JP4686975B2 - Multilayer piezoelectric element and manufacturing method thereof - Google Patents

Multilayer piezoelectric element and manufacturing method thereof Download PDF

Info

Publication number
JP4686975B2
JP4686975B2 JP2003419829A JP2003419829A JP4686975B2 JP 4686975 B2 JP4686975 B2 JP 4686975B2 JP 2003419829 A JP2003419829 A JP 2003419829A JP 2003419829 A JP2003419829 A JP 2003419829A JP 4686975 B2 JP4686975 B2 JP 4686975B2
Authority
JP
Japan
Prior art keywords
polarization
electric field
domain
piezoelectric element
internal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003419829A
Other languages
Japanese (ja)
Other versions
JP2005123554A (en
Inventor
智 進藤
宏一 林
陽 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003419829A priority Critical patent/JP4686975B2/en
Publication of JP2005123554A publication Critical patent/JP2005123554A/en
Application granted granted Critical
Publication of JP4686975B2 publication Critical patent/JP4686975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、積層型圧電アクチュエータ等の積層型圧電素子とその製造方法に関する。   The present invention relates to a multilayer piezoelectric element such as a multilayer piezoelectric actuator and a manufacturing method thereof.

図3に、従来からある一般的な積層型圧電アクチュエータ1の模式図を示す。   FIG. 3 shows a schematic diagram of a conventional general laminated piezoelectric actuator 1.

図3において、10は積層体であり、圧電体セラミックス層11と、内部電極層12とを交互に積層して形成されている。内部電極層12は、積層体10の両側面に設けた異なる極性の外部電極13に交互に接続されている。また、積層体10の上下面(積層方向両端面)は、駆動させる対象物との接点となるため、保護層14が設けられている。そして、異なる極性の外部電極13に接続された各内部電極層12が互いに重なり合った部分が活性部Aとなり、活性部Aの周囲において極性の異なる内部電極層12どうしの絶縁性を確保するための部分が不活性部Bとなる。   In FIG. 3, reference numeral 10 denotes a laminate, which is formed by alternately laminating piezoelectric ceramic layers 11 and internal electrode layers 12. The internal electrode layers 12 are alternately connected to external electrodes 13 having different polarities provided on both side surfaces of the laminate 10. Moreover, since the upper and lower surfaces (both end surfaces in the stacking direction) of the laminate 10 are in contact with an object to be driven, a protective layer 14 is provided. A portion where the internal electrode layers 12 connected to the external electrodes 13 having different polarities are overlapped with each other is an active portion A, and the insulation between the internal electrode layers 12 having different polarities around the active portion A is ensured. The part becomes the inactive part B.

不活性部Bや保護層14は、圧電材料で構成されているが、電界がほとんどかからないため、分極時や圧電駆動時にひずみを生じることはない。これに対し、活性部Aでは電界がかかってひずみが発生する。このため、分極時や圧電駆動時に、ひずみが生じる活性部Aと、ひずみが生じない不活性部Bや保護層14との間のひずみ差から応力が発生し、積層型圧電アクチュエータ1に割れが発生する。   The inactive portion B and the protective layer 14 are made of a piezoelectric material, but since an electric field is hardly applied, no distortion occurs during polarization or piezoelectric driving. On the other hand, in the active part A, an electric field is applied and distortion occurs. For this reason, stress is generated from the strain difference between the active portion A where the strain occurs and the inactive portion B where the strain does not occur and the protective layer 14 during polarization and piezoelectric driving, and the multilayer piezoelectric actuator 1 is cracked. appear.

図10に、積層型圧電アクチュエータ1に割れが発生した状態を示す。特に、積層型圧電アクチュエータ1の高さ寸法Tが4mm以上になると、割れが発生し易くなる。高さ寸法Tが7mm,30mmの積層型圧電アクチュエータ1を用いて実際に分極を行ったところ、いずれの場合も割れが発生した。   FIG. 10 shows a state in which the multilayer piezoelectric actuator 1 is cracked. In particular, when the height dimension T of the multilayer piezoelectric actuator 1 is 4 mm or more, cracks are likely to occur. When polarization was actually performed using the laminated piezoelectric actuator 1 having a height dimension T of 7 mm and 30 mm, cracks occurred in any case.

そこで、分極時に、不活性部Bや保護層14をも分極させてひずみを発生させることにより、活性部Aと、不活性部Bや保護層14との間に生じていたひずみ差を解消し、応力が発生せず、割れを防ぐことができる。   Therefore, at the time of polarization, the inactive portion B and the protective layer 14 are also polarized to generate strain, thereby eliminating the strain difference generated between the active portion A and the inactive portion B and the protective layer 14. No stress is generated and cracking can be prevented.

図11,12に、従来からある積層型圧電アクチュエータ1の製造方法を示す(特許文献1,2参照)。   11 and 12 show a conventional method for manufacturing a laminated piezoelectric actuator 1 (see Patent Documents 1 and 2).

図11に示すように、積層体10の上下面全体に電極20を設け、活性部A以外の場所にも電界が加わるようにすることで、活性部Aと同時に不活性部Bや保護層14を分極する。その後、図12に示すように、上下面の電極20を除去し、積層方向に直交する方向の側面に外部電極13を形成し、再度層間の分極を行なう。層間分極時には、積層型圧電アクチュエータ1内の圧電体層の半分は電界と逆方向に分極されているため、一旦収縮してから抗電界を越えたところで反転し、アクチュエータ全体で分極の向きが揃う。この際、伸びる部分と収縮する部分は同量であるため互いに打ち消しあい、全体としてひずみは生せず、活性部Aと、不活性部Bや保護層14との間に応力が発生せず、割れを防止できる。   As shown in FIG. 11, the electrodes 20 are provided on the entire upper and lower surfaces of the laminate 10 so that an electric field is applied to a place other than the active part A, so that the inactive part B and the protective layer 14 are simultaneously formed with the active part A. Is polarized. Thereafter, as shown in FIG. 12, the upper and lower electrodes 20 are removed, the external electrode 13 is formed on the side surface in the direction orthogonal to the stacking direction, and interlayer polarization is performed again. At the time of interlayer polarization, half of the piezoelectric layer in the multilayer piezoelectric actuator 1 is polarized in the direction opposite to the electric field. Therefore, once it contracts, it reverses when it exceeds the coercive electric field, and the direction of polarization is uniform throughout the actuator. . At this time, since the stretched part and the shrinking part are the same amount, they cancel each other, no strain is generated as a whole, no stress is generated between the active part A and the inactive part B or the protective layer 14, Breaking can be prevented.

具体的には、高さ寸法Tが7mmの積層型圧電アクチュエータ1を用い、上下面にAgペーストを塗布し、800℃にて焼付けて電極20を形成し、絶縁油中にて全体分極(印加電圧は10kV,電界強度は2.0kV/mm)を行った。その後、上下面の電極20をサンドペーパにて削り取り、側面に室温下にてスパッタリング成膜によりAg電極膜を形成することにより、外部電極13を作製し、電界による分極を行った。その結果、割れが発生しなかった。
特開平9−266332号 特開2000−133852号
Specifically, using the laminated piezoelectric actuator 1 having a height T of 7 mm, Ag paste is applied to the upper and lower surfaces, and baked at 800 ° C. to form the electrode 20. The voltage was 10 kV and the electric field strength was 2.0 kV / mm). Thereafter, the upper and lower electrodes 20 were scraped with sandpaper, and an Ag electrode film was formed on the side surfaces by sputtering film formation at room temperature, whereby the external electrode 13 was produced and polarized by an electric field. As a result, no cracks occurred.
JP-A-9-266332 JP 2000-133852 A

しかし、図11,12に示した積層型圧電アクチュエータ1の製造方法では、圧電体セラミックスを分極するために2kV/mmの電界が必要であり、高さ寸法(積層方向の長さ寸法)Tの大きな積層型圧電アクチュエータ1では、積層型圧電アクチュエータ1全体を分極するために数10kVの電圧を要する。例えば、積層型圧電アクチュエータ1の高さ寸法Tが30mmの場合では、60kVの電圧が必要となる。そのため専用の電源が必要になり、さらに分極時の絶縁油に要する耐電圧も高いものが要求され、絶縁性を維持するために使用期間も短くなりコスト高になるという問題があった。   However, in the manufacturing method of the multilayer piezoelectric actuator 1 shown in FIGS. 11 and 12, an electric field of 2 kV / mm is required to polarize the piezoelectric ceramic, and the height dimension (length dimension in the stacking direction) T is required. In the large multilayer piezoelectric actuator 1, a voltage of several tens of kV is required to polarize the entire multilayer piezoelectric actuator 1. For example, when the height dimension T of the multilayer piezoelectric actuator 1 is 30 mm, a voltage of 60 kV is required. Therefore, a dedicated power source is required, and further, a high withstand voltage required for the insulating oil during polarization is required, and there is a problem in that the use period is shortened and the cost is increased in order to maintain the insulation.

また、積層型圧電アクチュエータ1全体を分極するために上下面に電極20を取り付け、さらにこれらを取り除いて、再度、側面に外部電極13を取り付ける工程が必要となり、製造工程が複雑でコスト高になるという問題があった。   Moreover, in order to polarize the whole laminated piezoelectric actuator 1, the process which attaches the electrode 20 to an upper and lower surface, removes these, and attaches the external electrode 13 to a side again is required, and a manufacturing process is complicated and becomes high-cost. There was a problem.

さらに、側面に外部電極13を取り付ける際に、温度を圧電材料のキュリー温度以上に高くすると、図11に示す工程にて全体に施した分極が除去されてしまう。このため、処理温度を高くして、外部電極13の密着性を高くすることができないという問題があった。   Further, when the external electrode 13 is attached to the side surface, if the temperature is set higher than the Curie temperature of the piezoelectric material, the polarization applied to the whole in the step shown in FIG. 11 is removed. For this reason, there has been a problem that the treatment temperature cannot be increased to increase the adhesion of the external electrode 13.

本発明は、分極時に高い電圧をかける必要がなく低コストで容易に全体配向でき、分極処理時の内部応力を防いで積層型圧電素子に生じる割れを防止でき、しかも製造工程が簡単で安価であり、かつ、外部電極の密着性を高くすることができる積層型圧電素子とその製造方法を提供することを目的とする。   The present invention does not require a high voltage during polarization, can be easily oriented at low cost, prevents internal stress during polarization treatment, prevents cracks in the multilayer piezoelectric element, and is simple and inexpensive in the manufacturing process. It is another object of the present invention to provide a laminated piezoelectric element that can enhance the adhesion of external electrodes and a method for manufacturing the same.

本発明の積層型圧電素子の製造方法は、圧電体セラミックス層と内部電極層とを積層してなり、異なる極性の内部電極層の間に位置する活性部と、前記活性部の周囲に存在する不活性部とを有する積層体を得る工程と、前記積層体の積層方向に直交する方向の側面全周から一様な圧縮応力を加え、前記積層体を積層方向に伸長させて、積層体全体のドメインの向きを積層方向の上下いずれかの方向に配向する工程と、前記内部電極層を介し前記積層体に電界を印加して前記活性部を分極する工程と、を含むものである。 The manufacturing method of the multilayer piezoelectric element of the present invention is formed by laminating a piezoelectric ceramic layer and an internal electrode layer, and is present around an active portion located between internal electrode layers of different polarities. The step of obtaining a laminate having an inactive part, and applying a uniform compressive stress from the entire side surface in the direction orthogonal to the laminate direction of the laminate, and extending the laminate in the laminate direction, The step of orienting the direction of the domain in any direction above or below the stacking direction and the step of applying an electric field to the stack through the internal electrode layer to polarize the active part.

前記電界方向は、例えば、前記積層体の積層方向となる。   The electric field direction is, for example, the stacking direction of the stacked body.

なお、前記積層体の積層方向に直交する方向の側面上に導電ペーストを焼き付けて極性の異なる一対の外部電極を形成し、前記内部電極層が異なる極性の外部電極に交互に接続される。   A pair of external electrodes having different polarities are formed by baking a conductive paste on a side surface in a direction orthogonal to the stacking direction of the stacked body, and the internal electrode layers are alternately connected to external electrodes having different polarities.

前記積層体の積層方向の全長は、4mm以上である。   The total length of the laminate in the stacking direction is 4 mm or more.

前記積層体を積層方向に伸長させるには、前記積層体の積層方向に直交する方向の側面全周から一様な圧縮応力を加える。   In order to extend the laminated body in the laminating direction, a uniform compressive stress is applied from the entire side surface in the direction orthogonal to the laminating direction of the laminated body.

本発明の積層型圧電素子の製造方法は、好ましくは、分極する工程より後の工程において、前記分極方向とは逆方向に抗電界以上の電界を前記活性部に加えて前記分極方向を反転させる工程を有する。   In the manufacturing method of the multilayer piezoelectric element of the present invention, preferably, in a step after the polarization step, an electric field higher than a coercive electric field is applied to the active portion in a direction opposite to the polarization direction to reverse the polarization direction. Process.

本発明の積層型圧電素子は、焦電性を有する圧電体セラミックス層と内部電極層とを積層してなり、異なる極性の内部電極の間に位置する活性部と、前記活性部の周囲に存在する不活性部とを有した積層体と、前記積層体の積層方向に直交する側面上に導電ペーストを焼き付けて形成され、前記内部電極層が交互に接続される極性の異なる一対の外部電極と、を備えた積層型圧電素子であって、前記積層体全体を内部電極層間で印加される電界方向に沿って略配向し、かつ、前記電界方向に沿う方向において相反する方向にドメインの向きが配向された領域が前記不活性部に同時に存在し、前記電界方向に沿ったドメインの配向率が前記不活性部より低く前記活性部に存在しているものである。 The multilayer piezoelectric element of the present invention is formed by laminating a piezoelectric ceramic layer having pyroelectricity and an internal electrode layer, and is present around an active portion located between internal electrodes of different polarities. And a pair of external electrodes having different polarities formed by baking a conductive paste on a side surface perpendicular to the stacking direction of the stacked body, the internal electrode layers being alternately connected, Wherein the entire multilayer body is substantially oriented along the direction of the electric field applied between the internal electrode layers, and the orientation of the domains is opposite to the direction along the direction of the electric field. An aligned region is present simultaneously in the inactive portion, and a domain orientation ratio along the electric field direction is lower than that of the inactive portion and is present in the active portion .

本発明の積層型圧電素子とその製造方法によると、積層体の側面から圧縮応力を加えることで、積層体を異なる極性の内部電極層間で印加される電界方向に伸長させて、積層体全体のドメインの向きを略電界方向に配向させるので、内部電極層を介し積層体に電界を印加して活性部を分極する際に、活性部と不活性部との間でひずみ差が発生せず、内部応力を防ぎ、分極時や長時間の圧電駆動時における積層型圧電素子に割れが発生するのを防止できる。   According to the multilayer piezoelectric element and the manufacturing method thereof of the present invention, by applying compressive stress from the side surface of the multilayer body, the multilayer body is extended in the direction of the electric field applied between the internal electrode layers of different polarities. Since the orientation of the domain is substantially aligned in the electric field direction, when applying an electric field to the laminate through the internal electrode layer to polarize the active part, no strain difference occurs between the active part and the inactive part, Internal stress can be prevented, and cracks can be prevented from occurring in the laminated piezoelectric element during polarization or during long-time piezoelectric driving.

特に、積層方向の長さ寸法が大きい積層型圧電素子にて有効である。例えば、積層方向の長さ寸法Tが4mm以上のものは、全体分極ならびに層間分極をともに電界印加で行った場合、層間分極時に活性部と不活性部とにかかる応力の差が、一般的な圧電セラミックス(PZT)が有する引張強度である30〜40MPaを越えてしまい、割れることがある。これに対し、積層体の側面から圧縮応力を加えて全体分極を行った場合、このような割れは生じない。   In particular, it is effective in a laminated piezoelectric element having a large length dimension in the lamination direction. For example, when the length dimension T in the stacking direction is 4 mm or more, when the entire polarization and the interlayer polarization are both performed by applying an electric field, the difference in stress applied to the active part and the inactive part during the interlayer polarization is generally The tensile strength of piezoelectric ceramics (PZT), which exceeds 30 to 40 MPa, may break. On the other hand, when the entire polarization is performed by applying a compressive stress from the side surface of the laminate, such a crack does not occur.

しかも、積層体の側面から圧縮応力を加え、機械的に分極させるので、分極時に高い電圧をかける必要がなく低コストで容易に全体配向できる。特に、積層方向の長さ寸法が大きいものであっても電界をかける必要がないので、高電圧設備を必要とせず、分極処理には従来からある分極用の設備で足り、低コストで容易に全体配向できる。   In addition, since compressive stress is applied from the side surface of the laminate to cause mechanical polarization, it is not necessary to apply a high voltage during polarization, and the entire orientation can be easily achieved at low cost. In particular, even if the length in the stacking direction is large, it is not necessary to apply an electric field, so no high-voltage equipment is required, and conventional polarization equipment is sufficient for the polarization treatment, and it is easy and inexpensive. Overall orientation is possible.

また、積層体の側面から圧縮応力を加えて全体分極を行うので、最終的に取り除く全体分極用の電極を形成する必要がなく、全体分極用電極の形成や除去工程が不要となり、製造が簡単で安価である。   In addition, since the entire polarization is performed by applying compressive stress from the side surface of the laminate, there is no need to form an electrode for the entire polarization that is finally removed, and there is no need to form and remove the electrode for the entire polarization, thereby simplifying the manufacture. And cheap.

また、積層体の積層方向に直交する方向の側面上に、導電ペーストを高温にて焼き付けて外部電極を形成した状態で、積層体の側面から圧縮応力を加えて全体分極するので、外部電極の密着性を十分に高くすることができる。   In addition, the conductive paste is baked at a high temperature on the side surface in the direction perpendicular to the stacking direction of the multilayer body, and the entire electrode is polarized by applying compressive stress from the side surface of the multilayer body. Adhesion can be sufficiently increased.

さらに、不活性部の分極方向は活性部の分極方向と平行であるが、一方向に揃っているわけではないので、温度変化によって内部電極面に焦電荷が生じても、向きの異なるドメイン間で打ち消し合って電流が発生せず、不活性部の分極が低下して収縮することはない。よって、内部電極に生じる焦電荷に起因するクラックの発生を防止することができる。   In addition, the polarization direction of the inactive part is parallel to the polarization direction of the active part, but it is not aligned in one direction. In this case, the currents are canceled and no current is generated, and the polarization of the inactive portion is not lowered and contracted. Therefore, it is possible to prevent the occurrence of cracks due to the pyroelectric charge generated in the internal electrode.

積層型圧電素子を製造するのに、分極する工程より後の工程において、分極方向とは逆方向に抗電界以上の電界を活性部に加えて分極方向を反転させることにより、不活性部のドメインの向きが先の配向工程により内部電極間で印加される電界方向に配向したものとなっている状態で保持しつつ、活性部に90°ドメインの配向成分が増した結晶を増やすことになり、駆動電圧を印加したときの圧電素子の伸び率が、この分極反転処理を行っていないものに比べても大きなものとなる。   In manufacturing a laminated piezoelectric element, in the process after the polarization process, an electric field equal to or greater than the coercive electric field is applied to the active part in a direction opposite to the polarization direction, thereby reversing the polarization direction. While maintaining the state in which the orientation is oriented in the direction of the electric field applied between the internal electrodes by the previous orientation process, the active part will increase the number of crystals with an increased orientation component of 90 ° domain, The elongation percentage of the piezoelectric element when the drive voltage is applied is larger than that of the piezoelectric element not subjected to the polarization inversion process.

本発明の積層型圧電素子とその製造方法によれば、分極時に高い電圧をかける必要がなく低コストで容易に全体配向でき、分極処理時の内部応力を防いで積層型圧電素子に生じる割れを防止でき、しかも製造工程が簡単で安価であり、かつ、外部電極の密着性を高くすることができるという効果が得られる。   According to the multilayer piezoelectric element and the manufacturing method thereof of the present invention, it is not necessary to apply a high voltage at the time of polarization, it can be easily oriented at low cost, and the internal piezoelectric stress during the polarization process can be prevented to prevent cracks occurring in the multilayer piezoelectric element. In addition, the manufacturing process is simple and inexpensive, and the adhesion of the external electrode can be increased.

本発明の実施の態様を図1および図2に基づいて説明する。   An embodiment of the present invention will be described with reference to FIGS.

図1は積層型圧電アクチュエータを機械的に分極処理する際の模式図、図2は積層型圧電アクチュエータの層間を電界により分極処理する際の模式図である。   FIG. 1 is a schematic diagram when a multilayer piezoelectric actuator is mechanically polarized, and FIG. 2 is a schematic diagram when the layers of the multilayer piezoelectric actuator are polarized by an electric field.

なお、積層型圧電アクチュエータ1の構造は図3に示した例と同様である。   The structure of the multilayer piezoelectric actuator 1 is the same as the example shown in FIG.

積層型圧電アクチュエータ1について説明する。   The laminated piezoelectric actuator 1 will be described.

まず、圧電材料がPZT(チタン酸ジルコン酸鉛)の粉末からなる圧電体セラミックス層11を構成するグリーンシート上に、AgPd粉を含む内部電極層12となる導電ペーストを印刷する。導電ペーストの印刷パターンは、複数のグリーンシートを積み重ねて積層体10を構成した際に、積層体10の積層方向に直交する方向にて対向する一対の側面から電極端部を交互に取り出せるような形状とする。また、電極端部の取り出し位置は、対角など他の場所でもよいが、絶縁性を確保するための不活性部Bを構成するギャップGが必要である。   First, a conductive paste to be the internal electrode layer 12 containing AgPd powder is printed on a green sheet constituting the piezoelectric ceramic layer 11 whose piezoelectric material is made of PZT (lead zirconate titanate) powder. The printed pattern of the conductive paste is such that when a plurality of green sheets are stacked to form the laminate 10, the electrode end portions can be alternately taken out from a pair of side surfaces opposed in a direction orthogonal to the lamination direction of the laminate 10. Shape. Further, the electrode end portion may be taken out at another location such as a diagonal, but a gap G that constitutes an inactive portion B for ensuring insulation is required.

次に、焼成後に高さ寸法Tが30mmになるように印刷済みグリーンシートを積み重ねた後、積層方向両端面から圧力をかけて圧着する。さらに、焼成後の積層方向に直交する断面形状が10mm×10mmの正方形になるようにダイシング加工して切断する。そして、脱脂処理(300℃×20時間)および焼成処理(1100℃×5時間)を行う。   Next, after printing, the printed green sheets are stacked so that the height dimension T becomes 30 mm after firing, and then pressure is applied from both end surfaces in the stacking direction. Further, it is cut by dicing so that the cross-sectional shape perpendicular to the laminating direction after firing becomes a square of 10 mm × 10 mm. And a degreasing process (300 degreeC x 20 hours) and a baking process (1100 degreeC x 5 hours) are performed.

なお、圧電材料はPZT以外の圧電性セラミックスでもよく、導電ペーストもAgやCu等の他の導電材料でもよい。また、積層型圧電アクチュエータ1の高さ寸法Tを大きくするために、高さの低い焼成済み積層体を積み重ねて接着してもよい。   The piezoelectric material may be a piezoelectric ceramic other than PZT, and the conductive paste may be another conductive material such as Ag or Cu. In addition, in order to increase the height dimension T of the multilayer piezoelectric actuator 1, low-height fired laminates may be stacked and bonded.

次に、積層体10の電極を取り出した側面に外部電極13を取り付ける。すなわち、積層体10の対向する一対の側面にそれぞれAgペーストを印刷し、850℃で焼き付ける。外部電極13の取り付けは、スパッタ成膜や蒸着等の十分に密着性が得られる方法にて行なってもよい。以上のようにして、積層型圧電アクチュエータ1が作製される。   Next, the external electrode 13 is attached to the side surface from which the electrode of the laminate 10 is taken out. That is, an Ag paste is printed on each of a pair of opposing side surfaces of the laminate 10 and baked at 850 ° C. The attachment of the external electrode 13 may be performed by a method that provides sufficient adhesion such as sputtering film formation or vapor deposition. The multilayer piezoelectric actuator 1 is manufactured as described above.

次に、分極処理について説明する。   Next, the polarization process will be described.

図1を用いて、機械的に平行な全体分極を発生させる工程について説明する。   A process of generating mechanically parallel global polarization will be described with reference to FIG.

積層型圧電アクチュエータ1を金型15に収納し、緩衝材のゴム16を介して静水圧処理(60℃、190MPaの容器内に600秒投入)する。金型15には、積層型圧電アクチュエータ1の高さ方向からの圧力を防げる構造のものを使用し、分極させたい方向には力を加えず、その方向と直交する方向のみに圧縮応力を加える。すなわち、積層型圧電アクチュエータ1の上下面の保護層14と金型15との間には、それぞれ隙間17が形成されており、積層型圧電アクチュエータ1が上下方向に伸長するのを妨げないように構成されている。また、圧縮時の温度は、室温からキュリー温度未満であればよい。なお、静水圧処理であれば積層型圧電アクチュエータ1の側面から2方向同時に圧縮応力を加えることができ効果的であるが、剛体プレス等を用いた1方向からの圧縮応力を1回あるいは方向を変えて複数回行ってもよい。   The laminated piezoelectric actuator 1 is housed in a mold 15 and subjected to a hydrostatic pressure treatment (injected into a container at 60 ° C. and 190 MPa for 600 seconds) through a rubber 16 as a buffer material. The mold 15 has a structure capable of preventing pressure from the height direction of the multilayer piezoelectric actuator 1 and applies a compressive stress only in a direction orthogonal to the direction without applying force in the direction to be polarized. . That is, gaps 17 are respectively formed between the protective layer 14 on the upper and lower surfaces of the multilayer piezoelectric actuator 1 and the mold 15 so as not to prevent the multilayer piezoelectric actuator 1 from extending in the vertical direction. It is configured. Moreover, the temperature at the time of compression should just be less than Curie temperature from room temperature. The hydrostatic pressure treatment is effective because it can apply compressive stress in two directions simultaneously from the side surface of the multilayer piezoelectric actuator 1, but the compressive stress from one direction using a rigid press or the like can be applied once or in a direction. You may change and perform several times.

このようにして、積層体10の側面から圧縮応力を加えて機械的に全体分極を行った結果、積層体10の活性部Aと不活性部Bおよび保護層14を含む全体のドメイン(分域)の向きが略積層方向(ほぼ180°ドメイン)に配向する(矢印参照)。なお、分極の方向は略積層方向に平行であるが、一方に揃っているものではない。すなわち、分極時に発生する割れを防ぐためのポイントは、活性部Aの分極により生じる残留ひずみと同じ大きさに、不活性部Bがひずんでいることであるから、分極の方向はひずみに平行であればよく、一方に揃っていなくともよい。   In this way, as a result of mechanically polarizing the whole body by applying compressive stress from the side surface of the laminate 10, the entire domain (domain) including the active part A, the inactive part B, and the protective layer 14 of the laminate 10 is obtained. ) Is oriented in a substantially laminating direction (approximately 180 ° domain) (see arrow). In addition, although the direction of polarization is substantially parallel to the stacking direction, they are not aligned on one side. That is, the point for preventing cracks that occur during polarization is that the inactive part B is distorted to the same size as the residual strain caused by the polarization of the active part A, so the direction of polarization is parallel to the strain. It does not have to be on one side.

図2に、活性部Aを分極させる工程、すなわち層間を電界により分極させる工程の模式図を示す。   FIG. 2 shows a schematic diagram of the step of polarizing the active part A, that is, the step of polarizing the interlayer by an electric field.

図1の圧縮処理が終った後、金型15ならびにゴム16を取り除き、温度80℃のシリコンオイル槽内にて、外部電極13,13の一方を正極とし、他方を負極とした状態でその正負電極間に3kV/mmの電界を加えて層間を分極し、活性部Aの分極方向を揃える。なお、分極時の槽内温度は60℃からキュリー温度未満であればよく、その温度の抗電界に合わせて印加電界を変える。   After the compression process of FIG. 1 is completed, the mold 15 and the rubber 16 are removed, and the positive and negative are set in a state where one of the external electrodes 13 and 13 is a positive electrode and the other is a negative electrode in a silicon oil bath at a temperature of 80 ° C. An electric field of 3 kV / mm is applied between the electrodes to polarize the layers and align the polarization direction of the active part A. In addition, the temperature in the tank at the time of polarization may be from 60 ° C. to less than the Curie temperature, and the applied electric field is changed according to the coercive electric field at that temperature.

このように構成された積層型圧電素子とその製造方法によると、積層体10の側面から圧縮応力を加えることで、積層体10を積層方向に伸長させて、積層体10全体のドメインの向きを略積層方向に配向させるので、内部電極層12を介し積層体10に電界を印加して層間分極する際に、活性部Aと不活性部Bとの間でひずみ差は発生しない。すなわち、活性部Aでは分極の向きは分極させる方向の両方向に揃っていることから、層間分極時にそれ以上配向することなく、また両方向の分極により全体のひずみを打ち消しあって、層間分極時にひずみを発生しない。なお、分極時に発生するひずみは完全に0にならなくともよく、+0.02%以下であればよい。また、ひずみ差がマイナスになる(積層体10が縮む)分には問題ない。このように、活性部Aと不活性部Bとの間にひずみを発生しないため内部応力を防ぐことができ、分極時や長時間の圧電駆動時における積層型圧電アクチュエータ1に割れが発生するのを防止できる。   According to the multilayer piezoelectric element configured as described above and the manufacturing method thereof, by applying compressive stress from the side surface of the multilayer body 10, the multilayer body 10 is elongated in the stacking direction, and the domain direction of the entire multilayer body 10 is changed. Since the orientation is substantially in the stacking direction, no strain difference is generated between the active part A and the inactive part B when an electric field is applied to the stacked body 10 via the internal electrode layer 12 to cause interlayer polarization. That is, in the active part A, since the directions of polarization are aligned in both directions of polarization, no further orientation occurs during interlayer polarization, and the entire strain is canceled out by polarization in both directions. Does not occur. Note that the strain generated at the time of polarization does not have to be completely zero, but may be + 0.02% or less. In addition, there is no problem with a negative strain difference (the laminated body 10 shrinks). As described above, since no strain is generated between the active part A and the inactive part B, internal stress can be prevented, and cracks occur in the multilayer piezoelectric actuator 1 during polarization or during long-time piezoelectric driving. Can be prevented.

具体的に、高さ寸法Tが30mmの積層型圧電アクチュエータ1を用いて、本実施の形態による分極を行ったところ、割れは発生しなかった。   Specifically, when the polarization according to the present embodiment was performed using the laminated piezoelectric actuator 1 having a height dimension T of 30 mm, no cracks occurred.

また、積層体10の側面から圧縮応力を加え、機械的に分極させるので、分極時に高い電圧をかける必要がなく低コストで容易に全体配向できる。特に、積層方向の長さ寸法が大きいものであっても電界をかける必要がないので、高電圧設備を必要とせず、分極処理には従来からある分極用の設備で足り、低コストで容易に全体配向できる。   Further, since compressive stress is applied from the side surface of the laminated body 10 to mechanically polarize, it is not necessary to apply a high voltage at the time of polarization, and the entire orientation can be easily performed at low cost. In particular, even if the length in the stacking direction is large, it is not necessary to apply an electric field, so no high-voltage equipment is required, and conventional polarization equipment is sufficient for the polarization treatment, and it is easy and inexpensive. Overall orientation is possible.

また、積層体10の側面から圧縮応力を加えて全体分極を行うので、外部電極13は内部電極層12とつなぐ面にのみ形成すればよく、最終的に取り除く全体分極用の電極を形成する必要がなく、全体分極用電極の形成や除去工程が不要となり、製造が簡単で安価である。   Further, since the entire polarization is performed by applying a compressive stress from the side surface of the laminated body 10, the external electrode 13 only needs to be formed on the surface connected to the internal electrode layer 12, and it is necessary to form an electrode for total polarization to be finally removed. This eliminates the need for forming and removing the entire polarization electrode, and is simple and inexpensive to manufacture.

また、積層体10の積層方向に直交する方向の側面上に、導電ペーストを高温にて焼き付けて外部電極13を形成した状態で、積層体10の側面から圧縮応力を加えて全体分極でき、分極処理前に外部電極13の作製を終えているため、焼き付けなどの密着力の強い電極作製方法を用いることができ、外部電極13の密着性を十分に高くすることができる。   In addition, in a state where the conductive paste is baked at a high temperature on the side surface in the direction orthogonal to the stacking direction of the stacked body 10, the entire electrode can be polarized by applying compressive stress from the side surface of the stacked body 10. Since the production of the external electrode 13 is completed before the treatment, an electrode production method having strong adhesion such as baking can be used, and the adhesion of the external electrode 13 can be sufficiently increased.

また、不活性部Bが存在する構造としたので、内部電極層12の正負電極間の絶縁性を十分に確保できる。しかも、積層型圧電アクチュエータ1の作製と同時に絶縁部Gを形成でき、簡便で、少ない工程で作製することができる。   In addition, since the inactive portion B exists, the insulation between the positive and negative electrodes of the internal electrode layer 12 can be sufficiently ensured. In addition, the insulating part G can be formed simultaneously with the production of the multilayer piezoelectric actuator 1 and can be produced in a simple and few process.

さらに、積層型圧電アクチュエータ1内の電界方向の残留応力を解消するため、駆動時の電界時の電界方向に対して、縦方向、横方向、すべり方向いずれのひずみ方向に駆動する場合においても有効である。   Furthermore, in order to eliminate the residual stress in the electric field direction in the multilayer piezoelectric actuator 1, it is effective when driving in any of the strain directions of the vertical direction, the horizontal direction, and the sliding direction with respect to the electric field direction during the driving electric field. It is.

なお、積層型圧電アクチュエータ1の断面が矩形の場合は積層方向に対して直交する2方向から、また断面が円形の場合には全周に同時に力を加えると本発明の効果を与えやすい。また、両側から圧縮する代わりに、積層体10の上下から引っ張って上下方向に伸長させ、全体分極を行ってもよい。   If the cross section of the multilayer piezoelectric actuator 1 is rectangular, the effect of the present invention can be easily obtained by applying a force simultaneously from two directions orthogonal to the stacking direction, and when the cross section is circular, simultaneously. Further, instead of compressing from both sides, the entire polarization may be performed by pulling from the top and bottom of the laminate 10 and extending in the vertical direction.

また、図1のように圧縮力を加えた状態で、図2のように層間に電界を加えて分極してもよい。すなわち、圧縮力を加えた状態で、分極可能な電界をミリ秒オーダーの一瞬のみ印加するようにしてもよい。   Further, in a state where a compressive force is applied as shown in FIG. 1, an electric field may be applied between the layers as shown in FIG. That is, a polarizable electric field may be applied only for a moment on the order of milliseconds with a compressive force applied.

次に、上述した実施形態と同様の製造工程を経て得られた積層型圧電アクチュエータ1について、さらに、活性部に対して分極方向とは逆方向に抗電界以上の電界を加えて、分極方向を反転させる工程を有する積層型圧電素子の製造方法の実施形態および実施例を図4〜図9に基づいて説明する。図4は、本発明の他の実施の形態における積層型圧電アクチュエータの抗電界以上の電界を活性部に加えて分極方向を反転させる工程の模式図である。図5は、圧電体結晶粒内の未分極状態のドメインを示す模式図である。図6は、本発明に係る製造方法の分極処理した状態の積層型圧電アクチュエータの活性部および不活性部における圧電体結晶粒内の分極状態のドメインを示す模式図(a)と、従来もしくは比較例1の積層型圧電アクチュエータの活性部における圧電体結晶粒内の分極状態のドメインを示す模式図(b)である。図7は、本発明に係る製造方法の分極処理した後に、さらに、分極方向とは逆方向に抗電界以上の電界を活性部に加えて分極方向を反転させる工程を経た積層型圧電アクチュエータの活性部における圧電体結晶粒内の分極状態のドメインを示す模式図(a)と、不活性部における圧電体結晶粒内の分極状態のドメインを示す模式図(b)である。図8は、図7(a)に示す積層型圧電アクチュエータに駆動電圧を印加した状態を示す活性部における圧電体結晶粒内の分極状態のドメインを示す模式図である。図9は、本発明に係る製造方法で製造された圧電素子の実施例と、比較例1,2の駆動電圧と、その電圧印加による素子の伸び量とを測定した結果を示すグラフである。   Next, for the stacked piezoelectric actuator 1 obtained through the same manufacturing process as that of the above-described embodiment, an electric field higher than the coercive electric field is applied to the active portion in the direction opposite to the polarization direction, so that the polarization direction is changed. An embodiment and an example of a method for manufacturing a laminated piezoelectric element having a reversing step will be described with reference to FIGS. FIG. 4 is a schematic diagram of a process of reversing the polarization direction by applying an electric field higher than the coercive electric field of the multilayer piezoelectric actuator in another embodiment of the present invention to the active portion. FIG. 5 is a schematic diagram showing unpolarized domains in the piezoelectric crystal grains. FIG. 6 is a schematic diagram (a) showing the domain of the polarization state in the piezoelectric crystal grains in the active part and the inactive part of the laminated piezoelectric actuator in the polarization process state of the manufacturing method according to the present invention, and the conventional or comparison. FIG. 6B is a schematic diagram (b) showing domains of polarization states in the piezoelectric crystal grains in the active part of the multilayer piezoelectric actuator of Example 1. FIG. 7 shows the activity of the stacked piezoelectric actuator after the polarization process of the manufacturing method according to the present invention and the step of reversing the polarization direction by applying an electric field higher than the coercive electric field to the active part in the direction opposite to the polarization direction. FIG. 4 is a schematic diagram (a) showing domains of polarization state in piezoelectric crystal grains in the part and a schematic diagram (b) showing domains of polarization state in piezoelectric crystal grains in the inactive part. FIG. 8 is a schematic diagram showing a domain of the polarization state in the piezoelectric crystal grains in the active portion showing a state in which a driving voltage is applied to the multilayer piezoelectric actuator shown in FIG. FIG. 9 is a graph showing the results of measuring the example of the piezoelectric element manufactured by the manufacturing method according to the present invention, the driving voltage of Comparative Examples 1 and 2, and the amount of elongation of the element due to the voltage application.

図4を参照して説明すると、積層型圧電アクチュエータ1の積層体全体を内部電極層間で印加される電界方向に伸長させて積層体全体のドメインの向きを略電界方向に配向した後、活性部を分極する分極工程に続いて、この積層体10の圧電材料PZTの抗電界以上の電界を正負のピーク値とする三角波を積層体10の電極13,13に加える。この三角波の電界は、例えば5波長分印加する。これにより、活性部Aに対して分極時とは逆向きの抗電界以上の電界が印加されることになる。なお、抗電界以上の電界ではあっても先の分極時に印加する電圧よりは低い電界である。分極時の電界よりも高い電圧を印加すると、積層体10が割れたり、絶縁破壊が生じるおそれが高くなるためである。   Referring to FIG. 4, the entire multilayer body of the multilayer piezoelectric actuator 1 is extended in the direction of the electric field applied between the internal electrode layers, and the domain of the entire multilayer body is oriented in the direction of the electric field. Following the polarization step of polarizing the electrode, a triangular wave having an electric field equal to or higher than the coercive electric field of the piezoelectric material PZT of the laminate 10 with positive and negative peak values is applied to the electrodes 13 and 13 of the laminate 10. The triangular wave electric field is applied, for example, for five wavelengths. As a result, an electric field higher than the coercive electric field in the opposite direction to that during polarization is applied to the active part A. Note that even if the electric field is higher than the coercive electric field, the electric field is lower than the voltage applied during the previous polarization. This is because, when a voltage higher than the electric field at the time of polarization is applied, there is a high possibility that the laminate 10 is broken or a dielectric breakdown occurs.

上記のように分極時とは逆向きに抗電界以上の電界を印加することによって、活性部におけるドメインの配向度を低下させることになり、90°ドメインの効果が得られるものとなっている。以下に、分極工程とは逆向きに抗電界以上の電界を印加することについての技術的な意義を説明する。   As described above, by applying an electric field equal to or higher than the coercive electric field in the opposite direction to that during polarization, the degree of domain orientation in the active part is lowered, and the effect of 90 ° domain is obtained. Hereinafter, the technical significance of applying an electric field higher than the coercive electric field in the opposite direction to the polarization step will be described.

分極前の活性部のドメインは、図5に模式的に示す未分極状態となっていて、分極させる方向に沿った配向成分となる180°ドメインと、分極させる方向の直交方向に沿った配向成分となる90°ドメインとが混在するものとなっている。図6(a)に模式的に示すように、本願請求項1に係る発明の全体配向工程および分極工程を経て、不活性部の配向性を高めたものでは、活性部においても不活性部と同様ドメインにおける180°ドメインが電界印加前に歪み方向に配向したものとなっている。この時、この分極工程を経た状態、すなわち電界印加前に既に180°ドメイン方向に配向していることが分かった。このため、電界印加したときの圧電素子の伸び率は比較的低いままであり、その伸び率を高くすることに改善の余地がある。なお、図6(b)は、従来における通常の分極処理したときの活性部の180°ドメインと90°ドメインとの配向について模式的に示しており、活性部について、90°ドメインが多く残留するため、駆動電圧印加時には180°ドメインの圧電歪みに、90°ドメインの配向が上乗せされ伸び率が大きくなることを示している。図6(a)に示す状態の活性部に対して、分極時とは逆向きの抗電界以上の電界(電圧)を印加することによって、図7(a)に模式的に示すように、90°ドメインが増加する。逆向きの抗電界以上の電界を印加する際、完全に電界と同方向に配向していればイオン位置の変化だけで90°ドメインには戻らないが、電界方向に完全に配向していない一部のドメインにおいては反転時に90°方向に変位成分を持つため、さらにその一部が90°ドメインに戻る。このようにして、活性部のドメインの一部が90°と成ることによって、図6(b)に示す通常の分極のみのように、180°ドメインと90°ドメインとが一方に大きく偏ることなく混在する状態となり、圧電定数を大きなものとすることができる。   The domain of the active part before polarization is in an unpolarized state schematically shown in FIG. 5, and the 180 ° domain serving as an orientation component along the polarization direction and the orientation component along the direction orthogonal to the polarization direction The 90 ° domain is mixed. As schematically shown in FIG. 6 (a), in the active part, the inactive part is improved in the orientation by the whole orientation process and the polarization process of the invention according to claim 1 in the active part. Similarly, the 180 ° domain in the domain is oriented in the strain direction before application of the electric field. At this time, it was found that the film was already oriented in the 180 ° domain direction after this polarization step, that is, before application of the electric field. For this reason, the elongation of the piezoelectric element when an electric field is applied remains relatively low, and there is room for improvement in increasing the elongation. FIG. 6B schematically shows the orientation of the 180 ° domain and the 90 ° domain of the active portion when the conventional normal polarization process is performed, and many 90 ° domains remain in the active portion. Therefore, it is shown that when the drive voltage is applied, the orientation of the 90 ° domain is added to the piezoelectric strain of the 180 ° domain, and the elongation increases. By applying an electric field (voltage) equal to or higher than the coercive electric field in the opposite direction to that of polarization to the active portion in the state shown in FIG. 6A, as schematically shown in FIG. ° Domain increases. When an electric field exceeding the coercive electric field in the reverse direction is applied, if it is perfectly oriented in the same direction as the electric field, it will not return to the 90 ° domain only by a change in ion position, but it is not completely oriented in the electric field direction. Since the partial domain has a displacement component in the 90 ° direction at the time of inversion, a part of the domain returns to the 90 ° domain. In this way, when a part of the domain of the active part is 90 °, the 180 ° domain and the 90 ° domain are not largely biased to one side as in the normal polarization shown in FIG. 6B. It becomes a mixed state, and the piezoelectric constant can be increased.

なお、不活性部については、電極13,13に与える分極時と逆向きの抗電界以上の電界が印加されるものではない(内部電極層間に印加する電界が不活性部に極性を変更するものとはならない)から、図7(b)に示すように、180°ドメインの歪み方向での配向度が高いままとなっている。   As for the inactive portion, an electric field higher than the coercive electric field opposite to that applied to the electrodes 13 and 13 is not applied (the electric field applied between the internal electrode layers changes the polarity to the inactive portion). Therefore, as shown in FIG. 7B, the degree of orientation in the strain direction of the 180 ° domain remains high.

これによって、図6(a)のようにほとんど180°ドメインの圧電歪みからなる伸びに対して活性部において90°ドメインが増加した分、90°ドメインの配向による伸びが加わるため、圧電定数は大きくなる。したがって、この製造方法で製造された圧電素子をアクチュエータとして作動させたとき、その伸び率は高いものとなる。図8は、駆動用の電圧を印加したときのドメインの状態を例示するものである。この駆動時には、90°ドメインは殆どなくなる。   As a result, as shown in FIG. 6A, the elongation due to the orientation of the 90 ° domain is added to the elongation consisting of the piezoelectric strain of almost 180 ° domain. Become. Therefore, when the piezoelectric element manufactured by this manufacturing method is operated as an actuator, the elongation rate is high. FIG. 8 illustrates the state of the domain when a driving voltage is applied. During this drive, the 90 ° domain is almost gone.

したがって、本願請求項1に係る発明の分極工程を経た場合、活性部のドメインにおける180°ドメインでの配向度が高いものとなっているが、その分極工程よりも後に、さらに分極方向とは逆向きの抗電界以上の電界(電圧)を印加することによって、活性部におけるドメインの分極の配向度を低下させて、圧電定数を大きくすることで、圧電型積層体を伸張させるときの伸び率を高めることができる。そこで、本願請求項6に係る工程まで行うことで、分極処理時の内部応力を防いで積層型圧電素子に生じる割れを防ぎながら、かつ、圧電定数が良好な積層型圧電素子を得ることができる。なお、図4において、圧電定数の大きくなったドメインについては、その分極の高さ方向(駆動方向)成分の大きさと向きを示す矢印の大きさを小さく表示している。   Therefore, when the polarization process of the invention according to claim 1 of the present application is performed, the degree of orientation in the 180 ° domain in the domain of the active part is high, but after the polarization process, the direction of polarization is further reversed. By applying an electric field (voltage) that is higher than the coercive electric field, the degree of domain polarization in the active part is lowered and the piezoelectric constant is increased, thereby increasing the elongation when the piezoelectric laminate is stretched. Can be increased. Therefore, by performing the steps according to claim 6 of the present application, it is possible to obtain a multilayer piezoelectric element having a good piezoelectric constant while preventing internal stress during polarization treatment and preventing cracks occurring in the multilayer piezoelectric element. . In FIG. 4, for the domain having a large piezoelectric constant, the magnitude of the polarization height direction (drive direction) component and the size of the arrow indicating the direction are displayed small.

なお、図6(a)に示す活性部のドメイン、図6(b)に示す活性部のドメイン、図7(a)に示す活性部のドメイン、図8に示す活性部のドメインをそれぞれ同一のドメインについて示すものとして、その分極電圧印加方向でのドメインの長さをそれぞれL,L,L,Lとすると、圧電変位(駆動電圧印加時と駆動電圧印加前との分極電圧印加方向でのドメインの長さの差)d(L−L)は、d,d>dの関係になる。 The domain of the active part shown in FIG. 6 (a), the domain of the active part shown in FIG. 6 (b), the domain of the active part shown in FIG. 7 (a), and the domain of the active part shown in FIG. as indicating the domain and its length domain in polarization voltage application direction, respectively L 1, L 2, L 3 , L a, the polarization voltage applied between the front when the drive voltage is applied the piezoelectric displacement (drive voltage applied The difference in domain length in the direction) d n (L a −L n ) has a relationship of d 2 , d 3 > d 1 .

また、分極方向とは逆向きの抗電界以上の電界(電圧)を印加する方法としては、正負の電圧(ただし分極方向とは逆向きの電圧については抗電界以上となることが必要条件)を繰り返して与えてもよいし、分極方向とは逆向きの印加電圧によって抗電界以上となっている状態でその電圧の保持時間を長く取って印加してもよく、さらに電圧を印加するときの立ち上がり速度などを適宜設定してもよい。要は、一回以上の分極反転を活性部について生じさせることである。   In addition, as a method of applying an electric field (voltage) higher than the coercive electric field opposite to the polarization direction, a positive / negative voltage (however, a voltage opposite to the polarization direction must be higher than the coercive electric field). The voltage may be applied repeatedly, or may be applied with a voltage holding time longer than the coercive electric field with an applied voltage opposite to the polarization direction. You may set speed etc. suitably. The point is to cause one or more polarization inversions in the active part.

本発明において分極工程を経た後、さらに、活性部に対して分極工程での分極方向とは逆向きの抗電界以上の電界を印加する工程を有する上記実施の形態の製造方法で製造された積層圧電素子の実施例を説明する。本発明に係る積層圧電素子としての積層圧電アクチュエータについて、本発明者は、分極処理後、分極方向とは逆向きの抗電界以上の電圧として上述実施の形態のように三角波を5波長時間電界印加した後、アクチュエータの伸び方向に正の電圧のみが加わるようにオフセットした三角波を外部電極に加えながらアクチュエータの伸び量を測定した。その測定結果を図9のグラフに実線で示している。図9の横軸は電圧を示し、縦軸はアクチュエータの伸び量を示す。なお、図9には、後述する比較例1,2の積層圧電アクチュエータについての上記測定と同様に行った結果をグラフとして示している。   After passing through the polarization step in the present invention, the laminate manufactured by the manufacturing method of the above embodiment, further comprising a step of applying an electric field higher than the coercive electric field opposite to the polarization direction in the polarization step to the active part. Examples of piezoelectric elements will be described. With respect to the multilayer piezoelectric actuator as the multilayer piezoelectric element according to the present invention, the present inventor applied a triangular wave to a 5-wavelength time electric field as in the above-described embodiment as a voltage higher than the coercive electric field opposite to the polarization direction after the polarization treatment. After that, the amount of elongation of the actuator was measured while applying a triangular wave offset to the external electrode so that only a positive voltage was applied in the direction of elongation of the actuator. The measurement result is shown by a solid line in the graph of FIG. In FIG. 9, the horizontal axis represents voltage, and the vertical axis represents the amount of elongation of the actuator. In addition, in FIG. 9, the result performed similarly to the said measurement about the laminated piezoelectric actuator of the comparative examples 1 and 2 mentioned later is shown as a graph.

比較例1について説明する。まず、比較例1の積層圧電アクチュエータの製造過程について説明する。圧電材料PZTの粉末からなるグリーンシート上に、AgPd粉を含む導電ペーストを印刷する。次に、焼成後に高さが30mmになるように印刷済みグリーンシートを積み重ねた後、上下面から圧力をかけて圧着する。また、焼成後の側面視断面が10mm×10mmの正方形となるようにダイシング加工する。そして、脱脂処理(300℃×20時間)および、焼成(1100℃×5時間)を行って、積層圧電アクチュエータを作製する。なお、この際、圧電材料としてはPZT以外の圧電性セラミックでもよく、導電ペーストもAgやCuといった他の材料でもよい。印刷時のパターンはアクチュエータにしたときの対向する2側面から電極短部を交互に取り出せる形状とする。電極端部の取り出し位置は対角など他の場所でも構わないが、絶縁性を確保するための不活性部を構成するギャップが必要である。   Comparative Example 1 will be described. First, the manufacturing process of the laminated piezoelectric actuator of Comparative Example 1 will be described. A conductive paste containing AgPd powder is printed on a green sheet made of the piezoelectric material PZT powder. Next, after stacking the printed green sheets so that the height is 30 mm after firing, pressure is applied from above and below the surfaces. Further, dicing is performed so that the cross-sectional side view after firing becomes a square of 10 mm × 10 mm. And a degreasing process (300 degreeC x 20 hours) and baking (1100 degreeC x 5 hours) are performed, and a laminated piezoelectric actuator is produced. In this case, the piezoelectric material may be a piezoelectric ceramic other than PZT, and the conductive paste may be another material such as Ag or Cu. The pattern at the time of printing has a shape in which the electrode short portions can be alternately taken out from the two opposing side surfaces when the actuator is used. The electrode end may be taken out at another location such as a diagonal, but a gap that constitutes an inactive portion for ensuring insulation is necessary.

ギャップの形状を、ギャップの面積が小さく、応力が集中し易い角をもたない曲線のみから成る形状として、不活性部に発生する分極割を極力小さくした。   The gap shape is made only of a curve having a small gap area and no corners where stress is likely to concentrate, and the polarization split generated in the inactive portion is made as small as possible.

アクチュエータの電極を取り出した面に外部電極を取り付ける。電極の取り付け方法、および内部電極間の分極方法は実施例と同じである。   An external electrode is attached to the surface from which the electrode of the actuator is taken out. The method of attaching the electrodes and the method of polarization between the internal electrodes are the same as in the example.

この比較例1の場合、分極時に不活性部に割れが入る結果となった。ただし、変位量の測定は可能であった。しかしながら、分極時に上記のような割れが入ることで不良品と判定される。なお、この比較例1における活性部のドメインの状態は、図6(b)に示した通常の分極処理をしたものと同様となっている。この比較例1についても、実施例の積層圧電アクチュエータと同様、アクチュエータの伸び方向に正の電圧のみが加わるようにオフセットした三角波を外部電極に加えながらアクチュエータの伸び量を測定した。なお、本発明実施例と比較例1とはほぼ同じ結果が得られているので、ほぼ同じ測定結果が得られ、その結果を示す図9のグラフは重なったものとなっている。   In the case of this comparative example 1, it resulted in a crack in an inactive part at the time of polarization. However, the amount of displacement could be measured. However, it is determined as a defective product when cracks such as those described above occur during polarization. In addition, the state of the domain of the active part in the comparative example 1 is the same as that obtained by performing the normal polarization process shown in FIG. In Comparative Example 1 as well, as with the multilayer piezoelectric actuator of the example, the extension amount of the actuator was measured while applying a triangular wave offset to the external electrode so that only a positive voltage was applied in the extension direction of the actuator. In addition, since the substantially same result is obtained by the Example of this invention and the comparative example 1, the substantially same measurement result is obtained and the graph of FIG. 9 which shows the result has overlapped.

次に、比較例2について説明する。まず、比較例2の積層圧電アクチュエータの製造過程について説明する。圧電材料PZTの粉末からなるグリーンシート上に、AgPd粉を含む導電ペーストを印刷する。次に、焼成後に高さが30mmになるように印刷済みグリーンシートを積み重ねた後、上下面から圧力をかけて圧着する。また、焼成後の側面視断面が10mm×10mmの正方形となるようにダイシング加工する。そして、脱脂処理(300℃×20時間)および、焼成(1100℃×5時間)を行って、積層圧電アクチュエータを作製する。なお、この際、PZT以外の圧電性セラミックでもよく、導電ペーストもAgやCuといった他の材料でもよい。印刷時のパターンはアクチュエータにしたときの対向する2側面から電極短部を交互に取り出せる形状とする。電極端部の取り出し位置は対角など他の場所でも構わないが、絶縁性を確保するための不活性部を構成するギャップが必要である。アクチュエータの電極を取り出した面に外部電極を取り付ける。Agペーストを印刷し、800℃で焼き付ける。続いて、アクチュエータを金型に収納し、緩衝材のゴムを介して静水圧処理(60℃、190MPaの容器内に600秒投入)する。この際、金型にはアクチュエータの高さ方向から圧力を妨げる構造のものを使用する。圧縮処理が終わった後、温度80℃のシリコンオイル槽内にて、正負電極間に3kV/mmの電界を加えて層間を分極し、分極方向を一方向に揃える。なお、この比較例2における活性部のドメインの状態は、図6(a)に示した分極処理をしたものと同様になっている。この比較例2についても、実施例の積層圧電アクチュエータと同様、アクチュエータの伸び方向に正の電圧のみが加わるようにオフセットした三角波を外部電極に加えながらアクチュエータの伸び量を測定した。その結果を、図9のグラフにおいて、破線で示している。   Next, Comparative Example 2 will be described. First, the manufacturing process of the laminated piezoelectric actuator of Comparative Example 2 will be described. A conductive paste containing AgPd powder is printed on a green sheet made of the piezoelectric material PZT powder. Next, after stacking the printed green sheets so that the height is 30 mm after firing, pressure is applied from above and below the surfaces. Further, dicing is performed so that the cross-sectional side view after firing becomes a square of 10 mm × 10 mm. And a degreasing process (300 degreeC x 20 hours) and baking (1100 degreeC x 5 hours) are performed, and a laminated piezoelectric actuator is produced. At this time, a piezoelectric ceramic other than PZT may be used, and the conductive paste may be another material such as Ag or Cu. The pattern at the time of printing has a shape in which the electrode short portions can be alternately taken out from the two opposing side surfaces when the actuator is used. The electrode end may be taken out at another location such as a diagonal, but a gap that constitutes an inactive portion for ensuring insulation is necessary. An external electrode is attached to the surface from which the electrode of the actuator is taken out. Ag paste is printed and baked at 800 ° C. Subsequently, the actuator is housed in a mold and subjected to a hydrostatic pressure treatment (injected into a container at 60 ° C. and 190 MPa for 600 seconds) through a rubber cushioning material. At this time, a mold having a structure for preventing pressure from the height direction of the actuator is used. After the compression treatment is completed, an electric field of 3 kV / mm is applied between the positive and negative electrodes in a silicon oil bath at a temperature of 80 ° C. to polarize the layers and align the polarization direction in one direction. In addition, the state of the domain of the active part in the comparative example 2 is the same as that obtained by the polarization process shown in FIG. In Comparative Example 2, as in the multilayer piezoelectric actuator of the example, the amount of elongation of the actuator was measured while applying a triangular wave offset to the external electrode so that only a positive voltage was applied in the direction of elongation of the actuator. The result is indicated by a broken line in the graph of FIG.

この比較例2の場合、分極割れを生じなかった。また、圧電変位を測定し、圧電定数を算出したところ、比較例1より約30pm/V小さい値であった。   In the case of this comparative example 2, polarization cracking did not occur. Moreover, when the piezoelectric displacement was measured and the piezoelectric constant was calculated, the value was about 30 pm / V smaller than that of Comparative Example 1.

本発明の積層型圧電素子とその製造方法は、例えば内部電極を施した圧電体セラミックスを層状に多数積層してなる積層型圧電アクチュエータならびにその製造方法として有用である。   The multilayer piezoelectric element and the manufacturing method thereof according to the present invention are useful, for example, as a multilayer piezoelectric actuator in which a large number of piezoelectric ceramics provided with internal electrodes are laminated in a layered manner and a manufacturing method thereof.

本発明の実施の形態における積層型圧電アクチュエータの機械的な分極工程の模式図Schematic diagram of mechanical polarization process of multilayer piezoelectric actuator in an embodiment of the present invention 本発明の実施の形態における積層型圧電アクチュエータの電界による分極工程の模式図Schematic diagram of polarization process by electric field of multilayer piezoelectric actuator in an embodiment of the present invention 一般的な積層型圧電アクチュエータの模式図Schematic diagram of a typical multilayer piezoelectric actuator 本発明の他の実施の形態における積層型圧電アクチュエータの抗電界以上の電界を活性部に加えて分極方向を反転させる工程の模式図The schematic diagram of the process of applying the electric field more than the coercive electric field of the lamination type piezoelectric actuator in other embodiment of this invention to an active part, and reversing a polarization direction 圧電体結晶粒内の未分極状態のドメインを示す模式図Schematic diagram showing unpolarized domains in piezoelectric crystal grains 本発明に係る製造方法の分極処理した状態の積層型圧電アクチュエータの活性部および不活性部における圧電体結晶粒内の分極状態のドメインを示す模式図(a)と、従来もしくは比較例1の積層型圧電アクチュエータの活性部における圧電体結晶粒内の分極状態のドメインを示す模式図(b)The schematic diagram (a) which shows the domain of the polarization state in the piezoelectric crystal grain in the active part of the laminated piezoelectric actuator of the manufacturing method which concerns on this invention in the state of polarization processing, and the inactive part, and lamination | stacking of the past or the comparative example 1 (B) Schematic showing domain of polarization state in piezoelectric crystal grains in active part of type piezoelectric actuator 本発明に係る製造方法の分極処理した後に、さらに、分極方向とは逆方向に抗電界以上の電界を活性部に加えて分極方向を反転させる工程を経た積層型圧電アクチュエータの活性部における圧電体結晶粒内の分極状態のドメインを示す模式図(a)と、不活性部における圧電体結晶粒内の分極状態のドメインを示す模式図(b)After the polarization process of the manufacturing method according to the present invention, the piezoelectric body in the active portion of the multilayer piezoelectric actuator is further subjected to a step of reversing the polarization direction by applying an electric field higher than the coercive electric field to the active portion in the direction opposite to the polarization direction. Schematic diagram showing domain of polarization state in crystal grain (a) and schematic diagram showing domain of polarization state in piezoelectric crystal grain in inactive part (b) 図7(a)に示す積層型圧電アクチュエータに駆動電圧を印加した状態を示す活性部における圧電体結晶粒内の分極状態のドメインを示す模式図FIG. 7A is a schematic diagram showing a domain of a polarization state in a piezoelectric crystal grain in an active portion showing a state in which a driving voltage is applied to the multilayer piezoelectric actuator shown in FIG. 本発明に係る製造方法で製造された圧電素子の実施例と、比較例1,2の駆動電圧と、その電圧印加による素子の伸び量とを測定した結果を示すグラフThe graph which shows the result of having measured the Example of the piezoelectric element manufactured with the manufacturing method based on this invention, the drive voltage of Comparative Examples 1 and 2, and the elongation amount of the element by the voltage application. 従来例における積層型圧電アクチュエータの割れの状態を示す模式図Schematic diagram showing the state of cracking of the multilayer piezoelectric actuator in the conventional example 従来例における積層型圧電アクチュエータの全体分極時の模式図Schematic diagram of the multilayer piezoelectric actuator in the conventional example when the entire polarization 従来例における積層型圧電アクチュエータの電極層間の分極時の模式図Schematic diagram at the time of polarization between electrode layers of the multilayer piezoelectric actuator in the conventional example

符号の説明Explanation of symbols

1 積層型圧電アクチュエータ(積層型圧電素子)
10 積層体
11 圧電体セラミックス層
12 内部電極層
13 外部電極
14 保護層
A 活性部
B 不活性部
1. Multilayer piezoelectric actuator (multilayer piezoelectric element)
DESCRIPTION OF SYMBOLS 10 Laminated body 11 Piezoelectric ceramic layer 12 Internal electrode layer 13 External electrode 14 Protective layer A Active part B Inactive part

Claims (7)

圧電体セラミックス層と内部電極層とを積層してなり、異なる極性の内部電極層の間に位置する活性部と、前記活性部の周囲に存在する不活性部とを有する積層体を得る工程と、
前記積層体の積層方向に直交する方向の側面全周から一様な圧縮応力を加え、前記積層体を積層方向に伸長させて、積層体全体のドメインの向きを積層方向の上下いずれかの方向に配向する工程と、
前記内部電極層を介し前記積層体に電界を印加して前記活性部を分極する工程と、
を含むことを特徴とする積層型圧電素子の製造方法。
A step of obtaining a laminate comprising a piezoelectric ceramic layer and an internal electrode layer laminated, and having an active part located between internal electrode layers of different polarities, and an inactive part existing around the active part; ,
Uniform compressive stress is applied from the entire side surface in a direction orthogonal to the stacking direction of the stacked body, the stacked body is extended in the stacking direction, and the orientation of the domain of the entire stacked body is any direction above or below the stacking direction. Orienting to,
Applying an electric field to the laminate through the internal electrode layer to polarize the active part;
A method for producing a laminated piezoelectric element comprising:
前記積層体の積層方向の全長が4mm以上であることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the total length of the stacked body in the stacking direction is 4 mm or more. 前記積層体を得る工程において、前記積層体の積層方向に直交する方向の側面上に導電ペーストを焼き付けて極性の異なる一対の外部電極を形成し、前記内部電極が異なる極性の外部電極に交互に接続されることを特徴とする請求項1または2に記載の方法。   In the step of obtaining the laminated body, a pair of external electrodes having different polarities are formed by baking a conductive paste on side surfaces in a direction orthogonal to the laminating direction of the laminated body, and the internal electrodes are alternately formed into external electrodes having different polarities. 3. A method according to claim 1 or 2, characterized in that they are connected. 前記分極する工程より後の工程において、前記分極方向とは逆方向に抗電界以上の電界を前記活性部に加えて前記分極方向を反転させる工程を有することを特徴とする請求項1ないし3のいずれかに記載の方法。   4. The method according to claim 1, further comprising a step of inverting the polarization direction by applying an electric field equal to or greater than a coercive electric field to the active portion in a direction opposite to the polarization direction in the step subsequent to the polarization step. The method according to any one. 焦電性を有する圧電体セラミックス層と内部電極層とを積層してなり、異なる極性の内部電極の間に位置する活性部と、前記活性部の周囲に存在する不活性部とを有した積層体と、
前記積層体の積層方向に直交する側面上に導電ペーストを焼き付けて形成され、前記内部電極層が交互に接続される極性の異なる一対の外部電極と、
を備えた積層型圧電素子であって、
前記積層体全体を内部電極層間で印加される電界方向に沿って略配向し、かつ、前記電界方向に沿う方向において相反する方向にドメインの向きが配向された領域が前記不活性部に同時に存在し、前記電界方向に沿ったドメインの配向率が前記不活性部より低く前記活性部に存在していることを特徴とする積層型圧電素子。
A laminate comprising a piezoelectric ceramic layer having pyroelectricity and an internal electrode layer, and having an active portion located between internal electrodes of different polarities and an inactive portion present around the active portion Body,
A pair of external electrodes having different polarities, formed by baking a conductive paste on side surfaces orthogonal to the stacking direction of the stacked body, the internal electrode layers being alternately connected;
A laminated piezoelectric element comprising:
A region in which the entire laminate is substantially oriented along the direction of the electric field applied between the internal electrode layers and the direction of the domain is oriented in a direction opposite to the direction along the direction of the electric field simultaneously exists in the inactive portion. The layered piezoelectric element is characterized in that an orientation ratio of domains along the electric field direction is lower than that of the inactive portion and exists in the active portion .
前記電界方向が、前記積層体の積層方向となることを特徴とする請求項5に記載の積層型圧電素子。   The multilayer piezoelectric element according to claim 5, wherein the electric field direction is a stacking direction of the stacked body. 前記積層体の積層方向の全長が4mm以上であることを特徴とする請求項6に記載の積層型圧電素子。   The multilayer piezoelectric element according to claim 6, wherein the total length of the multilayer body in the stacking direction is 4 mm or more.
JP2003419829A 2003-09-26 2003-12-17 Multilayer piezoelectric element and manufacturing method thereof Expired - Lifetime JP4686975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003419829A JP4686975B2 (en) 2003-09-26 2003-12-17 Multilayer piezoelectric element and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003335193 2003-09-26
JP2003335193 2003-09-26
JP2003419829A JP4686975B2 (en) 2003-09-26 2003-12-17 Multilayer piezoelectric element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005123554A JP2005123554A (en) 2005-05-12
JP4686975B2 true JP4686975B2 (en) 2011-05-25

Family

ID=34622077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003419829A Expired - Lifetime JP4686975B2 (en) 2003-09-26 2003-12-17 Multilayer piezoelectric element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4686975B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502006004677D1 (en) * 2005-07-26 2009-10-08 Siemens Ag MONOLITHIC PIEZOACTOR WITH ROTATION OF THE POLARIZATION DIRECTION IN THE TRANSITION AREA AND USE OF THE PIEZOACTOR
EP1764846B1 (en) * 2005-09-16 2007-12-05 Delphi Technologies, Inc. Method of poling ferroelectric materials
JP5102459B2 (en) * 2006-03-31 2012-12-19 京セラ株式会社 Piezoelectric actuator unit
EP1970975B1 (en) * 2007-03-14 2011-07-20 Delphi Technologies Holding S.à.r.l. Reducing stress gradients within piezoelectric actuators
JP5341094B2 (en) 2008-08-28 2013-11-13 京セラ株式会社 Multilayer piezoelectric element, injection device, and fuel injection system
GB0900406D0 (en) * 2009-01-12 2009-02-11 Delphi Tech Inc Method of poling ferroelectric materials
JP5561463B2 (en) * 2009-02-24 2014-07-30 セイコーエプソン株式会社 Liquid ejecting head manufacturing method, liquid ejecting head, and liquid ejecting apparatus
JP5790835B2 (en) * 2009-02-24 2015-10-07 セイコーエプソン株式会社 Method for manufacturing piezoelectric element
CN102640240B (en) 2009-12-11 2014-08-27 株式会社村田制作所 Laminated ceramic capacitor
KR101550298B1 (en) 2011-11-28 2015-09-04 가부시키가이샤 무라타 세이사쿠쇼 Stacked piezoelectric element and multifeed detection sensor
JP5574050B2 (en) * 2011-12-06 2014-08-20 株式会社村田製作所 Ultrasonic transducer
WO2013084911A1 (en) * 2011-12-09 2013-06-13 株式会社村田製作所 Ultrasonic transducer and multi-feed detection sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133852A (en) * 1998-10-28 2000-05-12 Sumitomo Metal Ind Ltd Stacked piezoelectric element and its manufacture
JP2001111132A (en) * 1999-08-03 2001-04-20 Murata Mfg Co Ltd Polarizing method for piezoelectric body
JP2002232032A (en) * 2001-02-01 2002-08-16 Murata Mfg Co Ltd Method for polarizing laminated piezoelectric element
JP2003046157A (en) * 2001-08-01 2003-02-14 Kyocera Corp Laminated piezoelectric device and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350080A (en) * 1986-08-20 1988-03-02 Toyota Motor Corp Controller for piezoelectric actuator
JPH02163983A (en) * 1988-12-16 1990-06-25 Toyota Motor Corp Polarization treatment of laminated body for laminated ceramic piezoelectric element use
JPH0548171A (en) * 1991-08-21 1993-02-26 Seiko Epson Corp Matrix transducer
JPH11219870A (en) * 1998-02-02 1999-08-10 Murata Mfg Co Ltd Method for inspecting laminated ceramic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000133852A (en) * 1998-10-28 2000-05-12 Sumitomo Metal Ind Ltd Stacked piezoelectric element and its manufacture
JP2001111132A (en) * 1999-08-03 2001-04-20 Murata Mfg Co Ltd Polarizing method for piezoelectric body
JP2002232032A (en) * 2001-02-01 2002-08-16 Murata Mfg Co Ltd Method for polarizing laminated piezoelectric element
JP2003046157A (en) * 2001-08-01 2003-02-14 Kyocera Corp Laminated piezoelectric device and its manufacturing method

Also Published As

Publication number Publication date
JP2005123554A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP3185226B2 (en) Driving method of piezoelectric bimorph element and piezoelectric bimorph element
JP4686975B2 (en) Multilayer piezoelectric element and manufacturing method thereof
JP2009503834A5 (en) Monolithic piezoactuator with rotating polarization direction in transition region and use of piezoactuator
WO2012035932A1 (en) Piezoelectric element, and stacked piezoelectric structure
CN107093664A (en) The big strain piezoelectric actuator and preparation method of a kind of periodicity cross polarization
JP4802445B2 (en) Multilayer piezoelectric element and manufacturing method thereof
JP4658280B2 (en) Multilayer piezoelectric actuator
JP2010161286A (en) Laminated piezoelectric element and method of manufacturing the same
JP5011887B2 (en) Method of polarization of laminated piezoelectric element
CN100448047C (en) Laminate type electronic component and production method therefor, laminate type piezoelectric element and jet device
JP2007305907A (en) Laminated piezoelectric element, and polarization method thereof
JP2951129B2 (en) Multilayer piezoelectric actuator and method of manufacturing the same
JP2000133852A (en) Stacked piezoelectric element and its manufacture
JP6323863B2 (en) Piezoelectric element, piezoelectric actuator, and method of manufacturing piezoelectric element
JP2004080193A (en) Ultrasonic transducer and manufacturing method thereof
JP2001230463A (en) Laminated piezoelectric actuator
JP3881474B2 (en) Multilayer piezoelectric actuator
JP2004274029A (en) Piezoelectric actuator
JP4359873B2 (en) Ceramic laminated electromechanical transducer and method for manufacturing the same
JP5384843B2 (en) Method for manufacturing piezoelectric element structure and piezoelectric element structure
JP2003133898A (en) Laminated piezoelectric vibrator
JPH09266332A (en) Lamination type piezoelectric element, its manufacturing method and polarization
JP2010093598A (en) Piezoelectric vibrator and method of manufacturing the same
JP3450689B2 (en) Piezoelectric transformer
JP2827299B2 (en) Manufacturing method of laminated piezoelectric ceramic element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R150 Certificate of patent or registration of utility model

Ref document number: 4686975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

EXPY Cancellation because of completion of term