JP4240084B2 - In-cylinder injection spark ignition internal combustion engine control device - Google Patents

In-cylinder injection spark ignition internal combustion engine control device Download PDF

Info

Publication number
JP4240084B2
JP4240084B2 JP2006204612A JP2006204612A JP4240084B2 JP 4240084 B2 JP4240084 B2 JP 4240084B2 JP 2006204612 A JP2006204612 A JP 2006204612A JP 2006204612 A JP2006204612 A JP 2006204612A JP 4240084 B2 JP4240084 B2 JP 4240084B2
Authority
JP
Japan
Prior art keywords
injection
internal combustion
combustion engine
fuel injection
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006204612A
Other languages
Japanese (ja)
Other versions
JP2008031894A (en
Inventor
剛 芦澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006204612A priority Critical patent/JP4240084B2/en
Priority to EP07789560.5A priority patent/EP2047091B1/en
Priority to US12/303,302 priority patent/US7938098B2/en
Priority to KR1020087024325A priority patent/KR101035439B1/en
Priority to PCT/IB2007/002128 priority patent/WO2008012656A1/en
Priority to CN2007800278782A priority patent/CN101495740B/en
Publication of JP2008031894A publication Critical patent/JP2008031894A/en
Application granted granted Critical
Publication of JP4240084B2 publication Critical patent/JP4240084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、筒内噴射式火花点火内燃機関の制御装置に関する。   The present invention relates to a control device for an in-cylinder injection spark ignition internal combustion engine.

筒内噴射式火花点火内燃機関の筒内にタンブル流を生成するとともに、さらにこのタンブル流を均質燃焼時に吸気行程下死点近傍で噴射した燃料で適度に強化することで、点火時期までタンブル流を維持することができる。これにより点火時期において混合気の乱れを増大させることができることから、混合気の燃焼速度が適度に向上し、良好な均質燃焼を得ることができる。均質燃焼時に筒内の吸気流動を強化する技術として、例えば特許文献1では吸気通路に設けられた吸気流制御弁を制御して吸気流動を強くする筒内直接噴射式内燃機関の吸気制御装置が提案されている。また、特許文献2では燃料を吸気行程前半と後半とに分けて分割噴射することで混合気の均質度を向上させる技術が提案されている。   A tumble flow is generated in the cylinder of an in-cylinder injection spark ignition internal combustion engine, and the tumble flow is moderately strengthened with fuel injected near the bottom dead center of the intake stroke during homogeneous combustion. Can be maintained. As a result, the turbulence of the air-fuel mixture can be increased at the ignition timing, so that the combustion speed of the air-fuel mixture can be improved moderately and good homogeneous combustion can be obtained. As a technique for enhancing the in-cylinder intake flow during homogeneous combustion, for example, Patent Document 1 discloses an in-cylinder direct injection internal combustion engine intake control device that controls an intake flow control valve provided in an intake passage to strengthen intake flow. Proposed. Patent Document 2 proposes a technique for improving the homogeneity of the air-fuel mixture by dividing and injecting fuel into the first half and the second half of the intake stroke.

特開2005−180247号公報JP 2005-180247 A 特開平10−159619号公報JP-A-10-159619

ところで上記の筒内噴射式火花点火内燃機関において高負荷運転領域で気化潜熱効果による出力向上を図るといった場合には、筒内に空気が最も入る時期に燃料を噴射することが重要になることから、噴射時期は内燃機関の回転数が高くなるほど吸気行程下死点近傍から吸気行程上死点に近づくことになる。その一方で、この場合には燃料噴射時のピストン位置も上死点に近づくため、燃料噴射時の筒内空間が狭くなる。しかしながら、筒内空間が狭い状態ではタンブル流がうまく回らないことから、この状態で燃料を噴射してもタンブル流を強化することが困難になる。すなわちこの場合には、気化潜熱効果を得ることができる反面、混合気の均質性や燃焼速度に改善の余地が残されるものとなっていた。   By the way, in the above-described in-cylinder spark ignition internal combustion engine, when the output is improved by the vaporization latent heat effect in the high load operation region, it is important to inject the fuel when the air enters the cylinder most. The injection timing approaches the intake stroke top dead center from the vicinity of the intake stroke bottom dead center as the rotational speed of the internal combustion engine increases. On the other hand, in this case, since the piston position at the time of fuel injection approaches the top dead center, the in-cylinder space at the time of fuel injection becomes narrow. However, since the tumble flow does not rotate well when the in-cylinder space is narrow, it is difficult to enhance the tumble flow even if fuel is injected in this state. That is, in this case, the vaporization latent heat effect can be obtained, but there remains room for improvement in the homogeneity and combustion speed of the air-fuel mixture.

そこで、本発明は上記の課題に鑑みてなされたものであり、噴射した燃料でタンブル流を強化するにあたって燃料の噴射を分割することで、高負荷運転領域で気化潜熱効果と混合気の均質性或いは燃焼速度とを両立させることが可能な筒内噴射式火花点火内燃機関の制御装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and by dividing the fuel injection in strengthening the tumble flow with the injected fuel, the vaporization latent heat effect and the homogeneity of the air-fuel mixture in the high load operation region Or it aims at providing the control apparatus of the cylinder injection type spark ignition internal combustion engine which can make a combustion speed compatible.

上記課題を解決するために、本発明は、筒内にタンブル流を生成するとともに、該タンブル流を吸気行程下死点近傍で噴射した燃料で強化する筒内噴射式火花点火内燃機関を制御する筒内噴射式火花点火内燃機関の制御装置であって、前記筒内噴射式火花点火内燃機関の回転数が高負荷運転領域で所定の回転数より高いときに、筒内に流入する空気の充填効率が最大となる時期に第1の燃料噴射を行うとともに、吸気行程下死点で噴射が完了する第2の燃料噴射を行う噴射時期制御手段を備えることを特徴とする。本発明によれば、第1の燃料噴射で気化潜熱効果による出力向上を図るとともに、第2の燃料噴射でタンブル流を強化することができるため、さらに混合気の均質性や燃焼速度の向上も図ることができる。 In order to solve the above-described problems, the present invention controls a cylinder injection spark ignition internal combustion engine that generates a tumble flow in a cylinder and enhances the tumble flow with fuel injected near the bottom dead center of the intake stroke. A control device for an in-cylinder injection spark ignition internal combustion engine, wherein the in-cylinder injection spark ignition internal combustion engine is charged with air flowing into the cylinder when the rotation speed is higher than a predetermined rotation speed in a high load operation region. The fuel cell system includes an injection timing control unit that performs the first fuel injection at the time when the efficiency becomes maximum and performs the second fuel injection that is completed at the bottom dead center of the intake stroke. According to the present invention, the first fuel injection can improve the output due to the latent heat effect of vaporization, and the second fuel injection can enhance the tumble flow, which further improves the homogeneity of the air-fuel mixture and the combustion speed. Can be planned.

また本発明は、前記噴射時期制御手段が、前記回転数が高くなるほど、前記第1の燃料噴射を進角させてもよい。ここで、筒内に流入する空気の充填効率が最大となる時期は同じ高負荷運転領域でも内燃機関の回転数によって異なることから、具体的には本発明のように第1の燃料噴射を進角させることで、筒内に流入する空気の充填効率が最大となる時期に第1の燃料噴射を行うことができる。 In the present invention, the injection timing control means may advance the first fuel injection as the rotational speed increases. Here, since the timing at which the charging efficiency of the air flowing into the cylinder becomes maximum differs depending on the rotational speed of the internal combustion engine even in the same high-load operation region, specifically, the first fuel injection is advanced as in the present invention. By making the angle, the first fuel injection can be performed at the time when the charging efficiency of the air flowing into the cylinder is maximized .

また本発明は、さらに前記第2の燃料噴射の燃料噴射期間に対応するクランク角の範囲が、前記筒内噴射式火花点火内燃機関の運転状態の変化に対して略一定になるように燃料の噴射量を制御する噴射量制御手段を備えてもよい。ここで燃焼速度を向上させるにあたっては点火時期までタンブル流を維持する必要があるため噴射量がある程度要求される一方で、混合気の均質性を向上させるにあたってはタンブル流がそれほど強化される必要がないため、必要最小限の燃料噴射であれば十分に効果を得ることができる。本発明は係る点に着目したものであり、本発明によれば第2の燃料噴射で特に混合気の均質性を向上させるとともに、さらに第2の燃料噴射を必要最小限の燃料噴射とすることで、第1の燃料噴射で十分な気化潜熱効果を得ることができる。   Furthermore, the present invention further provides a fuel injection system in which the crank angle range corresponding to the fuel injection period of the second fuel injection is substantially constant with respect to changes in the operating state of the direct injection spark ignition internal combustion engine. You may provide the injection quantity control means which controls the injection quantity. Here, in order to improve the combustion speed, it is necessary to maintain the tumble flow until the ignition timing, so a certain amount of injection is required. On the other hand, to improve the homogeneity of the air-fuel mixture, the tumble flow needs to be strengthened so much. Therefore, if the fuel injection is the minimum necessary, the effect can be sufficiently obtained. The present invention pays attention to such a point, and according to the present invention, the homogeneity of the air-fuel mixture is particularly improved by the second fuel injection, and the second fuel injection is made the minimum necessary fuel injection. Thus, sufficient vaporization latent heat effect can be obtained by the first fuel injection.

本発明によれば、噴射した燃料でタンブル流を強化するにあたって燃料の噴射を分割することで、高負荷運転領域で気化潜熱効果と混合気の均質性或いは燃焼速度とを両立させることが可能な筒内噴射式火花点火内燃機関の制御装置を提供できる。   According to the present invention, by dividing the fuel injection to enhance the tumble flow with the injected fuel, it is possible to achieve both the latent heat effect of vaporization and the homogeneity of the air-fuel mixture or the combustion speed in the high load operation region. A control device for an in-cylinder injection spark ignition internal combustion engine can be provided.

以下、本発明を実施するための最良の形態を図面と共に詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は、ECU(Electronic Control Unit:電子制御装置)1で実現されている本実施例に係る筒内噴射式火花点火内燃機関の制御装置を、内燃機関システム100とともに模式的に示す図である。内燃機関システム100は、吸気系10と、燃料噴射系20と、内燃機関50とを有して構成されている。吸気系10は内燃機関50に空気を導入するための構成であり、吸気を濾過するためのエアクリーナ11や、空気量を計測するエアフロメータ12や、吸気の流量を調節するスロットル弁13や、吸気を一時的に貯蔵するためサージタンク14や、吸気を内燃機関50の各気筒に分配するインテークマニホールド15や、これらの間に適宜配設される吸気管などを有して構成されている。   FIG. 1 is a diagram schematically showing a control device for a direct injection spark ignition internal combustion engine according to the present embodiment realized by an ECU (Electronic Control Unit) 1 together with an internal combustion engine system 100. . The internal combustion engine system 100 includes an intake system 10, a fuel injection system 20, and an internal combustion engine 50. The intake system 10 is configured to introduce air into the internal combustion engine 50, and includes an air cleaner 11 for filtering intake air, an air flow meter 12 for measuring the amount of air, a throttle valve 13 for adjusting the flow rate of intake air, For temporarily storing the intake tank 15, the intake manifold 15 for distributing the intake air to the cylinders of the internal combustion engine 50, the intake pipe appropriately disposed therebetween, and the like.

燃料噴射系20は燃料を供給及び噴射するための構成であり、燃料噴射弁21や燃料噴射ポンプ22や燃料タンク23などを有して構成されている。燃料噴射弁21は燃料を噴射するための構成であり、ECU1の制御のもと、適宜の噴射時期に開弁されて燃料を噴射する。また燃料噴射量は、ECU1の制御のもと燃料噴射弁21が閉弁されるまでの間の開弁期間の長さで調節される。燃料噴射ポンプ22は燃料を加圧して噴射圧を発生させるための構成であり、ECU1の制御のもと噴射圧を適宜の噴射圧に調節する。   The fuel injection system 20 is configured to supply and inject fuel, and includes a fuel injection valve 21, a fuel injection pump 22, a fuel tank 23, and the like. The fuel injection valve 21 is a structure for injecting fuel, and is opened at an appropriate injection timing to inject fuel under the control of the ECU 1. The fuel injection amount is adjusted by the length of the valve opening period until the fuel injection valve 21 is closed under the control of the ECU 1. The fuel injection pump 22 is configured to pressurize the fuel and generate an injection pressure, and adjusts the injection pressure to an appropriate injection pressure under the control of the ECU 1.

図2は内燃機関50の要部を模式的に示す図である。内燃機関50は、シリンダブロック51と、シリンダヘッド52と、ピストン53と、点火プラグ54と、吸気弁55と、排気弁56とを有して構成されている。本実施例に示す内燃機関50は直列4気筒の筒内噴射式火花点火内燃機関である。但し内燃機関50は他の適宜の気筒配列構造及び気筒数を有していてもよい。また図2では内燃機関50に関し、各気筒の代表としてシリンダ51aについて要部を示しているが本実施例では他の気筒についても同様の構造となっている。シリンダブロック51には、略円筒状のシリンダ51aが形成されている。シリンダ51a内には、ピストン53が収容されている。ピストン53の頂面にはタンブル流Tを案内するためのキャビティ53aが形成されている。シリンダブロック51の上面にはシリンダヘッド52が固定されている。燃焼室57は、シリンダブロック51、シリンダヘッド52及びピストン53に囲まれた空間として形成されている。シリンダヘッド52には燃焼室57に吸気を導くための吸気ポート52aのほか、燃焼したガスを燃焼室57から排気するための排気ポート52bが形成され、さらにこれら吸排気ポート52a及び52bを開閉するための吸排気弁55及び56が配設されている。なお、内燃機関50は1気筒あたりに適宜の数量の吸排気弁55及び56を備えた吸排気弁構造であってよい。   FIG. 2 is a diagram schematically showing a main part of the internal combustion engine 50. The internal combustion engine 50 includes a cylinder block 51, a cylinder head 52, a piston 53, a spark plug 54, an intake valve 55, and an exhaust valve 56. The internal combustion engine 50 shown in this embodiment is an in-line four-cylinder in-cylinder spark ignition internal combustion engine. However, the internal combustion engine 50 may have other appropriate cylinder arrangement structure and the number of cylinders. In FIG. 2, the main part of the internal combustion engine 50 is shown with respect to the cylinder 51a as a representative of each cylinder, but in this embodiment, the other cylinders have the same structure. The cylinder block 51 is formed with a substantially cylindrical cylinder 51a. A piston 53 is accommodated in the cylinder 51a. A cavity 53 a for guiding the tumble flow T is formed on the top surface of the piston 53. A cylinder head 52 is fixed to the upper surface of the cylinder block 51. The combustion chamber 57 is formed as a space surrounded by the cylinder block 51, the cylinder head 52, and the piston 53. In addition to an intake port 52a for guiding intake air to the combustion chamber 57, the cylinder head 52 is formed with an exhaust port 52b for exhausting the combusted gas from the combustion chamber 57, and opens and closes the intake and exhaust ports 52a and 52b. For this purpose, intake and exhaust valves 55 and 56 are provided. The internal combustion engine 50 may have an intake / exhaust valve structure including an appropriate number of intake / exhaust valves 55 and 56 per cylinder.

点火プラグ54は、燃焼室57の上方略中央に電極を突出させた状態でシリンダヘッド52に配設されている。燃料噴射弁21も燃焼室57の上方で点火プラグ54と隣り合う位置から燃焼室57内に燃料噴射孔を突出させた状態でシリンダヘッド52に配設されている。なお、燃料噴射弁21の配置はこれに限られず、例えば燃焼室57の上方、吸気ポート52a側(図2に示すA部)から燃焼室57内に燃料噴射孔を突出させた状態でシリンダヘッド52に配設されていてもよい。また燃料噴射弁21は1気筒あたりに複数備えられていてもよい。   The spark plug 54 is disposed in the cylinder head 52 with an electrode protruding substantially in the center above the combustion chamber 57. The fuel injection valve 21 is also disposed in the cylinder head 52 with the fuel injection hole protruding into the combustion chamber 57 from a position adjacent to the spark plug 54 above the combustion chamber 57. The arrangement of the fuel injection valve 21 is not limited to this. For example, the cylinder head with the fuel injection hole projecting into the combustion chamber 57 from the intake port 52a side (portion A shown in FIG. 2) above the combustion chamber 57. 52 may be provided. A plurality of fuel injection valves 21 may be provided per cylinder.

吸気ポート52aには、燃焼室57内にタンブル流Tを生成するための気流制御弁58が配設されている。気流制御弁58は、ECU1の制御のもと吸気ポート52a内で吸気を偏流させて燃焼室57内にタンブル流Tを生成するための構成である。但し燃焼室57内にタンブル流Tを生成するためのタンブル流生成手段は気流制御弁58に限られず、例えばタンブル流Tを筒内に生成できるように形成された吸気ポート52aの形状そのものなどであってもよく、その他タンブル流Tを筒内に生成可能な適宜の手段であってよい。なお、タンブル流Tは燃焼室57内の吸気弁55側を上昇するように気筒内を旋回する順タンブル流となっている。本実施例では燃料噴射弁21がECU1の制御のもと、回転数Neが高負荷運転領域で所定の回転数αより高い場合以外には均質燃焼時に吸気行程下死点近傍で燃料を噴射する。噴射された燃料はタンブル流Tを適度に強化し、強化されたタンブル流Tは点火時期まで維持される。その結果、点火時期に混合気の乱れが増大し、燃焼速度が適度に向上するため、良好な均質燃焼が得られるようになっている。   An air flow control valve 58 for generating a tumble flow T in the combustion chamber 57 is disposed in the intake port 52a. The airflow control valve 58 is configured to generate a tumble flow T in the combustion chamber 57 by causing the intake air to drift in the intake port 52 a under the control of the ECU 1. However, the tumble flow generating means for generating the tumble flow T in the combustion chamber 57 is not limited to the air flow control valve 58, and for example, the shape of the intake port 52a formed so that the tumble flow T can be generated in the cylinder. There may be other appropriate means capable of generating the tumble flow T in the cylinder. The tumble flow T is a forward tumble flow that turns in the cylinder so as to rise on the intake valve 55 side in the combustion chamber 57. In this embodiment, the fuel injection valve 21 injects fuel near the bottom dead center of the intake stroke at the time of homogeneous combustion except when the rotational speed Ne is higher than the predetermined rotational speed α in the high load operation region under the control of the ECU 1. . The injected fuel moderately strengthens the tumble flow T, and the strengthened tumble flow T is maintained until the ignition timing. As a result, the turbulence of the air-fuel mixture increases at the ignition timing and the combustion speed is improved moderately, so that good homogeneous combustion can be obtained.

なお、気流制御弁58は均質燃焼時には吸気を増量すべく半開や全開といった開度に開かれることや、吸気ポート52aの形状のみでは十分な強度のタンブル流Tを得難いことなどから、これらの手段のみでは一般に均質燃焼時の混合気のミキシング性や火炎の伝播性に改善の余地が残されるものとなっている。そのほか内燃機関50には、回転数Neに比例した出力パルスを発生するクランク角センサ71や、内燃機関50の水温を検出するための水温センサ72などの各種のセンサが配設されている。   The air flow control valve 58 is opened at an opening degree such as half-open or full-open to increase intake during homogeneous combustion, and it is difficult to obtain a sufficiently strong tumble flow T only by the shape of the intake port 52a. However, there is generally room for improvement in the mixing characteristics of the air-fuel mixture and the flame propagation characteristics during homogeneous combustion. In addition, the internal combustion engine 50 is provided with various sensors such as a crank angle sensor 71 for generating an output pulse proportional to the rotational speed Ne and a water temperature sensor 72 for detecting the water temperature of the internal combustion engine 50.

ECU1は、図示しないCPU(Central Processing Unit:中央演算処理装置)と、ROM(Read Only Memory)と、RAM(Random Access Memory)と、入出力回路などを有して構成されている。ECU1は主として内燃機関50を制御するための構成であり、本実施例では燃料噴射弁21や燃料噴射ポンプ22のほか、点火プラグ54(より具体的には図示しないイグナイタ)や、気流制御弁58(より具体的には図示しない気流制御弁58用のアクチュエータ)なども制御している。ECU1にはこれら燃料噴射弁21などのほか、各種の制御対象が駆動回路(図示省略)を介して接続されている。また、ECU1にはエアフロメータ12や、クランク角センサ71や、水温センサ72や、アクセルペダル(図示省略)の踏み込み量(アクセル開度)を検知するためのアクセルセンサ73などの各種のセンサが接続されている。   The ECU 1 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input / output circuit, and the like (not shown). The ECU 1 is mainly configured to control the internal combustion engine 50. In the present embodiment, in addition to the fuel injection valve 21 and the fuel injection pump 22, an ignition plug 54 (more specifically, an igniter not shown) and an airflow control valve 58 are provided. (More specifically, an actuator for the airflow control valve 58 (not shown)) is also controlled. In addition to the fuel injection valve 21 and the like, various control objects are connected to the ECU 1 via a drive circuit (not shown). The ECU 1 is connected to various sensors such as an air flow meter 12, a crank angle sensor 71, a water temperature sensor 72, and an accelerator sensor 73 for detecting the amount of depression (accelerator opening) of an accelerator pedal (not shown). Has been.

ROMはCPUが実行する種々の処理が記述されたプログラムを格納するための構成であり、本実施例では内燃機関50制御用プログラムのほか、燃料噴射弁21を制御するための燃料噴射弁制御用プログラムなども格納している。なお、燃料噴射弁制御用プログラムは内燃機関50制御用プログラムの一部として構成されていてもよい。燃料噴射弁制御用プログラムは、燃料の噴射量を制御するための噴射量制御用プログラムと、燃料の噴射圧を制御するための噴射圧制御用プログラムと、燃料の噴射時期を制御するための噴射時期制御用プログラムとを有して構成されている。本実施例では特に噴射時期制御用プログラムが、回転数Neが高負荷運転領域で所定の回転数αより高いときに、筒内に流入する空気の充填効率が最大となる時期に第1の燃料噴射を行うとともに、吸気行程下死点近傍で第2の燃料噴射を行うための噴射時期特定制御用プログラムを有して構成されている点と、噴射量制御用プログラムが、第2の燃料噴射の燃料噴射期間に対応するクランク角の範囲が、内燃機関50の運転状態の変化に対して略一定になるように燃料の噴射量を制御するための噴射量特定制御用プログラムを有して構成されている点に特徴を有している。 The ROM is configured to store a program in which various processes executed by the CPU are described. In this embodiment, the ROM is used for controlling the fuel injection valve 21 for controlling the fuel injection valve 21 in addition to the program for controlling the internal combustion engine 50. Also stores programs. The fuel injection valve control program may be configured as a part of the internal combustion engine 50 control program. The fuel injection valve control program includes an injection amount control program for controlling the fuel injection amount, an injection pressure control program for controlling the fuel injection pressure, and an injection for controlling the fuel injection timing. And a timing control program. In the present embodiment, in particular, when the rotational speed Ne is higher than the predetermined rotational speed α in the high load operation region, the program for controlling the injection timing controls the first fuel at the time when the charging efficiency of the air flowing into the cylinder becomes maximum. The injection timing control program for performing the injection and performing the second fuel injection in the vicinity of the bottom dead center of the intake stroke, and the injection amount control program are the second fuel injection And an injection amount specifying control program for controlling the fuel injection amount so that the range of the crank angle corresponding to the fuel injection period becomes substantially constant with respect to a change in the operating state of the internal combustion engine 50. It has the feature in being made.

第1の燃料噴射では、噴射時期が所定の回転数αで筒内に流入する空気の充填効率が最大となる時期に設定されており、さらにこの噴射時期は回転数Neの変化に対して噴射時期から吸気弁55の閉弁時期までの時間が略一定になるように設定されている。これにより回転数Neが高くなるにつれて噴射時期が進角されるとともに、第1の燃料噴射が筒内に流入する空気の充填効率が最大となる時期に開始され、その結果、気化潜熱効果により内燃機関50の出力を向上させることができる。また、第1の燃料噴射の噴射時期はこれによりWOT(Wide Open Throttle)時に吸気行程半ばになるように設定されている。なお、噴射時期の設定はこれに限られず、例えば回転数Neと第1の燃料噴射の噴射時期との関係を示すマップデータなどを備えて、検出した回転数Neとこのマップデータとに基づき第1の燃料噴射が筒内に空気が最も入る時期に開始されるようにしてもよい。 In the first fuel injection, the injection timing is set to a timing at which the charging efficiency of the air flowing into the cylinder becomes maximum at a predetermined rotation speed α, and this injection timing is injected with respect to the change in the rotation speed Ne. The time from the timing to the closing timing of the intake valve 55 is set to be substantially constant. As a result, the injection timing is advanced as the rotational speed Ne increases, and the first fuel injection is started at the time when the charging efficiency of the air flowing into the cylinder is maximized. The output of the engine 50 can be improved. Further, the injection timing of the first fuel injection is set to be in the middle of the intake stroke during WOT (Wide Open Throttle). The setting of the injection timing is not limited to this. For example, map data showing the relationship between the rotational speed Ne and the injection timing of the first fuel injection is provided, and the first is based on the detected rotational speed Ne and this map data. One fuel injection may be started when the air enters the cylinder most.

これに対して第2の燃料噴射では、噴射時期が吸気行程下死点近傍に設定されており、さらに燃料の噴射が吸気行程下死点で完了するように設定されている。また第2の燃料噴射では、噴射量が燃料噴射期間に対応するクランク角の範囲が内燃機関50の運転状態の変化に対して略一定になるように設定されている。これにより、混合気の均質性を向上させるにあたって必要となる最小限の燃料噴射を吸気行程下死点近傍で回転数Neによらず行うようにすることができる。なお、第2の燃料噴射ではこのように所定のクランク角の範囲に応じた噴射量が必ず確保されるのに対して、第1の燃料噴射では噴射量が、第2の燃料噴射の噴射量に応じて空燃比を適正にするのに必要な噴射量に調節される。本実施例では、CPUとROMとRAM(以下、単にCPU等と称す)と内燃機関50制御用のプログラムとで、各種の検出手段や判定手段や制御手段などが実現されており、特にCPU等と噴射時期特定制御用プログラムとで噴射時期制御手段が、CPU等と噴射量特定制御用プログラムとで噴射量制御手段が夫々実現されている。   In contrast, in the second fuel injection, the injection timing is set in the vicinity of the intake stroke bottom dead center, and further, the fuel injection is set to be completed at the intake stroke bottom dead center. In the second fuel injection, the range of the crank angle corresponding to the fuel injection period is set so that the range of the crank angle becomes substantially constant with respect to the change in the operating state of the internal combustion engine 50. Thereby, the minimum fuel injection required for improving the homogeneity of the air-fuel mixture can be performed near the bottom dead center of the intake stroke regardless of the rotational speed Ne. In the second fuel injection, the injection amount corresponding to the predetermined crank angle range is always ensured in this way, whereas in the first fuel injection, the injection amount is the injection amount of the second fuel injection. Accordingly, the injection amount required to make the air-fuel ratio appropriate is adjusted. In the present embodiment, various detection means, determination means, control means, and the like are realized by a CPU, a ROM, a RAM (hereinafter simply referred to as a CPU, etc.), and a program for controlling the internal combustion engine 50. The injection timing control means is realized by the injection timing specifying control program, and the injection amount control means is realized by the CPU and the injection amount specifying control program.

次に、高負荷運転領域で気化潜熱効果と混合気の均質性を両立させるべく燃料の噴射を制御するにあたって、ECU1で行われる処理を図3に示すフローチャートを用いて詳述する。ECU1は、CPUがROMに格納された上述の内燃機関50制御用プログラムや、燃料噴射弁制御用プログラムなどの各種のプログラムに基づき、フローチャートに示す処理を繰り返し実行することで、内燃機関50を制御する。CPUは内燃機関50の運転状態が高負荷運転領域にあるか否かを判別する処理を実行する(ステップ11)。本実施例ではクランク角センサ71の出力信号に基づき検出した回転数Neと、アクセルセンサ73の出力信号に基づき検出した負荷率KLと、回転数Neと負荷率KLとで定義された運転領域のマップデータとに基づき、内燃機関50の運転状態を判別するようにしている。   Next, the process performed by the ECU 1 in controlling the fuel injection to achieve both the vaporization latent heat effect and the homogeneity of the air-fuel mixture in the high load operation region will be described in detail with reference to the flowchart shown in FIG. The ECU 1 controls the internal combustion engine 50 by repeatedly executing the processing shown in the flowchart based on various programs such as the above-described internal combustion engine 50 control program stored in the ROM and the fuel injection valve control program. To do. The CPU executes a process of determining whether or not the operating state of the internal combustion engine 50 is in the high load operation region (step 11). In the present embodiment, the rotational speed Ne detected based on the output signal of the crank angle sensor 71, the load factor KL detected based on the output signal of the accelerator sensor 73, and the operating range defined by the rotational speed Ne and the load factor KL. Based on the map data, the operating state of the internal combustion engine 50 is determined.

図4は運転領域のマップデータを模式的に示す図である。本実施例では運転領域がこのマップデータで回転数Ne及び負荷率KLに応じて、高負荷運転領域とそれ以外に区分されている。但し、これに限られず運転領域は更に複数の領域に細分化して設定されていてよい。なお、運転領域は回転数Ne及び負荷率KLに限られず、適宜の内燃機関50の運転状態に応じて設定されていてもよい。   FIG. 4 is a diagram schematically showing map data of the operation region. In this embodiment, the operation area is divided into a high load operation area and other areas according to the rotational speed Ne and the load factor KL in this map data. However, the operation region is not limited to this, and the operation region may be further divided into a plurality of regions. The operating region is not limited to the rotational speed Ne and the load factor KL, and may be set according to an appropriate operating state of the internal combustion engine 50.

ステップ11で否定判定であれば、本フローチャートにおいて特段の処理を要しないためステップ11に戻る。一方、ステップ11で肯定判定であれば、CPUは回転数Neが所定の回転数αよりも高いか否かを判定する処理を実行する(ステップ12)。所定の回転数αは例えば1、600rpmに設定される。ステップ12で否定判定であれば、本フローチャートにおいて特段の処理を要しないためステップ11に戻る。一方、ステップ12で肯定判定であれば、CPUは第1の燃料噴射と第2の燃料噴射に分割して燃料の噴射を行うよう、噴射制御を変更する処理を実行する(ステップ13)。図5は高負荷高回転運転領域で噴射制御を変更しない場合と変更した場合について燃料噴射の様子を模式的に示す図である。噴射制御を変更しない場合には図5(a)に示すように噴射時期が吸気行程下死点近傍から吸気行程上死点に近づいていることがわかる。この場合には、気化潜熱効果により内燃機関50の出力向上を図ることはできるものの、燃料の噴射でタンブル流Tを適切に強化することはできない。これに対して、本ステップで噴射制御を変更した場合には、図5(b)に示すように第1の燃料噴射が吸気行程半ばで行なわれるとともに、第2の燃料噴射が吸気行程下死点近傍で行なわれる。   If a negative determination is made in step 11, the process returns to step 11 because no special processing is required in this flowchart. On the other hand, if the determination in step 11 is affirmative, the CPU executes a process of determining whether or not the rotational speed Ne is higher than a predetermined rotational speed α (step 12). The predetermined rotational speed α is set to 1,600 rpm, for example. If a negative determination is made in step 12, the process returns to step 11 because no special processing is required in this flowchart. On the other hand, if an affirmative determination is made in step 12, the CPU executes a process of changing the injection control so that the fuel is injected divided into the first fuel injection and the second fuel injection (step 13). FIG. 5 is a diagram schematically showing the state of fuel injection when the injection control is not changed and when the injection control is not changed in the high-load high-rotation operation region. When the injection control is not changed, it can be seen that the injection timing approaches the intake stroke top dead center from the vicinity of the intake stroke bottom dead center as shown in FIG. In this case, the output of the internal combustion engine 50 can be improved by the vaporization latent heat effect, but the tumble flow T cannot be appropriately strengthened by fuel injection. On the other hand, when the injection control is changed in this step, as shown in FIG. 5B, the first fuel injection is performed in the middle of the intake stroke, and the second fuel injection is dead in the intake stroke. Performed near the point.

したがってこれらの噴射時期に応じた第1の噴射と第2の噴射を行うべく、CPUが燃料噴射弁21を制御するための処理を実行することによって(ステップ14)、気化潜熱効果と混合気の均質性とを両立させることができる。なお、本実施例では混合気の均質性を向上させるべく第2の燃料噴射を行う例を示したが、燃焼速度を向上させるべく第2の燃料噴射を行ってもよい。具体的には例えば高負荷運転領域でも回転数Neが比較的低いときにはノッキング対策として第2の燃料噴射の噴射期間を本実施例の場合よりも長く変更することで、燃焼速度が向上するようにしてもよい。但し、この場合には第2の燃料噴射で相当の噴射量を必要とすることから、気化潜熱効果は混合気の均質性と両立させる場合と比較して低くなる。以上により、噴射した燃料でタンブル流Tを強化するにあたって燃料の噴射を分割することで、高負荷運転領域で気化潜熱効果と混合気の均質性或いは燃焼速度とを両立させることが可能なECU1を実現可能である。   Therefore, the CPU executes a process for controlling the fuel injection valve 21 to perform the first injection and the second injection in accordance with these injection timings (step 14), so that the latent heat effect of vaporization and the mixture are changed. Both homogeneity can be achieved. In the present embodiment, the second fuel injection is performed to improve the homogeneity of the air-fuel mixture, but the second fuel injection may be performed to improve the combustion speed. Specifically, for example, when the rotational speed Ne is relatively low even in the high load operation region, the combustion speed is improved by changing the injection period of the second fuel injection longer than in the present embodiment as a countermeasure against knocking. May be. However, in this case, since a considerable injection amount is required in the second fuel injection, the latent heat effect of vaporization is lower than that in the case where both the homogeneity of the air-fuel mixture is achieved. As described above, by dividing the fuel injection in strengthening the tumble flow T with the injected fuel, the ECU 1 that can achieve both the vaporization latent heat effect and the homogeneity of the air-fuel mixture or the combustion speed in the high load operation region. It is feasible.

上述した実施例は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。   The embodiment described above is a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.

ECU1を内燃機関システム100とともに模式的に示す図である。1 is a diagram schematically showing an ECU 1 together with an internal combustion engine system 100. FIG. 内燃機関50の要部を模式的に示す図である。FIG. 2 is a diagram schematically showing a main part of an internal combustion engine 50. ECU1で行われる処理をフローチャートで示す図である。It is a figure which shows the process performed by ECU1 with a flowchart. 運転領域のマップデータを模式的に示す図である。It is a figure which shows typically the map data of a driving | operation area | region. 噴射制御を変更しない場合と変更した場合について、燃料噴射の様子を模式的に示す図である。It is a figure which shows typically the mode of fuel injection about the case where it changes when it does not change injection control.

符号の説明Explanation of symbols

1 ECU
10 吸気系
20 燃料噴射系
21 燃料噴射弁
50 内燃機関
100 内燃機関システム
1 ECU
DESCRIPTION OF SYMBOLS 10 Intake system 20 Fuel injection system 21 Fuel injection valve 50 Internal combustion engine 100 Internal combustion engine system

Claims (3)

筒内にタンブル流を生成するとともに、該タンブル流を吸気行程下死点近傍で噴射した燃料で強化する筒内噴射式火花点火内燃機関を制御する筒内噴射式火花点火内燃機関の制御装置であって、
前記筒内噴射式火花点火内燃機関の回転数が高負荷運転領域で所定の回転数より高いときに、筒内に流入する空気の充填効率が最大となる時期に第1の燃料噴射を行うとともに、吸気行程下死点で噴射が完了する第2の燃料噴射を行う噴射時期制御手段を備えることを特徴とする筒内噴射式火花点火内燃機関の制御装置。
A control device for a cylinder injection spark ignition internal combustion engine that controls a cylinder injection spark ignition internal combustion engine that generates a tumble flow in a cylinder and that reinforces the tumble flow with fuel injected near the bottom dead center of an intake stroke. There,
When the rotational speed of the in-cylinder injection spark ignition internal combustion engine is higher than a predetermined rotational speed in the high load operation region, the first fuel injection is performed at the time when the charging efficiency of the air flowing into the cylinder becomes maximum. An in-cylinder injection spark ignition internal combustion engine control device comprising injection timing control means for performing second fuel injection that completes injection at an intake stroke bottom dead center.
前記噴射時期制御手段が、前記回転数が高くなるほど、前記第1の燃料噴射を進角させることを特徴とする請求項1記載の筒内噴射式火花点火内燃機関の制御装置。 2. The control apparatus for a direct injection spark ignition internal combustion engine according to claim 1, wherein the injection timing control means advances the first fuel injection as the rotational speed increases. さらに前記第2の燃料噴射の燃料噴射期間に対応するクランク角の範囲が、前記筒内噴射式火花点火内燃機関の運転状態の変化に対して略一定になるように燃料の噴射量を制御する噴射量制御手段を備えることを特徴とする請求項1記載の筒内噴射式火花点火内燃機関の制御装置。 Further, the fuel injection amount is controlled so that the crank angle range corresponding to the fuel injection period of the second fuel injection becomes substantially constant with respect to a change in the operating state of the direct injection spark ignition internal combustion engine. The control apparatus for an in-cylinder spark ignition internal combustion engine according to claim 1, further comprising an injection amount control means.
JP2006204612A 2006-07-27 2006-07-27 In-cylinder injection spark ignition internal combustion engine control device Expired - Fee Related JP4240084B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006204612A JP4240084B2 (en) 2006-07-27 2006-07-27 In-cylinder injection spark ignition internal combustion engine control device
EP07789560.5A EP2047091B1 (en) 2006-07-27 2007-07-26 Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
US12/303,302 US7938098B2 (en) 2006-07-27 2007-07-26 Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
KR1020087024325A KR101035439B1 (en) 2006-07-27 2007-07-26 Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
PCT/IB2007/002128 WO2008012656A1 (en) 2006-07-27 2007-07-26 Control apparatus and control method of in-cylinder injection type spark ignition internal combusion engine
CN2007800278782A CN101495740B (en) 2006-07-27 2007-07-26 Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204612A JP4240084B2 (en) 2006-07-27 2006-07-27 In-cylinder injection spark ignition internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2008031894A JP2008031894A (en) 2008-02-14
JP4240084B2 true JP4240084B2 (en) 2009-03-18

Family

ID=39121601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204612A Expired - Fee Related JP4240084B2 (en) 2006-07-27 2006-07-27 In-cylinder injection spark ignition internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP4240084B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077421A (en) * 2012-10-12 2014-05-01 Hitachi Automotive Systems Ltd Engine control device and engine control method
CN113431692B (en) * 2021-07-30 2022-07-26 同济大学 Method for inhibiting knocking through directional injection and spark ignition type internal combustion engine using same

Also Published As

Publication number Publication date
JP2008031894A (en) 2008-02-14

Similar Documents

Publication Publication Date Title
KR101081787B1 (en) Control apparatus and control method for direct injection spark ignition internal combustion engine
KR101035439B1 (en) Control apparatus and control method of in-cylinder injection type spark ignition internal combustion engine
JP4321561B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP2004324428A (en) Variable valve type internal combustion engine and control method
KR100241824B1 (en) Fuel injection quantity control device of internal combustion engine
JPH1193731A (en) Fuel injection control device for cylinder injection internal combustion engine
JP2009264107A (en) Direct injection spark ignition internal combustion engine
JP4240084B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JPH10339148A (en) Engine intake controller
JP3317166B2 (en) Knock determination device for internal combustion engine
JP2008031895A (en) Control device of in-cylinder injection type spark ignition internal combustion engine
JP2007092645A (en) Control device for internal combustion engine
JP4702217B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP2006316667A (en) Knocking determination device for multi-fuel internal combustion engine
JP4576884B2 (en) Control device and control method for internal combustion engine
JP4240083B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP4399787B2 (en) Control device and control method for internal combustion engine
JP2008298028A (en) Fuel injection control device of in cylinder injection type internal combustion engine
JPWO2016162911A1 (en) Control device and control method for internal combustion engine
JP4803399B2 (en) Fuel injection device for in-cylinder injection type internal combustion engine
JP4466865B2 (en) In-cylinder injection type spark ignition internal combustion engine
JP2008303772A (en) Control device for internal combustion engine
JP2021032131A (en) Control device of internal combustion engine
JP2008274810A (en) Control device for variable valve train
JPS6155342A (en) Fuel injection device for engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4240084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees