JP4690225B2 - Screw alloys for screw rebar - Google Patents

Screw alloys for screw rebar Download PDF

Info

Publication number
JP4690225B2
JP4690225B2 JP2006063797A JP2006063797A JP4690225B2 JP 4690225 B2 JP4690225 B2 JP 4690225B2 JP 2006063797 A JP2006063797 A JP 2006063797A JP 2006063797 A JP2006063797 A JP 2006063797A JP 4690225 B2 JP4690225 B2 JP 4690225B2
Authority
JP
Japan
Prior art keywords
screw
thread
region
spiral surface
rebar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006063797A
Other languages
Japanese (ja)
Other versions
JP2007239322A (en
Inventor
智弘 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tekko Co Ltd
Original Assignee
Tokyo Tekko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tekko Co Ltd filed Critical Tokyo Tekko Co Ltd
Priority to JP2006063797A priority Critical patent/JP4690225B2/en
Publication of JP2007239322A publication Critical patent/JP2007239322A/en
Application granted granted Critical
Publication of JP4690225B2 publication Critical patent/JP4690225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ネジ鉄筋に螺合される金物に関する。   The present invention relates to a hardware that is screwed into a screw rebar.

ネジ鉄筋に螺合される金物として、例えば特許文献1に示す定着金物が挙げられる。この定着金物は、柱と梁との交差部(仕口部)において、柱主筋または梁主筋としてのネジ鉄筋の端部に螺合することにより、ネジ鉄筋の端部をコンクリートに定着させるものである。   An example of a hardware that is screwed to the screw rebar is a fixing hardware shown in Patent Document 1. This fixing hardware fixes the end of the screw rebar to the concrete by screwing it to the end of the screw rebar as the column main bar or beam main bar at the intersection (joint part) of the column and beam. is there.

図15に示すように、上記定着金物10は、筒部11と、この筒部11の軸方向後端の外周から径方向,外方向に突出された環状の鍔部12とを有している。筒部11内周には雌ネジ部14が形成されている。また、筒部11の周壁には、軸方向中央に位置して注入口(図示しない)が形成されている。   As shown in FIG. 15, the fixing hardware 10 has a cylindrical portion 11 and an annular flange portion 12 protruding radially and outwardly from the outer periphery of the axial rear end of the cylindrical portion 11. . A female screw portion 14 is formed on the inner periphery of the cylindrical portion 11. Further, an injection port (not shown) is formed in the peripheral wall of the cylindrical portion 11 so as to be located in the center in the axial direction.

上記筒部11がネジ鉄筋20の端部に螺合された状態で、上記注入口から注入されたグラウト(充填材)が、雌ネジ部14の内周とネジ鉄筋20の外周との間に充填されて硬化することにより、定着金物10がネジ鉄筋20に固定される。   In a state where the cylindrical portion 11 is screwed to the end portion of the screw rebar 20, the grout (filler) injected from the inlet is between the inner periphery of the female screw portion 14 and the outer periphery of the screw rebar 20. The fixing metal 10 is fixed to the screw rebar 20 by being filled and cured.

上記のように定着金物10をネジ鉄筋20の端部に固定した状態で、上記仕口部にコンクリートを打設する。コンクリートに埋められた定着金物10の鍔部12が、ネジ鉄筋20に付与される軸方向の引張り荷重に対する抵抗となり、ネジ鉄筋20の定着を助ける。
特開平6−57952号
In the state where the fixing hardware 10 is fixed to the end portion of the screw rebar 20 as described above, concrete is placed in the joint portion. The flange portion 12 of the fixing hardware 10 buried in the concrete serves as a resistance to the axial tensile load applied to the screw rebar 20, and helps fix the screw rebar 20.
JP-A-6-57952

ところで、上記ネジ鉄筋20は圧延により製造されるため、機械ネジのように高精度にネジ節21が形成されず、ネジ節21のピッチ(換言すればリード角)に比較的大きな誤差が生じる。例えば16.0mmの標準ピッチに対して0.2mmの誤差が生じる。   By the way, since the screw rebar 20 is manufactured by rolling, the screw node 21 is not formed with high accuracy like a mechanical screw, and a relatively large error occurs in the pitch of the screw node 21 (in other words, the lead angle). For example, an error of 0.2 mm occurs with respect to a standard pitch of 16.0 mm.

定着金物10の雌ネジ部14を、標準ピッチのネジ節21に合わせるとともに所定のクリアランス(例えば0.4mm)で螺合するように形成した場合、この定着金物10は、ネジ節21のピッチが標準ピッチより0.2mm小さい(リード角が標準リード角より小さい)ネジ鉄筋20に螺合することができない。定着金物10を2回りさせただけで、雌ネジ部14のネジ山50’の前側の螺旋面50a’と後側の螺旋面50b’の両方がネジ節21において2回り離れた部位にそれぞれ当たり、それ以上螺合を進めることができなくなるからである。
同様にネジ節21のピッチが標準ピッチより大きいネジ鉄筋20に対しても、上記標準ピッチ仕様の定着金物を螺合させることができない。
When the female screw portion 14 of the fixing metal 10 is formed so as to be aligned with a screw node 21 having a standard pitch and to be screwed with a predetermined clearance (for example, 0.4 mm), the fixing metal 10 has a pitch of the screw nodes 21. It cannot be screwed into the screw rebar 20 which is 0.2 mm smaller than the standard pitch (the lead angle is smaller than the standard lead angle). Only by rotating the fixing metal 10 twice, both the front spiral surface 50a ′ and the rear spiral surface 50b ′ of the thread 50 ′ of the female screw portion 14 respectively contact the portions separated by two in the screw node 21. This is because the screwing can no longer proceed.
Similarly, the fixing metal fitting having the standard pitch specification cannot be screwed to the threaded reinforcing bar 20 having the pitch of the screw nodes 21 larger than the standard pitch.

そこで実際には、上記ネジ節21がピッチ誤差範囲の上限と下限の場合を想定し、これらの場合でも正常に螺合するとともに上記所定のクリアランスを確保できるように、定着金物10のネジ山50’の幅(雌ネジ部14の軸方向における寸法)を狭くしている。   Therefore, in actuality, it is assumed that the screw joint 21 is at the upper limit and the lower limit of the pitch error range. Even in these cases, the screw thread 50 of the fixing hardware 10 can be secured so that the predetermined clearance can be secured. The width of '(the dimension in the axial direction of the female screw portion 14) is narrowed.

しかし、上記のように定着金物10のネジ山50’の幅を狭くすると、ネジ鉄筋20のネジ節21が標準ピッチの場合に、過剰なクリアランス(図15において符号Xで示す)が生じてしまう。この過剰なクリアランスXは次の不都合を招く。   However, if the width of the thread 50 'of the fixing hardware 10 is narrowed as described above, an excessive clearance (indicated by symbol X in FIG. 15) occurs when the screw joint 21 of the screw rebar 20 has a standard pitch. . This excessive clearance X causes the following inconvenience.

上記定着金物10は、ネジ鉄筋20に螺合後,グラウト注入前において、ネジ鉄筋20に対してクリアランスX分だけ移動可能である。そのため、図15に示すように定着金物10が最も前進した位置にあり、そのネジ山50’の前側螺旋面50a’がネジ鉄筋20のネジ節21に当たった状態で、グラウトが注入され硬化することがある。この場合、例えば大地震によりネジ鉄筋20が矢印方向に大きな引張り荷重を受けた時に、ネジ節21がグラウトを破壊してネジ山50’の後側螺旋面50b’に当たるまでクリアランスX分だけ移動する。
上述したネジ鉄筋20の定着金物10に対する相対的移動量は、クリアランスXが過剰だと大きくなり、建造物の強度を低下させることになる。
The fixing hardware 10 is movable by the clearance X with respect to the screw rebar 20 after being screwed to the screw rebar 20 and before grout injection. Therefore, as shown in FIG. 15, the fixing metal 10 is at the most advanced position, and the grout is injected and hardened in a state where the front spiral surface 50a ′ of the screw thread 50 ′ hits the screw node 21 of the screw reinforcing bar 20. Sometimes. In this case, for example, when the screw rebar 20 receives a large tensile load in the direction of an arrow due to a large earthquake, the screw node 21 moves by the clearance X until it breaks the grout and hits the rear spiral surface 50b ′ of the thread 50 ′. .
When the clearance X is excessive, the relative movement amount of the screw rebar 20 described above becomes large, and the strength of the building is reduced.

ネジ鉄筋20が大きな引張り荷重を受けた時の定着金物10に対する相対移動量を小さくするためには、定着金物10のネジ山50’の後側螺旋面50b’がネジ節21に当たるか近づいた位置にある時に、グラウトを注入する必要があるが、このようなグラウト注入毎の定着金物の位置管理は作業性を悪化させることになる。   In order to reduce the amount of relative movement with respect to the fixing hardware 10 when the screw rebar 20 receives a large tensile load, the position where the rear spiral surface 50 b ′ of the thread 50 ′ of the fixing hardware 10 hits or approaches the screw node 21. In this case, it is necessary to inject grout. However, the position management of the fixing hardware for each grout injection deteriorates workability.

上記課題を解決するため、本発明の第1の態様は、雌ネジ部を有し、この雌ネジ部にネジ鉄筋を螺合するとともに、雌ネジ部内周とネジ鉄筋外周との間に充填材を充填することにより、ネジ鉄筋に固定される螺合金物において、上記雌ネジ部のネジ山の幅がネジ山の螺旋に沿って変化し、上記雌ネジ部の中間領域におけるネジ山幅が最も広く、雌ネジ部の両端近傍領域におけるネジ山幅が最も狭いことを特徴とする。   In order to solve the above-described problem, a first aspect of the present invention includes a female screw portion, a screw rebar is screwed into the female screw portion, and a filler between the inner periphery of the female screw portion and the outer periphery of the screw rebar. In the threaded alloy fixed to the screw rebar, the thread width of the female thread part changes along the spiral of the thread thread, and the thread width in the intermediate area of the female thread part is the largest. It is wide and the screw thread width in the region near both ends of the female screw portion is the narrowest.

上記態様では、螺合金物の中間領域におけるネジ山幅を最大にするため、主としてこの中間領域で螺合金物のネジ鉄筋に対する相対移動可能な量すなわちクリアランスを最小限または適度にすることができる。しかも、螺合金物の両端近傍領域のネジ山幅を狭くしたことにより、ネジ鉄筋のネジ節ピッチに誤差があっても、ネジ節との干渉がなくなり、ネジ鉄筋への螺合が妨げられない。
上記のようにして、螺合金物はネジ鉄筋の誤差範囲を許容しつつ、大きな引張り荷重付与時にネジ鉄筋に対する相対移動量を小さくすることができる。
In the above aspect, in order to maximize the thread width in the intermediate region of the screw alloy, the amount of the relative movement of the screw alloy relative to the screw rebar in the intermediate region, that is, the clearance can be minimized or moderate. In addition, by narrowing the thread width in the vicinity of both ends of the screw alloy, even if there is an error in the screw joint pitch of the screw rebar, there is no interference with the screw joint, and screwing into the screw rebar is not hindered. .
As described above, the screw alloy material can reduce the relative movement amount with respect to the screw rebar when a large tensile load is applied while allowing the error range of the screw rebar.

上記態様において、好ましくは、ネジ山幅が雌ネジ部の中間領域から両端に向かって徐々に減少することを特徴とする。
これによれば、ネジ山幅をネジ鉄筋のネジ節ピッチの誤差に対応して、比較的広くすることができ、ネジ山強度を高めることができる。
In the above aspect, preferably, the thread width gradually decreases from the intermediate region of the female screw portion toward both ends.
According to this, the thread width can be made relatively wide corresponding to the error of the thread joint pitch of the thread reinforcement, and the thread strength can be increased.

さらに好ましくは、上記雌ネジ部のネジ山は、雌ネジ部の軸方向の一方側を向く螺旋面と他方側を向く螺旋面とを有し、上記一方側を向く螺旋面は、雌ネジ部の軸方向一方側の領域に位置する第1螺旋面部分と雌ネジ部の他方側の領域に位置する第2螺旋面部分とを有し、上記他方側を向く螺旋面は、上記一方側領域に位置する第3螺旋面部分と上記他方側の領域に位置する第4螺旋面部分とを有し、上記第1,第4螺旋面部分のリード角は一定で互いに等しく、上記第2,第3螺旋面部分のリード角は一定で互いに等しいとともに、上記第1,第4螺旋面部分のリード角と異なる。
これによれば、第1,第4の螺旋面部分のリード角をネジ節のリード角の誤差範囲における一方の限界値にほぼ一致させ、第2,第3の螺旋面部分のリード角をネジ節のリード角の誤差範囲における他方の限界値にほぼ一致させるようにすれば、ネジ山幅を可能な限り広くすることが可能であり、ネジ山強度をさらに高めることができる。
More preferably, the thread of the female screw portion has a spiral surface facing one side in the axial direction of the female screw portion and a spiral surface facing the other side, and the spiral surface facing the one side is the female screw portion. A first spiral surface portion located in a region on one side of the axial direction and a second spiral surface portion located in a region on the other side of the female screw portion, and the spiral surface facing the other side is the one side region A third spiral surface portion located in the second region and a fourth spiral surface portion located in the other region, the lead angles of the first and fourth spiral surface portions being constant and equal to each other, The lead angles of the three spiral surface portions are constant and equal to each other, and are different from the lead angles of the first and fourth spiral surface portions.
According to this, the lead angles of the first and fourth spiral surface portions are substantially matched with one limit value in the error range of the lead angle of the screw node, and the lead angles of the second and third spiral surface portions are screwed. If it is made to substantially coincide with the other limit value in the error range of the lead angle of the node, the thread width can be made as wide as possible, and the thread strength can be further increased.

上記態様において、好ましくは、上記雌ネジ部の上記中間領域におけるネジ山幅が一定であり、上記両端近傍領域のネジ山幅が一定である。
これによれば、定着金物の製作が容易になる。
In the above aspect, preferably, the thread width in the intermediate region of the female screw portion is constant, and the thread width in the region near both ends is constant.
According to this, it becomes easy to manufacture the fixing hardware.

さらに好ましくは、上記雌ネジ部は、上記ネジ山幅が一定である中間領域と両端近傍領域の間に、ネジ山幅が両端近傍領域に向かって減少する遷移領域を有している。
これによれば、定着金物の製作がより一層容易になる。
More preferably, the female thread portion has a transition region in which the thread width decreases toward the region near both ends between the intermediate region where the thread width is constant and the region near both ends.
According to this, it becomes much easier to manufacture the fixing hardware.

本発明の他の態様では、雌ネジ部を有し、この雌ネジ部にネジ鉄筋を螺合するとともに、雌ネジ部内周とネジ鉄筋外周との間に充填材を充填することにより、ネジ鉄筋に固定される螺合金物において、上記雌ネジ部のネジ山の幅がネジ山の螺旋に沿って変化し、上記雌ネジ部の一端近傍領域におけるネジ山幅が最も広く、他端近傍領域におけるネジ山幅が最も狭いことを特徴とする。   In another aspect of the present invention, a screw rebar is provided by having a female screw portion, screwing a screw rebar into the female screw portion, and filling a filler between the inner periphery of the female screw portion and the outer periphery of the screw rebar. The thread width of the female thread portion changes along the spiral of the thread, the thread width in the region near one end of the female thread portion is the widest, and the region in the region near the other end It is characterized by the smallest thread width.

上記他の態様では、螺合金物の一端側領域におけるネジ山幅を最大にするため、主としてこの一端近傍領域で、螺合金物のネジ鉄筋に対する相対移動可能な量すなわちクリアランスを最小限または適度にすることができる。しかも、螺合金物の他端近傍領域のネジ山幅を狭くしたことにより、ネジ鉄筋のネジ節ピッチに誤差があっても、ネジ節との干渉がなくなり、ネジ鉄筋への螺合が妨げられない。   In the other aspect, in order to maximize the thread width in the one end side region of the screw alloy, the amount of the relative movement of the screw alloy relative to the screw rebar, that is, the clearance is minimized or moderately mainly in the region near the one end. can do. Moreover, by narrowing the thread width in the vicinity of the other end of the screw alloy, even if there is an error in the screw joint pitch of the screw rebar, there is no interference with the screw joint, and screwing into the screw rebar is prevented. Absent.

上記他の態様において、好ましくは上記雌ネジ部のネジ山幅は、一端から他端に向かって徐々に狭くなる。
これによれば、ネジ山幅をネジ鉄筋のネジ節ピッチの誤差に対応して、比較的広くすることができ、ネジ山強度を高めることができる。
In the other aspect, preferably, the thread width of the female screw portion is gradually narrowed from one end to the other end.
According to this, the thread width can be made relatively wide corresponding to the error of the thread joint pitch of the thread reinforcement, and the thread strength can be increased.

さらに好ましくは、上記雌ネジ部は、その軸方向の一方側を向く螺旋面と他方側を向く螺旋面とを有し、上記一方側を向く螺旋面と他方側を向く螺旋面のリード角は一定であるとともに互いに異なる。
これによれば、一方側を向く螺旋面のリード角をネジ節のリード角の誤差範囲における一方の限界値にほぼ一致させ、他方側を向く螺旋面のリード角をネジ節のリード角の誤差範囲における他方の限界値にほぼ一致させるようにすれば、ネジ山幅を可能な限り広くすることが可能であり、ネジ山強度をさらに高めることができる。
More preferably, the female screw portion has a spiral surface facing one side in the axial direction and a spiral surface facing the other side, and the lead angle of the spiral surface facing the one side and the spiral surface facing the other side is It is constant and different from each other.
According to this, the lead angle of the spiral surface facing one side is made to substantially coincide with one limit value in the error range of the lead angle of the screw node, and the lead angle of the spiral surface facing the other side is made the error of the lead angle of the screw node. If it is made to substantially coincide with the other limit value in the range, the thread width can be made as wide as possible, and the thread strength can be further increased.

上記他の態様において、好ましくは、上記一端近傍領域のネジ山幅が一定であるとともに、他端近傍領域のネジ山幅が一定である。
これによれば、定着金物の製作が容易になる。
In the other aspect, preferably, the thread width in the region near the one end is constant, and the thread width in the region near the other end is constant.
According to this, it becomes easy to manufacture the fixing hardware.

さらに好ましくは、上記雌ネジ部は、上記ネジ山幅が一定である一端近傍領域と他端近傍領域との間に、ネジ山幅が一端近傍領域から他端近傍領域に向かって減少する遷移領域を有している。
これによれば、定着金物の製作がより一層容易になる。
More preferably, the female thread portion has a transition region in which the thread width decreases from the region near one end to the region near the other end between the region near one end and the region near the other end where the thread width is constant. have.
According to this, it becomes much easier to manufacture the fixing hardware.

好ましくは、上記雌ネジ部のネジ山の幅方向中心が、ネジ山に沿って一定リード角の基準螺旋を通る。   Preferably, the center in the width direction of the thread of the female thread portion passes through a reference spiral having a constant lead angle along the thread.

本発明によれば、螺合金物はネジ鉄筋の誤差範囲を許容しつつ、大きな引張り荷重付与時にネジ鉄筋に対する相対移動量を小さくすることができる。   According to the present invention, the screw alloy material can reduce the relative movement amount with respect to the screw rebar when a large tensile load is applied while allowing the error range of the screw rebar.

以下、本発明の第1実施形態について図1〜図7を参照しながら説明する。図1に示すように、鋳物からなる定着金物10(ネジ鉄筋用螺合金物)は、円筒形状の筒部11と、この筒部11の一端外周に設けられて径方向,外方向に突出する環状の鍔部12とを備えている。筒部11の両端は開口13となっている。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, a fixing metal 10 (a threaded alloy for a screw rebar) made of a casting is provided on a cylindrical cylindrical portion 11 and an outer periphery of one end of the cylindrical portion 11, and protrudes radially and outwardly. And an annular collar 12. Both ends of the cylindrical portion 11 are openings 13.

上記筒部11の内周には雌ネジ部14が形成されている。筒部11の中央の内周には、円環状の溝15が形成されており、上記雌ネジ部14のネジ山50を遮断している。この溝15の径は、雌ネジ部15の谷径と等しい。
上記筒部11の中央の周壁には、グラウト注入口16が形成されており、上記溝15と連なっている。
A female screw portion 14 is formed on the inner periphery of the cylindrical portion 11. An annular groove 15 is formed on the inner periphery of the center of the tube portion 11 to block the thread 50 of the female screw portion 14. The diameter of the groove 15 is equal to the valley diameter of the female screw portion 15.
A grout inlet 16 is formed in the central peripheral wall of the cylindrical portion 11 and is continuous with the groove 15.

上記定着金物10は、図2に示すように、例えば仕口部に位置する梁主筋としてのネジ鉄筋20の端部に螺合される。なお、図2では環状溝15の図示を省略している。
この螺合状態で、注入口13からグラウト(充填材)が注入される。このグラウトは、環状溝15に回り込み、ここから筒部11とネジ鉄筋20との間を経て両端開口13に向かう。
As shown in FIG. 2, the fixing hardware 10 is screwed into, for example, an end portion of a screw rebar 20 serving as a beam main bar located in a joint portion. In FIG. 2, the annular groove 15 is not shown.
In this screwed state, grout (filler) is injected from the inlet 13. This grout goes around the annular groove 15, and goes from here to the opening 13 at both ends through the space between the cylindrical portion 11 and the screw rebar 20.

上記グラウトは、雌ネジ部14の内周とネジ鉄筋20の外周との間を満たした状態で硬化する。この硬化により定着金物10がネジ鉄筋20の端部に固定される。その後で、コンクリートが仕口部に打設され、定着金物10とネジ鉄筋20がコンクリートに埋設された状態となる。
ネジ鉄筋20が図2において矢印方向の引張り荷重を受けた時には、定着金物10がコンクリートに対する抵抗となり、その荷重を受け止めることができる。
The grout is cured in a state where the space between the inner periphery of the female screw portion 14 and the outer periphery of the screw rebar 20 is satisfied. By this curing, the fixing metal 10 is fixed to the end of the screw rebar 20. Thereafter, concrete is placed in the joint, and the fixing hardware 10 and the screw rebar 20 are embedded in the concrete.
When the screw rebar 20 receives a tensile load in the direction of the arrow in FIG. 2, the fixing hardware 10 becomes a resistance against the concrete, and the load can be received.

次に、本発明の特徴部について説明する。図1を参照しながら概略的に説明すると、雌ネジ部14のネジ山50の幅W(雌ネジ部14軸方向の寸法)が、ネジ山50の螺旋に沿って変化し、中央を含む中間領域で最も広く、両端に向かって徐々に狭くなり、両端近傍領域で最も狭くなっている。   Next, features of the present invention will be described. Referring to FIG. 1, the width W of the screw thread 50 of the female screw part 14 (dimension in the axial direction of the female screw part 14) changes along the spiral of the screw thread 50, and includes a middle including the center. It is widest in the region, gradually narrows toward both ends, and narrowest in the region near both ends.

上記雌ネジ部14のネジ山50は、雌ネジ部14の軸方向の前側(定着金物10の前進方向)に位置する螺旋面50a(一方側の螺旋面)と、後側(定着金物10の後退方向)に位置する螺旋面50b(他方側の螺旋面)とを有している。本実施例において、これら螺旋面50a,50bにおいてネジ鉄筋20のネジ節21が当接する箇所間の寸法を、上記幅Wとする。   The screw thread 50 of the female screw portion 14 includes a spiral surface 50a (one spiral surface) located on the front side in the axial direction of the female screw portion 14 (advancing direction of the fixing hardware 10) and a rear side (the fixing metal 10). And a spiral surface 50b (the spiral surface on the other side) located in the backward direction). In this embodiment, the width W is defined as a dimension between locations where the screw nodes 21 of the screw rebar 20 abut on the spiral surfaces 50a and 50b.

次に、上記雌ネジ部14の特徴を図3〜図7を参照しながら詳細に説明する。説明を分かり易くするため、これら図においても、上記環状溝15を図示せず、ネジ山50は環状溝15によって遮断されていないものと想定する。また、ネジ鉄筋20のネジ節21は軸方向から見た時180°対向する2箇所に形成されており、螺旋に沿って断続的に形成されるが、これを連続したものと想定する。   Next, the characteristics of the female screw portion 14 will be described in detail with reference to FIGS. In order to make the explanation easy to understand, the annular groove 15 is not shown in these drawings, and it is assumed that the thread 50 is not blocked by the annular groove 15. Further, the screw nodes 21 of the screw rebar 20 are formed at two positions facing each other by 180 ° when viewed from the axial direction, and are intermittently formed along the spiral, but this is assumed to be continuous.

図3〜図7は、雌ネジ部14のネジ山50の展開図であり、図面において左右方向が雌ネジ部14の軸方向であり、右下が前端を表し、左上が後端を表す。図4〜図6では、定着金物10をネジ鉄筋20に螺合した状態で示す。図4はネジ鉄筋20のネジ節21が標準ピッチ(標準リード角)の場合を示し、図5はネジ節21が誤差範囲の下限ピッチ(下限リード角)の場合を示し、図6はネジ節21が誤差範囲の上限ピッチ(上限リード角)の場合をそれぞれ示す。   3 to 7 are development views of the thread 50 of the female screw portion 14. In the drawing, the left-right direction is the axial direction of the female screw portion 14, the lower right represents the front end, and the upper left represents the rear end. 4 to 6, the fixing hardware 10 is shown screwed to the screw rebar 20. FIG. 4 shows a case where the screw joint 21 of the screw reinforcing bar 20 has a standard pitch (standard lead angle), FIG. 5 shows a case where the screw joint 21 has a lower limit pitch (lower limit lead angle) of the error range, and FIG. 21 indicates the case of the upper limit pitch (upper limit lead angle) of the error range.

発明の特徴を理解し易くするために、図3〜図7において、ネジ山50およびネジ節21のピッチ(リード角)およびネジ山50の幅Wを誇張して示し、これによりネジ山50の幅Wの変化を誇張して示している。なお、ネジ山50の前後端部は定着金物10の両端面で切断されるので不完全である。   In order to facilitate understanding of the features of the invention, in FIGS. 3 to 7, the pitch (lead angle) of the thread 50 and the threaded joint 21 and the width W of the thread 50 are exaggerated. The change of the width W is exaggerated. Note that the front and rear end portions of the thread 50 are incomplete because they are cut at both end surfaces of the fixing hardware 10.

本実施形態では、定着金物10を5回り程度回すことにより、ネジ鉄筋20への螺合が完了する。図4において、ネジ山50に隣接するネジ節21を前から順に1周分ずつR1〜R5の番号を付す。ネジ鉄筋20のネジ節21をネジ山50の両側に示すので、ネジ節21の同じ部位が重複して示されることになる。例えばネジ節21の1周分の領域R2について説明すると、この領域R2は、ネジ山50の前端部の後側に示されるとともに、この部位より1周分遅れたネジ山50の部位の前側にも示される。   In the present embodiment, the screw fitting to the screw rebar 20 is completed by turning the fixing hardware 10 about five times. In FIG. 4, the screw nodes 21 adjacent to the screw threads 50 are numbered R1 to R5 in order of one turn from the front. Since the screw node 21 of the screw rebar 20 is shown on both sides of the screw thread 50, the same part of the screw node 21 is shown redundantly. For example, the region R2 for one turn of the screw node 21 will be described. This region R2 is shown on the rear side of the front end portion of the screw thread 50 and on the front side of the screw thread 50 part delayed by one turn from this part. Is also shown.

なお、定着金物10のネジ山50の幅Wは、所定のクリアランスを確保するように決定するのが好ましいが、理解を容易にするため、このクリアランスをゼロとして説明する。   Note that the width W of the screw thread 50 of the fixing hardware 10 is preferably determined so as to ensure a predetermined clearance. However, in order to facilitate understanding, the clearance will be described as zero.

図3に示すように、ネジ山50の前側螺旋面50aは、雌ネジ部14の前側領域(図における右下側領域)に位置する第1螺旋面部分51と、後側領域(図における左上側領域)に位置する第2螺旋面部分52とを有している。これら螺旋面部分51,52の交差部を図において符号P1で示す。
ネジ山50の後側螺旋面50bは、前側領域に位置する第3螺旋面部分53と後側の第4螺旋面部分54とを有している。これら螺旋面部分53,54の交差部を図において符号P2で示す。
As shown in FIG. 3, the front spiral surface 50 a of the screw thread 50 includes a first spiral surface portion 51 located in the front region (lower right region in the drawing) of the female screw portion 14 and the rear region (upper left in the drawing). And a second spiral surface portion 52 located in the side region). An intersection of these spiral surface portions 51 and 52 is indicated by a symbol P1 in the figure.
The rear spiral surface 50b of the screw thread 50 has a third spiral surface portion 53 and a rear fourth spiral surface portion 54 located in the front region. An intersection of these spiral surface portions 53 and 54 is indicated by a symbol P2 in the figure.

第1螺旋面部分51と第4螺旋面部分54は一定のリード角を有し、互いに平行であり、それぞれ螺旋面A1,A2と一致する。
同様に、第2螺旋面部分52と第3螺旋面部分53も一定のリード角を有し、互いに平行であり、それぞれ螺旋面B1,B2と一致する。
The first spiral surface portion 51 and the fourth spiral surface portion 54 have a certain lead angle, are parallel to each other, and coincide with the spiral surfaces A1 and A2, respectively.
Similarly, the second spiral surface portion 52 and the third spiral surface portion 53 also have a certain lead angle, are parallel to each other, and coincide with the spiral surfaces B1 and B2, respectively.

上記螺旋面A1,A2は、図5に示すように、ネジ節21が下限ピッチ(下限リード角)にある時のネジ節21の後側の螺旋面と前側の螺旋面を表す。
したがって、図5に示すようにネジ節21が下限ピッチの場合、ネジ節21の螺旋面A1,A2間に上記ネジ山50が入り込んだ状態(定着金物10がネジ鉄筋21の端部に螺合された状態)において、ネジ山50の前側螺旋面50aにおいて第1螺旋面部分51と第4螺旋面部分54がネジ節21の螺旋面A1,A2にそれぞれ接触することになり、軸方向のクリアランスはゼロとなる。
As shown in FIG. 5, the spiral surfaces A1 and A2 represent the spiral surface on the rear side and the front spiral surface of the screw node 21 when the screw node 21 is at the lower limit pitch (lower limit lead angle).
Therefore, as shown in FIG. 5, when the screw node 21 has the lower limit pitch, the thread 50 is inserted between the spiral surfaces A1 and A2 of the screw node 21 (the fixing metal 10 is screwed into the end of the screw rebar 21). In the front spiral surface 50a of the thread 50, the first spiral surface portion 51 and the fourth spiral surface portion 54 come into contact with the spiral surfaces A1 and A2 of the screw node 21, respectively. Becomes zero.

上記螺旋面B1,B2は、図6に示すように、ネジ節21が上限ピッチ(上限リード角)にある時のネジ節21の後側の螺旋面と前側の螺旋面を表す。
したがって、図6に示すようにネジ節21が上限ピッチの場合、ネジ節21の螺旋面B1,B2間に上記ネジ山50が入り込んだ状態(定着金物10がネジ鉄筋21の端部に螺合された状態)において、ネジ山50の前側螺旋面50aにおいて第2螺旋面部分52と第3螺旋面部分53がネジ節21の螺旋面B1,B2に接触することになり、軸方向のクリアランスはゼロとなる。
As shown in FIG. 6, the spiral surfaces B1 and B2 represent a spiral surface on the rear side and a front spiral surface of the screw node 21 when the screw node 21 is at the upper limit pitch (upper limit lead angle).
Therefore, as shown in FIG. 6, when the screw node 21 has an upper limit pitch, the thread 50 is inserted between the spiral surfaces B1 and B2 of the screw node 21 (the fixing hardware 10 is screwed into the end of the screw rebar 21). In this state, the second spiral surface portion 52 and the third spiral surface portion 53 are in contact with the spiral surfaces B1 and B2 of the screw node 21 on the front spiral surface 50a of the screw thread 50, and the axial clearance is It becomes zero.

ネジ節21が標準ピッチの場合には、図4に示すように、ネジ山50の上記交差部P1,P2がネジ節21にほぼ接することになり、軸方向のクリアランスはゼロである。   When the screw node 21 has a standard pitch, as shown in FIG. 4, the intersections P1 and P2 of the screw thread 50 are almost in contact with the screw node 21, and the axial clearance is zero.

上記のように螺旋面A1,A2,B1,B2によりネジ山50の形状を決めると、図3に示すように、必然的に交差部P1〜P2間の中央領域Rm(中間領域)でのネジ山50の幅Wが一定かつ最大であり、この中央領域Rmから両端に向かって徐々に幅Wが狭くなっていき、両端近傍領域Reで最小となる。また、ネジ山50の中心を結ぶ線は基準螺旋Lと一致する。なお、この基準螺旋Lは、ネジ節21の標準ピッチの螺旋と略一致する。   When the shape of the screw thread 50 is determined by the spiral surfaces A1, A2, B1, and B2 as described above, as shown in FIG. 3, the screw in the central region Rm (intermediate region) between the intersecting portions P1 and P2 is necessarily formed. The width W of the peak 50 is constant and maximum, the width W gradually decreases from the central region Rm toward both ends, and becomes the minimum in the region near both ends Re. A line connecting the centers of the threads 50 coincides with the reference spiral L. The reference spiral L substantially coincides with the standard pitch spiral of the screw node 21.

上記構成によれば、ネジ鉄筋20のネジ節21のピッチが誤差範囲内である限り、定着金物10はネジ鉄筋20に螺合が可能である。
しかも、定着金物10のネジ山50とネジ鉄筋20のネジ節21との間のクリアランスは、ネジ節21のピッチの誤差に拘わらずゼロとすることができる。その結果、グラウト充填により定着金物10がネジ鉄筋20に固定された状態において大きな引張り荷重が付与されても、定着金物10はネジ鉄筋20に対して相対的な移動を禁じられる。
According to the above configuration, as long as the pitch of the screw nodes 21 of the screw rebar 20 is within the error range, the fixing hardware 10 can be screwed into the screw rebar 20.
Moreover, the clearance between the screw thread 50 of the fixing hardware 10 and the screw node 21 of the screw rebar 20 can be zero regardless of the pitch error of the screw node 21. As a result, even if a large tensile load is applied in a state where the fixing metal 10 is fixed to the screw rebar 20 by grout filling, the fixing metal 10 is prohibited from moving relative to the screw rebar 20.

本実施形態において両端近傍領域Reは、雌ネジ部14の両端近傍で完全山幅を有する領域であって、ほぼ1回り分を指す。   In the present embodiment, the region near both ends Re is a region having a complete mountain width in the vicinity of both ends of the female screw portion 14, and indicates approximately one turn.

図7に示すように、本実施形態のネジ山50は従来の一定幅のネジ山50’と比較すると幅方向に膨らんでいるのが分かる。この比較からも、特に中央領域Rmを幅広にしたことにより、ネジ節21が標準ピッチまたはそれに近い場合に、過剰なクリアランスが生じるのを回避できることが理解できる。   As shown in FIG. 7, it can be seen that the thread 50 of the present embodiment swells in the width direction as compared with a conventional constant width thread 50 '. Also from this comparison, it can be understood that excessive clearance can be avoided when the screw joint 21 is at or close to the standard pitch by making the central region Rm wider.

上記実施形態では、雌ネジ部21の中央領域Rmでねじ山幅を最大としたが、中央よりいずれかの端にずれた領域(中間領域)でねじ山幅を最大とすることもできる。   In the above embodiment, the thread width is maximized in the central region Rm of the female screw portion 21, but the thread width can also be maximized in a region (intermediate region) that is shifted to either end from the center.

次に、本発明の他の実施形態について説明する。これら実施形態において先行する実施形態に相当する構成部には図において同番号を付してその説明を省略する。
図8に示す第2実施形態では、中央領域Rmを除く領域において、ネジ山50の幅を第1実施形態により狭くしている。詳述すると、両端近傍領域Reは、所定長さにわたって一定幅を有している。両端近傍領域Reの幅は、中央領域Rmの幅より狭く、第1実施形態の両端での幅と等しい。中央領域Rmと両端近傍領域Reの間は両端に向かって幅が狭くなる遷移領域Rsとなっている。
Next, another embodiment of the present invention will be described. In these embodiments, components corresponding to the preceding embodiments are given the same reference numerals in the drawings, and description thereof is omitted.
In the second embodiment shown in FIG. 8, the width of the screw thread 50 is made narrower in the region excluding the central region Rm than in the first embodiment. More specifically, the region near both ends Re has a constant width over a predetermined length. The width of the region near both ends Re is narrower than the width of the central region Rm, and is equal to the width at both ends of the first embodiment. Between the center region Rm and the region near both ends Re is a transition region Rs whose width becomes narrower toward both ends.

上記第2実施形態では、両端近傍領域Reおよび遷移領域Rsにおいて、前側螺旋面50aと後側螺旋面50bがともに螺旋面A1,A2,B1,B2より後退している。したがって、ネジ山50の中心を結ぶ線は標準ピッチの基準螺旋Lと一致する。   In the second embodiment, both the front spiral surface 50a and the rear spiral surface 50b recede from the spiral surfaces A1, A2, B1, and B2 in the region near both ends Re and the transition region Rs. Therefore, the line connecting the centers of the threads 50 coincides with the standard spiral L of the standard pitch.

図9に示す第3実施形態では、第2実施形態と同様に、一定幅の中央領域Rm,一定幅の両端近傍領域Reを有している。ただし、前側螺旋面50aは、雌ネジ部14の前側領域に位置する前端近傍領域Reおよび遷移領域Rsにおいて、螺旋面A1に一致し、後側領域に位置する後端近傍領域Reおよび遷移領域Rsにおいて、螺旋面B1より後退している。同様に、後側螺旋面50bは、後側領域に位置する後端近傍領域Reおよび遷移領域Rsにおいて螺旋面A2に一致し、前側領域に位置する前端近傍領域Reおよび遷移領域Rsにおいて螺旋面B2より後退している。   As in the second embodiment, the third embodiment shown in FIG. 9 has a central region Rm having a constant width and a region near both ends Re having a constant width. However, the front spiral surface 50a coincides with the spiral surface A1 in the front end vicinity region Re and transition region Rs located in the front region of the female screw portion 14, and the rear end vicinity region Re and transition region Rs located in the rear region. In FIG. 2, the surface is retracted from the spiral surface B1. Similarly, the rear spiral surface 50b coincides with the spiral surface A2 in the rear end vicinity region Re and transition region Rs located in the rear region, and in the front end vicinity region Re and transition region Rs located in the front region, the spiral surface B2 It is more backward.

第3実施形態とは逆に、前側螺旋面50aを螺旋面A1から後退させ、後側螺旋面50bを螺旋面A2から後退させて、両端近傍領域Reでのネジ山幅を一定にしてもよい。
さらに、螺旋面50a,50bは、図8の最も後退したラインと図3の最も膨らんだラインの間のラインを描くように構成してもよいし、図9の最も後退したラインと図3の最も膨らんだラインの間のラインを描くように構成してもよい。
ある態様では、ねじ山幅は1箇所のみで最大となることもある。この場合にはこの最大ねじ山幅を含む領域が中間領域となる。
Contrary to the third embodiment, the front spiral surface 50a may be retracted from the spiral surface A1, and the rear spiral surface 50b may be retracted from the spiral surface A2, so that the thread width in the region Re near both ends may be constant. .
Further, the spiral surfaces 50a and 50b may be configured to draw a line between the most receding line in FIG. 8 and the most swollen line in FIG. 3, or the most receding line in FIG. You may comprise so that the line between the most swollen lines may be drawn.
In some embodiments, the thread width may be maximum at only one location. In this case, the region including the maximum thread width is the intermediate region.

次に、本発明の第4実施形態について、図10〜図13を参照しながら説明する。この実施形態では、ネジ山50の幅は、前端側領域Rf(一端側領域)で最も幅が広く後端に向かうにしたがって徐々に幅が狭くなり、後端側領域Rr(他端側領域)では最も幅が狭くなっている。ネジ山50の前側螺旋面50aは螺旋面B1に一致し、後側螺旋面50bは螺旋面A2に一致する。ネジ山50の中心を結ぶ線は標準ピッチの基準螺旋Lと一致する。   Next, a fourth embodiment of the present invention will be described with reference to FIGS. In this embodiment, the width of the thread 50 is the largest in the front end side region Rf (one end side region) and gradually decreases toward the rear end, and the rear end side region Rr (other end side region). Then the width is the narrowest. The front spiral surface 50a of the screw thread 50 coincides with the spiral surface B1, and the rear spiral surface 50b coincides with the spiral surface A2. A line connecting the centers of the threads 50 coincides with the reference spiral L having a standard pitch.

第4実施形態では、図12に示すようにネジ節21が下限ピッチである場合には、ネジ山50の後側螺旋面50bがネジ節21の螺旋面A2に接し、前側螺旋面50aは前端でのみネジ節21に接する。
図13に示すようにネジ節21が上限ピッチにある場合には、ネジ山50の前側螺旋面50aがネジ節21の螺旋面B1に接し、後側螺旋面50bはその前端でのみネジ節21に接する。
In the fourth embodiment, as shown in FIG. 12, when the screw node 21 has the lower limit pitch, the rear spiral surface 50b of the thread 50 is in contact with the spiral surface A2 of the screw node 21, and the front spiral surface 50a is the front end. Only in contact with the screw node 21.
As shown in FIG. 13, when the screw node 21 is at the upper limit pitch, the front spiral surface 50a of the screw thread 50 is in contact with the spiral surface B1 of the screw node 21, and the rear spiral surface 50b is only at the front end thereof. To touch.

図11に示すようにネジ節21が標準ピッチにある場合には、ネジ山50の前側螺旋面50a,後側螺旋面50bとも、その前端でのみネジ節21にほぼ接する。   As shown in FIG. 11, when the screw node 21 is at a standard pitch, both the front spiral surface 50a and the rear spiral surface 50b of the screw thread 50 substantially contact the screw node 21 only at the front end thereof.

なお、上記第4実施形態ではネジ節21のピッチ誤差を第1実施形態より小さく設定したので両者のネジ山50の幅に相違は見られないが、ピッチ節21のピッチ誤差を同じくすると、第4実施形態の前端側領域Rfと後端側領域Rrでのねじ山50の幅は、第1実施形態の一端側領域Reより狭くなる。   In the fourth embodiment, since the pitch error of the screw joint 21 is set smaller than that of the first embodiment, there is no difference in the width of the screw threads 50. However, if the pitch error of the pitch joint 21 is the same, The width of the thread 50 in the front end side region Rf and the rear end side region Rr of the fourth embodiment is narrower than the one end side region Re of the first embodiment.

図14(A),(B)は、第5,第6実施形態を示す。図14では、第4実施形態との差異を明瞭にするために、図10〜図13に比べて上下寸法を半分にして示す。
図14(A)に示す第5実施形態では、前側螺旋面50aを螺旋面A1,B1から後退させるとともに後側螺旋面50bを螺旋面A2,B2から後退させることにより、前端側領域Rfと後端側領域Rrのネジ山幅をそれぞれ一定にし、その間の遷移領域Rsでは幅が後端に向かって徐々に狭くなるようにしている。ネジ山50の中心を結ぶ線は標準ピッチの基準螺旋Lと一致する。
14A and 14B show the fifth and sixth embodiments. In FIG. 14, in order to clarify the difference from the fourth embodiment, the vertical dimension is halved as compared with FIGS. 10 to 13.
In the fifth embodiment shown in FIG. 14A, the front spiral surface 50a is retracted from the spiral surfaces A1 and B1, and the rear spiral surface 50b is retracted from the spiral surfaces A2 and B2, thereby causing the front end region Rf and the rear The thread width of the end region Rr is made constant, and the width of the transition region Rs between them is gradually narrowed toward the rear end. A line connecting the centers of the threads 50 coincides with the reference spiral L having a standard pitch.

図14(B)に示す第6実施形態では、後側螺旋面50bを螺旋面A2に一致させたまま前側螺旋面50aを螺旋面B1から後退させることにより、前端側領域Rfと後端側領域Rrのネジ山幅をそれぞれ一定にした。   In the sixth embodiment shown in FIG. 14B, the front spiral region 50a is retracted from the spiral surface B1 with the rear spiral surface 50b coinciding with the spiral surface A2, so that the front end region Rf and the rear end region The thread width of Rr was made constant.

なお、上記第6実施形態とは逆に、前側螺旋面50aを螺旋面B1に一致させたまま後側螺旋面50bを螺旋面A2から後退させることにより、前端側領域Rfと後端側領域Rrのネジ山幅をそれぞれ一定にしてもよい。   Contrary to the sixth embodiment, the front end side region Rf and the rear end side region Rr are obtained by retracting the rear side spiral surface 50b from the spiral surface A2 while keeping the front side spiral surface 50a coincident with the spiral surface B1. The thread widths of each may be constant.

さらに、螺旋面50a,50bは、図14(A)の最も後退したラインと図10の最も膨らんだラインの間のラインを描くように構成してもよいし、図14(B)の最も後退したラインと図10の最も膨らんだラインの間のラインを描くように構成してもよい。   Furthermore, the spiral surfaces 50a and 50b may be configured to draw a line between the most receding line in FIG. 14A and the most swollen line in FIG. 10, or the most receding in FIG. 14B. You may comprise so that the line between this line and the most swollen line of FIG. 10 may be drawn.

上記第4実施形態とは逆に後端側領域Rrのネジ山幅を最大にし前端側領域Rfのネジ山幅を最小幅にすることもできる。   Contrary to the fourth embodiment, the thread width of the rear end region Rr can be maximized and the thread width of the front end region Rf can be minimized.

上記実施形態では、誤差範囲内においてネジ山50とネジ節21との間のクリアランスをゼロに設定したが、所定のクリアランスを設定してもよいことは勿論である。このような所定のクリアランスを設定する場合、各実施形態において、前側螺旋面50aと後側螺旋面50bの一方を他方に対して上記所定のクリアランス分だけ雌ネジ部軸方向に近づけるようにすればよい。   In the above embodiment, the clearance between the screw thread 50 and the screw node 21 is set to zero within the error range, but it is needless to say that a predetermined clearance may be set. When setting such a predetermined clearance, in each embodiment, if one of the front spiral surface 50a and the rear spiral surface 50b is made closer to the other in the axial direction of the female screw portion by the predetermined clearance. Good.

上記のように所定のクリアランスを設定した場合には、グラウト充填により定着金物10がネジ鉄筋20に固定された状態においてネジ鉄筋20に大きな引張り荷重が付与された時、定着金物10のネジ鉄筋20に対する相対的移動量は、最大でも上記所定のクリアランス程度に制限することができる。   When the predetermined clearance is set as described above, when a large tensile load is applied to the screw rebar 20 in a state where the fixing metal member 10 is fixed to the screw rebar 20 by grout filling, the screw rebar 20 of the fixing metal member 10 is set. The relative movement amount can be limited to the predetermined clearance level at the maximum.

本発明は上記実施形態に制約されず、種々の形態を採用可能である。例えば、本発明の螺合金物において環状溝15はなくてもよい。
本発明の螺合金物は、仕口部以外で用いられる定着金物であってもよい。定着金物の鍔部は筒部の端ではなく軸方向の中間部に設けてもよい。
また、本発明の螺合金物は、2本のネジ鉄筋同士を連結する継手であってもよい。この場合、継手の雌ネジ部は、実質的にネジ鉄筋毎の2つの雌ネジ部を有するものとして本発明を適用する。
さらに、本発明の螺合金物は、1本のネジ鉄筋と他の異形鉄筋(ネジ鉄筋を含む)を連結する継手であってもよい。この場合、継手の一方側は本発明を適用できる雌ネジ部となり、他方側は上記異形鉄筋を挿入してグラウト材を充填するための収容空間となる。
The present invention is not limited to the above embodiment, and various forms can be adopted. For example, the annular groove 15 may not be provided in the screw alloy of the present invention.
The screw alloy of the present invention may be a fixing metal used in a portion other than the joint portion. The flange portion of the fixing hardware may be provided not in the end of the cylindrical portion but in the intermediate portion in the axial direction.
In addition, the screw alloy of the present invention may be a joint that connects two screw rebars. In this case, the present invention is applied on the assumption that the female thread portion of the joint has two female thread portions substantially for each screw rebar.
Furthermore, the screw alloy of the present invention may be a joint that connects one screw rebar and another deformed rebar (including a screw rebar). In this case, one side of the joint serves as a female thread portion to which the present invention can be applied, and the other side serves as a housing space for inserting the deformed reinforcing bar and filling the grout material.

本発明の第1実施形態をなす定着金物の拡大縦断面図である。FIG. 3 is an enlarged longitudinal sectional view of a fixing hardware constituting the first embodiment of the present invention. 同定着金物をネジ鉄筋に螺合した状態を示す要部拡大縦断面図である。It is a principal part expanded vertical sectional view which shows the state which screwed the fixing metal fitting to the screw reinforcement. 同定着金物の雌ネジ部のネジ山形状を示す展開図である。It is an expanded view which shows the screw thread shape of the internal thread part of the same fixing metal. 同定着金物を標準ピッチのネジ節を有するネジ鉄筋に螺合させた状態を示す展開図である。It is an expanded view which shows the state which screwed the fixing metal fitting to the screw rebar which has a screw node of a standard pitch. 同定着金物を下限ピッチのネジ節を有するネジ鉄筋に螺合させた状態を示す展開図である。It is an expanded view which shows the state which screwed the fixing metal fitting to the screw rebar which has a screw node of a minimum pitch. 同定着金物を上限ピッチのネジ節を有するネジ鉄筋に螺合させた状態を示す展開図である。It is an expanded view which shows the state which screwed the fixing metal fitting to the screw rebar which has a screw node of an upper limit pitch. 同定着金物の雌ネジ部のネジ山形状を従来形状と比較して示す展開図である。It is an expanded view which shows the thread shape of the internal thread part of the fixing metal | metal | money compared with a conventional shape. 本発明の第2実施形態をなす定着金物の雌ネジ部のネジ山形状を示す展開図である。It is an expanded view which shows the screw thread shape of the internal thread part of the fixing metal object which makes 2nd Embodiment of this invention. 本発明の第3実施形態をなす定着金物の雌ネジ部のネジ山形状を示す展開図である。It is an expanded view which shows the screw thread shape of the internal thread part of the fixing metal fixture which makes 3rd Embodiment of this invention. 本発明の第4実施形態をなす定着金物の雌ネジ部のネジ山形状を示す展開図である。It is an expanded view which shows the screw thread shape of the internal thread part of the fixing metal object which makes 4th Embodiment of this invention. 第4実施形態の定着金物を標準ピッチのネジ節を有するネジ鉄筋に螺合させた状態を示す展開図である。It is an expanded view which shows the state which screwed the fixing metal fitting of 4th Embodiment to the screw rebar which has a screw node of a standard pitch. 第4実施形態の定着金物を下限ピッチのネジ節を有するネジ鉄筋に螺合させた状態を示す展開図である。It is an expanded view which shows the state which screwed the fixing metal fitting of 4th Embodiment to the screw rebar which has a screw node of a minimum pitch. 第4実施形態の定着金物を上限ピッチのネジ節を有するネジ鉄筋に螺合させた状態を示す展開図である。It is an expanded view which shows the state which screwed the fixing metal fitting of 4th Embodiment to the screw reinforcement which has a screw node of an upper limit pitch. (A),(B)は、第5,第6実施形態の定着金物の雌ネジ部のネジ山形状をそれぞれ示す展開図である。(A), (B) is an expanded view which respectively shows the thread form of the internal thread part of the fixing metal fitting of 5th, 6th embodiment. 従来の定着金物とネジ鉄筋の螺合状態を示す要部拡大縦断面図である。It is a principal part expanded vertical sectional view which shows the conventional fixing metal fitting and the screwed state of a screw reinforcement.

符号の説明Explanation of symbols

10 定着金物(ネジ鉄筋用螺合金物)
14 雌ネジ部
20 ネジ鉄筋
21 ネジ節
50 ネジ山
50a 前側螺旋面(一方側を向く螺旋面)
50b 後側螺旋面(他方側を向く螺旋面)
51〜54 第1〜第4螺旋面部分
Rm 中央領域(中間領域)
Re 両端近傍領域
Rs 遷移領域
Rf 前端近傍領域(一端近傍領域)
Rr 後端近傍領域(他端近傍領域)
10 Fixing hardware (screw alloy for screw rebar)
14 Female thread portion 20 Screw rebar 21 Screw joint 50 Screw thread 50a Front spiral surface (spiral surface facing one side)
50b Rear spiral surface (spiral surface facing the other side)
51-54 1st-4th spiral surface part Rm Central area | region (intermediate area | region)
Re Near-end region Rs Transition region Rf Near-end region (near-end region)
Rr Area near the rear end (area near the other end)

Claims (10)

雌ネジ部を有し、この雌ネジ部にネジ鉄筋を螺合するとともに、雌ネジ部内周とネジ鉄筋外周との間に充填材を充填することにより、ネジ鉄筋に固定される螺合金物において、
上記雌ネジ部のネジ山の幅がネジ山の螺旋に沿って変化し、上記雌ネジ部の中間領域におけるネジ山幅が最も広く、雌ネジ部における両端近傍領域のネジ山幅が最も狭いことを特徴とするネジ鉄筋用螺合金物。
In a screw alloy that is fixed to a screw rebar by having a female screw portion and screwing a screw rebar into the female screw portion and filling a filler between the inner periphery of the female screw portion and the outer periphery of the screw rebar. ,
The thread width of the female thread part changes along the spiral of the thread, the thread width in the middle area of the female thread part is the widest, and the thread width in the vicinity of both ends of the female thread part is the narrowest A screw alloy for screw rebar.
上記ネジ山幅が雌ネジ部の中間領域から両端に向かって徐々に減少することを特徴とする請求項1に記載のネジ鉄筋用螺合金物。   2. The screw alloy for threaded rebar according to claim 1, wherein the thread width gradually decreases from an intermediate region of the female screw portion toward both ends. 上記雌ネジ部のネジ山は、雌ネジ部の軸方向の一方側を向く螺旋面と他方側を向く螺旋面とを有し、
上記一方側を向く螺旋面は、雌ネジ部の軸方向一方側の領域に位置する第1螺旋面部分と雌ネジ部の他方側の領域に位置する第2螺旋面部分とを有し、
上記他方側を向く螺旋面は、上記一方側領域に位置する第3螺旋面部分と上記他方側の領域に位置する第4螺旋面部分とを有し、
上記第1,第4螺旋面部分のリード角は一定で互いに等しく、上記第2,第3螺旋面部分のリード角は一定で互いに等しいとともに、上記第1,第4螺旋面部分のリード角と異なることを特徴とする請求項2に記載のネジ鉄筋用螺合金物。
The thread of the female screw portion has a spiral surface facing one side in the axial direction of the female screw portion and a spiral surface facing the other side,
The spiral surface facing the one side has a first spiral surface portion located in a region on one side in the axial direction of the female screw portion and a second spiral surface portion located in a region on the other side of the female screw portion,
The spiral surface facing the other side has a third spiral surface portion located in the one side region and a fourth spiral surface portion located in the region on the other side,
The lead angles of the first and fourth spiral surface portions are constant and equal to each other, the lead angles of the second and third spiral surface portions are constant and equal to each other, and the lead angles of the first and fourth spiral surface portions are The screw alloy for threaded reinforcing bars according to claim 2, which is different.
上記雌ネジ部の上記中間領域におけるネジ山幅が一定であり、上記両端近傍領域のネジ山幅が一定であることを特徴とする請求項1に記載のネジ鉄筋用螺合金物。   The screw alloy for a screw rebar according to claim 1, wherein the thread width in the intermediate region of the female thread portion is constant, and the thread width in the region near both ends is constant. 上記雌ネジ部は、上記ネジ山幅が一定である中間領域と両端近傍領域の間に、ネジ山幅が両端近傍領域に向かって減少する遷移領域を有していることを特徴とする請求項4に記載のネジ鉄筋用螺合金物。   The female screw portion has a transition region in which the thread width decreases toward a region near both ends between the intermediate region where the thread width is constant and a region near both ends. 4. A threaded alloy for screw rebars according to 4. 雌ネジ部を有し、この雌ネジ部にネジ鉄筋を螺合するとともに、雌ネジ部内周とネジ鉄筋外周との間に充填材を充填することにより、ネジ鉄筋に固定される螺合金物において、
上記雌ネジ部のネジ山の幅がネジ山の螺旋に沿って変化し、上記雌ネジ部の一端近傍領域におけるネジ山幅が最も広く、他端近傍領域におけるネジ山幅が最も狭いことを特徴とするネジ鉄筋用螺合金物。
In a screw alloy that is fixed to a screw rebar by having a female screw portion and screwing a screw rebar into the female screw portion and filling a filler between the inner periphery of the female screw portion and the outer periphery of the screw rebar. ,
The thread width of the female thread portion changes along the spiral of the thread, the thread width in the region near one end of the female screw portion is the widest, and the thread width in the region near the other end is narrowest Threaded alloy for screw rebar.
上記雌ネジ部のネジ山幅は、一端から他端に向かって徐々に狭くなることを特徴とする請求項6に記載のネジ鉄筋用螺合金物。   The screw alloy for a screw rebar according to claim 6, wherein the thread width of the female thread portion gradually decreases from one end to the other end. 上記雌ネジ部は、その軸方向の一方側を向く螺旋面と他方側を向く螺旋面とを有し、
上記一方側を向く螺旋面と他方側を向く螺旋面のリード角は一定であるとともに互いに異なることを特徴とする請求項5に記載のネジ鉄筋用螺合金物。
The female screw portion has a spiral surface facing one side in the axial direction and a spiral surface facing the other side,
The screw alloy for a screw rebar according to claim 5, wherein the lead angle of the spiral surface facing the one side and the spiral surface facing the other side is constant and different from each other.
上記一端近傍領域のネジ山幅が一定であるとともに、他端近傍領域のネジ山幅が一定であることを特徴とする請求項6に記載のネジ鉄筋用螺合金物。   The screw alloy for a screw rebar according to claim 6, wherein the thread width in the region near one end is constant and the thread width in the region near the other end is constant. 上記雌ネジ部は、上記ネジ山幅が一定である一端近傍領域と他端近傍領域との間に、ネジ山幅が一端近傍領域から他端近傍領域に向かって減少する遷移領域を有していることを特徴とする請求項9に記載のネジ鉄筋用螺合金物。   The female thread portion has a transition region where the thread width decreases from the one end vicinity region to the other end vicinity region between the one end vicinity region and the other end vicinity region where the thread width is constant. The screw alloy for threaded reinforcing bars according to claim 9, wherein
JP2006063797A 2006-03-09 2006-03-09 Screw alloys for screw rebar Active JP4690225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006063797A JP4690225B2 (en) 2006-03-09 2006-03-09 Screw alloys for screw rebar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006063797A JP4690225B2 (en) 2006-03-09 2006-03-09 Screw alloys for screw rebar

Publications (2)

Publication Number Publication Date
JP2007239322A JP2007239322A (en) 2007-09-20
JP4690225B2 true JP4690225B2 (en) 2011-06-01

Family

ID=38585125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006063797A Active JP4690225B2 (en) 2006-03-09 2006-03-09 Screw alloys for screw rebar

Country Status (1)

Country Link
JP (1) JP4690225B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4842239B2 (en) * 2007-11-06 2011-12-21 ダイワスチール株式会社 Screw rebar fixing plate and fixing structure
CN104018621A (en) * 2014-04-30 2014-09-03 陈胜民 High-efficiency and high-strength T-shaped twisted steel and application method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718016U (en) * 1993-08-31 1995-03-31 若井産業株式会社 screw
JP2001099122A (en) * 1999-08-13 2001-04-10 Hilti Ag Screw anchor
JP2003213841A (en) * 2002-01-28 2003-07-30 Tokyo Tekko Co Ltd Anchor hardware for threaded reinforcement
JP2004278219A (en) * 2003-03-18 2004-10-07 Nippon Splice Sleeve Kk Joint metal fitting for steel threaded bar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718016U (en) * 1993-08-31 1995-03-31 若井産業株式会社 screw
JP2001099122A (en) * 1999-08-13 2001-04-10 Hilti Ag Screw anchor
JP2003213841A (en) * 2002-01-28 2003-07-30 Tokyo Tekko Co Ltd Anchor hardware for threaded reinforcement
JP2004278219A (en) * 2003-03-18 2004-10-07 Nippon Splice Sleeve Kk Joint metal fitting for steel threaded bar

Also Published As

Publication number Publication date
JP2007239322A (en) 2007-09-20

Similar Documents

Publication Publication Date Title
WO2017213048A1 (en) Steel pipe screw joint
JP4690225B2 (en) Screw alloys for screw rebar
US10047491B2 (en) Ground reinforcement structure and construction method thereof
BR112020006152A2 (en) threaded connection for steel pipe
KR20060098211A (en) Method for coupling cage of reinforcing bar having screw thread and coupler therefor
KR101613429B1 (en) Joint apparatus for reinforcing bar
CN103477001B (en) PC steel sleeve pipe
JP4909252B2 (en) Rebar connection seal structure and rebar connection device
KR102197519B1 (en) Reinforcing bar connecting structure and reinforcing bar connecting device
JP2009179961A (en) Joint structure of concrete reinforcing material
JP3192711U (en) Sheath connector
JPS5824027A (en) Reinforcing member for pressurizing anchor
WO2018158737A1 (en) Improved coupling device for connecting concrete blocks
JP5990052B2 (en) Threaded joint
KR100857930B1 (en) Reinforcing rod, reinforcing rod coupler and coupling method thereby
JP7463226B2 (en) Belt-shaped components for rehabilitating existing pipes
JP2007285423A (en) Synthetic resin spring
JP7477843B2 (en) Pipe rehabilitation materials
JP2022079071A (en) Thread reinforcing bar screw alloy and joint
JPH08151735A (en) Sealing member for precast structure
US20050005985A1 (en) Underdrainage pipe
JP7355330B2 (en) Pipe rehabilitation components
KR20080006568U (en) Coupler for reinforcing bar
JP4024170B2 (en) Fittings for threaded reinforcing bars
KR200304830Y1 (en) Plastic Pipe for Underground

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4690225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250