JP4690123B2 - Method for producing zinc oxide laminated varistor - Google Patents

Method for producing zinc oxide laminated varistor Download PDF

Info

Publication number
JP4690123B2
JP4690123B2 JP2005182672A JP2005182672A JP4690123B2 JP 4690123 B2 JP4690123 B2 JP 4690123B2 JP 2005182672 A JP2005182672 A JP 2005182672A JP 2005182672 A JP2005182672 A JP 2005182672A JP 4690123 B2 JP4690123 B2 JP 4690123B2
Authority
JP
Japan
Prior art keywords
oxide
mol
varistor
added
zinc oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005182672A
Other languages
Japanese (ja)
Other versions
JP2007005499A (en
Inventor
洋二 五味
高志 北見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2005182672A priority Critical patent/JP4690123B2/en
Publication of JP2007005499A publication Critical patent/JP2007005499A/en
Application granted granted Critical
Publication of JP4690123B2 publication Critical patent/JP4690123B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

本発明は、雷誘導ノイズ、各種電気及び電子機器で発生する電源ノイズなどの急峻なパルスノイズやサージ等の除去に使用される酸化亜鉛積層型バリスタ及びその製造方法に関する。   The present invention relates to a zinc oxide laminated varistor used for removing steep pulse noise such as lightning induction noise, power supply noise generated in various electric and electronic devices, surge, and the like, and a method for manufacturing the same.

近年の急激な電子機器の高周波化、大容量化に伴い、携帯電話を始めとする各種電子機器が急速に普及している。これらの機器には、各種サージやパルス性ノイズ、ESD対策として、機器の回路保護や動作の安定性、ノイズ規制にも対応する為、酸化亜鉛積層型バリスタなどの電圧制限素子が広く用いられている。   With recent rapid increase in frequency and capacity of electronic devices, various electronic devices such as mobile phones are rapidly spreading. In these devices, voltage limiting elements such as zinc oxide multilayer varistors are widely used as countermeasures against various types of surges, pulse noise, ESD, as well as device circuit protection, operational stability, and noise regulation. Yes.

酸化亜鉛積層型バリスタは、一般に、酸化亜鉛を主成分とし、これに酸化ビスマスを含有させてなる基本組成に、各種添加物を添加した焼結体と、該焼結体内部に平行平板状に積層配置された金属の内部電極とを備えて構成されている。ここで、焼結体内部に積層配置された金属の電極は、焼結体の焼成温度は一般に950〜1300℃であり、これと共焼されるため、銀/パラジウム合金、パラジウム、白金などの高価な貴金属を使用しなければならない。その結果、生産コストが上がり、又、高温焼成による光熱費、飛散するビスマスによる炉の汚染など多くの問題があるのが現状である。   A zinc oxide multilayer varistor is generally a sintered body obtained by adding various additives to a basic composition mainly composed of zinc oxide and containing bismuth oxide, and a parallel plate shape inside the sintered body. And metal internal electrodes arranged in a stacked manner. Here, in the metal electrode laminated and disposed inside the sintered body, the sintering temperature of the sintered body is generally 950 to 1300 ° C., and is co-fired with this, so silver / palladium alloy, palladium, platinum, etc. Expensive precious metals must be used. As a result, the production cost is increased, and there are many problems such as the utility cost due to high-temperature firing and the contamination of the furnace with scattered bismuth.

このため、焼結体の焼成温度を下げ、安価な銀を内部電極として使用できるようにした酸化亜鉛積層型バリスタの製造方法が提案されている(特許文献1)。
特開平9−320814号公報
For this reason, a method for manufacturing a zinc oxide multilayer varistor has been proposed in which the sintering temperature of the sintered body is lowered so that inexpensive silver can be used as an internal electrode (Patent Document 1).
Japanese Patent Laid-Open No. 9-320814

しかしながら、銀の融点は960℃であり、銀のマイグレーションを考慮すると、焼結体の焼成温度は900℃以下のなるべく低温であることが望ましい。また、単に低温焼結が可能であるのみならず、良好なバリスタの電気的特性及び信頼性が得られることが必要である。   However, the melting point of silver is 960 ° C., and considering the silver migration, the firing temperature of the sintered body is desirably as low as possible, 900 ° C. or less. Moreover, it is necessary not only to be able to perform low-temperature sintering, but also to obtain good varistor electrical characteristics and reliability.

本発明は上述した事情に鑑みて為されたもので、900℃以下で焼成が可能で、銀の内部電極を採用することで、低コスト化することができると共に、良好な電気的特性及び信頼性が得られる酸化亜鉛積層型バリスタ、及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and can be fired at 900 ° C. or lower. By employing a silver internal electrode, the cost can be reduced, and good electrical characteristics and reliability can be achieved. It is an object of the present invention to provide a zinc oxide laminated varistor capable of obtaining high performance and a method for producing the same.

本発明の酸化亜鉛積層型バリスタは、酸化亜鉛を主成分とし、これに酸化ビスマスを含有させてなる基本組成に、少なくとも酸化銅を添加した焼結体と、該焼結体内部に積層配置された銀電極とを備えてなることを特徴とするものである。ここで、酸化亜鉛100mol%に対し、外掛けで、酸化ビスマスを0.1〜1.5mol%、酸化銅を0.1〜3.0mol%の範囲で添加し、酸化アンチモンを0.01〜2.0mol%の範囲で添加し、これらの原料を仮焼して、焼結体を構成することを特徴とするものであるThe zinc oxide multilayer varistor of the present invention is composed of a sintered body in which zinc oxide is a main component and bismuth oxide is added to the basic composition, and at least copper oxide is added, and is laminated inside the sintered body. And a silver electrode. Here, with respect to 100 mol% of zinc oxide, 0.1 to 1.5 mol% of bismuth oxide and 0.1 to 3.0 mol% of copper oxide are added as an outer layer, and antimony oxide is added in an amount of 0.01 to It was added in an amount of 2.0 mol%, and calcining these raw materials, is characterized in that constituting the sintered body.

酸化銅はイオン半径が小さく、比較的低温で液化するため、酸化亜鉛を主成分とし、これに酸化ビスマスを含有させてなる基本組成のバリスタ焼結体の低温焼結促進に有効である。このため、900℃以下の焼成で、バリスタ焼結体を形成できるため、安価な銀を内部電極として採用することができ、低製造コストで酸化亜鉛積層型バリスタを生産することができる。そして、バリスタ原料の添加物を最適化することで、安価な銀電極を採用しつつ、且つ良好な電気的特性及び信頼性を確保することができる。   Since copper oxide has a small ionic radius and liquefies at a relatively low temperature, it is effective for promoting low-temperature sintering of a varistor sintered body having a basic composition mainly composed of zinc oxide and containing bismuth oxide. For this reason, since a varistor sintered body can be formed by firing at 900 ° C. or lower, inexpensive silver can be employed as the internal electrode, and a zinc oxide multilayer varistor can be produced at a low manufacturing cost. And by optimizing the additive of the varistor raw material, it is possible to secure good electrical characteristics and reliability while adopting an inexpensive silver electrode.

以下、本発明の実施形態について、添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、酸化亜鉛積層型バリスタの素子構造例を示す。この酸化亜鉛積層型バリスタ10は、バリスタ素材となる酸化亜鉛を主成分とし、酸化ビスマス等の添加物を含有させたグリーンシート11に銀ペーストの内部電極パターンを配置したものを積層し、焼成して作製された積層型の焼結体素子である。酸化亜鉛を主成分とし酸化ビスマス等の添加物を含有した焼結体11の内部に、平行平板状に交互に銀の内部電極12a,12bが積層配置され、積層コンデンサと同様の電極配置となっている。   FIG. 1 shows an example of the element structure of a zinc oxide laminated varistor. This zinc oxide laminated varistor 10 is obtained by laminating and firing a green sheet 11 containing a zinc paste as a main component and containing an additive such as bismuth oxide and having an internal electrode pattern of silver paste disposed thereon. It is a laminated type sintered body element manufactured in this manner. In the sintered body 11 containing zinc oxide as a main component and containing an additive such as bismuth oxide, silver internal electrodes 12a and 12b are alternately arranged in a parallel plate shape, resulting in an electrode arrangement similar to that of a multilayer capacitor. ing.

そして、銀の内部電極12a,12bは、それぞれ左右の外部電極13a,13bに接続されている。従って、左右の外部電極13a,13b間に印加された電圧は、バリスタ焼結体11の内部に平行平板状に配置された電極12a,12b間のバリスタ焼結体部分に印加される。この実施形態では、4層のバリスタ焼結体層によって、電圧制限素子が構成されている。外部電極13a,13bは、銀などの電極にニッケルメッキ、ハンダまたはスズメッキが施され、実装性を良好なものとしている。なお、酸化亜鉛積層型バリスタ10は、例えば、3.2mm×1.6mm(3216型)などの標準的なチップ部品としてのサイズを有する表面実装型の部品である。   The silver inner electrodes 12a and 12b are connected to the left and right outer electrodes 13a and 13b, respectively. Therefore, the voltage applied between the left and right external electrodes 13 a and 13 b is applied to the varistor sintered body portion between the electrodes 12 a and 12 b arranged in a parallel plate shape inside the varistor sintered body 11. In this embodiment, the voltage limiting element is constituted by four varistor sintered body layers. The external electrodes 13a and 13b are made of silver or the like and are plated with nickel, solder, or tin so that the mountability is good. The zinc oxide multilayer varistor 10 is a surface-mount type component having a size as a standard chip component such as 3.2 mm × 1.6 mm (3216 type).

バリスタは、印加電圧がある一定値以上になると、電流が急に流れ出し、それ以上の電圧を制限する電圧制限機能を備えた素子である。バリスタの電圧制限機能により、例えば静電気のような異常電圧から、電気機器の回路や半導体素子を保護する。従来は、係る用途に、半導体のツェナーダイオードを用いていたが、2素子が必要でコンデンサを外付けしなければならず、大きな実装面積を要した。バリスタを使用すれば、実装面積を2分の1以下にでき、しかも、大きな耐電圧を備えているため、例えば静電気のような過大電圧パルスに対して優れた電圧制限機能を発揮する。   A varistor is an element having a voltage limiting function for limiting a voltage when a voltage suddenly flows when an applied voltage exceeds a certain value. The voltage limiting function of the varistor protects the circuits and semiconductor elements of the electrical equipment from abnormal voltages such as static electricity. Conventionally, semiconductor Zener diodes have been used for such applications, but two elements are required and capacitors must be externally attached, requiring a large mounting area. If a varistor is used, the mounting area can be reduced to a half or less, and since it has a large withstand voltage, it exhibits an excellent voltage limiting function against an excessive voltage pulse such as static electricity.

バリスタでは、電極間に配置された焼結体が、電圧によって抵抗値が急変し、ある電圧以上になると、それまで殆ど流れなかった電流が急に流れ出す。一般に、バリスタに1mAの電流が流れたときのバリスタ端子間電圧をバリスタ電圧という。バリスタ電圧のわずかな変化で、電流は10倍の単位で変化する。この時の非直線性(即ち、オームの法則では電流と電圧が直線関係であるが)をα値と言い、非直線性が良いほどα値は大きくなる。α値が大きい程、待機・動作漏れ電流が小さく低消費電力であると共に、自己暴走による発熱破壊が起こりにくいことを示している。   In the varistor, the resistance value of the sintered body arranged between the electrodes suddenly changes depending on the voltage, and when the voltage exceeds a certain voltage, the current that has hardly flowed until then suddenly flows out. In general, the voltage between varistor terminals when a current of 1 mA flows through the varistor is called a varistor voltage. With a slight change in the varistor voltage, the current changes by a factor of ten. The non-linearity at this time (that is, the current and voltage are linearly related in Ohm's law) is called the α value, and the α value increases as the non-linearity becomes better. The larger the α value, the smaller the standby / operation leakage current and the lower the power consumption, and the less the heat destruction caused by the self-runaway.

一方で、大電流(2A、10A等)が流れた時のバリスタ端子間電圧を制限電圧といい、α値が大きい程制限電圧は小さくなる。バリスタ電圧(V1mA)に対する制限電圧(V2A,10A)との比(制限電圧/バリスタ電圧)を制限電圧比という。制限電圧は、サージ電流のような大電流が流れたときに半導体素子間の電圧を何Vに抑えられるかということを表し、低いほど回路保護機能が高いことになる。 On the other hand, the voltage between varistor terminals when a large current (2A, 10A, etc.) flows is called a limiting voltage, and the limiting voltage decreases as the α value increases. The ratio (limit voltage / varistor voltage) to the limit voltage (V 2A, 10A ) with respect to the varistor voltage (V 1mA ) is called the limit voltage ratio. The limit voltage indicates how many volts the voltage between the semiconductor elements can be suppressed when a large current such as a surge current flows. The lower the voltage, the higher the circuit protection function.

これに対して、サージ耐量とは、100A、1000A等の大きなサージ電流を印加して、素子の破壊の有無を検出し、素子の耐え得るサージ電流の大きさを表す指標である。サージ耐量は、サージ電流を印加した後で、バリスタ電圧の変化率を測定し、バリスタ電圧の変化率が、10%以内もしくは破壊などのない最大電流値をいう。   On the other hand, the surge resistance is an index that represents the magnitude of the surge current that the element can withstand by detecting whether or not the element is broken by applying a large surge current such as 100A or 1000A. The surge resistance refers to the maximum current value at which the change rate of the varistor voltage is measured within 10% or without breakdown after the surge current is applied.

ビスマス系酸化亜鉛バリスタの場合、バリスタ素材は、酸化亜鉛を主成分とし、これに酸化ビスマスを含有させたものが基本組成となっている。すなわち、主として酸化亜鉛からなる結晶粒子の粒界形成層に低融点金属であるビスマスが用いられている。そして、バリスタ特性を発揮させるため、一般に、遷移金属である酸化アンチモン、酸化マンガンや酸化コバルトが添加される。   In the case of a bismuth-based zinc oxide varistor, the basic composition of the varistor material is zinc oxide as a main component and bismuth oxide added thereto. That is, bismuth, which is a low melting point metal, is used for the grain boundary forming layer of crystal grains mainly composed of zinc oxide. And in order to exhibit a varistor characteristic, generally antimony oxide, manganese oxide, and cobalt oxide which are transition metals are added.

多くの文献等に記載されているように、酸化アンチモンが存在する事でその酸化アンチモンが比較的低温で酸化亜鉛(ZnO)の表面を覆い焼結を阻害する。しかしながら、酸化アンチモンは電気的・物理的にバリスタの電気的特性、信頼性確保に大きく寄与し、それに代わる材料は現時点では見当たらない為、酸化アンチモンを無くす事は難しい。   As described in many literatures and the like, the presence of antimony oxide covers the surface of zinc oxide (ZnO) at a relatively low temperature and inhibits sintering. However, antimony oxide greatly contributes to ensuring the electrical characteristics and reliability of the varistor electrically and physically, and no alternative material is found at present. Therefore, it is difficult to eliminate antimony oxide.

上述したように、酸化アンチモン(Sb)は低温でSbとなり、酸化亜鉛(ZnO)の表面を覆い焼結を阻害する。低温での反応性のみならず、高温ではスピネルを形成し、グレインの成長を妨げる。そこで、低温でSbにならない様に、予め酸化ビスマスと熱処理を施すと言う手段は幾つも研究がなされ発表されている。 As described above, antimony oxide (Sb 2 O 3 ) becomes Sb 2 O 4 at a low temperature, covering the surface of zinc oxide (ZnO) and inhibiting sintering. Not only the reactivity at low temperature but also spinel at high temperature prevents the grain growth. Therefore, many studies have been made and published on the means of performing heat treatment with bismuth oxide in advance so as not to become Sb 2 O 4 at a low temperature.

しかしながら、実際は幾ら仮焼を十分に施しても、焼成温度900℃以下で安定した特性を得る為の焼結体を得る事は出来ず、900℃を越えると銀の融点は960℃であるが事実上、銀のマイグレーションが加速し、特性の劣化が避けられない。そこで、更に焼結を促進させる為、ビスマスと同様の液相焼結物質であるがイオン半径の小さい酸化銅を一定量添加し且つ仮焼を行い、熱処理を行う事で850〜880℃での焼結が可能となった。   However, in practice, no matter how much calcining is performed, it is impossible to obtain a sintered body for obtaining stable characteristics at a firing temperature of 900 ° C. or lower, and when it exceeds 900 ° C., the melting point of silver is 960 ° C. In effect, silver migration is accelerated, and deterioration of characteristics is inevitable. Therefore, in order to further promote the sintering, it is a liquid phase sintering material similar to bismuth, but a certain amount of copper oxide having a small ionic radius is added, calcined, and heat treatment is performed at 850 to 880 ° C. Sintering became possible.

合わせて、酸化コバルト、酸化マンガン、酸化クロム、酸化ケイ素、ホウ酸、酸化チタン、酸化ゲルマニウム、酸化マグネシウム、酸化アルミニウム、酸化インジウム、酸化ガリウム、希土類元素等の添加量を最適化する事で、良好な電気的特性、信頼性を有するバリスタが得られた。   In addition, it is good by optimizing the addition amount of cobalt oxide, manganese oxide, chromium oxide, silicon oxide, boric acid, titanium oxide, germanium oxide, magnesium oxide, aluminum oxide, indium oxide, gallium oxide, rare earth elements, etc. A varistor having excellent electrical characteristics and reliability was obtained.

以下に、本発明のバリスタについて、その構成材料とバリスタの電気的特性および信頼性の評価結果について説明する。   Below, the varistor of the present invention will be described with respect to its constituent materials and the evaluation results of the electrical characteristics and reliability of the varistor.

まず、従来の低温焼結型積層チップバリスタについて、比較例として説明する。
この原料の構成比は、以下のとおりである。なお、添加量数値は酸化亜鉛(ZnO)100mol%に対する外掛けmol%である。

Figure 0004690123
ここで、酸化ビスマス(Bi)と酸化アンチモン(Sb)とは、予め500℃、1時間の仮焼を行い、添加されている。 First, a conventional low-temperature sintered multilayer chip varistor will be described as a comparative example.
The composition ratio of this raw material is as follows. In addition, the addition amount numerical value is an outer mol% with respect to 100 mol% of zinc oxide (ZnO).
Figure 0004690123
Here, bismuth oxide (Bi 2 O 3 ) and antimony oxide (Sb 2 O 3 ) are preliminarily calcined at 500 ° C. for 1 hour and added.

焼成は、温度880℃で5時間保持とした。製品形状は3216サイズとし、内部電極層数を4層、内部電極の材料は銀(Ag)100%のペーストを用い、スクリーン印刷により電極パターンを形成した。グリーンシート厚みを変更し、低圧バリスタ、中圧バリスタ、高圧バリスタの3種類を作製した。   Firing was held at a temperature of 880 ° C. for 5 hours. The product shape was 3216 size, the number of internal electrode layers was 4, the internal electrode material was a silver (Ag) 100% paste, and an electrode pattern was formed by screen printing. Three types of low-pressure varistor, medium-pressure varistor, and high-pressure varistor were produced by changing the thickness of the green sheet.

以下に、作製したバリスタの電気的特性の評価結果を示す。数値は平均値とバラツキを表す標準偏差σで、サンプル数は20である。

Figure 0004690123
The evaluation results of the electrical characteristics of the manufactured varistor are shown below. The numerical value is the standard deviation σ representing the average value and variation, and the number of samples is 20.
Figure 0004690123

上記作製したバリスタの信頼性特性の評価結果を以下に示す。評価結果の数値はバリスタ電圧変化率の平均値で、サンプル数は20である。

Figure 0004690123
The evaluation results of the reliability characteristics of the produced varistor are shown below. The numerical value of the evaluation result is the average value of the varistor voltage change rate, and the number of samples is 20.
Figure 0004690123

上記電気的特性の評価結果、信頼性試験の評価結果からすると、880℃の焼成では、焼成が十分でなく、良好な評価結果が得られない事が明らかとなった。   From the evaluation results of the electrical characteristics and the evaluation results of the reliability test, it has been clarified that baking at 880 ° C. is not sufficient, and good evaluation results cannot be obtained.

そこで、本件発明では900℃以下の焼成で良好な焼結体が得られる事が前提となるので、900℃以下の焼成で良好な焼結体が得られる材料組成の検討を行った。評価は熱分析であるTMAを用いて行った。試料の作成手順を以下に示す。   Therefore, in the present invention, since it is premised that a good sintered body can be obtained by firing at 900 ° C. or less, a material composition that can obtain a good sintered body by firing at 900 ° C. or less was examined. Evaluation was performed using TMA which is thermal analysis. The preparation procedure of the sample is shown below.

まず、原料を表1に基づき配合する。但し、一方は仮焼無し、もう一方を従来の低温焼結技術である酸化ビスマスと酸化アンチモンを500℃で予め仮焼した材料を使用した。なお、原料の組成比は同じである。次に、上記原料をビヒクルと混合し造粒粉を作製する。ビヒクルの組成はPVA3wt%、イオン交換水97wt%で構成される。ビヒクル投入量は、バリスタ原料100gに対し20重量部添加する。そして、5mmφの形状にプレス成型した。プレス圧は200MPa3秒とした。   First, the raw materials are blended based on Table 1. However, one was not calcined, and the other was a material obtained by calcining bismuth oxide and antimony oxide, which are conventional low-temperature sintering techniques, at 500 ° C. in advance. The composition ratio of the raw materials is the same. Next, the raw material is mixed with a vehicle to produce granulated powder. The composition of the vehicle is composed of 3 wt% PVA and 97 wt% ion-exchanged water. The amount of vehicle input is 20 parts by weight per 100 g of varistor raw material. And it press-molded in the shape of 5 mmphi. The press pressure was 200 MPa for 3 seconds.

以上の手順で作製した評価サンプルを、(株)理学製熱分析装置themo plus2のTMAを用いて焼結温度の評価を行った。焼結は収縮カーブの収縮が水平軸と平行になった点を焼結温度と設定し評価を行った。   The evaluation temperature produced by the above procedure was evaluated for the sintering temperature using TMA of thermal plus 2 manufactured by Rigaku Corporation. Sintering was evaluated by setting the point at which the shrinkage of the shrinkage curve was parallel to the horizontal axis as the sintering temperature.

(仮焼の有無の有意差検討)
理論的に酸化アンチモンが酸化亜鉛の表面を覆い、焼結を阻害している事は明らかである。そこで、その内容を確認すべく、仮焼の有無の有意差を評価した。結果を以下の表に示す。尚、仮焼は表1に基づく組成で配合した酸化ビスマスと酸化アンチモンを混合し、500℃、1時間である。

Figure 0004690123
この結果、仮焼により確かに低温焼結化の効果はあるが、900℃以下での焼結化は出来ない事が確認出来た。 (Examination of significant difference in presence or absence of calcination)
It is clear that antimony oxide theoretically covers the surface of zinc oxide and inhibits sintering. Then, in order to confirm the content, the significant difference of the presence or absence of calcination was evaluated. The results are shown in the table below. In addition, calcination mixes the bismuth oxide and antimony oxide which were mix | blended with the composition based on Table 1, and is 500 degreeC and 1 hour.
Figure 0004690123
As a result, it was confirmed that calcination has the effect of low-temperature sintering but cannot be sintered at 900 ° C. or lower.

(液相焼結物質である酸化銅CuO添加の検討)
酸化ビスマスは低温で焼結し液相を形成する事で、酸素の運搬や添加物の分散に寄与するが、イオン半径が大きく、特に低温焼結化には十分な効果があるとは思えない。そこで、同じ液相焼結物質でイオン半径の小さい酸化銅CuOを以下の表6に示す様に添加し、低温焼結化の可能性を検討した。数値はZnO100mol%に対する外掛けmol%のCuO添加量である。上記仮焼有無の検討と同様に、単純に酸化銅を組成として添加した場合と、酸化アンチモン、酸化ビスマスと共に予め500℃で仮焼を行った場合との比較を行った。基本組成は表1に示す組成に従う。

Figure 0004690123
(Examination of addition of copper oxide CuO, a liquid phase sintering material)
Bismuth oxide sinters at a low temperature to form a liquid phase, which contributes to oxygen transport and additive dispersion, but has a large ionic radius and is not considered to be particularly effective for low-temperature sintering. . Therefore, copper oxide CuO having a small ionic radius with the same liquid phase sintered material was added as shown in Table 6 below, and the possibility of low-temperature sintering was examined. The numerical value is the amount of CuO added in an outer mol% with respect to 100 mol% of ZnO. Similar to the above-described examination of the presence or absence of calcination, a comparison was made between a case where copper oxide was simply added as a composition and a case where calcination was previously performed at 500 ° C. together with antimony oxide and bismuth oxide. The basic composition follows the composition shown in Table 1.
Figure 0004690123

この結果、上記検討結果と同様に、予め仮焼する事で低温焼結化は促進し、且つ酸化銅を添加する事で900℃以下での焼結が可能となる事が確認出来た。一方で、仮焼有りの場合は酸化銅(CuO)を3mol%以上、仮焼無しの場合は酸化銅(CuO)を2.5mol%以上添加すると表面へ液相が析出した。仮焼無しでは低温焼結体は得られない為、仮焼きを前提としてCuOの添加量の上限を3.0mol%以下とし、下限を900℃以下で焼結可能な事が必須である事から0.1mol%以上とし、且つ酸化ビスマス、酸化アンチモンとの仮焼が必須である。   As a result, similar to the above examination results, it was confirmed that low-temperature sintering was promoted by calcination in advance, and that sintering at 900 ° C. or lower was possible by adding copper oxide. On the other hand, when calcination was performed, 3 mol% or more of copper oxide (CuO) was added. When no calcination was performed, when 2.5 mol% or more of copper oxide (CuO) was added, a liquid phase was deposited on the surface. Since a low-temperature sintered body cannot be obtained without calcining, it is essential that the upper limit of the CuO addition amount is 3.0 mol% or less and that the lower limit can be sintered at 900 ° C. or less on the premise of calcining. The calcination with 0.1 mol% or more and bismuth oxide and antimony oxide is essential.

なお、銅を添加することで、焼結を促進させ焼結の低温化を図ることができるのは、銅は比較的低温(数百℃)で液相を形成し、且つ価数が容易に変わり(CuOとCuO)、イオン半径も小さいと言う点あると考えられ、フェライトなどでも低温焼結化に使われている技術である。その結果、図2に示す様に、低温焼結化が進み、従来技術では焼結開始温度が930℃程度のものが、ビスマスとアンチモンの仮焼により焼結開始温度が870℃に低下し、更にビスマスとアンチモンと銅の仮焼により焼結開始温度が750℃程度に低下している。 The addition of copper can promote sintering and lower the sintering temperature because copper forms a liquid phase at a relatively low temperature (several hundreds of degrees Celsius) and easily has a valence. It is considered that there is a point that the ionic radius is small (Cu 2 O and CuO), and it is a technique that is also used for low-temperature sintering of ferrite and the like. As a result, as shown in FIG. 2, low-temperature sintering has progressed, and in the conventional technique, the sintering start temperature is about 930 ° C., but the sintering start temperature is reduced to 870 ° C. by calcination of bismuth and antimony, Furthermore, the sintering start temperature is lowered to about 750 ° C. by calcination of bismuth, antimony and copper.

次に仮焼温度範囲の確認を行った。下記の表に示す様に、仮焼温度と酸化銅(CuO)の添加量を変化させ、焼成温度の確認を行った。酸化銅添加量以外の基本組成は表1に示すとおりである。

Figure 0004690123
Next, the calcination temperature range was confirmed. As shown in the following table, the calcining temperature and the amount of copper oxide (CuO) added were changed, and the firing temperature was confirmed. The basic composition other than the amount of copper oxide added is as shown in Table 1.
Figure 0004690123

この結果、300℃以上で仮焼を行う事で900℃以下の焼成で焼結体を得る事が確認できた。しかし、750℃以上での仮焼は過剰焼結となり、粗粒が発生し、その後の粉砕工程で粉砕出来ない粒子が発生する。又、表5の結果で述べたように酸化銅(CuO)3.0mol%以上の添加では、何れの仮焼温度でも表面へのCuOの析出が発生する。   As a result, it was confirmed that by performing calcination at 300 ° C. or higher, a sintered body was obtained by firing at 900 ° C. or lower. However, calcination at 750 ° C. or higher results in excessive sintering, generating coarse particles, and generating particles that cannot be pulverized in the subsequent pulverization step. In addition, as described in the results of Table 5, when 3.0 mol% or more of copper oxide (CuO) is added, CuO is precipitated on the surface at any calcination temperature.

従って、900℃以下の低温焼結化の為のキーとなる添加物である酸化銅(CuO)の添加量は、ZnO100mol%に対し外掛けで0.1〜3mol%の範囲であることが必要である。また、酸化ビスマス、酸化アンチモン、酸化銅の混合物の仮焼温度(熱処理条件)は、300〜750℃の範囲であることが必要である。   Therefore, the addition amount of copper oxide (CuO), which is a key additive for low-temperature sintering at 900 ° C. or lower, needs to be in the range of 0.1 to 3 mol% on the basis of 100 mol% of ZnO. It is. Moreover, the calcination temperature (heat treatment conditions) of the mixture of bismuth oxide, antimony oxide, and copper oxide needs to be in the range of 300 to 750 ° C.

上記検討から、酸化ビスマス、酸化アンチモン、酸化銅の混合物を仮焼して、原料粉とし、これを造粒・焼成することで、900℃以下の低温焼成でバリスタ焼結体を形成できることが確認できた。しかし、バリスタとしての電気的特性及び信頼性を度外視して低温焼結化が出来ても意味が無い。そこで、その他の添加物の添加量との相互関係を検討し、十分に良好な電気的特性及び信頼性が得られ、且つ低温焼結が可能な最適バリスタ組成の確認を行った。   From the above examination, it is confirmed that a varistor sintered body can be formed by low-temperature firing at 900 ° C. or lower by calcining a mixture of bismuth oxide, antimony oxide, and copper oxide into raw material powder, and granulating and firing the mixture. did it. However, it is meaningless to perform low-temperature sintering without considering the electrical characteristics and reliability as a varistor. Therefore, the correlation with the amount of other additives added was examined, and an optimum varistor composition capable of obtaining sufficiently good electrical characteristics and reliability and capable of low-temperature sintering was confirmed.

組成の検討は、以下について評価を行った。但し、低温焼結化可能なバリスタを提供する事が目的である為、酸化銅(CuO)の量が0.1〜3.0mol%、Bi−Sb−CuOの仮焼温度が300〜750℃と言う上記実験結果を受けて、酸化銅CuOを1mol%、仮焼温度を500℃に固定し、以下の12の項目について組成条件を検討した。 For the examination of the composition, the following was evaluated. However, since it provides a low temperature co Yuika possible varistor is the purpose, the amount is 0.1~3.0Mol% of copper oxide (CuO), Bi 2 O 3 -Sb 2 precalcination O 3 -CuO In response to the above experimental result that the temperature was 300 to 750 ° C., the copper oxide CuO was fixed at 1 mol%, the calcining temperature was fixed at 500 ° C., and the composition conditions were examined for the following 12 items.

1.部分仮焼材料組成の検討(Bi−Sb組成比の検討)
2.粒界形成の基本添加物の検討(CoO、MnO)
3.信頼性安定化物質の検討(Cr
4.ガラス添加物の検討(HBO、SiO
5.酸化チタンの検討(TiO
6.酸化ゲルマニウムの検討(GeO
7.希土類元素添加の検討(Y、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)
8.酸化クロムの同時仮焼検討
9.ガラス添加物の同時仮焼き検討
10.ドナー添加物の検討(Al、Ga、In
11.還元剤(酸化マグネシウム)の検討(MgO)
12.酸化物の同時添加の検討(Al、Ga、In、MgO)
1. Examination of partially calcined material composition (examination of Bi 2 O 3 —Sb 2 O 3 composition ratio)
2. Study of basic additives for grain boundary formation (CoO, MnO)
3. Investigation of reliability stabilizing materials (Cr 2 O 3 )
4). Examination of glass additives (H 3 BO 3 , SiO 2 )
5. Study of titanium oxide (TiO 2 )
6). Study of germanium oxide (GeO 2 )
7). Examination of rare earth element addition (Y, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)
8). 8. Simultaneous calcination of chromium oxide Study of simultaneous calcining of glass additives10. Examination of donor additives (Al 2 O 3 , Ga 2 O 3 , In 2 O 3 )
11. Study of reducing agent (magnesium oxide) (MgO)
12 Examination of simultaneous addition of oxide (Al 2 O 3 , Ga 2 O 3 , In 2 O 3 , MgO)

(部分仮焼材料組成の検討(Bi−Sb組成比の検討))
部分仮焼材料として、低温焼結化の基本組成であるBi−Sb−CuOの系の内、Bi−Sb系の組成比組合せを検討した。評価はバリスタの非直線性という特異な電気的特性であるα値にて行った。α値の評価基準は実用性を考慮し0.01mA〜1mA間で20を下限値として評価した。
(Examination of partially calcined material composition (examination of Bi 2 O 3 —Sb 2 O 3 composition ratio))
Moiety as calcined material, of a system of Bi 2 O 3 -Sb 2 O 3 -CuO a basic composition of low temperature co Yuika examined the composition ratio combination of Bi 2 O 3 -Sb 2 O 3 system. The evaluation was carried out using the α value, which is a unique electrical characteristic of non-linearity of the varistor. The evaluation standard of the α value was evaluated by considering 20 as the lower limit between 0.01 mA and 1 mA in consideration of practicality.

評価結果を以下に示す。

Figure 0004690123
The evaluation results are shown below.
Figure 0004690123

この結果、ZnO100mol%に対し、外掛けでBi添加量0.1〜1.5mol%、Sb添加量0.01〜3.0mol%、CuO添加量0.1〜3.0mol%の3種材料を混合し、300〜750℃で部分仮焼きを行った原料を用いる事で、900℃以下の低温焼結を可能にし、且つバリスタの基本特性であるα値が20以上の高性能バリスタが得られる事が確認できた。尚、上記表に示すα値評価に対し、酸化亜鉛、酸化ビスマス、酸化アンチモンだけでは大きな非直線性特性(α値)は得られず、通常遷移金属元素として酸化コバルトや酸化マンガンが添加される為、実用性と正確な判断を得る為に、表7の評価において酸化コバルトを0.5mol%添加して評価した値である。 As a result, with respect ZnO100mol%, Bi 2 O 3 added amount 0.1~1.5Mol% by outer percentage, Sb 2 O 3 added amount 0.01~3.0mol%, CuO amount of 0.1 to 3. By using a raw material obtained by mixing three kinds of materials of 0 mol% and partially calcined at 300 to 750 ° C., low temperature sintering at 900 ° C. or lower is possible, and an α value that is a basic characteristic of a varistor is 20 or more. It was confirmed that a high performance varistor was obtained. In addition, with respect to the α value evaluation shown in the above table, zinc oxide, bismuth oxide, and antimony oxide alone cannot provide a large non-linear characteristic (α value), and cobalt oxide and manganese oxide are usually added as transition metal elements. For this reason, in order to obtain practicality and accurate judgment, the values are evaluated by adding 0.5 mol% of cobalt oxide in the evaluation of Table 7.

(粒界形成の基本添加物の検討(CoO、MnO))
粒界形成の基本添加物として、酸化コバルト(CoO)と酸化マンガン(MnO)の添加量を検討した。上記評価と同様にα値にて評価を行った。α値の評価基準は、実用性を考慮して、0.01mA〜1mA間で20を下限値として評価した。尚、上記1で評価した部分仮焼原料ZnO:100mol%に対し外掛けで0.5mol%のBi−1.0mol%のSb−1.5mol%のCuOを添加した。
(Examination of basic additives for grain boundary formation (CoO, MnO))
As basic additives for grain boundary formation, the addition amounts of cobalt oxide (CoO) and manganese oxide (MnO) were examined. The evaluation was performed using the α value in the same manner as the above evaluation. The evaluation standard of α value was evaluated by considering 20 as a lower limit value between 0.01 mA and 1 mA in consideration of practicality. The partial calcination raw ZnO were evaluated in the above 1: was added 0.5 mol% of Bi 2 O 3 -1.0mol% of Sb 2 O 3 -1.5mol% of CuO in outer percentage relative to 100 mol%.

結果を以下の表8、9に示す。

Figure 0004690123
Figure 0004690123
The results are shown in Tables 8 and 9 below.
Figure 0004690123
Figure 0004690123

この結果、酸化コバルト(CoO)と酸化マンガン(MnO)の添加量がそれぞれ0.1〜1.5mol%の時、α値20以上を達成できることが分かる。
次に、同じ遷移金属であるコバルトとマンガンを組み合わせて添加し、α値の評価を行った。結果を以下の表10に示す。
As a result, it can be seen that when the addition amount of cobalt oxide (CoO) and manganese oxide (MnO) is 0.1 to 1.5 mol%, an α value of 20 or more can be achieved.
Next, cobalt and manganese, which are the same transition metals, were added in combination, and the α value was evaluated. The results are shown in Table 10 below.

Figure 0004690123
この結果、酸化コバルト(CoO)と酸化マンガン(MnO)の添加量は一種類以上を合計0.1〜1.5mol%添加する事で、α値20以上が得られた。
Figure 0004690123
As a result, the addition value of cobalt oxide (CoO) and manganese oxide (MnO) was such that an α value of 20 or more was obtained by adding one or more types in a total amount of 0.1 to 1.5 mol%.

(信頼性安定化物質の検討(Cr))
信頼性安定化物質として、酸化クロム(Cr2O3)の添加量を検討した。評価はサージ電流印加後のバリスタ電圧変化率で行った。印加するサージ電流は一律600Aとし、良品判定はバリスタ電圧変化率10%以内と設定した。尚、1で評価した部分仮焼原料ZnO:100mol%に対し外掛けで0.5mol%のBi−1.0mol%のSb−1.5mol%のCuO、2で評価した酸化コバルトをZnO:100mol%に対し外掛けで1mol%添加した。
(Examination of reliability stabilizing substance (Cr 2 O 3 ))
The amount of chromium oxide (Cr2O3) added as a reliability stabilizing substance was examined. The evaluation was performed based on the varistor voltage change rate after applying the surge current. The applied surge current was uniformly 600 A, and the non-defective product determination was set to be within 10% of the varistor voltage change rate. The partially calcined raw material ZnO evaluated in 1 was evaluated with 0.5 mol% Bi 2 O 3 -1.0 mol% Sb 2 O 3 -1.5 mol% CuO, 2 with respect to 100 mol%. Cobalt oxide was added in an amount of 1 mol% as an outer coating with respect to ZnO: 100 mol%.

結果を以下の表11に示す。

Figure 0004690123
この結果、酸化クロム(Cr)の添加量を、0.01〜2mol%添加する事で信頼性の高いバリスタが得られる事を確認できた。 The results are shown in Table 11 below.
Figure 0004690123
As a result, it was confirmed that a highly reliable varistor can be obtained by adding 0.01 to 2 mol% of chromium oxide (Cr 2 O 3 ).

(ガラス添加物の検討(HBO、SiO))
ガラス添加物の添加量最適化は、サージ耐量と、エネルギー耐量と、高温時の漏れ電流試験の検討を行った。サージ耐量とエネルギー耐量は大きいもの程大電流時の耐量に優れ、高温時の漏れ電流は待機時に流れてしまう漏洩電流である為、小さい物程優れている。
(Examination of glass additives (H 3 BO 3 , SiO 2 ))
The optimization of the amount of glass additive added was examined for surge resistance, energy resistance, and leakage current tests at high temperatures. Larger surge and energy tolerances are better for large currents, and leakage currents at high temperatures are leakage currents that flow during standby, so smaller ones are better.

(ホウ酸添加量の検討(HBO))
1で評価した部分仮焼原料ZnO:100mol%に対し外掛けで0.5mol%のBi、1.0mol%のSb、1.5mol%のCuO、2で評価した酸化コバルトをZnO:100mol%に対し外掛けで1mol%、3で評価した酸化クロムをZnO:100mol%に対し外掛けで0.5mol%添加し、基本評価組成とした。表12にサージ耐量(アンペア:A)、表13にエネルギー耐量(ジュール:J)、表14に高温時の漏れ電流(マイクロアンペアμA)の測定結果をそれぞれ示す。
(Examination of boric acid addition amount (H 3 BO 3 ))
Partially calcined raw material ZnO evaluated in 1: Cobalt oxide evaluated with 0.5 mol% Bi 2 O 3 , 1.0 mol% Sb 2 O 3 , 1.5 mol% CuO and 2 with respect to 100 mol%. Was added to 0.5 mol% of ZnO: 100 mol% as an outer coating to obtain a basic evaluation composition. Table 12 shows the measurement results of surge withstand (ampere: A), Table 13 with energy withstand (joule: J), and Table 14 shows the leakage current (microampere μA) at high temperature.

Figure 0004690123
Figure 0004690123
Figure 0004690123
この結果、ホウ酸(HBO)の添加量は0.01〜2.0mol%が望ましい。
Figure 0004690123
Figure 0004690123
Figure 0004690123
As a result, the addition amount of boric acid (H 3 BO 3 ) is desirably 0.01 to 2.0 mol%.

(二酸化ケイ素添加量の検討(SiO))
1で評価した部分仮焼き原料ZnO:100mol%に対し外掛けで0.5mol%のBi、1.0mol%のSb、1.5mol%のCuO、2で評価した酸化コバルトをZnO:100mol%に対し外掛けで1mol%、3で評価した酸化クロムをZnO:100mol%に対し外掛けで0.5mol%添加して基本評価組成とした。表15にサージ耐量(アンペア:A)、表16にエネルギー耐量(ジュール:J)、表17に高温時の漏れ電流(マイクロアンペア:μA)をそれぞれ示す。

Figure 0004690123
Figure 0004690123
Figure 0004690123
この結果、二酸化ケイ素(SiO)の添加量は0.01〜2.0mol%が望ましいことが分かる。 (Examination of silicon dioxide addition amount (SiO 2 ))
Partially calcined raw material ZnO evaluated in 1: Cobalt oxide evaluated with 0.5 mol% Bi 2 O 3 , 1.0 mol% Sb 2 O 3 , 1.5 mol% CuO and 2 with respect to 100 mol%. Of ZnO: 100 mol% was added as an outer coating, and 1 mol% of chromium oxide evaluated at 3 was added to ZnO: 100 mol% as an outer coating of 0.5 mol% to obtain a basic evaluation composition. Table 15 shows the surge resistance (ampere: A), Table 16 shows the energy resistance (joule: J), and Table 17 shows the leakage current (microampere: μA) at high temperature.
Figure 0004690123
Figure 0004690123
Figure 0004690123
As a result, it is understood that the amount of silicon dioxide (SiO 2 ) added is preferably 0.01 to 2.0 mol%.

(酸化チタンの検討(TiO))
1で評価した様に、部分仮焼き原料をZnO:100mol%に対し外掛けで(0.1〜1.5mol%)のBi、(0.01〜2mol%)のSb、(0.1〜3mol%)のCuOとなる様に添加する事で、低温焼結化が可能であり且つα値20以上のバリスタを得る事が確認出来た。
更なる改善として、酸化チタンを部分仮焼材料組成に加える事で、サージ耐量、エネルギー耐量の高性能化を検討した。サージ耐量を表18、エネルギー耐量を表19に評価結果をそれぞれ示す。
尚、上記1〜4の結果を受けて、ZnO100mol%に対して外掛けでCoO:1.0mol%、Cr:0.5mol%、HBO:0.5mol%、SiO:0.5mol%を添加し、基本組成とした上で部分仮焼材料を検討した。
(Examination of titanium oxide (TiO 2 ))
As evaluated in 1, the partially calcined raw material was externally coated (0.1 to 1.5 mol%) Bi 2 O 3 and (0.01 to 2 mol%) Sb 2 O 3 with respect to 100 mol% of ZnO. , (0.1 to 3 mol%) CuO was added so that low temperature sintering was possible and it was confirmed that a varistor having an α value of 20 or more was obtained.
As a further improvement, we examined the improvement of surge resistance and energy resistance by adding titanium oxide to the partially calcined material composition. The evaluation results are shown in Table 18 for surge resistance and Table 19 for energy resistance.
Incidentally, in response to the result of the 1 to 4, CoO in outer percentage relative ZnO100mol%: 1.0mol%, Cr 2 O 3: 0.5mol%, H 3 BO 3: 0.5mol%, SiO 2: After adding 0.5 mol% to make the basic composition, the partially calcined material was examined.

Figure 0004690123
Figure 0004690123
この結果、酸化チタン(TiO)を0.01〜0.5mol%添加する事で、更にサージ耐量、エネルギー耐量が向上する事が確認出来た。
Figure 0004690123
Figure 0004690123
As a result, it was confirmed that by adding 0.01 to 0.5 mol% of titanium oxide (TiO 2 ), surge resistance and energy resistance were further improved.

(二酸化ゲルマニウムの検討(GeO))
1で評価した様に、部分仮焼原料をZnO:100mol%に対し外掛けで(0.1〜1.5mol%)のBi、(0.01〜2mol%)のSb、(0.1〜3mol%)のCuOとなる様に添加する事で、低温焼結化が可能であり且つα値20以上のバリスタを得る事が確認出来た。
更なる改善として、酸化ゲルマニウムを部分仮焼材料組成に加える事で、α値の向上を検討した。α値測定結果を表20に示す。
尚、上記1〜4の結果を受けて、上記5と同様に、ZnO100mol%に対して外掛けでCoO:1.0mol%、Cr:0.5mol%、HBO:0.5mol%、SiO:0.5mol%を添加し、基本組成とした上で部分仮焼材料を検討した。
(Examination of germanium dioxide (GeO 2 ))
As evaluated in 1, the partially calcined raw material was externally coated with 0.1 to 1.5 mol% of Bi 2 O 3 and (0.01 to 2 mol%) of Sb 2 O 3 with respect to 100 mol% of ZnO. , (0.1 to 3 mol%) CuO was added so that low temperature sintering was possible and it was confirmed that a varistor having an α value of 20 or more was obtained.
As a further improvement, the improvement of the α value was examined by adding germanium oxide to the partially calcined material composition. Table 20 shows the α value measurement results.
Incidentally, in response to the result of the 1-4, similarly to the 5, CoO in outer percentage relative ZnO100mol%: 1.0mol%, Cr 2 O 3: 0.5mol%, H 3 BO 3: 0. 5 mol% and SiO 2 : 0.5 mol% were added to obtain a basic composition, and then a partially calcined material was examined.

Figure 0004690123
この結果、酸化ゲルマニウム(GeO)を0.01〜1.0mol%添加する事で非直線性(α値)が向上する事が確認出来た。
Figure 0004690123
As a result, it was confirmed that non-linearity (α value) was improved by adding 0.01 to 1.0 mol% of germanium oxide (GeO 2 ).

(希土類元素添加の検討(Y、Sc、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu))
1で評価した様に、部分仮焼原料をZnO:100mol%に対し外掛けで(0.1〜1.5mol%)のBi、(0.01〜2mol%)のSb、(0.1〜3mol%)のCuOとなる様に添加する事で、低温焼結化が可能であり、且つα値20以上のバリスタを得る事が確認出来た。
更なる改善として、希土類元素を部分仮焼材料組成に加える事で、サージ耐量、エネルギー耐量の高性能化を検討した。サージ耐量を表21に、エネルギー耐量を表22に評価結果をそれぞれ示す。
(Examination of rare earth element addition (Y, Sc, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu))
As evaluated in 1, the partially calcined raw material was externally coated with 0.1 to 1.5 mol% of Bi 2 O 3 and (0.01 to 2 mol%) of Sb 2 O 3 with respect to 100 mol% of ZnO. , (0.1-3 mol%) CuO was added so that low temperature sintering was possible, and it was confirmed that a varistor having an α value of 20 or more was obtained.
As a further improvement, we examined the improvement of surge and energy resistance by adding rare earth elements to the partially calcined material composition. The evaluation results are shown in Table 21 for the surge resistance and Table 22 for the energy resistance.

Figure 0004690123
Figure 0004690123
この結果、希土類酸化物(A)を0.01〜0.5mol%添加する事で、サージ耐量、エネルギー耐量が向上する事が確認出来た。
尚、上記1〜4の結果を受けて、ZnO100mol%に対して外掛けでCoO:1.0mol%、Cr:0.5mol%、HBO:0.5mol%、SiO:0.5mol%を添加し基本組成とした上で、部分仮焼材料を検討した。
Figure 0004690123
Figure 0004690123
As a result, it was confirmed that by adding 0.01 to 0.5 mol% of rare earth oxide (A 2 B 3 ), surge resistance and energy resistance were improved.
Incidentally, in response to the result of the 1 to 4, CoO in outer percentage relative ZnO100mol%: 1.0mol%, Cr 2 O 3: 0.5mol%, H 3 BO 3: 0.5mol%, SiO 2: After adding 0.5 mol% to obtain a basic composition, a partially calcined material was examined.

(酸化クロム(Cr)の同時仮焼)
1で評価した様に、部分仮焼原料をZnO:100mol%に対し外掛けで(0.1〜1.5mol%)のBi、(0.01〜2mol%)のSb、(0.1〜3mol%)のCuOとなる様に添加する事で、低温焼結化が可能であり且つα値20以上のバリスタを得る事が確認出来た。
更なる改善として、酸化クロム(Cr)を部分仮焼材料組成に加える事で、サージ耐量、エネルギー耐量の高性能化を検討した。表23に評価結果を示す。
尚、上記1〜5の結果を受けて、ZnO100mol%に対して外掛けでCoO:1.0mol%、HBO:0.5mol%、SiO:0.5mol%、TiO:0.1mol%を添加し、基本組成とした上で酸化クロム(Cr:0.5mol%)を部分仮焼き材にした場合としない場合での比較を行った。
(Simultaneous calcination of chromium oxide (Cr 2 O 3 ))
As evaluated in 1, the partially calcined raw material was externally coated with 0.1 to 1.5 mol% of Bi 2 O 3 and (0.01 to 2 mol%) of Sb 2 O 3 with respect to 100 mol% of ZnO. , (0.1 to 3 mol%) CuO was added so that low temperature sintering was possible and it was confirmed that a varistor having an α value of 20 or more was obtained.
As a further improvement, high performance surge resistance and energy resistance were examined by adding chromium oxide (Cr 2 O 3 ) to the partially calcined material composition. Table 23 shows the evaluation results.
Incidentally, in response to the result of the 1 to 5, CoO in outer percentage relative ZnO100mol%: 1.0mol%, H 3 BO 3: 0.5mol%, SiO 2: 0.5mol%, TiO 2: 0. 1 mol% was added to make a basic composition, and a comparison was made with and without using chromium oxide (Cr 2 O 3 : 0.5 mol%) as a partially calcined material.

Figure 0004690123
この結果、酸化クロム(Cr)を部分仮焼き材に入れる事でサージ、エネルギー耐量が向上する事が確認出来た。
Figure 0004690123
As a result, it was confirmed that surge and energy resistance were improved by adding chromium oxide (Cr 2 O 3 ) to the partially calcined material.

(ホウ酸(HBO)、二酸化ケイ素(SiO)の同時仮焼)
1で評価した様に、部分仮焼き原料をZnO:100mol%に対し外掛けで(0.1〜1.5mol%)のBi、(0.01〜2mol%)のSb、(0.1〜3mol%)のCuOとなる様に添加する事で、低温焼結化が可能であり且つα値20以上のバリスタを得る事が確認出来た。
更なる改善として、ホウ酸(HBO)、ニ酸化ケイ素(SiO)を部分仮焼材料組成に加える事で、サージ耐量、エネルギー耐量の高性能化を検討した。表24にホウ酸の評価結果を、表25に二酸化ケイ素の評価結果をそれぞれ示す。
尚、上記1〜5の結果を受けてZnO100mol%に対して外掛けでCoO:1.0mol%、HBO:0.5mol%、TiO:0.1mol%、Cr:0.5mol%を添加し、ホウ酸(HBO)、ニ酸化ケイ素(SiO)をそれぞれ部分仮焼材料にした場合としない場合での比較を行った。
(Simultaneous calcining of boric acid (H 3 BO 3 ) and silicon dioxide (SiO 2 ))
As evaluated in 1, the partially calcined raw material was externally coated (0.1 to 1.5 mol%) Bi 2 O 3 and (0.01 to 2 mol%) Sb 2 O 3 with respect to 100 mol% of ZnO. , (0.1 to 3 mol%) CuO was added so that low temperature sintering was possible and it was confirmed that a varistor having an α value of 20 or more was obtained.
As a further improvement, high performance of surge and energy resistance was examined by adding boric acid (H 3 BO 3 ) and silicon dioxide (SiO 2 ) to the partially calcined material composition. Table 24 shows the evaluation results of boric acid, and Table 25 shows the evaluation results of silicon dioxide.
Incidentally, CoO in outer percentage relative ZnO100mol% receives the results of the above 1~5: 1.0mol%, H 3 BO 3: 0.5mol%, TiO 2: 0.1mol%, Cr 2 O 3: 0 .5 mol% was added, and comparison was made with and without boric acid (H 3 BO 3 ) and silicon dioxide (SiO 2 ) as partially calcined materials.

Figure 0004690123
Figure 0004690123
この結果、ホウ酸、二酸化ケイ素といったガラス成分を部分仮焼材料として同時に添加する事でサージ耐量、エネルギー耐量が向上する事が確認出来た。
Figure 0004690123
Figure 0004690123
As a result, it was confirmed that surge resistance and energy resistance were improved by simultaneously adding glass components such as boric acid and silicon dioxide as a partially calcined material.

(ドナー添加物の検討(Al、Ga、In))
酸化亜鉛バリスタの高性能化として、ZnOに対しドナー元素となる酸化アルミニウム(Al)、酸化ガリウム(Ga)、酸化インジウム(In)を予めZnOにドープし、サージ耐量、エネルギー耐量の改善を検討した。表26、27にそれぞれ検討結果を示す。基本組成として、上記1〜5の内容を踏まえZnO100mol%に対して外掛けでCoO:1.0mol%、Cr:0.5mol%、HBO:0.5mol%、SiO:0.5mol%を添加し、且つ部分仮焼材料をZnO:100mol%に対し外掛けで0.5mol%のBi、1.0mol%のSb、1.5mol%のCuOとなる様に添加し、ドナー元素につき検討した。添加量はZnO:100mol%に対し外掛けppmで示した。
(Examination of donor additives (Al 2 O 3 , Ga 2 O 3 , In 2 O 3 ))
In order to improve the performance of zinc oxide varistors, ZnO is doped with ZnO in advance as aluminum oxide (Al 2 O 3 ), gallium oxide (Ga 2 O 3 ), and indium oxide (In 2 O 3 ) as a donor element. The improvement of withstand and energy tolerance was studied. Tables 26 and 27 show the examination results. As basic composition, CoO in outer percentage relative ZnO100mol% Based on the contents of the 1~5: 1.0mol%, Cr 2 O 3: 0.5mol%, H 3 BO 3: 0.5mol%, SiO 2: 0.5 mol% is added, and the partially calcined material is coated with 0.5 mol% Bi 2 O 3 , 1.0 mol% Sb 2 O 3 , and 1.5 mol% CuO on the basis of ZnO: 100 mol%. The donor element was examined. The amount added was shown as ppm in addition to ZnO: 100 mol%.

(サージ耐量(A))

Figure 0004690123
(Surge resistance (A))
Figure 0004690123

(エネルギー耐量)

Figure 0004690123
(Energy tolerance)
Figure 0004690123

この結果、予めZnOにドナー元素を1〜50ppm添加し、600〜900℃で仮焼(熱処理)を行いドープさせる事で、サージ耐量、エネルギー耐量が向上する事が確認出来た。又、詳細を示さなかったが、上記表26、27に関しては、ドナー元素であればAl、Ga、Inの何れの元素であっても同様な傾向と同様な値を示した。従って、ドナー元素の添加は1〜50ppmの範囲であれば、何れの元素であっても、又混合組成であっても同様な結果を示す。 As a result, it was confirmed that the surge resistance and the energy resistance were improved by adding 1 to 50 ppm of a donor element to ZnO in advance and performing calcination (heat treatment) at 600 to 900 ° C. for doping. Further, although details are not shown, with regard to Tables 26 and 27 above, the same tendency is the same for any element of Al 2 O 3 , Ga 2 O 3 , and In 2 O 3 as long as it is a donor element. The value is shown. Therefore, if the addition of the donor element is in the range of 1 to 50 ppm, the same result is obtained with any element or mixed composition.

(還元剤酸化マグネシウム(MgO)の検討)
酸化亜鉛バリスタの高性能化として、ZnOに対し高温での還元作用がある酸化マグネシウム(MgO)を予めZnOにドープし、サージ耐量、エネルギー耐量の改善を検討した。結果を表28、29にそれぞれ示す。基本組成として、上記1〜5の内容を踏まえ、ZnO100mol%に対して外掛けでCoO:1.0mol%、Cr:0.5mol%、HBO:0.5mol%、SiO:0.5mol%を添加し、且つ部分仮焼材料をZnO:100mol%に対し外掛けで0.5mol%のBi、1.0mol%のSb、1.5mol%のCuOとなる様に添加し、還元剤(MgO)につき検討した。添加量はZnO:100mol%に対し外掛けmol%で示した。
(Examination of reducing agent magnesium oxide (MgO))
In order to improve the performance of zinc oxide varistors, magnesium oxide (MgO), which has a reducing action on ZnO at a high temperature, was previously doped into ZnO, and improvements in surge resistance and energy resistance were studied. The results are shown in Tables 28 and 29, respectively. As basic composition, based on the content of the 1 to 5, CoO in outer percentage relative ZnO100mol%: 1.0mol%, Cr 2 O 3: 0.5mol%, H 3 BO 3: 0.5mol%, SiO 2 : 0.5 mol% is added, and the partially calcined material is coated with 0.5 mol% Bi 2 O 3 , 1.0 mol% Sb 2 O 3 , and 1.5 mol% CuO on the basis of ZnO: 100 mol%. The reducing agent (MgO) was studied. The amount added was expressed as mol% over ZnO: 100 mol%.

(サージ耐量(A))

Figure 0004690123
(Surge resistance (A))
Figure 0004690123

(エネルギー耐量(J))

Figure 0004690123
(Energy tolerance (J))
Figure 0004690123

この結果、予めZnOに対し高温で還元効果のある酸化マグネシウム(MgO)をZnO:100mol%に対し外掛けで0.1〜2mol%添加し、600〜900℃で熱処理を行いドープさせる事で、サージ耐量及びエネルギー耐量が向上する事が確認出来た。   As a result, magnesium oxide (MgO) having a reduction effect at a high temperature with respect to ZnO in advance is added in an amount of 0.1 to 2 mol% on the basis of ZnO: 100 mol%, and heat treatment is performed at 600 to 900 ° C. to dope, It was confirmed that surge resistance and energy resistance were improved.

(ドナー元素(Al、Ga、In)、還元剤(ZnO)の同時添加の検討)
酸化亜鉛バリスタの高性能化として、上記の結果からドナー元素(Al、Ga、In)及び還元剤(ZnO)を個々に添加し、同じ600〜900℃で仮焼を行うと、上述したようにサージ耐量及びエネルギー耐量の改善効果がある事が確認出来た。
そこで、一緒に添加した時のサージ耐量及びエネルギー耐量の改善効果を検討した。表30、31にそれぞれ示す。基本組成として、上記1〜5の内容を踏まえ、ZnO100mol%に対して外掛けでCoO:1.0mol%、Cr:0.5mol%、HBO:0.5mol%、SiO:0.5mol%を添加し且つ部分仮焼材料をZnO:100mol%に対し外掛けで0.5mol%のBi、1.0mol%のSb、1.5mol%のCuOとなる様に添加した。添加量はZnO:100mol%に対しドナー元素が外掛けppmで、還元材が外掛けmol%でそれぞれ表記した。仮焼き温度は700℃で固定した。
(Consideration of simultaneous addition of donor element (Al 2 O 3 , Ga 2 O 3 , In 2 O 3 ) and reducing agent (ZnO))
In order to improve the performance of the zinc oxide varistor, the donor element (Al 2 O 3 , Ga 2 O 3 , In 2 O 3 ) and the reducing agent (ZnO) were added individually from the above results, and the same was performed at the same 600 to 900 ° C. When firing, it was confirmed that there was an effect of improving surge resistance and energy resistance as described above.
Therefore, the effect of improving surge resistance and energy resistance when added together was investigated. These are shown in Tables 30 and 31, respectively. As basic composition, based on the content of the 1 to 5, CoO in outer percentage relative ZnO100mol%: 1.0mol%, Cr 2 O 3: 0.5mol%, H 3 BO 3: 0.5mol%, SiO 2 : 0.5 mol% is added, and the partially calcined material is ZnO: 0.5 mol% Bi 2 O 3 , 1.0 mol% Sb 2 O 3 , 1.5 mol% CuO as an outer coating with respect to 100 mol% It added so that it might become. The added amount was expressed in terms of ZnO: 100 mol%, and the donor element was external ppm, and the reducing material was external mol%. The calcining temperature was fixed at 700 ° C.

(サージ耐量(A))

Figure 0004690123
(Surge resistance (A))
Figure 0004690123

(エネルギー耐量(J))

Figure 0004690123
(Energy tolerance (J))
Figure 0004690123

この結果、予めZnOに対し外掛けで高温で還元効果のある酸化マグネシウム(MgO)を0.1〜2mol%とドナー元素である酸化アルミニウム(Al)、酸化ガリウム(Ga)、酸化インジウム(In)の何れか1種類以上を1〜50ppm同時に添加し、600〜900℃で熱処理を行いドープさせる事で、サージ耐量及びエネルギー耐量が向上する事が確認出来た。 As a result, 0.1 to 2 mol% of magnesium oxide (MgO), which is preliminarily applied to ZnO and has a reducing effect at high temperatures, and aluminum oxide (Al 2 O 3 ) and gallium oxide (Ga 2 O 3 ) as donor elements. In addition, it was confirmed that surge resistance and energy resistance were improved by simultaneously adding 1-50 ppm of any one of indium oxide (In 2 O 3 ) and performing heat treatment at 600-900 ° C. for doping.

以上により、低温焼結促進材として酸化銅を添加し、バリスタ原料の組成及び製造条件を最適化することで、900℃以下の低温で焼結が可能で、これにより内部電極として安価な銀電極の採用が可能で、且つ、α値、サージ耐量、エネルギー耐量、バリスタ電圧変化率等の電気的特性及び信頼性に優れた高性能なバリスタを得る事ができることが確認された。   As described above, by adding copper oxide as a low-temperature sintering accelerator and optimizing the composition and manufacturing conditions of the varistor raw material, sintering can be performed at a low temperature of 900 ° C. or less, thereby making an inexpensive silver electrode as an internal electrode It was confirmed that a high-performance varistor excellent in electrical characteristics such as α value, surge resistance, energy resistance, varistor voltage change rate, and reliability can be obtained.

次に、図3を参照して、本発明の酸化亜鉛積層型バリスタの製造方法について説明する。まず、酸化亜鉛100mol%に対し外掛けで、酸化ビスマスを0.1〜1.5mol%、酸化アンチモンを0.01〜2.0mol%、酸化銅を0.1〜3.0mol%の範囲で調合する。そして、酸化ビスマスと、酸化アンチモンと、酸化銅とを300〜750℃の温度範囲で部分仮焼を行う。仮焼後、ボールミル等で粉砕し、整粒する。   Next, with reference to FIG. 3, the manufacturing method of the zinc oxide lamination type varistor of this invention is demonstrated. First, bismuth oxide is 0.1 to 1.5 mol%, antimony oxide is 0.01 to 2.0 mol%, and copper oxide is 0.1 to 3.0 mol% in the range of 100 mol% of zinc oxide. Mix. And bismuth oxide, antimony oxide, and copper oxide are partially calcined in a temperature range of 300 to 750 ° C. After calcination, the mixture is pulverized with a ball mill or the like and sized.

次に、酸化亜鉛に、上記仮焼後粉砕・整粒した酸化ビスマス、酸化アンチモン、酸化銅を添加する。更に、酸化コバルト、酸化マンガンの内、一種類以上を0.1〜1.5mol%、酸化クロムを0.01〜2mol%、ホウ酸を0.01〜2mol%、酸化ケイ素を0.01〜2mol%添加する。なお、酸化ビスマスと酸化アンチモンと酸化銅との部分仮焼を行う際に、酸化チタンを0.01〜0.5mol%添加する、または酸化ゲルマニウムを0.01〜1mol%添加する、または希土類元素(Pr、Y、Nb等)をA(A:希土類元素)の形で0.01〜0.5mol%添加する、またはホウ酸又は酸化ケイ素を添加する、または酸化クロムを添加する、または酸化マグネシウムを0.1〜2mol%添加する、またはドナー元素となるアルミニウム、ガリウム、インジウムの内一種類以上を酸化亜鉛100mol%に対して合計1〜50ppm添加するようにしてもよい。 Next, bismuth oxide, antimony oxide, and copper oxide that have been pulverized and sized after the calcination are added to zinc oxide. Further, among cobalt oxide and manganese oxide, one or more types are 0.1 to 1.5 mol%, chromium oxide is 0.01 to 2 mol%, boric acid is 0.01 to 2 mol%, and silicon oxide is 0.01 to Add 2 mol%. When performing partial calcination of bismuth oxide, antimony oxide, and copper oxide, 0.01 to 0.5 mol% of titanium oxide, 0.01 to 1 mol% of germanium oxide, or rare earth element is added. (Pr, Y, Nb, etc.) a 2 O 3: adding 0.01 to 0.5 mol% in the form of (a rare earth element), or the addition of boric acid or silicon oxide, or the addition of chromium oxide, Alternatively, 0.1 to 2 mol% of magnesium oxide may be added, or one or more of aluminum, gallium, and indium serving as donor elements may be added in a total of 1 to 50 ppm with respect to 100 mol% of zinc oxide.

次に、上記原料をボールミル等で完全に混合し、これに、PVB、フタル酸エステル系可塑剤、ポリカルボン酸系分散剤、離型材、エタノール/トルエン系希釈溶剤を加えスラリーを作製する。そして、ドクターブレードにて成膜し、10〜100μm程度のグリーンシートを作製する。   Next, the raw materials are thoroughly mixed with a ball mill or the like, and PVB, a phthalate ester plasticizer, a polycarboxylic acid dispersant, a release material, and an ethanol / toluene dilution solvent are added to the slurry. And it forms into a film with a doctor blade and produces about 10-100 micrometers green sheet.

次に、グリーンシートに必要に応じて内部電極パターンを形成する。これは、銀100%のペーストをスクリーン印刷することで、多数個取りの内部電極パターンを配置する。そして、グリーンシートを重ね合わせ、ホットプレス等で積層する。その後、製品サイズに合わせて切断し、個々のグリーンチップに分割(ダイシング)する。   Next, an internal electrode pattern is formed on the green sheet as necessary. In this method, 100% silver paste is screen-printed to arrange a large number of internal electrode patterns. Then, the green sheets are stacked and stacked by hot pressing or the like. Then, it cut | disconnects according to a product size, and divides | segments into each green chip (dicing).

そして、熱処理を行うことで脱バインダ処理し、その後、900℃以下の温度で焼成する。この焼成によりバリスタ焼結体が形成されるとともに、銀の内部電極が形成される。上述したように、900℃以下の比較的低温で焼成されるため、内部電極を銀電極としても、銀のマイグレーションが進行せず、良質の銀電極の形成が行える。また、焼成温度が低いため、使用電力も少なく、設備的な負担も軽減され、銀は材料コストが低いことと合わせて、低製造コストのバリスタの生産が可能となる。   Then, a binder removal treatment is performed by performing a heat treatment, and then baking is performed at a temperature of 900 ° C. or lower. By this firing, a varistor sintered body is formed and a silver internal electrode is formed. As described above, since firing is performed at a relatively low temperature of 900 ° C. or lower, even if the internal electrode is a silver electrode, silver migration does not proceed and a high-quality silver electrode can be formed. In addition, since the firing temperature is low, less power is used and the burden on facilities is reduced. In addition to the low material cost of silver, it is possible to produce a varistor at a low manufacturing cost.

焼成後、アニール処理を経て、常温に戻された後で、下地外部電極を銀などで形成し、これにニッケルメッキ、ハンダまたはスズメッキを施すことで、内部電極と接続された外部電極が形成される。その後、測定、マーキング、検査等の工程を経て、バリスタが完成する。   After firing, after annealing, and returning to room temperature, the base external electrode is formed of silver or the like, and this is subjected to nickel plating, solder or tin plating, thereby forming the external electrode connected to the internal electrode The Thereafter, the varistor is completed through processes such as measurement, marking, and inspection.

これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことはいうまでもない。   Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.

酸化亜鉛積層型バリスタの断面図である。It is sectional drawing of a zinc oxide lamination type varistor. 焼結炉温度と収縮率との関係を示すグラフであり、温度の上昇により収縮が始まる温度が焼結開始温度であり、焼結温度は焼結開始温度に比例すると考えられる。従来技術では焼結開始温度が930℃程度のものが、ビスマスとアンチモンの仮焼により焼結開始温度が870℃に低下し、更にビスマスとアンチモンと銅の仮焼により焼結開始温度が750℃程度に低下していることが示されている。It is a graph which shows the relationship between a sintering furnace temperature and shrinkage | contraction rate, and the temperature which shrinkage | contraction starts with a temperature rise is a sintering start temperature, and it is thought that sintering temperature is proportional to sintering start temperature. In the prior art, the sintering start temperature of about 930 ° C. is lowered to 870 ° C. by calcination of bismuth and antimony, and the sintering start temperature is 750 ° C. by calcination of bismuth, antimony and copper. It is shown that it has decreased to a certain extent. 本発明の一実施形態の酸化亜鉛積層型バリスタの製造方法のフロー図である。It is a flowchart of the manufacturing method of the zinc oxide lamination type varistor of one embodiment of the present invention.

符号の説明Explanation of symbols

10 酸化亜鉛積層型バリスタ
11 バリスタ焼結体(グリーンシート)
12a,12b 内部電極
13a,13b 外部電極
10 Zinc oxide multilayer varistor 11 Varistor sintered body (green sheet)
12a, 12b Internal electrodes 13a, 13b External electrodes

Claims (8)

酸化ビスマスと、酸化アンチモンと、酸化銅とを予め300〜750℃の温度範囲で部分仮焼を行い、
酸化亜鉛100mol%に対し外掛けで、酸化ビスマスを0.1〜1.5mol%、酸化アンチモンを0.01〜2.0mol%、酸化銅を0.1〜3.0mol%の範囲で添加し、
更に、酸化コバルト、酸化マンガンの内、一種類以上を0.1〜1.5mol%、酸化クロムを0.01〜2mol%、ホウ酸を0.01〜2mol%、酸化ケイ素を0.01〜2mol%添加し、
グリーンシートを形成し、該グリーンシートに銀ペーストパターンを形成し、該グリーンシートを積層し、切断してグリーンチップを形成後、焼成することを特徴とする酸化亜鉛積層型バリスタの製造方法。
Bismuth oxide, antimony oxide, and copper oxide are preliminarily calcined in a temperature range of 300 to 750 ° C.,
Add bismuth oxide in the range of 0.1-1.5 mol%, antimony oxide in the range of 0.01-2.0 mol%, and copper oxide in the range of 0.1-3.0 mol% with respect to 100 mol% of zinc oxide. ,
Further, among cobalt oxide and manganese oxide, one or more types are 0.1 to 1.5 mol%, chromium oxide is 0.01 to 2 mol%, boric acid is 0.01 to 2 mol%, and silicon oxide is 0.01 to 2 mol% added,
A method for producing a zinc oxide laminated varistor, comprising: forming a green sheet, forming a silver paste pattern on the green sheet, laminating the green sheet, cutting to form a green chip, and firing.
前記部分仮焼を行う際に、酸化ビスマスと酸化アンチモンと酸化銅とに、酸化チタンを0.01〜0.5mol%添加することを特徴とする請求項記載の酸化亜鉛積層型バリスタの製造方法。 When performing the partial calcination, the bismuth oxide and antimony oxide and copper oxide, the production of the zinc oxide laminated varistor according to claim 1, wherein the addition of titanium oxide 0.01 to 0.5 mol% Method. 前記部分仮焼を行う際に、酸化ビスマスと酸化アンチモンと酸化銅とに、酸化ゲルマニウムを0.01〜1mol%添加することを特徴とする請求項記載の酸化亜鉛積層型バリスタの製造方法。 Wherein in performing the partial calcination, the bismuth oxide and antimony oxide and copper oxide, a manufacturing method of the zinc oxide laminated varistor according to claim 1, wherein the addition of germanium oxide 0.01 to 1 mol%. 前記部分仮焼を行う際に、酸化ビスマスと酸化アンチモンと酸化銅とに、希土類元素(Pr、Y、Nb等)をA(A:希土類元素)の形で0.01〜0.5mol%添加することを特徴とする請求項記載の酸化亜鉛積層型バリスタの製造方法。 When the partial calcination is performed, rare earth elements (Pr, Y, Nb, etc.) are added to bismuth oxide, antimony oxide, and copper oxide in the form of A 2 O 3 (A: rare earth element) in a range of 0.01 to 0.00. 5. The method for producing a zinc oxide multilayer varistor according to claim 1 , wherein 5 mol% is added. 前記部分仮焼を行う際に、酸化ビスマスと酸化アンチモンと酸化銅とに、ホウ酸又は酸化ケイ素を添加することを特徴とする請求項記載の酸化亜鉛積層型バリスタの製造方法。 Wherein in performing the partial calcination, the bismuth oxide and antimony oxide and copper oxide, a manufacturing method of the zinc oxide laminated varistor according to claim 1, wherein the addition of boric acid or silicon oxide. 前記部分仮焼を行う際に、酸化ビスマスと酸化アンチモンと酸化銅とに、酸化クロムを添加することを特徴とする請求項記載の酸化亜鉛積層型バリスタの製造方法。 Wherein in performing the partial calcination, the bismuth oxide and antimony oxide and copper oxide, a manufacturing method of the zinc oxide laminated varistor according to claim 1, wherein the addition of chromium oxide. 酸化亜鉛100mol%に対し外掛けで、酸化マグネシウムを0.1〜2mol%添加することを特徴とする請求項記載の酸化亜鉛積層型バリスタの製造方法。 In outer percentage to zinc oxide 100 mol%, the production method of the zinc oxide laminated varistor according to claim 1, wherein the addition of magnesium oxide 0.1 to 2 mol%. ドナー元素となるアルミニウム、ガリウム、インジウムの内一種類以上を酸化亜鉛100mol%に対して合計1〜50ppm添加することを特徴とする請求項記載の酸化亜鉛積層型バリスタの製造方法。 The method for producing a zinc oxide multilayer varistor according to claim 1, wherein one or more of aluminum, gallium, and indium serving as donor elements are added in a total amount of 1 to 50 ppm with respect to 100 mol% of zinc oxide.
JP2005182672A 2005-06-22 2005-06-22 Method for producing zinc oxide laminated varistor Expired - Fee Related JP4690123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005182672A JP4690123B2 (en) 2005-06-22 2005-06-22 Method for producing zinc oxide laminated varistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005182672A JP4690123B2 (en) 2005-06-22 2005-06-22 Method for producing zinc oxide laminated varistor

Publications (2)

Publication Number Publication Date
JP2007005499A JP2007005499A (en) 2007-01-11
JP4690123B2 true JP4690123B2 (en) 2011-06-01

Family

ID=37690830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005182672A Expired - Fee Related JP4690123B2 (en) 2005-06-22 2005-06-22 Method for producing zinc oxide laminated varistor

Country Status (1)

Country Link
JP (1) JP4690123B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200903530A (en) * 2007-03-30 2009-01-16 Tdk Corp Voltage non-linear resistance ceramic composition and voltage non-linear resistance element
JP5294432B2 (en) * 2009-04-20 2013-09-18 東芝三菱電機産業システム株式会社 Method for producing zinc oxide varistor and zinc oxide varistor
WO2015083822A1 (en) 2013-12-06 2015-06-11 日立金属株式会社 Sintered body for varistor, multilayer substrate using same, and production method for these
CN106946562B (en) * 2017-04-13 2020-11-10 贵州大学 In3+、Nb5+Composite donor doped ZnO pressure-sensitive ceramic and preparation method thereof
CN112341186A (en) * 2020-10-27 2021-02-09 国网电力科学研究院武汉南瑞有限责任公司 Preparation method of zinc oxide piezoresistor with rare earth oxide additive subjected to pre-solid solution treatment
CN114907111A (en) * 2022-05-07 2022-08-16 吉林昱丰电气科技有限公司 High-energy high-residual-voltage-ratio nonlinear device and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325897A (en) * 1976-08-20 1978-03-10 Sanken Electric Co Ltd Oxide voltage nonnlinear resistor
JPS5666006A (en) * 1979-11-05 1981-06-04 Hitachi Ltd Nonnlinear voltage resistor
JPH09320814A (en) * 1996-05-31 1997-12-12 Matsushita Electric Ind Co Ltd Manufacture of zinc oxide multilayer chip varistor
JP2000232005A (en) * 1999-02-09 2000-08-22 Toshiba Corp Nonlinear resistor
JP2004111552A (en) * 2002-09-17 2004-04-08 Jfe Steel Kk Flat magnetic element, its manufacturing method, and small power supply module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325897A (en) * 1976-08-20 1978-03-10 Sanken Electric Co Ltd Oxide voltage nonnlinear resistor
JPS5666006A (en) * 1979-11-05 1981-06-04 Hitachi Ltd Nonnlinear voltage resistor
JPH09320814A (en) * 1996-05-31 1997-12-12 Matsushita Electric Ind Co Ltd Manufacture of zinc oxide multilayer chip varistor
JP2000232005A (en) * 1999-02-09 2000-08-22 Toshiba Corp Nonlinear resistor
JP2004111552A (en) * 2002-09-17 2004-04-08 Jfe Steel Kk Flat magnetic element, its manufacturing method, and small power supply module

Also Published As

Publication number Publication date
JP2007005499A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
KR101015035B1 (en) Varistor
KR100960522B1 (en) Voltage nonlinear resistor porcelain composition, electronic component and laminated chip varistor
KR20130045915A (en) Laminated ceramic capacitor
JP4690123B2 (en) Method for producing zinc oxide laminated varistor
CN112992538B (en) Dielectric composition and electronic component
JP5397341B2 (en) Multilayer semiconductor ceramic capacitor with varistor function
CN102190486A (en) Dielectric ceramic composition and ceramic electronic component
JP2008277786A (en) Voltage non-linear resistance porcelain composition and voltage non-linear resistance element
KR100673916B1 (en) Dielectric porcelain composition and electronic part
JP4792900B2 (en) Porcelain composition for varistor and laminated varistor
TWI796464B (en) Dielectric ceramic composition and ceramic electronic part
JP6132668B2 (en) Dielectric porcelain composition and electronic component
JP2021522673A (en) Varistor for high temperature applications
JP2008100856A (en) Method for producing zinc oxide laminated chip varistor
CN111417608A (en) Ceramic component
US7351676B2 (en) Dielectric porcelain composition, multilayer ceramic capacitor, and electronic component
JP5301853B2 (en) Zinc oxide chip varistor
KR101889678B1 (en) Zinc oxide varistor
JP5282332B2 (en) Manufacturing method of zinc oxide laminated chip varistor
CN112759384A (en) Ceramic composition, ceramic sintered body and multilayer ceramic electronic component
KR100670690B1 (en) Voltage non-linear resistor ceramic comosition, electronic component and laminate chip varistor
JP3823876B2 (en) Voltage-dependent nonlinear resistor
JP6937390B2 (en) Materials for current-voltage non-linear resistors, current-voltage non-linear resistors and their manufacturing methods
JP6972993B2 (en) Dielectric composition and electronic components
JP2004288667A (en) Non-linear voltage resistor porcelain composition, electronic part and multilayer chip varistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110217

R150 Certificate of patent or registration of utility model

Ref document number: 4690123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees