JP4688347B2 - Inside diameter finishing tool for hydrodynamic bearing sleeve and machining apparatus using the same - Google Patents

Inside diameter finishing tool for hydrodynamic bearing sleeve and machining apparatus using the same Download PDF

Info

Publication number
JP4688347B2
JP4688347B2 JP2001177168A JP2001177168A JP4688347B2 JP 4688347 B2 JP4688347 B2 JP 4688347B2 JP 2001177168 A JP2001177168 A JP 2001177168A JP 2001177168 A JP2001177168 A JP 2001177168A JP 4688347 B2 JP4688347 B2 JP 4688347B2
Authority
JP
Japan
Prior art keywords
bearing sleeve
machining
tool
fluid bearing
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001177168A
Other languages
Japanese (ja)
Other versions
JP2002370125A (en
Inventor
力 浜田
正人 森本
聖 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001177168A priority Critical patent/JP4688347B2/en
Publication of JP2002370125A publication Critical patent/JP2002370125A/en
Application granted granted Critical
Publication of JP4688347B2 publication Critical patent/JP4688347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハードディスク装置等に適用される流体軸受スリーブの内径仕上げ加工工具およびそれを用いる加工装置に関する。
【0002】
【従来の技術】
ハードディスク装置等の回転体は固定軸に回転自在に支持された流体軸受スリーブに一体に設けられている。この流体軸受スリーブは、固定軸が嵌合する軸孔の内面に魚骨形の動圧溝が形成され、該動圧溝に潤滑油が注入されている。流体軸受スリーブが固定軸の回りに回転すると、動圧溝内の潤滑油が加圧されて当該スリーブが固定軸に対して非接触状態となり、高速回転が可能となる。
【0003】
近年、ハードディスク装置の高容量化、高速化に伴い、流体軸受のスリーブの加工には、高精度化、低コスト化が要求されている。従来の流体軸受スリーブの加工は、まず、図5(A)に示すように流体軸受スリーブ25に軸穴26を加工した後、その軸穴26の内面に図5(B)に示す溝加工工具27で図6(A)に示すような2組の動圧溝28を形成する。この溝加工工具27は、外周面に複数の転造ボール29を保持したホルダ30を軸の先端に取り付けたものである。転造ボール29の外接直径Dは流体軸受スリーブ25の軸穴26の内径より10ミクロン程度大きく設定されている。この溝加工工具27を流体軸受スリーブ25の内面に挿入して押し込みながら回動させ、中間で反対方向に回動させて、第1の動圧溝28の半数を形成し、続いて同様にして第2の動圧溝28の半数を形成する。そして、次に、溝加工工具27を引き抜きながら同様の操作を行って第2と第1の動圧溝28のもう半数を形成すると、転造ボール29の数の2倍の数の動圧溝28が形成される。
【0004】
このように形成された動圧溝28は、流体軸受スリーブ25の内面が転造ボール29によって押圧されて塑性変形しているので、動圧溝28の近傍には転造バリが生じている。このため、転造バリを除去するための内径仕上げ加工をする必要がある。従来の内径仕上げ加工は、図6(B)に示すような流体軸受スリーブ25の内径より約10ミクロン程度大きい鋼球31を当該流体軸受スリーブ25の軸穴26に押し通すことで、転造バリを押し潰す方法が用いられていた。
【0005】
【発明が解決しようとする課題】
しかしながら、このような従来の流体軸受スリーブ25の内径仕上げ加工方法では、鋼球31を流体軸受スリーブ25の軸穴26に押し込む際に、軸孔26の開口縁Aは中央部よりも鋼球31から受ける加工力に対する抵抗力が弱いので、開口縁Aの径は中央部の内径よりも約4ミクロン程度大きく仕上げられる。この程度の精度低下は一般装置に使用される流体軸受では全く問題はないが、近年におけるような高容量化、高速化が要求されるハードディスク装置では、長期の信頼性や高い回転精度を維持できないという問題があった。
【0006】
本発明はかかる従来の問題点に鑑みてなされたもので、特に高容量化、高速化が要求されるハードディスク装置の流体軸受スリーブに適した高精度で、かつ低コストの流体軸受スリーブの内径仕上げ加工工具およびそれを用いる加工装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
前記課題を解決するために、本発明にかかる流体軸受スリーブの内径仕上げ加工工具は、流体軸受スリーブの内面に動圧溝を形成した後、当該流体軸受スリーブに挿入して内径を仕上げる流体軸受スリーブの内径仕上げ加工工具において、前記流体軸受スリーブに挿入するときのガイドとなるテーパ部と、前記流体軸受スリーブに対する芯出しを行う円形断面の調芯部と、外周面に複数の部分円筒面と複数の非円筒面を有するとともに当該部分円筒面と非円筒面の境界に軸方向に延びる前記流体軸受スリーブの内径を仕上げるための加工エッジを有する非円形断面の加工部とからなり、
前記加工部の少なくとも1つの部分円筒面に、軸方向に延びる溝を形成し、前記加工工具の回転方向の上流側に位置する前記溝の斜面と前記部分円筒面の境界に切り刃を形成した。
【0008】
この発明の加工工具は、先端のテーパ部の案内で流体軸受スリーブに挿入され、円形断面の調芯部により流体軸受スリーブに対して調芯され、加工部の加工エッジによって動圧溝のバリが除去されて、高精度で、かつ低コストで仕上げ加工される。
【0009】
また、溝の傾斜面と部分円筒面の境界の切り刃によって、流体軸受スリーブの動圧溝のバリがさらに確実に除去され、流体軸受スリーブはより高精度で、かつ低コストで仕上げ加工される。
【0010】
耐摩耗性材料で外表面を被覆することが好ましい。この耐摩耗性材料により、加工中に、流体軸受スリーブの材料が加工工具に直接接触するのが防止され、加工精度が安定し、加工工具の寿命が向上する。
【0011】
前記課題を解決するために、本発明にかかる流体軸受スリーブの内径仕上げ加工装置は、前記加工工具の一端を保持するチャックを備えた加工ヘッドと、該加工ヘッドを前記チャックに保持した加工工具の軸方向に昇降させる昇降ユニットと、流体軸受スリーブを前記加工工具と同軸方向に保持するワークホルダと、該ワークホルダを前記チャックに保持した加工工具の軸方向と直交する2方向に移動させる移動ユニットと、前記ワークホルダに保持された流体軸受スリーブへの前記加工工具の挿入を許容する範囲内に前記ワークホルダの移動を規制するストッパとからなる。
【0012】
この発明の加工装置では、流体軸受スリーブに位置ずれがあったり、加工工具に偏心があっても、加工工具は先端のテーパ部を案内にして確実に流体軸受スリーブに進入するので、流体軸受スリーブの損傷や変形が防止される。また、流体軸受スリーブは加工工具により調芯され、かつ、そのときにスライドベアリングからなる移動ユニットで移動自在に支持されるので、加工装置の要因による内径仕上げ精度の低下が防止でき、高精度かつ低コストの流体軸受スリーブを安定して得ることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に従って説明する。
【0014】
図1(A)は、本発明の流体軸受スリーブの内径仕上げ加工工具1の第1実施形態を示す。この加工工具1は、先端からテーパ部2、調芯部3、加工部4、保持部5からなっている。テーパ部2は、流体軸受スリーブ(図6(A)参照)に挿入するときのガイドとなる部分で、先端に向かって先細りになっている。調芯部3は、流体軸受スリーブに対する芯出しを行う部分で、前記テーパ部2の後端に連続する円形断面を有している。加工部4は、前記流体軸受スリーブの内径を仕上げる部分で、外周面に前記調芯部3と同径の複数(同実施形態では4つ)の部分円筒面6と、隣接する部分円筒面6の間に複数(同実施形態では4つ)の非円筒面7を有する。部分円筒面6の周方向長さの合計は、図1(B)に2点鎖線で示す外接円の50%以下であると、良好な仕上がり精度が得られる。非円筒面7は、図1(B)に示すように、平面からなり、1点鎖線で示す円形断面部分から三日月形部分を研削加工で切除して形成される。部分円筒面6と該部分円筒面7に隣接する非円筒面7との境界は、軸方向に延びる加工エッジ8となっている。調芯部3と加工部4の部分円筒面6の径は、流体軸受スリーブの軸穴の径より約2ミクロン大きい径を有している。保持部5は、後述する加工装置のチャックに保持される部分である。
【0015】
この加工工具1を使用して、流体軸受スリーブ25の軸穴26の内周面に形成した動圧溝28のバリを除去するための内径仕上げ加工をするには、該加工工具1を矢印方向に回転させながら、テーパ部2から流体軸受スリーブ25の軸穴26に挿入する。挿入時に、加工工具1と流体軸受スリーブ25の軸穴26との間に芯ずれがあっても、先細りのテーパ部2の存在によって軸穴26の縁が損傷するのが防止される。テーパ部2に続いて円形断面の調芯部3が流体軸受スリーブ25の軸穴26に進入すると、加工工具1が流体軸受スリーブ25の軸穴26に対して調芯される。次に、加工部4が流体軸受スリーブ25の軸穴26に進入すると、該加工部4の部分円筒面6と非円筒面7との境界の加工エッジ8によって動圧溝28のバリが除去され、軸穴26が仕上げ加工される。このとき、既に調芯部3によって加工工具1の調芯が完了しているので、加工工具1が多少偏心しながら回転しても、流体軸受スリーブ25の軸穴26の加工精度への影響は小さくなる。
【0016】
図2(A)は、前記第1実施形態の変形例による内径仕上げ加工工具9である。この加工工具9では、図2(B)に示すように、加工部4の非円円筒面10が平面ではなく、略90°の開き角度のV字形断面の溝からなり、放電加工によって形成されている。この加工工具9の調芯部3と加工部4の部分円筒面6の径は、流体軸受スリーブ25の軸穴26の径と同一径または約1ミクロン大きい径を有している。この変形例の加工工具9による加工は、前述した第1実施形態の加工工具1と同様であるので、説明を省略する。
【0017】
図3(A)は、本発明の流体軸受スリーブの内径仕上げ加工工具11の第2実施形態を示す。この加工工具11は、前記第1実施形態と同様に、先端からテーパ部2、調芯部3、加工部4、保持部5からなるが、加工部4の部分円筒面6に切り刃12を設けた以外は、前記第1実施形態と実質的に同一であるので、対応する部分には同一符号を付して説明を省略する。部分円筒面6の切り刃12は、4つの部分円筒面6のうちの少なくとも一つの部分円筒面6の長手方向に断面V字形の溝13を形成することで、加工工具11の回転方向の上流側に位置する溝13の斜面と部分円筒面6の境目に形成されている。ここで、切り刃12の角度aは、部分円筒面6と非円筒面7の境面の加工エッジ8の角度bよりも大きく形成されている。この加工工具11の調芯部3と加工部4の部分円筒面6の径は、流体軸受スリーブ25の軸穴26の径と同一径または約1ミクロン大きい径を有している。
【0018】
この第2実施形態の加工工具11による加工は、前述した第1実施形態の内径仕上げ加工工具1と同様であるが、切り刃12を有する加工部4の作用のみが異なるので、その作用のみを説明し、他は省略する。すなわち、加工部4が流体軸受スリーブ25の軸穴26に進入すると、該加工部4の部分円筒面6と非円筒面7との境界の加工エッジ8と、部分円筒面6と溝13の斜面との間の切り刃12とによってによって動圧溝28のバリが除去される。加工エッジ8は、角度が小さいのでバリを押し潰すように加工するが、切り刃12は角度が大きいのでバリを切除する。この結果、軸穴26が前述した第1実施形態よりも高精度に仕上げ加工される。
【0019】
本発明の流体軸受スリーブの内径仕上げ加工工具の第3実施形態は、図示しないが、図1、図2、図3に示す前記第1,第2実施形態の加工工具1,9,11の外表面に耐摩耗性コーティングを施したものである。耐摩耗性コーティングとしては、一般に切削加工やドリル加工で推奨されているものから選定できるが、具体的には、加工工具の材質が真鍮の場合にはダイヤモンドアライクカーボン(diamond−like carbon:DLC)が好適であり、ステンレス系の場合はチタンナイトライド(TiN)が好適である。
【0020】
この第3実施形態の加工工具による加工は、前述した第1実施形態の内径仕上げ加工工具1,9,11と同様であるが、耐摩耗性コーティングの作用のみが異なるので、その作用のみを説明し、他は省略する。一般に加工時に流体軸受スリーブ25の軸穴26と接触する調芯部3および加工部4は、微視的に見ると、流体軸受スリーブ25の動圧溝28の近傍の材料が加工工具1.9.11に凝着、離脱を繰り返しており、このことが加工精度が安定しなかったり、加工工具1,9,11の寿命を短縮させる原因になっている。そこで、第3実施形態の加工工具では、加工工具1,9,11の外表面に耐摩耗性コーティングを施すことで、流体軸受スリーブ25の動圧溝28の近傍の材料が加工工具1,9,11に直接接触しないようにして、凝着や離脱を防止している。このため、この第3実施形態では、加工精度が安定し、加工工具1,9,11の寿命が向上する。
【0021】
図4は、前述した各実施形態の加工工具1,9,11を使用する本発明の流体軸受スリーブ25の軸穴26の内径仕上げ加工装置を示す。ベース14に立設されたカラム15には、加工工具1,9,11の一端を保持するチャック16を備えた加工ヘッド17が、モータ18とボールねじ19からなる昇降ユニット20により、昇降可能に設けられている。また、ベース14には、流体軸受スリーブ25を保持するワークホルダ21を前記チャック16に保持した加工工具1,9,11の軸方向と直交する2方向に移動させるスライドベアリングからなる移動ユニット22が設けられている。この移動ユニット22の周囲には、前記ワークホルダ21に保持された流体軸受スリーブ25への前記加工工具1,9,11の挿入を許容する範囲内に前記ワークホルダ21の移動を規制する環状のストッパ23が配置されている。すなわち、ストッパ23の調芯量Bは、加工工具1,9,11のテーパ部2のテーパ量Cよりも小さく設定されている。また、加工工具1,9,11の回転時の振れ量がストッパ24の調芯量B以下になるように、加工工具1,9,11はチャック16に調整して固定されている。24は、制御装置で、加工ヘッド17と昇降ユニット20を制御するもので、加工工具を回転,停止させ、加工ヘッド17を上昇,下降させ、さらにその速度を調整する。
【0022】
次に、前記構成からなる加工装置の動作を説明すると、ワークホルダ21に別工程で既に軸穴26と動圧溝28が加工されている流体軸受スリーブ25を装着し、加工ヘッド17のチャック16に加工工具1,9,11を保持する。加工工具1.9,11を回転させながら加工ヘッド17を下降させ、流体軸受スリーブ25に挿入する。このとき、流体軸受スリーブ25に位置ずれがあったり、加工工具1,9,11に偏心があっても、加工工具1,9,11は先端のテーパ部2を案内にして確実に流体軸受スリーブ25の軸穴26に進入するので、流体軸受スリーブ25の損傷や変形が防止される。次に、所定量だけ加工ヘッド17を下降させることで、前述したように、流体軸受スリーブ25の転造バリが除去され、仕上げ加工される。この加工中に加工工具1,9,11に振れがあるときでも、その振れ量は、ストッパ23の調芯量Bよりも小さいので、流体軸受スリーブ25は調芯量Bの範囲内で自由に移動することができる。流体軸受スリーブ25は加工工具1,9,11により調芯され、かつ、そのときにスライドベアリングからなる移動ユニット20で移動自在に支持されているので、加工装置の要因による内径仕上げ精度の低下が防止でき、高精度かつ低コストの流体軸受スリーブ25を安定して得ることができる。
【0023】
【発明の効果】
以上の説明から明らかなように、本発明の流体軸受スリーブの内径仕上げ加工工具によれば、流体軸受スリーブに挿入するときのガイドとなるテーパ部と、流体軸受スリーブに対する芯出しを行う円形断面の調芯部と、外周面に複数の部分円筒面と複数の非円筒面を有するとともに当該部分円筒面と非円筒面の境界に軸方向に延びる流体軸受スリーブの内径を仕上げるための加工エッジを有する非円形断面の加工部とからなり、加工部の少なくとも1つの部分円筒面に、軸方向に延びる溝を形成し、加工工具の回転方向の上流側に位置する溝の斜面と部分円筒面の境界に切り刃を形成したので、先端のテーパ部の案内で流体軸受スリーブに挿入され、円形断面の調芯部により流体軸受スリーブに対して調芯され、加工部の加工エッジによって動圧溝のバリが除去されて、高精度で、かつ低コストで仕上げ加工される。
【0024】
また、溝の傾斜面と部分円筒面の境界の切り刃によって、流体軸受スリーブの動圧溝のバリがさらに確実に除去され、流体軸受スリーブはより高精度で、かつ低コストで仕上げ加工される。
【0025】
さらに、耐摩耗性材料で外表面を被覆したので、加工中に、流体軸受スリーブの材料が加工工具に直接接触するのが防止され、加工精度が安定し、加工工具の寿命が向上する。
【0026】
また、本発明にかかる流体軸受スリーブの内径仕上げ加工装置によれば、加工工具の一端を保持するチャックを備えた加工ヘッドと、該加工ヘッドをチャックに保持した加工工具の軸方向に移動させる移動ユニットと、流体軸受スリーブを加工工具と同軸方向に保持するワークホルダと、該ワークホルダをチャックに保持した加工工具の軸方向と直交する2方向に移動させる移動ユニットと、ワークホルダに保持された流体軸受スリーブへの前記加工工具の挿入を許容する範囲内にワークホルダの移動を規制するストッパとからなるので、流体軸受スリーブに位置ずれがあったり、加工工具に偏心があっても、加工工具は先端のテーパ部を案内にして確実に流体軸受スリーブに進入し、流体軸受スリーブの損傷や変形が防止される。また、流体軸受スリーブは加工工具により調芯され、かつ、そのときにスライドベアリングからなる移動ユニットで移動自在に支持されるので、加工装置の要因による内径仕上げ精度の低下が防止でき、高精度かつ低コストの流体軸受スリーブを安定して得ることができる。
【図面の簡単な説明】
【図1】 (A)は、本発明の流体軸受スリーブの内径仕上げ加工工具の第1実施形態の正面図、(B)は(A)のI−I線断面図。
【図2】 (A)は、本発明の流体軸受スリーブの内径仕上げ加工工具の第1実施形態の変形例の正面図、(B)は(A)のII−II線断面図。
【図3】 (A)は、本発明の流体軸受スリーブの内径仕上げ加工工具の第2実施形態の正面図、(B)は(A)のIII−III線断面図。
【図4】 本発明の流体軸受スリーブの内径仕上げ加工装置の側面図。
【図5】 (A)は流体加工軸受の動圧溝加工前の断面図、(B)は動圧溝加工工具の一部断面側面図。
【図6】 (A)は流体加工軸受の動圧溝加工後の断面図、(B)は従来の内径仕上げ加工工具の側面図。
【符号の説明】
1 加工工具
2 テーパ部
3 調芯部
4 加工部
6 部分円筒
7 非円筒面
8 加工エッジ
9 加工工具
10 非円筒面
12 切り刃
13 溝
16 チャック
17 加工ヘッド
20 昇降ユニット
21 ワークホルダ
22 移動ユニット
23 ストッパ
25 流体軸受スリーブ
28 動圧溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inner diameter finishing tool for a fluid bearing sleeve applied to a hard disk device or the like, and a processing apparatus using the same.
[0002]
[Prior art]
A rotating body such as a hard disk device is provided integrally with a fluid bearing sleeve that is rotatably supported by a fixed shaft. This hydrodynamic bearing sleeve has a fishbone-shaped dynamic pressure groove formed on the inner surface of a shaft hole into which a fixed shaft is fitted, and lubricating oil is injected into the dynamic pressure groove. When the hydrodynamic bearing sleeve rotates around the fixed shaft, the lubricating oil in the dynamic pressure groove is pressurized and the sleeve is brought into a non-contact state with respect to the fixed shaft, thereby enabling high-speed rotation.
[0003]
In recent years, with the increase in capacity and speed of hard disk drives, high precision and low cost are required for processing of the sleeve of the fluid bearing. The conventional hydrodynamic bearing sleeve is processed by first machining a shaft hole 26 in the hydrodynamic bearing sleeve 25 as shown in FIG. 5A, and then forming a groove machining tool shown in FIG. 5B on the inner surface of the shaft hole 26. 27, two sets of dynamic pressure grooves 28 as shown in FIG. This grooving tool 27 is a tool in which a holder 30 holding a plurality of rolling balls 29 on its outer peripheral surface is attached to the tip of a shaft. The circumscribed diameter D of the rolling ball 29 is set to be approximately 10 microns larger than the inner diameter of the shaft hole 26 of the fluid bearing sleeve 25. This grooving tool 27 is inserted into the inner surface of the hydrodynamic bearing sleeve 25 and rotated while being pushed in, and is rotated in the opposite direction in the middle to form half of the first dynamic pressure grooves 28, and then in the same manner. Half of the second dynamic pressure grooves 28 are formed. Then, when the same operation is performed while the grooving tool 27 is pulled out to form the other half of the second and first dynamic pressure grooves 28, the number of the dynamic pressure grooves is twice the number of the rolling balls 29. 28 is formed.
[0004]
Since the inner surface of the hydrodynamic bearing sleeve 25 is pressed by the rolling ball 29 and plastically deformed in the dynamic pressure groove 28 formed in this way, a rolling burr is generated in the vicinity of the dynamic pressure groove 28. For this reason, it is necessary to finish the inner diameter to remove the rolling burrs. In the conventional inner diameter finishing process, a rolling burr is formed by pushing a steel ball 31 larger by about 10 microns than the inner diameter of the fluid bearing sleeve 25 through the shaft hole 26 of the fluid bearing sleeve 25 as shown in FIG. A crushing method was used.
[0005]
[Problems to be solved by the invention]
However, in such a conventional method for finishing the inner diameter of the fluid bearing sleeve 25, when the steel ball 31 is pushed into the shaft hole 26 of the fluid bearing sleeve 25, the opening edge A of the shaft hole 26 is larger than the central portion of the steel ball 31. Therefore, the opening edge A is finished to have a diameter of about 4 microns larger than the inner diameter of the central portion. This level of accuracy degradation is not a problem with fluid bearings used in general equipment, but long-term reliability and high rotational accuracy cannot be maintained with hard disk drives that require higher capacity and higher speed as in recent years. There was a problem.
[0006]
The present invention has been made in view of such conventional problems, and is particularly suitable for a hydrodynamic bearing sleeve of a hard disk drive that requires high capacity and high speed. It is an object to provide a processing tool and a processing apparatus using the processing tool.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a hydrodynamic bearing sleeve inner diameter finishing tool according to the present invention comprises a hydrodynamic groove formed on the inner surface of a hydrodynamic bearing sleeve and then inserted into the hydrodynamic bearing sleeve to finish the inner diameter. In the inner diameter finishing tool, a taper portion serving as a guide when inserted into the fluid bearing sleeve, a centering portion having a circular cross-section for centering the fluid bearing sleeve, a plurality of partial cylindrical surfaces and a plurality of outer peripheral surfaces A non-circular cross-section processed portion having a processing edge for finishing the inner diameter of the fluid bearing sleeve extending in the axial direction at the boundary between the partial cylindrical surface and the non-cylindrical surface.
A groove extending in the axial direction is formed on at least one partial cylindrical surface of the machining portion, and a cutting edge is formed at the boundary between the inclined surface of the groove located on the upstream side in the rotation direction of the machining tool and the partial cylindrical surface. .
[0008]
The machining tool of the present invention is inserted into the fluid bearing sleeve by the guide of the tapered portion at the tip, aligned with the fluid bearing sleeve by the centering portion having a circular cross section, and the burr of the dynamic pressure groove is formed by the machining edge of the processing portion. It is removed and finished with high accuracy and low cost.
[0009]
In addition, the burrs in the hydrodynamic groove of the fluid bearing sleeve are more reliably removed by the cutting blade at the boundary between the inclined surface of the groove and the partial cylindrical surface, and the fluid bearing sleeve is finished with higher accuracy and lower cost. .
[0010]
It is preferred to coat the outer surface with an abrasion resistant material. This wear-resistant material prevents the fluid bearing sleeve material from coming into direct contact with the processing tool during processing, stabilizes the processing accuracy and improves the life of the processing tool.
[0011]
In order to solve the above-mentioned problems, an internal diameter finishing apparatus for a fluid bearing sleeve according to the present invention includes a machining head having a chuck that holds one end of the machining tool, and a machining tool that holds the machining head on the chuck. Lifting unit for lifting and lowering in the axial direction, a work holder for holding the fluid bearing sleeve in the coaxial direction with the processing tool, and a moving unit for moving the work holder in two directions orthogonal to the axial direction of the processing tool held by the chuck And a stopper for restricting the movement of the work holder within a range that allows the machining tool to be inserted into the fluid bearing sleeve held by the work holder.
[0012]
In the machining apparatus of the present invention, even if the fluid bearing sleeve is misaligned or the machining tool is eccentric, the machining tool reliably enters the fluid bearing sleeve with the tapered portion at the tip as a guide. Is prevented from being damaged or deformed. In addition, the fluid bearing sleeve is aligned by a processing tool and is supported movably by a moving unit consisting of a slide bearing at that time. A low cost hydrodynamic bearing sleeve can be obtained stably.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0014]
FIG. 1 (A) shows a first embodiment of an inner diameter finishing tool 1 for a hydrodynamic bearing sleeve of the present invention. The machining tool 1 includes a tapered portion 2, an alignment portion 3, a machining portion 4, and a holding portion 5 from the tip. The taper portion 2 is a portion that serves as a guide when inserted into the hydrodynamic bearing sleeve (see FIG. 6A), and is tapered toward the tip. The aligning portion 3 is a portion that performs centering with respect to the hydrodynamic bearing sleeve, and has a circular cross section that is continuous with the rear end of the tapered portion 2. The processing portion 4 is a portion that finishes the inner diameter of the fluid bearing sleeve, and a plurality of (four in the same embodiment) partial cylindrical surfaces 6 having the same diameter as the alignment portion 3 on the outer peripheral surface, and adjacent partial cylindrical surfaces 6. There are a plurality (four in the same embodiment) of non-cylindrical surfaces 7. When the total length in the circumferential direction of the partial cylindrical surface 6 is 50% or less of the circumscribed circle shown by the two-dot chain line in FIG. 1 (B), good finishing accuracy can be obtained. As shown in FIG. 1B, the non-cylindrical surface 7 is a flat surface, and is formed by cutting a crescent-shaped portion from a circular cross-sectional portion indicated by a one-dot chain line by grinding. A boundary between the partial cylindrical surface 6 and the non-cylindrical surface 7 adjacent to the partial cylindrical surface 7 is a machining edge 8 extending in the axial direction. The diameter of the partial cylindrical surface 6 of the aligning portion 3 and the processed portion 4 is about 2 microns larger than the diameter of the shaft hole of the fluid bearing sleeve. The holding part 5 is a part that is held by a chuck of a processing apparatus to be described later.
[0015]
In order to perform inner diameter finishing for removing the burrs of the dynamic pressure grooves 28 formed on the inner peripheral surface of the shaft hole 26 of the fluid bearing sleeve 25 using this processing tool 1, the processing tool 1 is moved in the direction of the arrow. While being rotated, the taper portion 2 is inserted into the shaft hole 26 of the fluid bearing sleeve 25. Even when there is a misalignment between the machining tool 1 and the shaft hole 26 of the fluid dynamic bearing sleeve 25 during insertion, the edge of the shaft hole 26 is prevented from being damaged by the presence of the tapered portion 2. When the alignment section 3 having a circular cross section enters the shaft hole 26 of the fluid bearing sleeve 25 following the taper section 2, the machining tool 1 is aligned with the shaft hole 26 of the fluid bearing sleeve 25. Next, when the processing portion 4 enters the shaft hole 26 of the fluid bearing sleeve 25, the burrs of the dynamic pressure groove 28 are removed by the processing edge 8 at the boundary between the partial cylindrical surface 6 and the non-cylindrical surface 7 of the processing portion 4. The shaft hole 26 is finished. At this time, since the alignment of the machining tool 1 has already been completed by the alignment section 3, even if the machining tool 1 rotates with some eccentricity, the influence on the machining accuracy of the shaft hole 26 of the fluid bearing sleeve 25 is not affected. Get smaller.
[0016]
FIG. 2A shows an inner diameter finishing tool 9 according to a modification of the first embodiment. In this machining tool 9, as shown in FIG. 2 (B), the non-cylindrical surface 10 of the machining portion 4 is not a flat surface but is formed by a groove having a V-shaped cross section with an opening angle of approximately 90 °, and is formed by electric discharge machining. ing. The diameters of the alignment portion 3 of the machining tool 9 and the partial cylindrical surface 6 of the machining portion 4 are equal to or larger than the diameter of the shaft hole 26 of the fluid bearing sleeve 25 by about 1 micron. Since the machining by the machining tool 9 of this modification is the same as that of the machining tool 1 of the first embodiment described above, description thereof is omitted.
[0017]
FIG. 3A shows a second embodiment of the inner diameter finishing tool 11 of the hydrodynamic bearing sleeve of the present invention. Like the first embodiment, the processing tool 11 includes a tapered portion 2, an alignment portion 3, a processing portion 4, and a holding portion 5 from the tip, and a cutting edge 12 is provided on a partial cylindrical surface 6 of the processing portion 4. Since it is substantially the same as the first embodiment except that it is provided, the corresponding parts are denoted by the same reference numerals and description thereof is omitted. The cutting edge 12 of the partial cylindrical surface 6 forms a groove 13 having a V-shaped cross section in the longitudinal direction of at least one partial cylindrical surface 6 of the four partial cylindrical surfaces 6, so that the machining tool 11 rotates upstream. It is formed at the boundary between the slope of the groove 13 located on the side and the partial cylindrical surface 6. Here, the angle a of the cutting edge 12 is formed larger than the angle b of the machining edge 8 at the boundary surface between the partial cylindrical surface 6 and the non-cylindrical surface 7. The diameters of the aligning portion 3 of the machining tool 11 and the partial cylindrical surface 6 of the machining portion 4 are equal to or larger than the diameter of the shaft hole 26 of the fluid bearing sleeve 25 by about 1 micron.
[0018]
The machining by the machining tool 11 of the second embodiment is the same as that of the inner diameter finishing machining tool 1 of the first embodiment described above, but only the action of the machining part 4 having the cutting blade 12 is different. Explain and omit others. That is, when the processing portion 4 enters the shaft hole 26 of the fluid bearing sleeve 25, the processing edge 8 at the boundary between the partial cylindrical surface 6 and the non-cylindrical surface 7 of the processing portion 4, and the inclined surface of the partial cylindrical surface 6 and the groove 13. The burrs of the dynamic pressure groove 28 are removed by the cutting blade 12 between them. Since the processing edge 8 has a small angle, the processing edge 8 is processed so as to crush the burr. However, since the cutting edge 12 has a large angle, the burr is cut off. As a result, the shaft hole 26 is finished with higher accuracy than in the first embodiment described above.
[0019]
The third embodiment of the inner diameter finishing tool for the hydrodynamic bearing sleeve of the present invention is not shown, but is outside the processing tools 1, 9, and 11 of the first and second embodiments shown in FIGS. The surface is provided with an abrasion resistant coating. The wear-resistant coating can be selected from those generally recommended for cutting and drilling. Specifically, when the material of the processing tool is brass, diamond-like carbon (DLC) is used. In the case of stainless steel, titanium nitride (TiN) is preferred.
[0020]
The machining with the machining tool of the third embodiment is the same as the inner diameter finishing machining tools 1, 9, and 11 of the first embodiment described above, but only the action of the wear-resistant coating is different, so only the action will be described. Others are omitted. In general, the alignment portion 3 and the processing portion 4 that are in contact with the shaft hole 26 of the fluid bearing sleeve 25 at the time of processing are microscopically viewed from the material near the dynamic pressure groove 28 of the fluid bearing sleeve 25 by the processing tool 1.9. .11 is repeatedly adhered and detached, which causes unstable machining accuracy and shortens the life of the machining tools 1, 9 and 11. Therefore, in the machining tool of the third embodiment, the outer surface of the machining tools 1, 9, 11 is coated with an abrasion resistant coating so that the material in the vicinity of the dynamic pressure groove 28 of the fluid bearing sleeve 25 is changed to the machining tools 1, 9. , 11 is prevented from coming into direct contact with adhesion or separation. For this reason, in this 3rd Embodiment, processing accuracy is stabilized and the life of processing tools 1, 9, and 11 improves.
[0021]
FIG. 4 shows an inner diameter finishing apparatus for the shaft hole 26 of the fluid bearing sleeve 25 of the present invention that uses the processing tools 1, 9, and 11 of the above-described embodiments. In a column 15 erected on the base 14, a machining head 17 having a chuck 16 that holds one end of the machining tools 1, 9, 11 can be moved up and down by a lifting unit 20 including a motor 18 and a ball screw 19. Is provided. The base 14 has a moving unit 22 composed of a slide bearing for moving the work holder 21 holding the fluid bearing sleeve 25 in two directions orthogonal to the axial direction of the processing tools 1, 9 and 11 held by the chuck 16. Is provided. Around the moving unit 22 is an annular shape that restricts the movement of the work holder 21 within a range that allows the machining tools 1, 9, 11 to be inserted into the fluid bearing sleeve 25 held by the work holder 21. A stopper 23 is arranged. That is, the alignment amount B of the stopper 23 is set smaller than the taper amount C of the taper portion 2 of the machining tools 1, 9, 11. Further, the machining tools 1, 9, 11 are adjusted and fixed to the chuck 16 so that the deflection amount during rotation of the machining tools 1, 9, 11 is less than the alignment amount B of the stopper 24. Reference numeral 24 denotes a control device that controls the machining head 17 and the elevating unit 20, and rotates and stops the machining tool, raises and lowers the machining head 17, and further adjusts its speed.
[0022]
Next, the operation of the processing apparatus having the above-described configuration will be described. The fluid bearing sleeve 25 in which the shaft hole 26 and the dynamic pressure groove 28 are already processed in a separate process is attached to the work holder 21, and the chuck 16 of the processing head 17. The processing tools 1, 9, 11 are held. The machining head 17 is lowered while the machining tools 1.9 and 11 are rotated, and is inserted into the fluid bearing sleeve 25. At this time, even if the fluid bearing sleeve 25 is misaligned or the machining tools 1, 9, 11 are eccentric, the machining tools 1, 9, 11 are surely guided by the tapered portion 2 at the tip to ensure fluid bearing sleeves. Thus, the fluid bearing sleeve 25 is prevented from being damaged or deformed. Next, by lowering the machining head 17 by a predetermined amount, the rolling burrs of the fluid bearing sleeve 25 are removed and finished as described above. Even when the machining tools 1, 9, and 11 are shaken during the machining, the runout amount is smaller than the alignment amount B of the stopper 23, so that the fluid bearing sleeve 25 can freely move within the range of the alignment amount B. Can move. Since the fluid bearing sleeve 25 is aligned by the processing tools 1, 9, and 11 and is supported by the moving unit 20 comprising a slide bearing at that time, the inner diameter finishing accuracy is reduced due to factors of the processing apparatus. Therefore, the fluid bearing sleeve 25 with high accuracy and low cost can be stably obtained.
[0023]
【The invention's effect】
As is apparent from the above description, according to the inner diameter finishing tool for a hydrodynamic bearing sleeve of the present invention, a tapered section that serves as a guide when inserted into the hydrodynamic bearing sleeve and a circular cross-section that performs centering with respect to the hydrodynamic bearing sleeve. The alignment portion has a plurality of partial cylindrical surfaces and a plurality of non-cylindrical surfaces on the outer peripheral surface, and has a machining edge for finishing the inner diameter of the hydrodynamic bearing sleeve extending in the axial direction at the boundary between the partial cylindrical surface and the non-cylindrical surface. A groove having a non-circular cross section, wherein a groove extending in the axial direction is formed on at least one partial cylindrical surface of the processed portion, and the boundary between the inclined surface of the groove located on the upstream side in the rotation direction of the processing tool and the partial cylindrical surface cut since the formation of the blade is inserted into the fluid bearing sleeve guide of the tapered portion of the tip, the core adjusted to the fluid bearing sleeve by alignment of the circular cross-section, the working edge of the working portion Bali grooves is removed, with high accuracy, and is finished at a low cost.
[0024]
In addition , the burrs in the hydrodynamic groove of the fluid bearing sleeve are more reliably removed by the cutting blade at the boundary between the inclined surface of the groove and the partial cylindrical surface, and the fluid bearing sleeve is finished with higher accuracy and lower cost. .
[0025]
Further, since the outer surface is coated with the wear-resistant material, the material of the fluid bearing sleeve is prevented from coming into direct contact with the processing tool during processing, the processing accuracy is stabilized, and the life of the processing tool is improved.
[0026]
According to the fluid bearing sleeve inner diameter finishing apparatus according to the present invention, the machining head provided with the chuck for holding one end of the machining tool, and the movement for moving the machining head in the axial direction of the machining tool held by the chuck. A unit, a work holder that holds the fluid bearing sleeve in the same direction as the machining tool, a moving unit that moves the work holder in two directions perpendicular to the axial direction of the machining tool held by the chuck, and the work holder. Since it includes a stopper that restricts the movement of the work holder within a range that allows the machining tool to be inserted into the fluid bearing sleeve, the machining tool can be used even if the fluid bearing sleeve is misaligned or the machining tool is eccentric. Is surely entered into the hydrodynamic bearing sleeve with the tapered portion at the tip as a guide, and damage and deformation of the hydrodynamic bearing sleeve are prevented. In addition, the fluid bearing sleeve is aligned by a processing tool and is supported movably by a moving unit consisting of a slide bearing at that time. A low cost hydrodynamic bearing sleeve can be obtained stably.
[Brief description of the drawings]
FIG. 1A is a front view of a first embodiment of an inner diameter finishing tool for a hydrodynamic bearing sleeve of the present invention, and FIG. 1B is a cross-sectional view taken along line II of FIG.
FIG. 2A is a front view of a modified example of the first embodiment of the inner diameter finishing tool for a hydrodynamic bearing sleeve of the present invention, and FIG. 2B is a sectional view taken along line II-II in FIG.
3A is a front view of a second embodiment of an inner diameter finishing tool for a hydrodynamic bearing sleeve of the present invention, and FIG. 3B is a sectional view taken along line III-III in FIG.
FIG. 4 is a side view of the hydrodynamic bearing sleeve inner diameter finishing apparatus of the present invention.
5A is a cross-sectional view of a fluid processing bearing before dynamic pressure groove machining, and FIG. 5B is a partial cross-sectional side view of the dynamic pressure groove machining tool.
6A is a cross-sectional view after hydrodynamic groove machining of a fluid machining bearing, and FIG. 6B is a side view of a conventional inner diameter finishing tool.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Processing tool 2 Tapered part 3 Alignment part 4 Processing part 6 Partial cylinder 7 Non-cylindrical surface 8 Processing edge 9 Processing tool 10 Non-cylindrical surface 12 Cutting blade 13 Groove 16 Chuck 17 Processing head 20 Lifting unit 21 Work holder 22 Moving unit 23 Stopper 25 Fluid bearing sleeve 28 Dynamic pressure groove

Claims (4)

流体軸受スリーブの内面に動圧溝を形成した後、当該流体軸受スリーブに挿入して内径を仕上げる流体軸受スリーブの内径仕上げ加工工具において、前記流体軸受スリーブに挿入するときのガイドとなるテーパ部と、前記流体軸受スリーブに対する芯出しを行う円形断面の調芯部と、外周面に複数の部分円筒面と複数の非円筒面を有するとともに当該部分円筒面と非円筒面の境界に軸方向に延びる前記流体軸受スリーブの内径を仕上げるための加工エッジを有する非円形断面の加工部とからなり、
前記加工部の少なくとも1つの部分円筒面に、軸方向に延びる溝を形成し、前記加工工具の回転方向の上流側に位置する前記溝の斜面と前記部分円筒面の境界に切り刃を形成したことを特徴とする流体軸受スリーブの内径仕上げ加工工具。
A hydrodynamic bearing sleeve inner diameter finishing tool for forming a hydrodynamic groove on the inner surface of the fluid bearing sleeve and then inserting the fluid bearing sleeve to finish the inner diameter, and a taper portion serving as a guide for insertion into the fluid bearing sleeve; A center section having a circular cross-section for centering the fluid bearing sleeve, a plurality of partial cylindrical surfaces and a plurality of non-cylindrical surfaces on the outer peripheral surface, and extending in the axial direction at the boundary between the partial cylindrical surface and the non-cylindrical surface A non-circular cross-section processed portion having a processing edge for finishing the inner diameter of the fluid bearing sleeve,
A groove extending in the axial direction is formed on at least one partial cylindrical surface of the machining portion, and a cutting edge is formed at the boundary between the inclined surface of the groove located on the upstream side in the rotation direction of the machining tool and the partial cylindrical surface. An inner diameter finishing tool for a hydrodynamic bearing sleeve.
前記切り刃の角度は前記加工エッジの角度よりも大きく形成したことを特徴とする請求項1に記載の流体軸受スリーブの内径仕上げ加工工具。 2. The hydrodynamic bearing sleeve inner diameter finishing tool according to claim 1, wherein an angle of the cutting edge is formed larger than an angle of the machining edge . 耐摩耗性材料で外表面を被覆したことを特徴とする請求項1または2に記載の流体軸受スリーブの内径仕上げ加工工具。  3. The inner diameter finishing tool for a hydrodynamic bearing sleeve according to claim 1, wherein an outer surface is coated with a wear-resistant material. 前記請求項1から3のいずれかに記載の加工工具の一端を保持するチャックを備えた加工ヘッドと、該加工ヘッドを前記チャックに保持した加工工具の軸方向に昇降させる昇降ユニットと、流体軸受スリーブを前記加工工具と同軸方向に保持するワークホルダと、該ワークホルダを前記チャックに保持した加工工具の軸方向と直交する2方向に移動させる移動ユニットと、前記ワークホルダに保持された流体軸受スリーブへの前記加工工具の挿入を許容する範囲内に前記ワークホルダの移動を規制するストッパとからなることを特徴とする流体軸受スリーブの内径仕上げ加工装置。  A machining head comprising a chuck for holding one end of the machining tool according to any one of claims 1 to 3, a lifting unit for raising and lowering the machining head in the axial direction of the machining tool held by the chuck, and a fluid bearing A work holder for holding a sleeve in the same direction as the machining tool, a moving unit for moving the work holder in two directions orthogonal to the axial direction of the machining tool held by the chuck, and a fluid bearing held by the work holder An apparatus for finishing an inner diameter of a hydrodynamic bearing sleeve, comprising: a stopper for restricting movement of the work holder within a range allowing insertion of the processing tool into the sleeve.
JP2001177168A 2001-06-12 2001-06-12 Inside diameter finishing tool for hydrodynamic bearing sleeve and machining apparatus using the same Expired - Fee Related JP4688347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001177168A JP4688347B2 (en) 2001-06-12 2001-06-12 Inside diameter finishing tool for hydrodynamic bearing sleeve and machining apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001177168A JP4688347B2 (en) 2001-06-12 2001-06-12 Inside diameter finishing tool for hydrodynamic bearing sleeve and machining apparatus using the same

Publications (2)

Publication Number Publication Date
JP2002370125A JP2002370125A (en) 2002-12-24
JP4688347B2 true JP4688347B2 (en) 2011-05-25

Family

ID=19018052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001177168A Expired - Fee Related JP4688347B2 (en) 2001-06-12 2001-06-12 Inside diameter finishing tool for hydrodynamic bearing sleeve and machining apparatus using the same

Country Status (1)

Country Link
JP (1) JP4688347B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862960B2 (en) * 2012-12-17 2016-02-16 株式会社デンソー Deburring method and burr removing device for workpiece

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031717U (en) * 1989-05-31 1991-01-09
JPH0451334U (en) * 1990-09-10 1992-04-30

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031717U (en) * 1989-05-31 1991-01-09
JPH0451334U (en) * 1990-09-10 1992-04-30

Also Published As

Publication number Publication date
JP2002370125A (en) 2002-12-24

Similar Documents

Publication Publication Date Title
US5339523A (en) Method of machining sleeve bearing
JP4575899B2 (en) Dimple forming burnishing tool and machining method
KR20110020866A (en) Bearing roller, bearing, and bearing roller processing method
US5758421A (en) Method for manufacturing fluid bearing
CN109789495B (en) Cutting tool for removing drill burrs
JP4688347B2 (en) Inside diameter finishing tool for hydrodynamic bearing sleeve and machining apparatus using the same
CN1347780A (en) Centring device and machine tool with the same centring device
US20010025420A1 (en) Working tool for manufacturing bearing member, manufacturing apparatus incorporating the same and manufacturing method using the same
CN112621111B (en) Processing method of large-diameter conical core rod with holes
US7251975B2 (en) Manufacturing tool for fluid dynamic bearing
JP4330277B2 (en) Rotating guide bush
JP5308209B2 (en) Taper hole grinding
JP4117082B2 (en) Cross hole deburring method and apparatus
US20190054591A1 (en) Roller burnishing tool
CN114905348B (en) Rolling friction female center
US5946958A (en) Device for manufacturing a groove bearing
JP2000107947A (en) Cylindrical surface machining device, bearing bore machining device and structure with cylindrical hole
US20020023635A1 (en) Method of forming a base body for a diamond bit
JPH06143128A (en) Roller burnishing device
US5901545A (en) Shaft for an open-end spinning rotor and method of making same
JP2012086306A (en) Method for machining inner surface of cylinder
JP2000312943A (en) Method and device for manufacturing workpiece having cylindrical face, and method and device for manufacturing dynamic pressure groove of fluid bearing
RU2388579C2 (en) Multi-blade cutting tool for draw boring of roll stock inner hole
KR100433945B1 (en) Manufacturing Device and Method for Ball-Pen Tip
JP2003039244A (en) Method for manufacturing small diameter part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees