JP2003046157A - Laminated piezoelectric device and its manufacturing method - Google Patents

Laminated piezoelectric device and its manufacturing method

Info

Publication number
JP2003046157A
JP2003046157A JP2001234012A JP2001234012A JP2003046157A JP 2003046157 A JP2003046157 A JP 2003046157A JP 2001234012 A JP2001234012 A JP 2001234012A JP 2001234012 A JP2001234012 A JP 2001234012A JP 2003046157 A JP2003046157 A JP 2003046157A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
protruding conductive
internal electrodes
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001234012A
Other languages
Japanese (ja)
Inventor
Harumi Hayashi
春美 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001234012A priority Critical patent/JP2003046157A/en
Publication of JP2003046157A publication Critical patent/JP2003046157A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated piezoelectric device which is markedly improved in durability even if it is driven in a strong electric field for a long term by effectively preventing internal electrodes from being disconnected from external electrodes, and to provide its manufacturing method. SOLUTION: Piezoelectric bodies 26 and internal electrodes 28a and 28b are alternately laminated into a device body 24, and external electrodes 34a and 34b are provided on the sides of the device body 24 and alternately connected to the internal electrodes 28a and 28b for the formation of a laminated piezoelectric device. Protuberant conductive terminals 29a and 29b protruding from the side of the device body 24 are provided to every other end of the internal electrodes 28a and 28b, and the conductive terminals 29a and 29b are embedded in the external electrodes 34a and 34b respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、積層型圧電素子及
びその製法に関し、例えば、各種電子機器に用いられる
ACアダプタやDC−DCコンバータ、およびノートパ
ソコン、携帯用端末等に使用される液晶ディスプレイ用
のバックライト冷陰極管のインバータ等に用いられる積
層型圧電素子及びその製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated piezoelectric element and a method for manufacturing the same, and for example, an AC adapter and a DC-DC converter used in various electronic devices, and a liquid crystal display used in a notebook computer, a portable terminal and the like. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated piezoelectric element used for a backlight cold cathode fluorescent lamp inverter and the like, and a manufacturing method thereof.

【0002】[0002]

【従来技術】近年、各種電子機器の小型化に対応して、
スイッチング電源装置の小型及び低背化が重要な課題で
ある。特に、小型低背化を図るうえにおいては、電圧の
昇圧や降圧を行うトランスの小型低背化が重要となる。
2. Description of the Related Art Recently, in response to miniaturization of various electronic devices,
It is an important issue to reduce the size and height of the switching power supply device. In particular, in order to reduce the size and height, it is important to reduce the size and height of the transformer that boosts or lowers the voltage.

【0003】一般的には、回路の高周波化に伴い電磁ト
ランスの小型化を図る方法、もしくは圧電トランスを用
いることで小型化が図られている。特に低背化に際して
は、電磁トランスでは小型化による損失の増大が起こる
ため、高い電力密度が得られる圧電トランスが有効な部
品として使用されるようになってきている。例えば、液
晶のバックライトに用いられる冷陰極管の点灯用インバ
ータの昇圧用圧電トランスとして実用化されている。
In general, miniaturization is achieved by a method of miniaturizing an electromagnetic transformer as the frequency of a circuit increases, or by using a piezoelectric transformer. In particular, when the height of the electromagnetic transformer is reduced, the loss of the electromagnetic transformer is increased due to the miniaturization of the electromagnetic transformer. Therefore, a piezoelectric transformer capable of obtaining a high power density has been used as an effective component. For example, it has been put into practical use as a step-up piezoelectric transformer of a cold cathode tube lighting inverter used for a liquid crystal backlight.

【0004】昇圧用圧電トランスの構造としては、従
来、図3(a)に示される長方形状圧電基板81の長手
方向の約半分を1次側として、厚み方向に電極82、8
3が形成され且つ厚み方向に分極され、さらに残りの約
半分を2次側として、長手方向端面に電極84が形成さ
れ且つ長手方向に分極された、ローゼン型圧電トランス
や、高い昇圧比を得るために1次側を積層した構造した
図3(b)に示されるローゼン型積層圧電トランスも知
られている。
In the structure of the boosting piezoelectric transformer, conventionally, about half of the rectangular piezoelectric substrate 81 shown in FIG. 3 (a) in the longitudinal direction is the primary side, and the electrodes 82, 8 are arranged in the thickness direction.
3 is formed and polarized in the thickness direction, and the other half is the secondary side, the electrode 84 is formed on the end face in the longitudinal direction and is polarized in the longitudinal direction, and a high boost ratio is obtained. For this reason, the Rosen type laminated piezoelectric transformer shown in FIG. 3B, which has a structure in which the primary side is laminated, is also known.

【0005】1次側を積層した場合は、内部電極85を
1層おきに同電位に接続するために、側面に外部電極8
7を形成する必要があり、内部電極85と外部電極87
の接続を確実に行う必要がある。
When the primary side is laminated, in order to connect the inner electrodes 85 every other layer to the same potential, the outer electrodes 8 are formed on the side surfaces.
7 must be formed, and the internal electrode 85 and the external electrode 87 must be formed.
It is necessary to make a reliable connection.

【0006】また、ローゼン型圧電トランスは、昇圧比
が高く、且つ出力側インピーダンスが数100KΩの高
インピーダンスであることから、インピーダンス整合が
とりやすいバックライト点灯用インバータに適した特性
を有しているが、降圧特性が得られないという問題があ
った。特に、AC−DCコンバータやDC−DCコンバ
ータ用降圧トランスとして用いる場合、負荷のインピー
ダンスが1KΩ未満程度と低インピーダンスであるた
め、インピーダンス整合をとることが困難であり、出力
電力及び効率が低くなるといった問題があった。
Since the Rosen type piezoelectric transformer has a high step-up ratio and a high impedance of output side impedance of several 100 KΩ, it has characteristics suitable for a backlight lighting inverter in which impedance matching is easily achieved. However, there is a problem that the step-down characteristic cannot be obtained. In particular, when used as a step-down transformer for an AC-DC converter or a DC-DC converter, the impedance of the load is as low as less than 1 KΩ, which makes impedance matching difficult, resulting in low output power and efficiency. There was a problem.

【0007】このような問題を解決した圧電トランスと
して、例えば、特開平11−4026号公報に開示され
たようなものが知られている。図3(c)は、このよう
な圧電トランスを示すもので、1次側及び2次側を積層
することで、インピーダンス整合が容易という特徴を有
するが、内部電極85を1層おきに同電位に接続するた
めに、側面に外部電極87を形成する必要があり、この
場合にも内部電極85と外部電極87の接続を確実に行
う必要がある。
As a piezoelectric transformer that solves such a problem, for example, one disclosed in Japanese Patent Laid-Open No. 11-4026 is known. FIG. 3C shows such a piezoelectric transformer, which has a feature that impedance matching is easy by stacking the primary side and the secondary side, but the internal electrode 85 has the same potential every other layer. In this case, it is necessary to form an external electrode 87 on the side surface in order to connect the internal electrode 85 and the external electrode 87 in this case as well.

【0008】図4は、従来の圧電トランスにおける内部
電極85と外部電極87の接続構造を示すもので、圧電
体89と内部電極85が交互に積層されて素子本体91
が形成され、この素子本体91の側面から内部電極85
が1層おきに露出しており、この内部電極85が、露出
した素子本体91の側面に真空蒸着、銀ペーストの焼き
付け、導電性樹脂の塗布により外部電極87を形成する
ことにより、外部電極87と内部電極85との導通が図
られていた。
FIG. 4 shows a connection structure of an internal electrode 85 and an external electrode 87 in a conventional piezoelectric transformer, in which a piezoelectric body 89 and an internal electrode 85 are alternately laminated to form an element body 91.
From the side surface of the element body 91.
Are exposed every other layer, and the internal electrodes 85 are formed on the exposed side surfaces of the element body 91 by vacuum vapor deposition, baking of silver paste, and application of a conductive resin to form the external electrodes 87. And the internal electrode 85 was electrically connected.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記し
た従来の圧電トランスでは、高電界下で長時間連続駆動
させた場合、圧電体89間に形成された内部電極85と
外部電極87との間で剥離が発生し、一部の圧電体89
に電圧供給されなくなり、駆動中に出力が低下するとい
う問題があった。
However, in the above-described conventional piezoelectric transformer, when continuously driven in a high electric field for a long time, the internal electrode 85 formed between the piezoelectric bodies 89 and the external electrode 87 are formed. Peeling occurs and some of the piezoelectric body 89
There was a problem that the voltage was not supplied to the output and the output decreased during driving.

【0010】このような問題点を解決するために、例え
ば、特開平5−29680号公報には、内部電極をエッ
チングで露出させた後、露出した内部電極の端部に1層
おきにメッキにより卑金属を被覆することで突出させ、
この突出部間の他の内部電極を絶縁層で被覆し、導電材
料からなるペーストを、突出部が形成された素子本体の
側面に塗布、焼成して外部電極を形成し、内部電極との
導通を図った積層型圧電素子が開示されている。
In order to solve such a problem, for example, in Japanese Patent Laid-Open No. 5-29680, after exposing the internal electrodes by etching, every other layer is plated on the end portions of the exposed internal electrodes by plating. By coating with a base metal, it protrudes,
The other internal electrodes between the protrusions are covered with an insulating layer, and a paste made of a conductive material is applied to the side surface of the element body on which the protrusions are formed and baked to form external electrodes, which are electrically connected to the internal electrodes. There is disclosed a laminated piezoelectric element for achieving the above.

【0011】しかしながら、メッキによって析出させる
金属をイオン化させる必要があるため、突出部を形成す
る金属は卑金属である必要があり、積層体を高温度の環
境においた場合には、被覆した卑金属が酸化してしま
い、外部電極との導通が確保できなくなるという問題が
あった。また、突出部を作製するために、エッチング・
メッキ・熱処理・酸化物膜除去と製造工程が多く、作製
に手間がかかるという問題があった。また、内部電極と
メッキ電極の合金で突出部を作製するため、突出部のヤ
ング率は、内部電極の主成分の銀に比べて高くなり、外
部電極に作用する応力の吸収が難しく、内部電極と外部
電極との間で未だ剥離が発生し易いという問題があっ
た。
However, since it is necessary to ionize the metal to be deposited by plating, the metal forming the protruding portion needs to be a base metal, and when the laminate is exposed to a high temperature environment, the coated base metal is oxidized. As a result, there is a problem in that electrical continuity with the external electrode cannot be secured. In addition, in order to make the protrusion, etching
There are many manufacturing processes such as plating, heat treatment, oxide film removal, and there is a problem that it takes time to manufacture. In addition, since the protrusion is made of an alloy of the internal electrode and the plated electrode, the Young's modulus of the protrusion is higher than that of silver, which is the main component of the internal electrode, and it is difficult to absorb the stress acting on the external electrode. There is a problem that peeling still easily occurs between the external electrode and the external electrode.

【0012】本発明は、高電界で長期間連続駆動させた
場合でも、外部電極と内部電極の断線を有効に阻止し
て、耐久性を大幅に向上できる積層型圧電素子及びその
製法を提供することを目的とする。
The present invention provides a laminated piezoelectric element capable of effectively preventing disconnection between the external electrode and the internal electrode even when continuously driven in a high electric field for a long period of time, and greatly improving durability, and a method for producing the same. The purpose is to

【0013】[0013]

【課題を解決するための手段】本発明の積層型圧電素子
は、複数の圧電体と複数の内部電極とを交互に積層して
なる素子本体と、該素子本体の側面に設けられ、前記内
部電極が一層おきに交互に接続された一対の外部電極と
を具備してなる積層型圧電素子であって、前記内部電極
の端部に一層おきに前記素子本体の側面から突出する貴
金属からなる突起状導電性端子を設け、該突起状導電性
端子が前記外部電極中に埋設されていることを特徴とす
る。
A laminated piezoelectric element of the present invention comprises an element body formed by alternately laminating a plurality of piezoelectric bodies and a plurality of internal electrodes, and a side surface of the element body. A laminated piezoelectric element having a pair of external electrodes in which electrodes are alternately connected to every other layer, and a protrusion made of a noble metal protruding from the side surface of the element body every other layer at an end of the internal electrode. Conductive terminals are provided, and the protruding conductive terminals are embedded in the external electrodes.

【0014】このような積層型圧電素子は、例えば、複
数の圧電体と複数の内部電極とを交互に積層してなり、
側面に前記内部電極の端部が一層おきに露出する素子本
体を作製する工程と、前記内部電極の端部が露出した素
子本体の側面に、貴金属とガラスを主成分とする端子用
ペーストを塗布し、該端子用ペースト中のガラスの軟化
点以上の温度で、且つガラス中を貴金属が移動しうる温
度で焼き付けて、前記内部電極の端部に突起状導電性端
子を形成する工程と、該突起状導電性端子が形成された
素子本体の側面に、前記突起状導電性端子を埋設するよ
うに外部電極を形成する工程とを具備することにより、
突起状導電性端子を容易に形成することができる。
Such a laminated piezoelectric element is formed by alternately laminating a plurality of piezoelectric bodies and a plurality of internal electrodes,
A step of manufacturing an element body in which the end portions of the internal electrodes are exposed on the side surface every other layer, and a terminal paste mainly composed of a noble metal and glass is applied to the side surface of the element body in which the end portions of the internal electrode are exposed. And baking at a temperature equal to or higher than the softening point of the glass in the terminal paste, and at a temperature at which a noble metal can move in the glass to form a protruding conductive terminal at the end of the internal electrode, By forming an external electrode on the side surface of the element body on which the protruding conductive terminal is formed so as to embed the protruding conductive terminal,
The protruding conductive terminal can be easily formed.

【0015】外部電極は、突起状導電性端子が形成され
た素子本体の側面に、金属とガラスを主成分とする外部
電極ペーストを塗布し、該外部電極ペースト中のガラス
の軟化点以上の温度で且つ前記突起状導電性端子の形成
温度より低い温度で焼き付けて形成されることが望まし
い。
The external electrode is formed by applying an external electrode paste containing metal and glass as a main component on the side surface of the element body on which the protruding conductive terminal is formed, and at a temperature higher than the softening point of the glass in the external electrode paste. It is also desirable that the baking is performed at a temperature lower than the forming temperature of the protruding conductive terminals.

【0016】本発明の積層型圧電素子では、内部電極の
端部に一層おきに柱状積層体の側面から突出する突起状
導電性端子を設け、該突起状導電性端子が外部電極中に
埋設されているために、突起状導電性端子と外部電極の
接合面積を広く取ることができ、高電界下で長期間連続
運転させた場合でも、突起状導電性端子と外部電極との
断線を抑制することができ、耐久性を大幅に向上でき
る。
In the laminated piezoelectric element of the present invention, protruding conductive terminals projecting from the side surface of the columnar laminated body are provided at every other end of the internal electrode, and the protruding conductive terminals are embedded in the external electrode. Therefore, it is possible to secure a large bonding area between the protruding conductive terminal and the external electrode, and to prevent disconnection between the protruding conductive terminal and the external electrode even when operated continuously for a long time under a high electric field. It is possible to significantly improve durability.

【0017】また、本発明では、突起状導電性端子と内
部電極の金属元素が同一であることが望ましい。例え
ば、突起状導電性端子と内部電極の金属元素が、銀と、
パラジウム又は白金とからなることが望ましい。これ
は、突起状導電性端子の主成分を内部電極の金属成分と
同一とすることにより、突起状導電性端子と内部電極の
間の接合強度を強固にすることができ、積層型圧電素子
を高電界下で駆動させた場合にも外部電極と内部電極が
断線することなく、耐久性を大きく向上させることがで
きる。
Further, in the present invention, it is desirable that the protruding conductive terminals and the internal electrodes have the same metal element. For example, the metal element of the protruding conductive terminal and the internal electrode is silver,
It is preferably composed of palladium or platinum. This is because by making the main component of the protruding conductive terminal the same as the metal component of the internal electrode, it is possible to strengthen the bonding strength between the protruding conductive terminal and the internal electrode, and Even when driven under a high electric field, the external electrode and the internal electrode are not disconnected, and the durability can be greatly improved.

【0018】また、突起状導電性端子の主成分をヤング
率の低い銀とすることにより、高電界下で駆動時に生じ
る応力を十分吸収することができ、外部電極と内部電極
が断線することなく、耐久性を大きく向上させることが
できる。
Further, by using silver having a low Young's modulus as the main component of the protruding conductive terminal, the stress generated during driving under a high electric field can be sufficiently absorbed and the external electrode and the internal electrode are not disconnected. The durability can be greatly improved.

【0019】[0019]

【発明の実施の形態】図1は本発明の圧電トランスから
なる積層型圧電素子の一実施例を示すもので、(a)は
斜視図、(b)は(a)のA−A線に沿った断面図、
(c)は(b)の一部を拡大した断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a laminated piezoelectric element comprising a piezoelectric transformer of the present invention. (A) is a perspective view, (b) is a line AA of (a). Cross section along,
(C) is an enlarged sectional view of a part of (b).

【0020】本発明の圧電トランスは、図1に示すよう
に、両主面が長方形状の圧電基板20の長さ方向に、電
圧入力部21、電圧出力部22、電圧入力部23が順次
形成され、電圧入力部21、23、電圧出力部22にお
ける圧電基板20の両主面には、それぞれ入力部用電極
21a、21b、入力部用電極23a、23b、出力部
用電極22a、22bが形成され、素子本体24が形成
されている。
In the piezoelectric transformer of the present invention, as shown in FIG. 1, a voltage input portion 21, a voltage output portion 22, and a voltage input portion 23 are sequentially formed in the length direction of a piezoelectric substrate 20 having both rectangular main surfaces. The input electrodes 21a and 21b, the input electrodes 23a and 23b, and the output electrodes 22a and 22b are formed on both main surfaces of the piezoelectric substrate 20 in the voltage input portions 21 and 23 and the voltage output portion 22, respectively. The element body 24 is formed.

【0021】電圧出力部22における圧電基板20内
に、6層の出力部用内部電極28a、28bが厚み方向
に所定間隔を置いて交互に設けられている。内部電極2
8a、28bの端部が交互に対向する電圧出力部22の
側面に露出しており、この露出した内部電極28a、2
8bの端部には、それぞれ内部電極28a、28bの金
属成分と同一成分からなる突起状導電性端子29a、2
9bが形成され、これらの突起状導電性端子29a、2
9bは、電圧出力部22の側面に設けられた外部電極3
4a、34b中に埋設され、これらの外部電極34a、
34bは、出力部用電極22a、22bと接続されてい
る。
In the piezoelectric substrate 20 of the voltage output section 22, six layers of internal electrodes 28a, 28b for the output section are provided alternately at predetermined intervals in the thickness direction. Internal electrode 2
The end portions of 8a and 28b are exposed at the side surfaces of the voltage output portion 22 which are alternately opposed to each other, and the exposed inner electrodes 28a and 2b are exposed.
At the ends of 8b, protruding conductive terminals 29a, 2a made of the same metal component as that of the internal electrodes 28a, 28b, respectively.
9b are formed, and these protruding conductive terminals 29a, 2
9b is an external electrode 3 provided on the side surface of the voltage output section 22.
4a, 34b, and these external electrodes 34a,
34b is connected to the output electrodes 22a and 22b.

【0022】素子本体24と外部電極34a、34bと
の間には、図1(c)に示すように、端子用ペースト中
のガラスに基づくガラス層37が形成されている。この
ガラス層37により、素子本体24の側面に露出してい
ない内部電極28bとの絶縁性できると同時に、外部電
極34aと露出していない内部電極28b間に発生する
振動に寄与しない浮遊容量を低下させることができる。
A glass layer 37 based on glass in the terminal paste is formed between the element body 24 and the external electrodes 34a and 34b, as shown in FIG. 1 (c). The glass layer 37 can insulate the internal electrode 28b that is not exposed on the side surface of the element body 24, and at the same time reduce the stray capacitance that does not contribute to vibration generated between the external electrode 34a and the internal electrode 28b that is not exposed. Can be made.

【0023】外部電極34a、34bは、内部電極28
a、28bの端部が露出した電圧出力部22の側面の一
部に設けられており、突起状導電性端子29a、29b
は、外部電極34a、34bが形成される部分のみに形
成されている。
The external electrodes 34a and 34b are the internal electrodes 28.
The projecting conductive terminals 29a, 29b are provided on a part of the side surface of the voltage output section 22 where the ends of a, 28b are exposed.
Are formed only on the portions where the external electrodes 34a and 34b are formed.

【0024】また、電圧入力部21、23における圧電
体層25、27は厚み方向に分極され、電圧出力部22
における圧電体層26は厚み方向に分極され、内部電極
28a、28bを介して隣接する圧電体層26の分極方
向が逆とされている。
Further, the piezoelectric layers 25 and 27 in the voltage input sections 21 and 23 are polarized in the thickness direction, and the voltage output section 22.
The piezoelectric layer 26 is polarized in the thickness direction, and the piezoelectric layers 26 adjacent to each other via the internal electrodes 28a and 28b have opposite polarization directions.

【0025】圧電体層26はPZT系圧電セラミック等
の一般的な圧電セラミックスから構成されており、内部
電極28a、28b及び突起状導電性端子29a、29
bは、金属元素が同一とされ、銀と、パラジウム又は白
金とから構成されている。圧電基板20の両主面に形成
された、入力部用電極21a、21b、23a、23
b、出力部用電極22a、22bは、Agとガラスから
構成され、外部電極34a、34bも、Agとガラスに
より構成されている。
The piezoelectric layer 26 is composed of general piezoelectric ceramics such as PZT type piezoelectric ceramics, and has internal electrodes 28a, 28b and protruding conductive terminals 29a, 29.
b has the same metal element and is composed of silver and palladium or platinum. Input portion electrodes 21a, 21b, 23a, 23 formed on both main surfaces of the piezoelectric substrate 20.
b, the electrodes 22a and 22b for the output section are made of Ag and glass, and the external electrodes 34a and 34b are also made of Ag and glass.

【0026】本発明の圧電トランスの製法について説明
する。所望の組成にて混合されたPZT系圧電セラミッ
クを900〜1050℃で仮焼成する。この仮焼成粉を
粉砕し、バインダー、可塑材等を添加し、有機溶剤中に
分散させてスラリーを作製する。得られたスラリーをド
クターブレード法などを用いて、所望の厚さのセラミッ
クグリーンシートとする。
A method for manufacturing the piezoelectric transformer of the present invention will be described. The PZT-based piezoelectric ceramic mixed with a desired composition is pre-baked at 900 to 1050 ° C. This calcined powder is pulverized, a binder, a plasticizer, etc. are added and dispersed in an organic solvent to prepare a slurry. The obtained slurry is made into a ceramic green sheet having a desired thickness by using a doctor blade method or the like.

【0027】次に、AgとPd粉末にバインダー、可塑
剤等を添加混合して内部電極用の導電性ペーストを作製
し、セラミックグリーンシート上の所定位置に、スクリ
ーン印刷する。導電性ペーストが塗布されたグリーンシ
ートを複数積層し熱間プレスにより一体化させ、400
〜500℃で加熱して脱脂を行った後、1000〜11
50℃で焼結する。この段階で、対向する素子本体24
の側面には、内部電極28a、28bの端部が交互に露
出している。
Next, a binder, a plasticizer and the like are added to and mixed with Ag and Pd powder to prepare a conductive paste for internal electrodes, which is screen-printed at a predetermined position on the ceramic green sheet. A plurality of green sheets coated with conductive paste are laminated and integrated by hot pressing,
After heating at ~ 500 ° C and degreasing, 1000 ~ 11
Sinter at 50 ° C. At this stage, the opposing element body 24
Ends of the internal electrodes 28a and 28b are alternately exposed on the side surface of the.

【0028】その後、素子本体24の内部電極28a、
28bの端部が露出した対向する側面に、Agとガラス
を主成分する突起状導電性端子29a、29b用の端子
用ペーストを塗布し、700〜950℃で焼き付けする
ことにより、突起状導電性端子29a、29bを形成す
る。
After that, the internal electrodes 28a of the element body 24,
By applying the terminal paste for the protruding conductive terminals 29a and 29b containing Ag and glass as the main components to the opposite side surfaces where the ends of 28b are exposed, and baking at 700 to 950 ° C., the protruding conductive terminals are formed. The terminals 29a and 29b are formed.

【0029】即ち、このような突起状導電性端子29
a、29bを形成するためには、特に、Agを主成分と
する端子用ペーストに軟化点が500℃〜800℃のガ
ラス粉末を分散させておき、端子用ペーストを素子本体
24の側面に塗布し、ガラスを軟化させるとともに、A
g粒子がガラス中を移動できる温度に加熱し、特に、端
子用ペーストのガラスの軟化温度より100℃以上高い
温度に保持することで、ガラス中のAgの拡散速度を高
めることができる。この状態において圧電体には拡散し
にくいAgが内部電極28a、28bの端部に拡散して
寄り集まるため、図1(c)に示すような突起状導電性
端子29a、29bを形成できる。このとき、内部電極
28a、28b中のPdが突起状導電性端子29a、2
9bに拡散し、突起状導電性端子29a、29bはAg
とPdの合金となる。
That is, such a protruding conductive terminal 29
In order to form a and 29b, in particular, a glass powder having a softening point of 500 ° C. to 800 ° C. is dispersed in a terminal paste containing Ag as a main component, and the terminal paste is applied to the side surface of the element body 24. And softens the glass,
The diffusion rate of Ag in the glass can be increased by heating to a temperature at which the g particles can move in the glass, and particularly by maintaining the temperature at 100 ° C. or more higher than the softening temperature of the glass of the terminal paste. In this state, Ag, which is difficult to diffuse into the piezoelectric body, diffuses and gathers at the ends of the internal electrodes 28a and 28b, so that the protruding conductive terminals 29a and 29b as shown in FIG. 1C can be formed. At this time, Pd in the internal electrodes 28a, 28b is changed to the protruding conductive terminals 29a, 2b.
9b, and the protruding conductive terminals 29a and 29b are Ag.
And an alloy of Pd.

【0030】端子用ペースト中のガラスは一部29a、
29bの根元部のまわりに集合し、一部は素子本体24
の表面に存在する。
Part of the glass in the terminal paste is 29a,
29b are gathered around the base of the element 29b, and part of the element body 24
Present on the surface of.

【0031】この後、素子本体24の両主面に図1に示
すように銀とガラスを主成分とする導電性ペーストを塗
布して焼き付け、入力部用電極21a、21b、23
a、23b、出力部用電極22a、22bを形成し、次
に、突起状導電性端子29a、29bが形成された素子
本体24の側面に、外部電極ペーストを塗布して焼き付
け、外部電極34a、34bを形成する。この時の焼き
付け温度は、外部電極ペースト中のガラスの軟化温度よ
りは高温にするが、AgとPdの拡散速度を低く保てる
温度、つまり、突起状導電性端子形成温度より低くする
ことが重要である。これにより、突起状導電性端子29
a、29bが外部電極34a、34b中に埋設して存在
することになる。
After that, as shown in FIG. 1, a conductive paste containing silver and glass as the main components is applied and baked on both main surfaces of the element body 24, and the electrodes 21a, 21b and 23 for the input portion are applied.
a, 23b and the electrodes 22a, 22b for the output part are formed, and then the external electrode paste is applied and baked on the side surface of the element body 24 on which the protruding conductive terminals 29a, 29b are formed. 34b is formed. The baking temperature at this time is higher than the softening temperature of the glass in the external electrode paste, but it is important to keep the diffusion rate of Ag and Pd low, that is, lower than the protruding conductive terminal forming temperature. is there. Thereby, the protruding conductive terminal 29
The a and 29b are embedded and present in the external electrodes 34a and 34b.

【0032】ここで、入力部用電極21a、21b、2
3a、23b、出力部用電極22a、22b、外部電極
34a、34bを銀とガラスを主成分とする導電性ペー
ストの焼き付けで形成したが、蒸着、スパッタ、メッキ
等の手法を用いて形成しても良い。また、Ag以外の導
電性材料を用いても良い。外部電極34a、34bは、
導電性樹脂を塗布することにより形成しても良い。
Here, the input electrodes 21a, 21b, 2
The electrodes 3a and 23b, the output electrodes 22a and 22b, and the external electrodes 34a and 34b are formed by baking a conductive paste containing silver and glass as main components, but they are formed by a method such as vapor deposition, sputtering, or plating. Is also good. Also, a conductive material other than Ag may be used. The external electrodes 34a and 34b are
It may be formed by applying a conductive resin.

【0033】この後、120℃のシリコーンオイル中に
て、入力電極21a、21b、23a、23b及び出力
電極22a、22bに、各々直流電圧を印加して、約3
0分間分極処理することにより、本発明の圧電トランス
を得る。
After that, a DC voltage is applied to each of the input electrodes 21a, 21b, 23a, 23b and the output electrodes 22a, 22b in silicone oil at 120 ° C. to obtain about 3
The piezoelectric transformer of the present invention is obtained by performing the polarization treatment for 0 minutes.

【0034】尚、ここでは圧電磁器材料と内部電極材料
としてPZT系圧電磁器材料およびAg/Pdを用いた
が、圧電性を有する圧電磁器材料およびそれと一体焼成
可能である銀を含む電極材料であれば他の組み合わせで
も良いことは言うまでもない。
Although the PZT-based piezoelectric ceramic material and Ag / Pd are used as the piezoelectric ceramic material and the internal electrode material here, the piezoelectric ceramic material having piezoelectricity and the electrode material containing silver which can be integrally fired with the piezoelectric ceramic material. It goes without saying that other combinations are also possible.

【0035】本発明の圧電トランスでは、電圧入力部2
1、23の入力部用電極21a、21b間、および23
a、23b間に、圧電基板20の共振周波数近傍の周波
数を持つ交流電圧を印加すれば、逆圧電効果により圧電
基板20が励振し、再び正圧電効果により電圧出力部2
2の出力部用内部電極28a、28b間に、入力電圧と
同じ周波数の電圧が発生する。このとき、出力電圧は負
荷抵抗や駆動周波数に依存する。
In the piezoelectric transformer of the present invention, the voltage input section 2
1, 23 between the input part electrodes 21a and 21b, and 23
When an AC voltage having a frequency near the resonance frequency of the piezoelectric substrate 20 is applied between a and 23b, the piezoelectric substrate 20 is excited by the inverse piezoelectric effect, and the voltage output unit 2 is again activated by the positive piezoelectric effect.
A voltage having the same frequency as the input voltage is generated between the second output inner electrodes 28a and 28b. At this time, the output voltage depends on the load resistance and the driving frequency.

【0036】即ち、圧電トランス駆動時に圧電基板20
は振動しており、圧電基板20に振動に伴う歪みが発生
している。突起状導電性端子29a、29bが無い場合
は、外部電極34a、34bの内部電極の接着面積が狭
いために、磁器の変形により生じる応力が長期間生じる
と、剥離が発生し易いが、突起状導電性端子29a、2
9bを形成した場合は内部電極28a、28bと突起状
導電性端子29a、29bは同成分で強固に接合されて
おり、外部電極34a、34bと突起状導電性端子29
a、29bの接着面積が広くなると同時に、突起状導電
性端子29a、29bの主成分をヤング率の低い銀を主
とすることにより磁器変形で生じる応力を十分吸収する
ことができ、外部電極34a、34bと内部電極28
a、28bとの断線を抑制できる。
That is, when the piezoelectric transformer is driven, the piezoelectric substrate 20
Are vibrating, and the piezoelectric substrate 20 is distorted due to the vibration. If the protruding conductive terminals 29a and 29b are not provided, the adhesion area of the internal electrodes of the external electrodes 34a and 34b is small. Therefore, if stress caused by deformation of the porcelain is generated for a long period of time, peeling easily occurs. Conductive terminals 29a, 2
When 9b is formed, the internal electrodes 28a, 28b and the protruding conductive terminals 29a, 29b are firmly joined with the same component, and the external electrodes 34a, 34b and the protruding conductive terminals 29 are formed.
Since the adhesive area of a and 29b is widened and the main component of the protruding conductive terminals 29a and 29b is mainly silver having a low Young's modulus, the stress generated by the porcelain deformation can be sufficiently absorbed, and the external electrode 34a , 34b and the internal electrode 28
It is possible to suppress disconnection between a and 28b.

【0037】[0037]

【実施例】実施例として、図1に示した圧電トランスを
グリーンシート法により作製した。先ず、圧電磁器材料
としてPZT系圧電磁器材料を用い、また内部電極材料
としてAg/Pdを用い、PZT系圧電磁器材料からな
るグリーンシート上に、Ag/Pd導電性ペーストをス
クリーン印刷して内部電極パターンを形成し、このよう
な内部電極パターンが形成されたグリーンシートを6層
積層し、その上に内部電極パターンが形成されていない
グリーンシートを積層した後、熱間プレスにより一体化
させ、400〜500℃で加熱して脱脂を行った後、1
100〜1300℃で焼結した。
EXAMPLES As an example, the piezoelectric transformer shown in FIG. 1 was manufactured by the green sheet method. First, a PZT-based piezoelectric ceramic material is used as the piezoelectric ceramic material, Ag / Pd is used as the internal electrode material, and the Ag / Pd conductive paste is screen-printed on the green sheet made of the PZT-based piezoelectric ceramic material to form the internal electrode. A pattern is formed, six layers of green sheets having such internal electrode patterns are laminated, and a green sheet having no internal electrode pattern is laminated thereon, and then they are integrated by hot pressing. After degreasing by heating at ~ 500 ° C, 1
Sintered at 100-1300 ° C.

【0038】この焼結体を、長さL25.74mm、幅
W19.8mm、厚み3.3mmの形状に加工し、焼結
体の両側面に、Agと、ガラス(軟化点550℃)を主
成分する端子用ペーストを塗布し、800℃で焼き付け
することにより、突起状導電性端子29a、29bを形
成した。
This sintered body was processed into a shape having a length L of 25.74 mm, a width W of 19.8 mm and a thickness of 3.3 mm, and Ag and glass (softening point 550 ° C.) were mainly formed on both side surfaces of the sintered body. By applying the component paste for the terminals and baking at 800 ° C., the protruding conductive terminals 29a, 29b were formed.

【0039】この後、両主面に図1に示すようにAgと
ガラスを主成分とする導電性ペーストを塗布して焼き付
け、入力部用電極21a、21b、23a、23b、出
力部用電極22a、22bを形成すると同時に、両側面
に、Agとガラス(軟化点475℃)を主成分とする外
部電極ペーストを塗布して焼き付け、外部電極34a、
34bを形成した。この時の焼き付け温度は520℃で
行った。
After that, as shown in FIG. 1, a conductive paste containing Ag and glass as main components is applied and baked on both main surfaces, and input electrodes 21a, 21b, 23a, 23b and output electrode 22a are formed. , 22b are formed, and at the same time, an external electrode paste containing Ag and glass (softening point 475 ° C.) as main components is applied to both side surfaces and baked to form external electrodes 34a,
34b was formed. The baking temperature at this time was 520 ° C.

【0040】外部電極34a、34bの断面を観察して
みると、内部電極28a、28bの端部に突起状導電性
端子29a、29bが形成されており、この突起状導電
性端子29a、29bが外部電極34a、34b中に埋
設した状態となっていた。突起状導電性端子29a、2
9bは、Ag/Pdから構成されていた。
Observing the cross section of the external electrodes 34a, 34b, the protruding conductive terminals 29a, 29b are formed at the ends of the internal electrodes 28a, 28b, and the protruding conductive terminals 29a, 29b are formed. It was in a state of being embedded in the external electrodes 34a and 34b. Protruding conductive terminals 29a, 2
9b was composed of Ag / Pd.

【0041】次に、圧電トランスを120℃のシリコー
ンオイル中で1.6kV/mmの直流電圧を印加し、3
0分間分極を行い、圧電基板の厚み方向に分極した。
Next, a direct current voltage of 1.6 kV / mm was applied to the piezoelectric transformer in silicone oil at 120 ° C., and 3
Polarization was performed for 0 minutes to polarize in the thickness direction of the piezoelectric substrate.

【0042】比較のために、突起状導電性端子の形成を
行わず、加工後の磁器に入力部用電極、出力部用電極、
外部電極を600℃の焼き付けで形成したサンプルを作
製した。
For comparison, the projecting conductive terminals were not formed, and the processed porcelain was applied to the input portion electrode, the output portion electrode,
A sample having an external electrode formed by baking at 600 ° C. was prepared.

【0043】測定回路は、図2に示すように、圧電トラ
ンスの入力側電極(1次側電極)を入力とし、出力側電
極(2次側電極)を出力として、この出力側電極に負荷
抵抗RLを接続した。ここではRL=10Ωとした。入
力電圧として141Vpp、周波数110kHz〜12
5kHzの正弦波を入力電源から入力側電極に印加し、
入力電流(App)及び位相を測定することで入力電力
(W)を求めた。
As shown in FIG. 2, the measuring circuit receives the input side electrode (primary side electrode) of the piezoelectric transformer and outputs the output side electrode (secondary side electrode) as an output, and the load resistance is applied to this output side electrode. The RL was connected. Here, RL = 10Ω. Input voltage is 141 Vpp, frequency 110 kHz to 12
Applying a 5kHz sine wave from the input power supply to the input side electrode,
The input power (W) was obtained by measuring the input current (App) and the phase.

【0044】一方、出力側電極からの出力電圧(Vp
p)、出力電流(App)及び位相を測定することで出
力電力(W)を求めた。効率(%)は最大出力電力及び
最大入力電力より求めた。
On the other hand, the output voltage (Vp
p), the output current (App) and the phase were measured to determine the output power (W). The efficiency (%) was calculated from the maximum output power and the maximum input power.

【0045】本発明の圧電トランスの測定結果は、出力
電力が1.5〜17.6Wかつ効率91.2%以上とな
り、最大出力電力も17.6Wと高いことがわかった。
比較例も初期の測定では同程度の特性を示した。
From the measurement results of the piezoelectric transformer of the present invention, it was found that the output power was 1.5 to 17.6 W and the efficiency was 91.2% or more, and the maximum output power was as high as 17.6 W.
The comparative example also showed similar characteristics in the initial measurement.

【0046】しかしながら、入力電圧を300Vppで
24Hr連続駆動させた後、141V入力で再測定を行
ったところ、本発明の圧電トランスは初期特性と同等の
特性を示したのに対し、比較例では、出力電力が極端に
低下し、効率も低下した。出力部の容量を測定したとこ
ろ、初期値の3/7に低下しており、解析の結果、外部
電極と内部電極が2カ所剥離していることが明らかにな
った。
However, when the input voltage was continuously driven for 24 hours at 300 Vpp and re-measured with 141 V input, the piezoelectric transformer of the present invention showed the same characteristics as the initial characteristics, whereas in the comparative example, The output power dropped extremely and the efficiency also dropped. When the capacitance of the output part was measured, it decreased to 3/7 of the initial value, and as a result of the analysis, it was revealed that the external electrode and the internal electrode were separated at two locations.

【0047】[0047]

【発明の効果】本発明の積層型圧電素子では、内部電極
の端部に一層おきに素子本体の側面から突出する突起状
導電性端子を設け、該突起状導電性端子が外部電極中に
埋設されているので、高電界で駆動させると、突起状導
電性端子が変形して素子本体の変形によって生じる応力
を吸収するため、高電界下で長期間連続運転させた場合
でも、外部電極と内部電極との断線を抑制することがで
き、耐久性を大幅に向上できる。
In the multi-layer piezoelectric element of the present invention, the protruding conductive terminals protruding from the side surface of the element body are provided at the end portions of the internal electrodes every other layer, and the protruding conductive terminals are embedded in the external electrodes. Therefore, when driven in a high electric field, the protruding conductive terminals deform and absorb the stress generated by the deformation of the element body. It is possible to suppress disconnection from the electrode and significantly improve durability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の積層型圧電素子を示すもので、(a)
斜視図で、(b)は(a)のA−A線に沿った断面図
で、(c)は(b)の一部拡大図である。
FIG. 1 is a view showing a laminated piezoelectric element of the present invention, (a)
In a perspective view, (b) is a sectional view taken along the line AA of (a), and (c) is a partially enlarged view of (b).

【図2】圧電トランスの測定回路を示す説明図である。FIG. 2 is an explanatory diagram showing a measuring circuit of a piezoelectric transformer.

【図3】(a)は従来のローゼン型圧電トランス、
(b)は従来のローゼン型積層圧電トランス、(c)は
従来の積層型圧電トランスを示す斜視図である。
FIG. 3A is a conventional Rosen type piezoelectric transformer,
(B) is a perspective view showing a conventional Rosen type laminated piezoelectric transformer, and (c) is a conventional laminated type piezoelectric transformer.

【図4】従来の積層型圧電トランスの内部電極と外部電
極の接続構造を示す断面図である。
FIG. 4 is a cross-sectional view showing a connection structure of internal electrodes and external electrodes of a conventional laminated piezoelectric transformer.

【符号の説明】[Explanation of symbols]

20・・圧電基板 24・・・素子本体 25、26、27・・・圧電体 28a、28b・・・内部電極 29a、29b・・・突起状導電性端子 34a、34b・・・外部電極 20 .. Piezoelectric substrate 24: Element body 25, 26, 27 ... Piezoelectric body 28a, 28b ... internal electrodes 29a, 29b ... Protruding conductive terminals 34a, 34b ... External electrodes

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数の圧電体と複数の内部電極とを交互に
積層してなる素子本体と、該素子本体の側面に設けら
れ、前記内部電極が一層おきに交互に接続された一対の
外部電極とを具備してなる積層型圧電素子であって、前
記内部電極の端部に一層おきに前記素子本体の側面から
突出する貴金属からなる突起状導電性端子を設け、該突
起状導電性端子が前記外部電極中に埋設されていること
を特徴とする積層型圧電素子。
1. An element body formed by alternately laminating a plurality of piezoelectric bodies and a plurality of internal electrodes, and a pair of external electrodes provided on the side surface of the element body and in which the internal electrodes are alternately connected to each other. A laminated piezoelectric element comprising an electrode, wherein a protruding conductive terminal made of a noble metal protruding from a side surface of the element body is provided at each end of the internal electrode, and the protruding conductive terminal is provided. Is embedded in the external electrode.
【請求項2】突起状導電性端子と内部電極の金属元素が
同一であることを特徴とする請求項1記載の積層型圧電
素子。
2. The laminated piezoelectric element according to claim 1, wherein the protruding conductive terminals and the internal electrodes are made of the same metal element.
【請求項3】突起状導電性端子と内部電極が、銀と、パ
ラジウム又は白金とからなることを特徴とする請求項2
記載の積層型圧電素子。
3. The protruding conductive terminal and the internal electrode are made of silver and palladium or platinum.
The laminated piezoelectric element described.
【請求項4】複数の圧電体と複数の内部電極とを交互に
積層してなり、側面に前記内部電極の端部が一層おきに
露出する素子本体を作製する工程と、前記内部電極の端
部が露出した素子本体の側面に、貴金属とガラスを主成
分とする端子用ペーストを塗布し、該端子用ペースト中
のガラスの軟化点以上の温度で、且つガラス中を貴金属
が移動しうる温度で焼き付けて、前記内部電極の端部に
突起状導電性端子を形成する工程と、該突起状導電性端
子が形成された素子本体の側面に、前記突起状導電性端
子を埋設するように外部電極を形成する工程とを具備す
ることを特徴とする積層型圧電素子の製法。
4. A step of manufacturing an element body in which a plurality of piezoelectric bodies and a plurality of internal electrodes are alternately laminated, and the end portions of the internal electrodes are exposed on the side surface every other layer, and the end of the internal electrodes. On the side surface of the element body where the part is exposed, a terminal paste containing a noble metal and glass as main components is applied, and the temperature is equal to or higher than the softening point of the glass in the terminal paste and at which the noble metal can move in the glass. Baking to form a protruding conductive terminal at the end of the internal electrode, and an external surface so that the protruding conductive terminal is embedded on the side surface of the element body on which the protruding conductive terminal is formed. And a step of forming an electrode.
【請求項5】外部電極は、突起状導電性端子が形成され
た素子本体の側面に、金属とガラスを主成分とする外部
電極ペーストを塗布し、該外部電極ペースト中のガラス
の軟化点以上の温度で且つ前記突起状導電性端子の形成
温度より低い温度で焼き付けて形成されることを特徴と
する請求項4記載の積層型圧電素子の製法。
5. The external electrode is formed by applying an external electrode paste containing metal and glass as a main component on a side surface of an element body on which a protruding conductive terminal is formed, the softening point of glass in the external electrode paste being equal to or higher than the softening point. 5. The method for manufacturing a laminated piezoelectric element according to claim 4, wherein the laminated piezoelectric element is formed by baking at a temperature lower than the forming temperature of the protruding conductive terminals.
JP2001234012A 2001-08-01 2001-08-01 Laminated piezoelectric device and its manufacturing method Pending JP2003046157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001234012A JP2003046157A (en) 2001-08-01 2001-08-01 Laminated piezoelectric device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001234012A JP2003046157A (en) 2001-08-01 2001-08-01 Laminated piezoelectric device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003046157A true JP2003046157A (en) 2003-02-14

Family

ID=19065702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001234012A Pending JP2003046157A (en) 2001-08-01 2001-08-01 Laminated piezoelectric device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003046157A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086110A (en) * 2003-09-10 2005-03-31 Denso Corp Laminated piezoelectric element
JP2005101207A (en) * 2003-09-24 2005-04-14 Kyocera Corp Laminated piezoelectric element and its manufacturing method, and injection device
JP2005123554A (en) * 2003-09-26 2005-05-12 Murata Mfg Co Ltd Stacked piezoelectric element and its manufacturing method
US7765660B2 (en) 2005-11-28 2010-08-03 Fujifilm Corporation Method of manufacturing a multilayered piezoelectric element having internal electrodes and side electrodes
JP2011109119A (en) * 2011-01-05 2011-06-02 Kyocera Corp Laminated piezoelectric element, and spraying device using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086110A (en) * 2003-09-10 2005-03-31 Denso Corp Laminated piezoelectric element
JP2005101207A (en) * 2003-09-24 2005-04-14 Kyocera Corp Laminated piezoelectric element and its manufacturing method, and injection device
JP2005123554A (en) * 2003-09-26 2005-05-12 Murata Mfg Co Ltd Stacked piezoelectric element and its manufacturing method
JP4686975B2 (en) * 2003-09-26 2011-05-25 株式会社村田製作所 Multilayer piezoelectric element and manufacturing method thereof
US7765660B2 (en) 2005-11-28 2010-08-03 Fujifilm Corporation Method of manufacturing a multilayered piezoelectric element having internal electrodes and side electrodes
JP2011109119A (en) * 2011-01-05 2011-06-02 Kyocera Corp Laminated piezoelectric element, and spraying device using the same

Similar Documents

Publication Publication Date Title
JP3978472B2 (en) Piezoelectric transformer
KR20000023735A (en) Piezoelectric transformer device
JP3170642B1 (en) Piezoelectric ceramic transformer and circuit for driving cold cathode fluorescent tube using the same
JP2003046157A (en) Laminated piezoelectric device and its manufacturing method
JP3706509B2 (en) Piezoelectric transformer
JPH10241993A (en) Laminated ceramic electronic component
JP3060666B2 (en) Thickness longitudinal vibration piezoelectric transformer and its driving method
WO2000070688A1 (en) Laminated piezoelectric transducer
JP4743936B2 (en) Piezoelectric transformer and converter
JPH08107240A (en) Piezoelectric transformer
JP3659309B2 (en) Piezoelectric transformer
JP2002289937A (en) Piezoelectric transformer and power source device
JP3709114B2 (en) Piezoelectric transformer
JP3080033B2 (en) Multilayer piezoelectric transformer
JP2003282990A (en) Piezoelectric transformer
JP3353132B2 (en) Piezoelectric transformer
JP4831859B2 (en) Piezoelectric transformer
JP4084549B2 (en) Piezoelectric transformer
JPH1041559A (en) Piezoelectric transformer
JP2002185057A (en) Piezoelectric transformer and its manufacturing method
JP4743935B2 (en) Piezoelectric transformer and AD converter
JPH0878747A (en) Lamination-type piezoelectric body
JPH03280479A (en) Manufacture of laminated ceramic electrostrictive element
JPH10270768A (en) Laminated type piezoelectric transformer
JP2003347614A (en) Stacked piezoelectric actuator