JP4692370B2 - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP4692370B2
JP4692370B2 JP2006121846A JP2006121846A JP4692370B2 JP 4692370 B2 JP4692370 B2 JP 4692370B2 JP 2006121846 A JP2006121846 A JP 2006121846A JP 2006121846 A JP2006121846 A JP 2006121846A JP 4692370 B2 JP4692370 B2 JP 4692370B2
Authority
JP
Japan
Prior art keywords
intake
valve
flow rate
cylinder injection
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006121846A
Other languages
Japanese (ja)
Other versions
JP2007291978A (en
Inventor
篤治 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006121846A priority Critical patent/JP4692370B2/en
Publication of JP2007291978A publication Critical patent/JP2007291978A/en
Application granted granted Critical
Publication of JP4692370B2 publication Critical patent/JP4692370B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、一つの気筒に対して設けられた二つの吸気弁の開弁特性を互いに相違させることができる内燃機関に適用される制御装置に関する。   The present invention relates to a control device applied to an internal combustion engine capable of making valve opening characteristics of two intake valves provided for one cylinder different from each other.

内燃機関の燃焼を改善するため、一つの気筒に対して設けられた二つの吸気弁の間にリフト量差を設けることにより、気筒内にスワール流を生成できるようにした弁駆動装置が知られている(例えば、特許文献1、特許文献2)。   In order to improve combustion of an internal combustion engine, a valve drive device is known in which a swirl flow is generated in a cylinder by providing a lift amount difference between two intake valves provided for one cylinder. (For example, Patent Document 1 and Patent Document 2).

特開平6−280528号公報JP-A-6-280528 特開平11−287139号公報JP-A-11-287139

これらの文献に記載された弁駆動装置が組み込まれた内燃機関では、一方の吸気弁側を流れる吸気流量と他方の吸気弁側を流れる吸気流量との間に流量差が生じるため、気筒内にスワール流が生成される。しかし、そのような流量差が生じた場合には、吸気通路内に噴射された燃料を含む混合気の空燃比が一方の側と他方の側との間で相違するため、気筒内に導かれた混合気の空燃比が不均一となる。その空燃比の不均一性は、流量差が大きくなるほど助長される。そのため、その流量差が大きくなることによりスワール流が強化されるものの却って燃焼の悪化を誘発したり、特に、空燃比を理論空燃比よりもリーン側に設定するリーンバーン機関では窒素酸化物(NOx)の排出量が増加するおそれがある。   In an internal combustion engine in which the valve driving device described in these documents is incorporated, a flow rate difference is generated between the intake air flow rate flowing through one intake valve side and the intake air flow rate flowing through the other intake valve side. A swirl flow is generated. However, when such a flow rate difference occurs, the air-fuel ratio of the air-fuel mixture containing the fuel injected into the intake passage is different between one side and the other side, so that it is introduced into the cylinder. The air-fuel ratio of the air-fuel mixture becomes uneven. The non-uniformity of the air-fuel ratio is promoted as the flow rate difference increases. Therefore, although the swirl flow is strengthened by the increase in the flow rate difference, the deterioration of combustion is induced instead. In particular, in a lean burn engine in which the air-fuel ratio is set leaner than the stoichiometric air-fuel ratio, nitrogen oxide (NOx ) May increase.

そこで、本発明は、一つの気筒に設けられた一方の吸気弁側を流れる吸気流量と他方の吸気弁側を流れる吸気流量との間に流量差が生じた場合でも、燃焼悪化を抑えることができる内燃機関の制御装置を提供することを目的とする。   Therefore, the present invention can suppress the deterioration of combustion even when a flow rate difference occurs between the intake flow rate flowing through one intake valve side provided in one cylinder and the intake flow rate flowing through the other intake valve side. An object of the present invention is to provide a control device for an internal combustion engine.

本発明の内燃機関の制御装置は、内燃機関の一つの気筒に対して二つの開口部を有した吸気通路と、前記吸気通路の各開口部に一つずつ設けられて各開口部を開閉可能な二つの吸気弁と、前記二つの吸気弁のそれぞれの開弁特性が互いに相違するように前記二つの吸気弁のそれぞれを開閉駆動可能な弁駆動手段と、前記気筒内に燃料を噴射する筒内噴射弁と、前記吸気通路内に燃料を噴射する筒外噴射弁と、1サイクルあたりに噴射すべき燃料を前記筒内噴射弁から噴射されるべき筒内噴射量と前記筒外噴射弁から噴射されるべき筒外噴射量とに配分する噴射量算出手段と、前記噴射量算出手段の算出結果に基づいて前記筒内噴射弁及び前記筒外噴射弁のうちの少なくとも一方から燃料を噴射させる燃料噴射制御手段と、を備え、前記噴射量算出手段は、前記二つの吸気弁の開弁特性が互いに相違するように前記弁駆動手段にて前記二つの吸気弁が駆動されている状態で、一方の吸気弁側を流れる吸気流量と他方の吸気弁側を流れる吸気流量との差として与えられる吸気流量差が大きくなるに従って前記筒内噴射量の占める割合が徐々に大きくなるように、1サイクルあたりに噴射すべき燃料を前記筒内噴射量と前記筒外噴射量とに配分することにより、上述した課題を解決する(請求項1)。 The control device for an internal combustion engine according to the present invention is provided with an intake passage having two openings for one cylinder of the internal combustion engine, and one opening at each opening of the intake passage so that each opening can be opened and closed. Two intake valves, valve drive means capable of opening and closing each of the two intake valves so that the opening characteristics of the two intake valves are different from each other, and a cylinder for injecting fuel into the cylinder An internal injection valve, an in-cylinder injection valve that injects fuel into the intake passage, an in-cylinder injection amount that should inject fuel to be injected per cycle from the in-cylinder injection valve, and the out-of-cylinder injection valve Fuel is injected from at least one of the in-cylinder injection valve and the out-of-cylinder injection valve based on a calculation result of the injection amount calculation means to be distributed to the in-cylinder injection amount to be injected and the calculation result of the injection amount calculation means Fuel injection control means, and the injection amount In the state in which the two intake valves are driven by the valve driving means so that the valve opening characteristics of the two intake valves are different from each other, the outlet means has a flow rate of intake air flowing through one intake valve side and the other intake valve. as the proportion of the in-cylinder injection quantity in accordance with the intake air flow rate difference is large Kunar given as the difference between the intake flow rate through the intake valve side is gradually increased, the in-cylinder injection fuel to be injected per cycle The above-described problem is solved by distributing the amount to the amount of in-cylinder injection (claim 1).

この制御装置によれば、二つの吸気弁間で吸気流量差が生じた場合、その流量差が大きくなるほど筒内噴射量の占める割合が大きくなる。言い換えれば、流量差が大きくなるほど筒外噴射量の占める割合が小さくなる。そのため、仮に、二つの吸気弁間に吸気流量差が生じることで一方の側の空燃比と他方の側の空燃比との間に不均一性が生じても、その不均一性が気筒内の混合気に与える影響は1サイクルあたりに噴射すべき燃料のすべてを筒外噴射量に配分した場合よりも小さく抑えられる。これにより、吸気流量差の発生に伴う燃焼悪化を抑制することができる。   According to this control device, when a difference in intake flow rate occurs between two intake valves, the proportion of the in-cylinder injection amount increases as the flow rate difference increases. In other words, the proportion of the in-cylinder injection amount decreases as the flow rate difference increases. Therefore, even if non-uniformity occurs between the air-fuel ratio on one side and the air-fuel ratio on the other side due to the difference in intake air flow rate between the two intake valves, the non-uniformity is The influence on the air-fuel mixture can be kept smaller than when all of the fuel to be injected per cycle is distributed to the in-cylinder injection amount. Thereby, the combustion deterioration accompanying generation | occurrence | production of an intake flow rate difference can be suppressed.

本発明の制御装置においては、前記吸気流量差又はこれと相関する少なくとも一つの物理量を取得する取得手段を更に備え、前記噴射量算出手段は、前記取得手段の取得結果が大きい場合は小さい場合に比べて前記筒内噴射量の占める割合が大きくなるように、1サイクルあたりに噴射すべき燃料を前記筒内噴射量と前記筒外噴射量とに配分してもよい(請求項2)。吸気流量差の取得は、少なくとも一方の吸気弁側の流量を検出可能な検出手段の検出結果に基づいて直接的に取得してもよいし、直接的に得た他の物理量から推定して又は推定により得た他の物理量から流量差を取得してもよい。   The control apparatus according to the present invention further includes an acquisition unit that acquires the intake flow rate difference or at least one physical quantity correlated with the intake flow rate difference, and the injection amount calculation unit is smaller when the acquisition result of the acquisition unit is large. In comparison, the fuel to be injected per cycle may be distributed between the in-cylinder injection amount and the in-cylinder injection amount so that the ratio of the in-cylinder injection amount becomes larger (Claim 2). The acquisition of the intake flow rate difference may be acquired directly based on the detection result of the detection means capable of detecting the flow rate on at least one intake valve side, estimated from other physical quantities obtained directly, or You may acquire a flow volume difference from the other physical quantity obtained by estimation.

推定等で間接的に吸気流量差を取得する場合には、前記取得手段は、一方の吸気弁側を流れる吸気流量をその吸気弁の開弁特性に基づいて、他方の吸気弁側を流れる吸気流量をその吸気弁の開弁特性に基づいてそれぞれ推定するとともに、その推定結果に基づいて前記吸気流量差を取得してもよい(請求項3)。また、この場合においては、前記弁駆動手段は、前記開弁特性として、作用角、最大リフト量及び位相の少なくとも一つを前記二つの吸気弁について互いに相違させることができるように構成されており、前記取得手段は、作用角、最大リフト量及び位相の少なくとも一つに基づいて、一方の吸気弁側を流れる吸気流量及び他方の吸気弁側を流れる吸気流量をそれぞれ推定することもできる(請求項4)。これらの態様では、弁駆動手段の作動状態を把握できれば、物理量を取得するためにセンサ等の検出手段を設置する必要がないので、コストの上昇を抑えることができる。   When the intake flow rate difference is indirectly acquired by estimation or the like, the acquisition means uses the intake flow rate that flows through one intake valve side based on the intake valve flow characteristics of the intake valve. The flow rate may be estimated based on the valve opening characteristics of the intake valve, and the intake flow rate difference may be acquired based on the estimation result. Further, in this case, the valve driving means is configured so that at least one of an operating angle, a maximum lift amount and a phase can be made different for the two intake valves as the valve opening characteristics. The acquisition means can also estimate an intake flow rate flowing through one intake valve side and an intake flow rate flowing through the other intake valve side, respectively, based on at least one of an operating angle, a maximum lift amount, and a phase. Item 4). In these aspects, if the operating state of the valve drive means can be grasped, it is not necessary to install a detection means such as a sensor in order to acquire a physical quantity, and thus an increase in cost can be suppressed.

また、本発明に係る取得手段は、吸気流量差を取得するのではなく、吸気流量差の代りに吸気流量差と相関する物理量を取得してもよい。吸気流量差と相関する物理量としては、一方の吸気弁側と他方の吸気弁側の圧力差を例示することができるが、その他に、前記取得手段は、前記相関する物理量として、前記二つの吸気弁の作用角差を取得してもよいし(請求項5)、前記二つの吸気弁の最大リフト量差を取得してもよい(請求項6)。   Further, the acquisition means according to the present invention may acquire a physical quantity correlated with the intake flow rate difference instead of acquiring the intake flow rate difference. As the physical quantity correlated with the intake flow rate difference, a pressure difference between one intake valve side and the other intake valve side can be exemplified, but in addition, the acquisition means can use the two intake valves as the correlated physical quantity. The valve operating angle difference may be acquired (Claim 5), or the maximum lift amount difference between the two intake valves may be acquired (Claim 6).

以上説明したように、本発明によれば、二つの吸気弁間で吸気流量差が生じた場合、その流量差が大きくなるほど筒内噴射量の占める割合が大きくなり、一方の側と他方の側との間の空燃比の不均一性によって気筒内の混合気に与える影響が小さく抑えられるので、吸気流量差の発生に伴う燃焼悪化を抑制することができる。   As described above, according to the present invention, when a difference in intake flow rate occurs between two intake valves, the proportion of the in-cylinder injection amount increases as the flow rate difference increases. Since the influence on the air-fuel mixture in the cylinder is suppressed to a small extent due to the non-uniformity of the air-fuel ratio between and the combustion deterioration due to the occurrence of the intake flow rate difference.

(第1の形態)
図1は本発明の制御装置が適用された内燃機関の要部を示している。内燃機関1は4つの(図では1つのみ示す)気筒2が一方向に並べられた直列4気筒火花点火内燃機関として構成されている。各気筒2には吸気通路3及び排気通路4がそれぞれ設けられている。各気筒2には図示しないクランク軸にコンロッド6を介して連結されたピストン5が往復運動可能な状態で挿入されている。各気筒2には、図示しない点火プラグがその電極部を突出させるようにして気筒2の略中心線上に設けられている。
(First form)
FIG. 1 shows a main part of an internal combustion engine to which a control device of the present invention is applied. The internal combustion engine 1 is configured as an in-line four-cylinder spark ignition internal combustion engine in which four cylinders 2 (only one is shown in the figure) are arranged in one direction. Each cylinder 2 is provided with an intake passage 3 and an exhaust passage 4. A piston 5 connected to a crankshaft (not shown) via a connecting rod 6 is inserted into each cylinder 2 in a state where it can reciprocate. Each cylinder 2 is provided with a spark plug (not shown) substantially on the center line of the cylinder 2 so that its electrode portion protrudes.

図2は、図1の内燃機関1を上方から模式的に示している。図2にも示すように、吸気通路3は気筒2毎に設けられた吸気ポート30を含み、その吸気ポート30は気筒2との接続前に2つの通路30a、30bに分岐し、各通路30a、30bは気筒2に開口する開口部31に接続される。つまり、吸気通路3は、一つの気筒2に対して二つの開口部31を有している。各開口部31には、これを開閉する吸気弁7が一つずつ、即ち一つの気筒2に対して2つの吸気弁7が設けられている。各吸気弁7には、これを開閉駆動するための電磁駆動装置8が設けられている。電磁駆動装置8は、各吸気弁7の開弁特性、即ち作用角、リフト量及び位相等を自在に設定できる周知の装置である。なお、図1では、紙面と直交する方向の手前側に位置する吸気弁7及び電磁駆動装置8のみを図示している。排気通路4は気筒2毎に設けられ排気ポート40を有し、この排気ポート40にはこれを開閉する排気弁11が設けられている。排気弁11は、その開弁特性がカム12aによって固定される周知の動弁機構12にて開閉駆動される。   FIG. 2 schematically shows the internal combustion engine 1 of FIG. 1 from above. As shown in FIG. 2, the intake passage 3 includes an intake port 30 provided for each cylinder 2. The intake port 30 is branched into two passages 30a and 30b before connection to the cylinder 2, and each passage 30a. , 30b are connected to an opening 31 that opens to the cylinder 2. That is, the intake passage 3 has two openings 31 for one cylinder 2. Each opening 31 is provided with one intake valve 7 for opening and closing the opening 31, that is, two intake valves 7 for one cylinder 2. Each intake valve 7 is provided with an electromagnetic drive device 8 for opening and closing the intake valve 7. The electromagnetic driving device 8 is a well-known device that can freely set the valve opening characteristics of each intake valve 7, that is, the operating angle, the lift amount, the phase, and the like. In FIG. 1, only the intake valve 7 and the electromagnetic drive device 8 positioned on the near side in the direction orthogonal to the paper surface are illustrated. The exhaust passage 4 has an exhaust port 40 provided for each cylinder 2, and the exhaust port 40 is provided with an exhaust valve 11 for opening and closing the exhaust port 40. The exhaust valve 11 is driven to open and close by a known valve mechanism 12 whose valve opening characteristic is fixed by a cam 12a.

図1に示すように、電磁駆動装置8は円筒状に形成されたハウジング80を備えており、ハウジング80には、リング状に形成された二つの電磁石81、82がバルブステムに取り付けられた磁性体のプランジャ83を挟んで対向した状態で、かつ互いに離間するようにしてそれぞれ設けられている。電磁石81、82の中空部には、プランジャ83を中立位置(吸気弁7が中間開度となる位置)に付勢するように二つのバルブスプリング84がプランジャ83を挟むようにしてそれぞれ設けられている。このため、電磁石81の励磁によりプランジャ83には図1の上方に向かう力が作用してバルブノーズがバルブシート9に押し付けられて吸気弁7が閉弁される。一方、電磁石82の励磁によりプランジャ83には図1の下方に向かう力が作用してバルブノーズがバルブシート9から離れて吸気弁7が開弁される。これらの電磁石81、82に供給する励磁電流を調整することにより、各吸気弁7は所望の開弁特性にて開閉駆動される。   As shown in FIG. 1, the electromagnetic drive device 8 includes a housing 80 formed in a cylindrical shape. In the housing 80, two electromagnets 81 and 82 formed in a ring shape are attached to a valve stem. They are provided so as to face each other with the body plunger 83 interposed therebetween and to be separated from each other. Two valve springs 84 are provided in the hollow portions of the electromagnets 81 and 82 so as to sandwich the plunger 83 so as to urge the plunger 83 to a neutral position (a position where the intake valve 7 has an intermediate opening). For this reason, the upward force of FIG. 1 acts on the plunger 83 by the excitation of the electromagnet 81, the valve nose is pressed against the valve seat 9, and the intake valve 7 is closed. On the other hand, due to the excitation of the electromagnet 82, a downward force in FIG. 1 acts on the plunger 83, the valve nose is separated from the valve seat 9, and the intake valve 7 is opened. By adjusting the excitation current supplied to these electromagnets 81 and 82, each intake valve 7 is driven to open and close with a desired valve opening characteristic.

各気筒2への燃料供給は、筒内噴射弁15及び筒外噴射弁16にて行われる。図2にも示すように、筒内噴射弁15は気筒2内に燃料を直接噴射するように構成されており、噴射される燃料噴霧f1は気筒2の中心に向かうに従って扇状に広がるようになっている。一方、筒外噴射弁16は吸気ポート30(吸気通路3)内に燃料を噴射すように構成されており、噴射される燃料噴霧f2は通路30a、30bのそれぞれに指向するようになっている。   Fuel supply to each cylinder 2 is performed by the in-cylinder injection valve 15 and the out-cylinder injection valve 16. As shown in FIG. 2, the in-cylinder injection valve 15 is configured to inject fuel directly into the cylinder 2, and the injected fuel spray f <b> 1 spreads in a fan shape toward the center of the cylinder 2. ing. On the other hand, the in-cylinder injection valve 16 is configured to inject fuel into the intake port 30 (intake passage 3), and the injected fuel spray f2 is directed to each of the passages 30a and 30b. .

電磁駆動装置8、筒内噴射弁15及び筒外噴射弁16の動作は、内燃機関1を適正に制御するためのエンジンコントロールユニット(ECU)20にて制御される。ECU20はマイクロプロセッサ及びその動作に必要なROM、RAM等の記憶手段等の周辺装置を備えたコンピュータである。ECU20に接続されるセンサとしては、図1に示すように機関回転速度(回転数)Neに対応する信号を出力するクランク角センサ21や吸入空気流量Gaに対応する信号を出力するエアフローメータ22がある。その他の各種センサの図示は省略した。ECU20は気筒2内におけるスワール流の生成の要否及びその強さの要求に応じて、各吸気弁7の開弁特性を互いに相違させて一方の吸気弁7側の吸気流量と他方の吸気弁7側の吸気流量との間に流量差が生じるように各電磁駆動装置8を制御する。これにより、図2に示すように、気筒2内にスワール流Fswが生成される。この制御において、スワール流の生成が必要ない場合は各吸気弁7の開弁特性を同一とし、スワール流の生成が必要な場合は要求されたスワール比に応じた吸気流量差が生じるように、各吸気弁7の開弁特性を互いに相違させる。   The operations of the electromagnetic drive device 8, the in-cylinder injection valve 15, and the out-cylinder injection valve 16 are controlled by an engine control unit (ECU) 20 for properly controlling the internal combustion engine 1. The ECU 20 is a computer provided with peripheral devices such as a microprocessor and storage means such as ROM and RAM necessary for its operation. As sensors connected to the ECU 20, as shown in FIG. 1, there are a crank angle sensor 21 that outputs a signal corresponding to the engine rotational speed (rotation speed) Ne and an air flow meter 22 that outputs a signal corresponding to the intake air flow rate Ga. is there. The illustration of other various sensors is omitted. The ECU 20 makes the opening characteristics of the intake valves 7 different from each other in accordance with the necessity of the generation of the swirl flow in the cylinder 2 and the demand for the strength, and the intake flow rate on the one intake valve 7 side and the other intake valve 7 Each electromagnetic driving device 8 is controlled so that a flow rate difference is generated between the intake air flow rate on the seventh side. As a result, a swirl flow Fsw is generated in the cylinder 2 as shown in FIG. In this control, when the generation of the swirl flow is not necessary, the valve opening characteristics of the intake valves 7 are the same, and when the generation of the swirl flow is required, an intake flow rate difference corresponding to the required swirl ratio is generated. The valve opening characteristics of the intake valves 7 are made different from each other.

吸気流量差を変化させるためにECU20が相違させる開弁特性としては、種々のバリエーションがあるが、この実施形態では、二つの吸気弁7の最大リフト量にリフト差(最大リフト量差)を設けている。これ以外の開弁特性、即ち作用角や位相は二つの吸気弁7で互いに同一である。そして、この形態は、一方(図2の上側)の吸気弁7の最大リフト量を一定とし、他方の吸気弁7の最大リフト量を2段階小さくすることで、二つの吸気弁7のリフト差が大の形態とリフト差が小の形態とをそれぞれ実現している。   There are various variations in the valve opening characteristics that the ECU 20 makes different in order to change the intake flow rate difference. In this embodiment, a lift difference (maximum lift amount difference) is provided in the maximum lift amount of the two intake valves 7. ing. Other valve opening characteristics, i.e., operating angle and phase, are the same for the two intake valves 7. In this embodiment, the maximum lift amount of the intake valve 7 on one side (upper side in FIG. 2) is made constant, and the maximum lift amount of the other intake valve 7 is reduced by two stages, so that the lift difference between the two intake valves 7 is reduced. Is realized with a large form and a form with a small lift difference.

図3は、ECU20が本発明の要旨に関連して実行する燃料噴射制御の制御ルーチンの一例を示すフローチャートである。このルーチンのプログラムはECU20のROMに予め記憶されており、適時に読み出されて所定間隔で繰り返し実行される。図3に示すように、ECU20は、まずステップS1においてクランク角センサ21の出力信号を参照して内燃機関1の機関回転数を取得する。次に、ステップS2において、エアフローメータ22の出力信号を参照して吸入空気量を取得する。次いで、ステップS3において、内燃機関1の運転状態に応じて目標燃料噴射量Qを設定する。目標燃料噴射量Qは1サイクルあたりに噴射すべき燃料のことである。具体的には、所定の空燃比(例えば理論空燃比)による燃焼が実現されるように、ステップS1及びステップS2で取得した機関回転数と吸入空気量とに基づいて目標燃料噴射量Qを設定する。その設定は、例えば機関回転数及び吸入空気量を変数として目標燃料噴射量Qを与えるマップをECU20のROMに予め記憶させておき、そのマップを参照して実現することができる。   FIG. 3 is a flowchart showing an example of a control routine of fuel injection control executed by the ECU 20 in connection with the gist of the present invention. The program of this routine is stored in advance in the ROM of the ECU 20, read out in a timely manner, and repeatedly executed at predetermined intervals. As shown in FIG. 3, the ECU 20 first acquires the engine speed of the internal combustion engine 1 with reference to the output signal of the crank angle sensor 21 in step S1. Next, in step S2, the intake air amount is acquired with reference to the output signal of the air flow meter 22. Next, in step S3, the target fuel injection amount Q is set according to the operating state of the internal combustion engine 1. The target fuel injection amount Q is the fuel to be injected per cycle. Specifically, the target fuel injection amount Q is set based on the engine speed and the intake air amount acquired in step S1 and step S2 so that combustion at a predetermined air-fuel ratio (for example, the theoretical air-fuel ratio) is realized. To do. The setting can be realized, for example, by storing a map that gives the target fuel injection amount Q with the engine speed and the intake air amount as variables in the ROM of the ECU 20 and referring to the map.

次に、ステップS4において、目標燃料噴射量Qに対する筒内噴射弁15の噴射量の占める割合(吹き分け率)a[%]を設定する。吹き分け率aは内燃機関1の運転状態に応じて0%から100%の間に設定される。即ち、吹き分け率aが0%の場合には筒内噴射弁15からは燃料が噴射されず、筒外噴射弁16のみから燃料が噴射される。一方、吹き分け率aが100%の場合には筒内噴射弁15のみから燃料が噴射されて、筒外噴射弁16からは燃料が噴射されない。   Next, in step S4, a ratio (blowing ratio) a [%] of the injection amount of the in-cylinder injection valve 15 to the target fuel injection amount Q is set. The blowing ratio a is set between 0% and 100% depending on the operating state of the internal combustion engine 1. That is, when the blowing rate a is 0%, fuel is not injected from the in-cylinder injection valve 15, and fuel is injected only from the out-cylinder injection valve 16. On the other hand, when the blowing rate a is 100%, the fuel is injected only from the in-cylinder injection valve 15 and the fuel is not injected from the out-cylinder injection valve 16.

続くステップS5では、二つの吸気弁7間のリフト差を取得した上でそのリフト差の存否を判定し、リフト差がある場合にはステップS6に進み、リフト差が無い場合にはステップS9に進む。このリフト差は別ルーチンで算出された電磁駆動装置8に対する指示値から取得できる。ステップS6では、リフト差が大の場合か否かを判定し、リフト差が大の場合はステップS7に進んで吹分け率aを再設定してステップS9に進み、リフト差が大でない場合、即ちリフト差が小の場合はステップS8に進んで吹分け率aを再設定してステップS9に進む。ステップS7及びステップS8における吹分け率aの再設定は、リフト差の大きさに応じたものとなるように予め準備された所定値aL、aS(aS<aL)を変数aに代入することにより実現する。   In the subsequent step S5, the lift difference between the two intake valves 7 is acquired, and the presence or absence of the lift difference is determined. If there is a lift difference, the process proceeds to step S6. If there is no lift difference, the process proceeds to step S9. move on. This lift difference can be obtained from the indicated value for the electromagnetic drive device 8 calculated in another routine. In Step S6, it is determined whether or not the lift difference is large. If the lift difference is large, the process proceeds to Step S7, the blowing rate a is reset, and the process proceeds to Step S9. If the lift difference is not large, That is, if the lift difference is small, the process proceeds to step S8, the blowing rate a is reset, and the process proceeds to step S9. The resetting ratio a in step S7 and step S8 is reset by substituting predetermined values aL and aS (aS <aL) prepared in advance so as to correspond to the magnitude of the lift difference into the variable a. Realize.

ステップS9では、以上の処理で設定した吹き分け率aに基づいて筒内噴射弁15から噴射されるべき噴射量(筒内噴射量)qcを算出する。筒内噴射量qcは、目標燃料噴射量Qにa/100を乗じることによって得られる。次いでステップS10においては、筒外噴射弁16から噴射されるべき噴射量(筒外噴射量)qpを算出する。筒外噴射量qpは、目標燃料噴射量Qに(1−a/100)を乗じることによって得られる。そして、続くステップS11で、筒内噴射量qcの燃料を筒内噴射弁15から、筒外噴射量qpの燃料を筒外噴射弁16からそれぞれ噴射させて今回のルーチンを終了する。   In step S9, an injection amount (in-cylinder injection amount) qc to be injected from the in-cylinder injection valve 15 is calculated based on the blowing rate a set in the above process. The in-cylinder injection amount qc is obtained by multiplying the target fuel injection amount Q by a / 100. Next, in step S10, an injection amount (out-cylinder injection amount) qp to be injected from the in-cylinder injection valve 16 is calculated. The in-cylinder injection amount qp is obtained by multiplying the target fuel injection amount Q by (1-a / 100). In step S11, the in-cylinder injection amount qc of fuel is injected from the in-cylinder injection valve 15 and the in-cylinder injection amount qp of fuel is injected from the in-cylinder injection valve 16, respectively.

以上のルーチンによれば、ステップS7の吹分け率aの再設定に用いる所定値aLはステップS8の所定値aSよりも大きい。従って、リフト差が大きい場合は小さい場合よりも、筒内噴射弁から噴射されるべき筒内噴射量の占める割合が大きくなる。リフト差が大きい場合ほど二つの吸気弁7間の流量差は大きくなる。そのため、二つの吸気弁7間の流量差が大きくなるほど筒内噴射量の占める割合が大きくなり、一方の吸気弁7側と他方の吸気弁7側との間の空燃比の不均一性によって気筒2内の混合気に与える影響が小さく抑えられる。   According to the above routine, the predetermined value aL used for resetting the blowing rate a in step S7 is larger than the predetermined value aS in step S8. Therefore, when the lift difference is large, the ratio of the in-cylinder injection amount to be injected from the in-cylinder injection valve is larger than when the lift difference is small. The larger the lift difference, the larger the flow rate difference between the two intake valves 7. Therefore, as the flow rate difference between the two intake valves 7 increases, the ratio of the in-cylinder injection amount increases, and the cylinder is caused by the non-uniformity of the air-fuel ratio between one intake valve 7 side and the other intake valve 7 side. The influence on the air-fuel mixture in 2 is kept small.

(第2の形態)
次に、本発明の第2の形態を説明する。この形態はECU20が行う制御内容を除き第1の形態と同一である。よって、内燃機関1の構成等については図1、2が適宜に参照される。この形態では、吸気流量差を変化させるためにECU20が相違させる開弁特性として、作用角差を設けている。リフト差及び位相については二つの吸気弁7で同一でもよいし、作用角差と連動するように最大リフト量差を設けることもできる。
(Second form)
Next, a second embodiment of the present invention will be described. This form is the same as the first form except for the control content performed by the ECU 20. 1 and 2 are appropriately referred to for the configuration of the internal combustion engine 1 and the like. In this embodiment, an operating angle difference is provided as the valve opening characteristic that the ECU 20 makes different in order to change the intake flow rate difference. The lift difference and phase may be the same for the two intake valves 7, or a maximum lift amount difference may be provided in conjunction with the operating angle difference.

図4は、第2の形態に係る制御ルーチンの一例を示したフローチャートである。この図において図3と共通する処理には同一の符号を付して重複する説明を省略する。ステップS4で吹分け率aが設定された場合、続くステップS21で二つの吸気弁7の作用角差を取得した上でその作用角差の存否を判定する。この作用角差は別ルーチンで算出された電磁駆動装置8に対する指示値から取得できる。作用角差がない場合にはステップS9に進み、作用角差がある場合にはステップS22に進んで、吹分け率aを再設定し、ステップS9に進む。この再設定は、作用角差が大きくなるほど大きな値に設定された所定値aRを変数aに代入することにより実現される。所定値aRは、例えば図5に示すように、作用角差を変数として所定値aRを与えるマップを準備しておき、そのマップをECU20が参照することにより実現可能である。   FIG. 4 is a flowchart showing an example of a control routine according to the second embodiment. In this figure, the processes common to those in FIG. When the blow ratio a is set in step S4, the operating angle difference between the two intake valves 7 is acquired in subsequent step S21, and the presence / absence of the operating angle difference is determined. This operating angle difference can be obtained from the indicated value for the electromagnetic drive device 8 calculated in another routine. If there is no working angle difference, the process proceeds to step S9. If there is a working angle difference, the process proceeds to step S22, the blowing rate a is reset, and the process proceeds to step S9. This resetting is realized by substituting a predetermined value aR, which is set to a larger value as the operating angle difference becomes larger, into the variable a. For example, as shown in FIG. 5, the predetermined value aR can be realized by preparing a map that gives the predetermined value aR with the operating angle difference as a variable, and referring to the map.

以上のルーチンによれば、ステップS22の吹分け率aの再設定に用いる所定値aRは作用角差が大きいほど大きな値に設定されている。従って、作用角差が大きい場合は小さい場合よりも、筒内噴射弁15から噴射されるべき筒内噴射量の占める割合が大きくなる。作用角差が大きい場合ほど二つの吸気弁7間の流量差は大きくなる。そのため、二つの吸気弁7間の流量差が大きくなるほど筒内噴射量の占める割合が大きくなり、一方の吸気弁7側と他方の吸気弁7側との間の空燃比の不均一性によって気筒2内の混合気に与える影響が小さく抑えられる。   According to the above routine, the predetermined value aR used for resetting the blowing rate a in step S22 is set to a larger value as the operating angle difference is larger. Therefore, when the operating angle difference is large, the ratio of the in-cylinder injection amount to be injected from the in-cylinder injection valve 15 is larger than when the operating angle difference is small. The greater the difference in operating angle, the greater the difference in flow rate between the two intake valves 7. Therefore, as the flow rate difference between the two intake valves 7 increases, the ratio of the in-cylinder injection amount increases, and the cylinder is caused by the non-uniformity of the air-fuel ratio between one intake valve 7 side and the other intake valve 7 side. The influence on the air-fuel mixture in 2 is kept small.

(第3の形態)
次に、本発明の第3の形態を説明する。この形態はECU20が行う制御内容を除き第1の形態と同一である。よって、内燃機関1の構成等については図1、2が適宜に参照される。この形態は、二つの吸気弁7のそれぞれの開弁特性から、一方の側を流れる吸気流量と他方の側の吸気流量とをそれぞれ推定し、その推定結果から吸気流量差を取得するものである。図6は第3の形態に係る制御ルーチンの一例を示したフローチャートである。この図において第3と共通する処理には同一の符号を付して重複する説明を省略する。
(Third form)
Next, the 3rd form of this invention is demonstrated. This form is the same as the first form except for the control content performed by the ECU 20. 1 and 2 are appropriately referred to for the configuration of the internal combustion engine 1 and the like. In this embodiment, the intake flow rate flowing on one side and the intake flow rate on the other side are respectively estimated from the valve opening characteristics of the two intake valves 7, and the intake flow rate difference is acquired from the estimation result. . FIG. 6 is a flowchart showing an example of a control routine according to the third embodiment. In this figure, the processes common to the third are assigned the same reference numerals, and redundant description is omitted.

ステップS4で吹分け率aが設定された場合、続くステップS31で二つの吸気弁7の開弁特性が同一か否かを判定する。この判定は別ルーチンで算出された電磁駆動装置8に対する指示値に基づいて実現できる。開弁特性が同一である場合はステップS9に進み、同一でない場合はステップS32に進む。ステップS32では、各吸気弁7側を流れる吸気流量を推定する。この推定は各吸気弁7の開弁特性に基づいて実行される。この推定方法は電磁駆動装置8に対する制御内容による。例えば、ECU20が吸気流量差を変化させるために、作用角差と最大リフト量差とを互いに連動するように変化させ、更に位相も変化させる場合には、図7に示すように、作用角及び位相のそれぞれを変数として吸気流量を与えるマップを準備し、そのマップをECU20が参照することによってこの推定を実現できる。上記の電磁駆動装置8に対する制御内容と異なり、第1の形態のようにリフト差だけを与え作用角及び位相を変化させない場合、あるいは最大リフト量、作用角及び位相の全てを変化させる場合であっても、各吸気弁7側の吸気量を、最大リフト量、作用角及び位相の少なくとも一つに基づいて推定することもできる。その推定は、これらの少なくとも一つを変数として吸気流量を与えるマップを準備することにより実現できる。   When the air-blowing rate a is set in step S4, it is determined in subsequent step S31 whether or not the valve opening characteristics of the two intake valves 7 are the same. This determination can be realized based on an instruction value for the electromagnetic driving device 8 calculated in another routine. If the valve opening characteristics are the same, the process proceeds to step S9, and if not, the process proceeds to step S32. In step S32, the intake flow rate flowing through each intake valve 7 side is estimated. This estimation is performed based on the valve opening characteristics of each intake valve 7. This estimation method depends on the control contents for the electromagnetic drive device 8. For example, when the ECU 20 changes the operating angle difference and the maximum lift amount difference so as to be linked with each other in order to change the intake flow rate difference, and further changes the phase, as shown in FIG. This estimation can be realized by preparing a map that gives the intake air flow rate with each phase as a variable and referring to the map. Unlike the control contents for the electromagnetic driving device 8 described above, it is the case where only the lift difference is given and the working angle and phase are not changed as in the first embodiment, or the maximum lift amount, working angle and phase are all changed. However, the intake amount on the side of each intake valve 7 can also be estimated based on at least one of the maximum lift amount, the operating angle, and the phase. The estimation can be realized by preparing a map that gives the intake air flow rate using at least one of these as a variable.

次に、ステップS33では、二つの吸気弁7間の吸気流量差をステップS32の推定結果から算出する。次いで、ステップS34で、吹分け率aを再設定してステップS9に進む。この再設定は、吸気流量差が大きくなるほど大きな値に設定された所定値aQを変数aに代入することにより実現される。所定値aQは、例えば図8に示すように、吸気流量差を変数として所定値aQを与えるマップを準備しておき、そのマップをECU20が参照することにより実現可能である。   Next, in step S33, an intake flow rate difference between the two intake valves 7 is calculated from the estimation result in step S32. Next, in step S34, the blowing rate a is reset, and the process proceeds to step S9. This resetting is realized by substituting a predetermined value aQ, which is set to a larger value as the intake flow rate difference becomes larger, into the variable a. For example, as shown in FIG. 8, the predetermined value aQ can be realized by preparing a map that gives the predetermined value aQ using the intake flow rate difference as a variable and referring to the map.

以上のルーチンによれば、ステップS34の吹分け率aの再設定に用いる所定値aQは吸気流量差が大きいほど大きな値に設定されている。従って、吸気流量差が大きい場合は小さい場合よりも、筒内噴射弁15から噴射されるべき筒内噴射量の占める割合が大きくなる。そのため、一方の吸気弁7側と他方の吸気弁7側との間の空燃比の不均一性によって気筒2内の混合気に与える影響が小さく抑えられる。   According to the above routine, the predetermined value aQ used for resetting the blowing rate a in step S34 is set to a larger value as the intake flow rate difference is larger. Therefore, when the intake flow rate difference is large, the proportion of the in-cylinder injection amount to be injected from the in-cylinder injection valve 15 is larger than when the intake flow rate difference is small. Therefore, the influence on the air-fuel mixture in the cylinder 2 due to the non-uniformity of the air-fuel ratio between the one intake valve 7 side and the other intake valve 7 side is suppressed to a small level.

以上の各形態において、電磁駆動装置8及びECU20によって本発明に係る弁駆動手段が構成される。ECU20が図3のステップS4、ステップS7〜ステップS10を実行することにより、図4のステップS4、ステップS22、ステップS9及びステップS10を実行することにより、図6のステップS4、ステップS34、ステップS9及びステップS10を実行することにより、ECU20は本発明に係る燃料噴射量算出手段としてそれぞれ機能する。また、ECU20が図3、図4及び図6のステップS11を実行することにより、ECU20は本発明に係る燃料噴射制御手段として機能する。また、ECU20が図3のステップS5を実行することにより、図4のステップS21を実行することにより、図6のステップS32及びステップS33を実行することにより、ECU20は本発明に係る取得手段として機能する。   In each of the above embodiments, the electromagnetic driving device 8 and the ECU 20 constitute the valve driving means according to the present invention. The ECU 20 executes step S4, step S7 to step S10 in FIG. 3 and then executes step S4, step S22, step S9 and step S10 in FIG. 4 to thereby execute step S4, step S34 and step S9 in FIG. And by executing step S10, the ECU 20 functions as the fuel injection amount calculating means according to the present invention. Moreover, when ECU20 performs step S11 of FIG.3, FIG4 and FIG.6, ECU20 functions as a fuel-injection control means which concerns on this invention. Further, by executing step S5 in FIG. 3, the ECU 20 executes step S21 in FIG. 4, and by executing step S32 and step S33 in FIG. 6, the ECU 20 functions as an acquisition unit according to the present invention. To do.

但し、本発明は以上の各形態に限定されず、種々の形態にて実施できる。弁駆動手段は、二つの吸気弁間の開弁特性を互いに相違させることで、吸気流量差を与えることができるものであればどのような構成で実現してもよい。従って、本発明は吸気弁7を電磁駆動装置8で開閉駆動する図1の形態に限定されない。また、第3の形態において、吸気流量差を求めるために、一方の吸気弁側の吸気流量と他方の吸気弁側の吸気流量とをそれぞれ推定したが、これらを直接的に検出できる流量センサを設けて本発明を実施してもよい。また、一方と他方との差圧を検出できる差圧センサを設け、その検出結果から吸気流量差を算出してもよい。   However, the present invention is not limited to the above embodiments, and can be implemented in various forms. The valve driving means may be realized by any configuration as long as the valve opening characteristics between the two intake valves can be made different from each other so that a difference in intake flow rate can be given. Therefore, the present invention is not limited to the form of FIG. 1 in which the intake valve 7 is driven to open and close by the electromagnetic drive device 8. Further, in the third embodiment, in order to obtain the difference in intake flow rate, the intake flow rate on one intake valve side and the intake flow rate on the other intake valve side are estimated, but a flow rate sensor that can directly detect these is used. It may be provided to implement the present invention. Further, a differential pressure sensor capable of detecting a differential pressure between one and the other may be provided, and the intake flow rate difference may be calculated from the detection result.

本発明の制御装置が適用された内燃機関の要部を示した図。The figure which showed the principal part of the internal combustion engine to which the control apparatus of this invention was applied. 図1の内燃機関を情報から模式的に示した図。The figure which showed the internal combustion engine of FIG. 1 typically from the information. 第1の形態に係る制御ルーチンの一例を示したフローチャート。The flowchart which showed an example of the control routine which concerns on a 1st form. 第2の形態に係る制御ルーチンの一例を示したフローチャート。The flowchart which showed an example of the control routine which concerns on a 2nd form. 作用角差を変数として所定値aRを与えるマップの一例を示した図。The figure which showed an example of the map which gives predetermined value aR by making a working angle difference into a variable. 第3の形態に係る制御ルーチンの一例を示したフローチャート。The flowchart which showed an example of the control routine which concerns on a 3rd form. 作用角及び位相のそれぞれを変数として吸気流量を与えるマップの一例を示した図。The figure which showed an example of the map which gives each intake air flow volume by making each of an operating angle and a phase into a variable. 吸気流量差を変数として所定値aQを与えるマップの一例を示した図。The figure which showed an example of the map which gives predetermined value aQ by making intake air flow rate difference into a variable.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
3 吸気通路
7 吸気弁
8 電磁駆動装置(弁駆動手段)
15 筒内噴射弁
16 筒外噴射弁
20 ECU(燃料噴射量算出手段、燃料噴射制御手段、取得手段)
31 開口部
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3 Intake passage 7 Intake valve 8 Electromagnetic drive device (valve drive means)
15 In-cylinder injection valve 16 Out-cylinder injection valve 20 ECU (fuel injection amount calculation means, fuel injection control means, acquisition means)
31 opening

Claims (6)

内燃機関の一つの気筒に対して二つの開口部を有した吸気通路と、前記吸気通路の各開口部に一つずつ設けられて各開口部を開閉可能な二つの吸気弁と、前記二つの吸気弁のそれぞれの開弁特性が互いに相違するように前記二つの吸気弁のそれぞれを開閉駆動可能な弁駆動手段と、前記気筒内に燃料を噴射する筒内噴射弁と、前記吸気通路内に燃料を噴射する筒外噴射弁と、1サイクルあたりに噴射すべき燃料を前記筒内噴射弁から噴射されるべき筒内噴射量と前記筒外噴射弁から噴射されるべき筒外噴射量とに配分する噴射量算出手段と、前記噴射量算出手段の算出結果に基づいて前記筒内噴射弁及び前記筒外噴射弁のうちの少なくとも一方から燃料を噴射させる燃料噴射制御手段と、を備え、
前記噴射量算出手段は、前記二つの吸気弁の開弁特性が互いに相違するように前記弁駆動手段にて前記二つの吸気弁が駆動されている状態で、一方の吸気弁側を流れる吸気流量と他方の吸気弁側を流れる吸気流量との差として与えられる吸気流量差が大きくなるに従って前記筒内噴射量の占める割合が徐々に大きくなるように、1サイクルあたりに噴射すべき燃料を前記筒内噴射量と前記筒外噴射量とに配分することを特徴とする内燃機関の制御装置。
An intake passage having two openings for one cylinder of the internal combustion engine, two intake valves provided in each opening of the intake passage, each opening and closing each opening, and the two Valve driving means capable of opening and closing each of the two intake valves so that the valve opening characteristics of the intake valves are different from each other, an in-cylinder injection valve for injecting fuel into the cylinder, and an intake passage An in-cylinder injection valve that injects fuel, and an in-cylinder injection amount that should be injected from the in-cylinder injection valve and an out-cylinder injection amount that should be injected from the in-cylinder injection valve. A fuel injection control unit that injects fuel from at least one of the in-cylinder injection valve and the out-cylinder injection valve based on a calculation result of the injection amount calculation unit;
The injection amount calculation means is an intake air flow rate that flows on one intake valve side in a state where the two intake valves are driven by the valve drive means so that the valve opening characteristics of the two intake valves are different from each other. and as the ratio of the in-cylinder injection quantity in accordance with the intake air flow rate difference is large Kunar given as the difference between the intake flow rate through the other intake valve side is gradually increased, the fuel to be injected per cycle A control device for an internal combustion engine, which distributes between an in-cylinder injection amount and the in-cylinder injection amount.
前記吸気流量差又はこれと相関する少なくとも一つの物理量を取得する取得手段を更に備え、前記噴射量算出手段は、前記取得手段の取得結果が大きい場合は小さい場合に比べて前記筒内噴射量の占める割合が大きくなるように、1サイクルあたりに噴射すべき燃料を前記筒内噴射量と前記筒外噴射量とに配分することを特徴とする請求項1に記載の内燃機関の制御装置。   The apparatus further comprises acquisition means for acquiring the intake flow rate difference or at least one physical quantity correlated therewith, and the injection amount calculation means is configured to determine the in-cylinder injection amount when the acquisition result of the acquisition means is large compared to when the acquisition result is small. 2. The control device for an internal combustion engine according to claim 1, wherein the fuel to be injected per cycle is distributed between the in-cylinder injection amount and the out-cylinder injection amount so that the ratio of the fuel injection is increased. 前記取得手段は、一方の吸気弁側を流れる吸気流量をその吸気弁の開弁特性に基づいて、他方の吸気弁側を流れる吸気流量をその吸気弁の開弁特性に基づいてそれぞれ推定するとともに、その推定結果に基づいて前記吸気流量差を取得することを特徴とする請求項2に記載の内燃機関の制御装置。   The acquisition means estimates the intake flow rate flowing through one intake valve side based on the valve opening characteristic of the intake valve, and estimates the intake flow rate flowing through the other intake valve side based on the valve opening characteristic of the intake valve. 3. The control apparatus for an internal combustion engine according to claim 2, wherein the intake flow rate difference is acquired based on the estimation result. 前記弁駆動手段は、前記開弁特性として、作用角、最大リフト量及び位相の少なくとも一つを前記二つの吸気弁について互いに相違させることができるように構成されており、
前記取得手段は、作用角、最大リフト量及び位相の少なくとも一つに基づいて、一方の吸気弁側を流れる吸気流量及び他方の吸気弁側を流れる吸気流量をそれぞれ推定することを特徴とする請求項3に記載の内燃機関の制御装置。
The valve driving means is configured such that at least one of an operating angle, a maximum lift amount, and a phase can be made different from each other for the two intake valves as the valve opening characteristic,
The acquisition means estimates an intake flow rate flowing through one intake valve side and an intake flow rate flowing through the other intake valve side based on at least one of a working angle, a maximum lift amount, and a phase, respectively. Item 4. The control device for an internal combustion engine according to Item 3.
前記取得手段は、前記相関する物理量として、前記二つの吸気弁の作用角差を取得することを特徴とする請求項2に記載の内燃機関の制御装置。   The control device for an internal combustion engine according to claim 2, wherein the acquisition unit acquires a difference in operating angle between the two intake valves as the correlated physical quantity. 前記取得手段は、前記相関する物理量として、前記二つの吸気弁の最大リフト量差を取得することを特徴とする請求項2に記載の内燃機関の制御装置。   The control device for an internal combustion engine according to claim 2, wherein the acquisition means acquires a maximum lift amount difference between the two intake valves as the correlated physical quantity.
JP2006121846A 2006-04-26 2006-04-26 Control device for internal combustion engine Expired - Fee Related JP4692370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006121846A JP4692370B2 (en) 2006-04-26 2006-04-26 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006121846A JP4692370B2 (en) 2006-04-26 2006-04-26 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007291978A JP2007291978A (en) 2007-11-08
JP4692370B2 true JP4692370B2 (en) 2011-06-01

Family

ID=38762828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006121846A Expired - Fee Related JP4692370B2 (en) 2006-04-26 2006-04-26 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4692370B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5321354B2 (en) * 2008-10-20 2013-10-23 トヨタ自動車株式会社 Fuel injection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185213A (en) * 1989-12-14 1991-08-13 Mitsubishi Motors Corp Fuel feeding device of stratified charge combustion internal combustion engine
JPH06299935A (en) * 1993-04-14 1994-10-25 Nippon Soken Inc Injection fuel distribution ratio control device for porous fuel injection valve
JPH1026026A (en) * 1996-07-09 1998-01-27 Hitachi Ltd Spark ignition engine
JPH11294242A (en) * 1998-04-16 1999-10-26 Fuji Heavy Ind Ltd Fuel injection control device for engine
JP2004060474A (en) * 2002-07-25 2004-02-26 Hitachi Ltd Combustion control device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03185213A (en) * 1989-12-14 1991-08-13 Mitsubishi Motors Corp Fuel feeding device of stratified charge combustion internal combustion engine
JPH06299935A (en) * 1993-04-14 1994-10-25 Nippon Soken Inc Injection fuel distribution ratio control device for porous fuel injection valve
JPH1026026A (en) * 1996-07-09 1998-01-27 Hitachi Ltd Spark ignition engine
JPH11294242A (en) * 1998-04-16 1999-10-26 Fuji Heavy Ind Ltd Fuel injection control device for engine
JP2004060474A (en) * 2002-07-25 2004-02-26 Hitachi Ltd Combustion control device for internal combustion engine

Also Published As

Publication number Publication date
JP2007291978A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US7066136B2 (en) Output control system for internal combustion engine
JP6069062B2 (en) Fuel supply control device for sub-chamber gas engine
US9976510B2 (en) Fuel injection control apparatus
JP2010112244A (en) Control device and control method
CN112166245B (en) Control device for internal combustion engine and control method for internal combustion engine
JP2010025091A (en) Control device of cylinder injection type internal combustion engine
WO2013054391A1 (en) Control device for internal combustion engine
JP5418665B2 (en) Control device for internal combustion engine
JP4692370B2 (en) Control device for internal combustion engine
JP5273310B2 (en) Control device for internal combustion engine
JP2004270531A (en) Injection characteristic detecting device for fuel injection valve and fuel injection controller for internal combustion engine equipped with its detecting device
JP2009121364A (en) Fuel injection control device
JP2012202209A (en) Air-fuel ratio control device of internal combustion engine
JP6204878B2 (en) Internal combustion engine
JP5375464B2 (en) Fuel injection device for internal combustion engine
JP5644342B2 (en) Control device for multi-cylinder internal combustion engine
JP2009275617A (en) Control device of internal combustion engine
JP4240084B2 (en) In-cylinder injection spark ignition internal combustion engine control device
EP3150830B1 (en) Control apparatus for internal combustion engine
JP6390490B2 (en) Engine fuel injection control device
JP4211700B2 (en) Fuel injection control device for internal combustion engine
JP2020012417A (en) Control device of internal combustion engine
JP2014020205A (en) Control device of internal combustion engine
JP2011157859A (en) Internal combustion engine
JP2013119803A (en) Failure detecting device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4692370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees