturing method thereof
JP2000150743A (en) Substrate for semiconductor device and manufacture thereof
JP2013508532A (en) Thermal interface material with epoxidized nutshell oil
JP4693624B2 (en) Implementation method
JP6945418B2 (en) Semiconductor devices and manufacturing methods for semiconductor devices
US10943795B2 (en) Apparatus and methods for creating a thermal interface bond between a semiconductor die and a passive heat exchanger
JP5515251B2 (en) Semiconductor device and manufacturing method thereof
JPWO2017122306A1 (en) Heat sink structure, semiconductor device, and method of manufacturing heat sink structure
TWI484604B (en) Metal thermal interface materials and packaged semiconductors comprising the materials
JP7348485B2 (en) Manufacturing method for package substrates, electronic devices and package substrates
JP3865957B2 (en) Thermally conductive compounds
JPH1065072A (en) Heat radiating electrode structure
Jensen et al. The basics of metal thermal interface materials (TIMs)
JP2014053406A (en) Semiconductor device and method for manufacturing the same
WO2023218999A1 (en) Electronic component with heat dissipating part, and manufacturing method therefor
Yim et al. Anisotropic conductive adhesives with enhanced thermal conductivity for flip chip applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees