JP4686971B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP4686971B2
JP4686971B2 JP2003374599A JP2003374599A JP4686971B2 JP 4686971 B2 JP4686971 B2 JP 4686971B2 JP 2003374599 A JP2003374599 A JP 2003374599A JP 2003374599 A JP2003374599 A JP 2003374599A JP 4686971 B2 JP4686971 B2 JP 4686971B2
Authority
JP
Japan
Prior art keywords
fuel cell
current value
current
hydrogen
local
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003374599A
Other languages
Japanese (ja)
Other versions
JP2005141939A (en
Inventor
信也 坂口
朋範 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003374599A priority Critical patent/JP4686971B2/en
Priority to US10/931,981 priority patent/US7670700B2/en
Priority to DE102004042780A priority patent/DE102004042780A1/en
Publication of JP2005141939A publication Critical patent/JP2005141939A/en
Application granted granted Critical
Publication of JP4686971B2 publication Critical patent/JP4686971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、水素と酸素との電気化学反応により電気エネルギを発生させる燃料電池を備える燃料電池システムに関するもので、車両、船舶及びポータブル発電機等の移動体用発電機、或いは家庭用発電機に適用して有効である。   The present invention relates to a fuel cell system including a fuel cell that generates electric energy by an electrochemical reaction between hydrogen and oxygen. The present invention relates to a generator for a mobile body such as a vehicle, a ship, and a portable generator, or a household generator. It is effective to apply.

水素と酸素との電気化学反応を利用して発電を行う燃料電池システムでは、燃料電池内の水分が過剰になると電極が水に覆われてガスの透過が阻害され、電池の出力が低下する。特に燃料電池始動後の暖機過程では、燃料電池の温度が低いため、燃料電池内部に水が残留しやすい。   In a fuel cell system that generates electricity using an electrochemical reaction between hydrogen and oxygen, if water in the fuel cell becomes excessive, the electrode is covered with water, gas permeation is inhibited, and the output of the cell is reduced. In particular, in the warm-up process after starting the fuel cell, the temperature of the fuel cell is low, so water tends to remain inside the fuel cell.

また、燃料電池起動直後の暖機中は、燃料ガスおよび空気の圧力が充分でなかったり、燃料電池本体の反応膜温度が充分上昇していない等の理由により、その発電能力が定格発電能力に達せず、低発電能力状態にある。このような状態で、燃料電池から発電可能電力を越える電力を取り出そうとすると、急激に燃料電池のセル電圧が低下し、燃料電池の性能劣化を招くこととなる。   In addition, during the warm-up period immediately after the start of the fuel cell, the power generation capacity becomes the rated power generation capacity because the pressure of the fuel gas and air is not sufficient or the reaction film temperature of the fuel cell main body is not sufficiently increased. It does not reach and is in a state of low power generation capacity. In such a state, if an attempt is made to extract electric power that exceeds the power that can be generated from the fuel cell, the cell voltage of the fuel cell is drastically reduced, leading to performance deterioration of the fuel cell.

このため、燃料電池温度に応じて発電電力の上限を制限し、燃料電池が発生可能な出力より大きな出力要求がなされないようにした燃料電池システムが提案されている(例えば、特許文献1参照)。また、燃料電池を構成する各セルの電圧バラツキに応じて供給ガスの流量と圧力を制御する燃料電池システムも提案されている(例えば、特許文献2参照)。
特開平7−75214号公報 特開2002−343397号公報
For this reason, a fuel cell system has been proposed in which the upper limit of generated power is limited in accordance with the fuel cell temperature so that an output request greater than the output that can be generated by the fuel cell is not made (see, for example, Patent Document 1). . There has also been proposed a fuel cell system that controls the flow rate and pressure of a supply gas in accordance with the voltage variation of each cell constituting the fuel cell (see, for example, Patent Document 2).
JP-A-7-75214 JP 2002-343397 A

しかしながら、上記特許文献1に記載の方法では、燃料電池の温度に基づいて発電電力を制限する構成となっているため、燃料電池が低温の場合、通常よりも発電可能な電力が制限され、燃料電池の発熱も抑制されることとなり、燃料電池の暖機時間が長くなってしまうという問題があった。さらに燃料電池温度に基づいて発電電力を制限する場合には、必要以上に発電電力を制限してしまうこともあり得る。   However, the method described in Patent Document 1 is configured to limit the generated power based on the temperature of the fuel cell. Therefore, when the fuel cell is at a low temperature, the power that can be generated more than usual is limited. Heat generation of the battery is also suppressed, and there is a problem that the warm-up time of the fuel cell becomes long. Furthermore, when the generated power is limited based on the fuel cell temperature, the generated power may be limited more than necessary.

また、上記特許文献2に記載の方法では、セル間の電圧バラツキを検出する際、個々のセルではセル全体の電圧を見ているため、異常が発生したセルのセル電圧が低下してセル間の電圧バラツキが発生したときには、異常が発生したセル全体が異常状態となっていると考えられる。このため、セル間の電圧バラツキが発生してから燃料電池の復帰処理を行っても、復帰に時間がかかり、あるいは復帰できない場合もあり得る。燃料電池が復帰できない場合には、燃料電池車両は路上で停止してしまうという問題がある。   In addition, in the method described in Patent Document 2, when voltage variation between cells is detected, each cell sees the voltage of the whole cell. When this voltage variation occurs, it is considered that the entire cell in which an abnormality has occurred is in an abnormal state. For this reason, even if the fuel cell recovery process is performed after the voltage variation between the cells occurs, it may take time for the recovery or may not be recovered. When the fuel cell cannot be restored, there is a problem that the fuel cell vehicle stops on the road.

本発明は、上記点に鑑み、セル異常を早期に検出して燃料電池を早期に復帰させることが可能な燃料電池システムを提供することを目的とする。   An object of the present invention is to provide a fuel cell system capable of detecting a cell abnormality early and returning the fuel cell early.

上記目的を達成するため、請求項1に記載の発明では、酸素を主成分とする酸化ガスと水素を主成分とする燃料ガスとを電気化学反応させて電気エネルギを発生させる燃料電池(10)と、燃料電池(10)内において液滴が滞留しやすい酸化ガス出口部(112)近傍(A)または燃料ガス出口部(122)近傍(B)における局所電流値を測定する局所電流測定手段(151、161、152、162)と、燃料電池(10)で発生する電気を集電する集電手段(130)と、局所電流測定手段(151、161、152、162)にて測定した局所電流値が所定の出力制限開始電流値を下回る場合には、燃料電池(10)の出力制限処理を行う出力制限手段(40)とを備え、集電手段(130)は、少なくとも2つに分割されており、局所電流測定手段(151、161、152、162)は、分割された集電手段(130)のうち、酸化ガス出口部(112)近傍(A)に対向する箇所または燃料ガス出口部(122)近傍(B)に対向する箇所の局所電流値を測定するようになっていることを特徴としている。 In order to achieve the above object, according to the first aspect of the present invention, a fuel cell (10) for generating electric energy by electrochemically reacting an oxidizing gas containing oxygen as a main component and a fuel gas containing hydrogen as a main component. And local current measuring means for measuring a local current value in the vicinity (A) of the oxidizing gas outlet (112) or in the vicinity (B) of the fuel gas outlet (122) in which droplets tend to stay in the fuel cell (10). 151, 161, 152, 162), current collecting means (130) for collecting electricity generated in the fuel cell (10), and local current measured by local current measuring means (151, 161, 152, 162). When the value falls below a predetermined output restriction start current value, the fuel cell (10) includes an output restriction means (40) for performing an output restriction process, and the current collecting means (130) is divided into at least two. And Local current measuring means (151,161,152,162), among the divided collector means (130), the oxidizing gas outlet (112) near or at the fuel gas outlet facing the (A) (122) It is characterized in that the local current value at a location facing the vicinity (B) is measured.

このように、燃料電池(10)内における水の溜まりやすい箇所の局所電流値を監視することで、燃料電池(10)内における異常発生を早期に検出することができる。また、局所電流値に基づいて燃料電池(10)の出力制限を行うことにより、燃料電池(10)を早期に復帰させることができる。これにより、燃料電池(10)を車両の動力源として用いた場合には車両が路上で停止することを防止できる。   In this way, by monitoring the local current value at the location where water tends to accumulate in the fuel cell (10), it is possible to detect the occurrence of abnormality in the fuel cell (10) at an early stage. Further, by limiting the output of the fuel cell (10) based on the local current value, the fuel cell (10) can be returned early. Thereby, when a fuel cell (10) is used as a motive power source of a vehicle, it can prevent that a vehicle stops on a road.

また、請求項2に記載の発明では、燃料電池(10)の単位面積当たりの電流値である平均電流値を測定する平均電流測定手段(13)を備え、所定値は平均電流測定手段により測定した平均電流値に対し異常が発生したと判断できる所定割合を乗じた値であることを特徴としている。これにより、適切に燃料電池(10)の出力制限を開始することができる。 Further, the invention according to claim 2 is provided with an average current measuring means (13) for measuring an average current value which is a current value per unit area of the fuel cell (10), and the predetermined value is measured by the average current measuring means. The average current value is a value obtained by multiplying a predetermined ratio by which it can be determined that an abnormality has occurred. Thereby, the output restriction | limiting of a fuel cell (10) can be started appropriately.

また、請求項3に記載の発明では、出力制限手段(40)による出力制限処理では、燃料電池(10)の平均電流値を局所電流値に近づけるように、平均電流値を低下させることを特徴としている。これにより、燃料電池(10)の出力制限を適切に行うことができる。   In the invention according to claim 3, in the output limiting process by the output limiting means (40), the average current value is lowered so that the average current value of the fuel cell (10) approaches the local current value. It is said. Thereby, the output restriction | limiting of a fuel cell (10) can be performed appropriately.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

以下、本発明の一実施形態について図1〜図9に基づいて説明する。図1は本実施形態に係る燃料電池システムを示す模式図であり、この燃料電池システムは電気自動車に適用されるものである。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram showing a fuel cell system according to this embodiment, and this fuel cell system is applied to an electric vehicle.

図1に示すように、本実施形態の燃料電池システムは、水素と酸素との電気化学反応を利用して電力を発生する燃料電池10を備えている。この燃料電池10は、電気負荷11や2次電池(図示せず)等の電気機器に電力を供給するものである。因みに、電気自動車の場合、車両走行駆動源としての電動モータが電気負荷11に相当する。   As shown in FIG. 1, the fuel cell system of this embodiment includes a fuel cell 10 that generates electric power by utilizing an electrochemical reaction between hydrogen and oxygen. The fuel cell 10 supplies electric power to electric devices such as an electric load 11 and a secondary battery (not shown). Incidentally, in the case of an electric vehicle, an electric motor as a vehicle driving source corresponds to the electric load 11.

本実施形態では燃料電池10として固体高分子電解質型燃料電池を用いており、基本単位となる燃料電池セルが複数個積層され、且つ電気的に直列接続されている。燃料電池10では、以下の水素と酸素の電気化学反応が起こり電気エネルギが発生する。   In the present embodiment, a solid polymer electrolyte fuel cell is used as the fuel cell 10, and a plurality of fuel cells serving as basic units are stacked and electrically connected in series. In the fuel cell 10, the following electrochemical reaction between hydrogen and oxygen occurs to generate electric energy.

(負極側)H2→2H++2e-
(正極側)2H++1/2O2+2e-→H2
燃料電池システムには、各セル毎の出力電圧を検出するセルモニタ12が設けられ、セルモニタ12で検出したセル電圧信号が後述する制御部40に入力されるようになっている。また、燃料電池10の出力側には燃料電池10の動作電流値を測定する電流センサ13が設けられており、電流センサ13で検出した動作電流値がセルモニタ12を介して後述する制御部40に入力されるようになっている。また、燃料電池10には、燃料電池温度を検出する温度センサ14が設けられており、セルモニタ12で検出したセル電圧信号と温度センサ14で検出した燃料電池温度信号が後述する制御部40に入力されるようになっている。
(Negative electrode side) H 2 → 2H + + 2e
(Positive electrode side) 2H + + 1 / 2O 2 + 2e → H 2 O
The fuel cell system is provided with a cell monitor 12 that detects an output voltage for each cell, and a cell voltage signal detected by the cell monitor 12 is input to a control unit 40 described later. Further, a current sensor 13 for measuring the operating current value of the fuel cell 10 is provided on the output side of the fuel cell 10, and the operating current value detected by the current sensor 13 is transmitted to the control unit 40 described later via the cell monitor 12. It is designed to be entered. Further, the fuel cell 10 is provided with a temperature sensor 14 for detecting the temperature of the fuel cell, and the cell voltage signal detected by the cell monitor 12 and the fuel cell temperature signal detected by the temperature sensor 14 are input to the control unit 40 described later. It has come to be.

燃料電池システムには、燃料電池10の空気極(正極)側に空気(酸素)を供給するための空気流路20と、燃料電池10の水素極(負極)側に水素を供給するための水素流路30が設けられている。なお、空気は本発明の酸化ガスに相当し、水素は本発明の燃料ガスに相当する。   The fuel cell system includes an air flow path 20 for supplying air (oxygen) to the air electrode (positive electrode) side of the fuel cell 10 and hydrogen for supplying hydrogen to the hydrogen electrode (negative electrode) side of the fuel cell 10. A flow path 30 is provided. Air corresponds to the oxidizing gas of the present invention, and hydrogen corresponds to the fuel gas of the present invention.

空気流路20の最上流部には、大気中から吸入した空気を燃料電池10に圧送するための空気ポンプ21が設けられ、空気流路20における空気ポンプ21と燃料電池10との間には、空気への加湿を行う加湿器22が設けられ、空気流路20における燃料電池10の下流側には、燃料電池10に供給される空気の圧力を調整するための空気調圧弁23が設けられている。   An air pump 21 is provided at the most upstream portion of the air flow path 20 to pump air sucked from the atmosphere to the fuel cell 10. Between the air pump 21 and the fuel cell 10 in the air flow path 20. A humidifier 22 for humidifying the air is provided, and an air pressure regulating valve 23 for adjusting the pressure of the air supplied to the fuel cell 10 is provided on the downstream side of the fuel cell 10 in the air flow path 20. ing.

水素流路30の最上流部には、水素が充填された水素ボンベ31が設けられ、水素流路30における水素ボンベ31と燃料電池10との間には、燃料電池10に供給される水素の圧力を調整するための水素調圧弁32と、水素への加湿を行う加湿器33が設けられている。   A hydrogen cylinder 31 filled with hydrogen is provided in the uppermost stream portion of the hydrogen flow path 30, and hydrogen supplied to the fuel cell 10 is interposed between the hydrogen cylinder 31 and the fuel cell 10 in the hydrogen flow path 30. A hydrogen pressure regulating valve 32 for adjusting the pressure and a humidifier 33 for humidifying the hydrogen are provided.

水素流路30における燃料電池10の下流側は、水素調圧弁32の下流側に接続されて水素流路30が閉ループに構成されており、これにより水素流路30内で水素を循環させて、燃料電池10での未使用水素を燃料電池10に再供給するようにしている。そして、水素流路30における燃料電池10の下流側には、水素流路30内で水素を循環させるための水素ポンプ34が設けられている。   The downstream side of the fuel cell 10 in the hydrogen flow path 30 is connected to the downstream side of the hydrogen pressure regulating valve 32 so that the hydrogen flow path 30 is configured in a closed loop, thereby circulating hydrogen in the hydrogen flow path 30, Unused hydrogen in the fuel cell 10 is resupplied to the fuel cell 10. A hydrogen pump 34 for circulating hydrogen in the hydrogen channel 30 is provided on the downstream side of the fuel cell 10 in the hydrogen channel 30.

制御部(ECU)40は、CPU、ROM、RAM等からなる周知のマイクロコンピュータとその周辺回路にて構成されている。そして、制御部40には、セルモニタ12からのセル電圧信号や後述する電流センサからの信号が入力される。また、制御部40は、演算結果に基づいて、空気ポンプ21、加湿器22、33、空気調圧弁23、水素調圧弁32、水素ポンプ34に制御信号を出力する。本実施形態の制御部40は、後述の電流センサからの信号に基づいて燃料電池10の出力を制限する制御を行う出力制御手段を構成している。   The control unit (ECU) 40 is composed of a well-known microcomputer comprising a CPU, ROM, RAM, etc. and its peripheral circuits. The control unit 40 receives a cell voltage signal from the cell monitor 12 and a signal from a current sensor described later. Further, the control unit 40 outputs a control signal to the air pump 21, the humidifiers 22, 33, the air pressure regulating valve 23, the hydrogen pressure regulating valve 32, and the hydrogen pump 34 based on the calculation result. The control unit 40 of the present embodiment constitutes an output control unit that performs control for limiting the output of the fuel cell 10 based on a signal from a current sensor described later.

図2は燃料電池10の単セルを示す模式的な斜視図であり、燃料電池10の単セルは、電解質膜の両側面に電極が配置されたMEA(Membrane Electrode Assembly)100と、このMEA100を挟持する空気側セパレータ110および水素側セパレータ120で構成されている。また、水素側セパレータ120に隣接して−極の集電板130が配置されている。因みに、空気側セパレータ110は+極の集電板を兼ねている。   FIG. 2 is a schematic perspective view showing a single cell of the fuel cell 10. The single cell of the fuel cell 10 includes an MEA (Membrane Electrode Assembly) 100 in which electrodes are arranged on both sides of an electrolyte membrane, and the MEA 100. The air-side separator 110 and the hydrogen-side separator 120 are sandwiched. Further, a negative electrode current collector plate 130 is disposed adjacent to the hydrogen side separator 120. Incidentally, the air-side separator 110 also serves as a positive electrode current collector plate.

図3は図2の右側から見た空気側セパレータ110の透視図であり、空気側セパレータ110は、空気流路20に接続される空気入口部111および空気出口部112と、空気入口部111から空気出口部112に向かって空気を流すための空気流路溝113とを備えている。空気側セパレータ110では、空気出口部112近傍(図3中のAで示す領域)が水が滞留しやすい領域となっている。なお、空気側セパレータ110は本発明の第1セパレータに相当し、空気流路溝113は本発明の酸化ガス流路に相当し、空気入口部111は本発明の酸化ガスの入口部に相当し、空気出口部112は本発明の酸化ガスの出口部に相当する。   3 is a perspective view of the air-side separator 110 viewed from the right side of FIG. 2. The air-side separator 110 includes an air inlet portion 111 and an air outlet portion 112 connected to the air flow path 20, and an air inlet portion 111. And an air flow path groove 113 for flowing air toward the air outlet portion 112. In the air-side separator 110, the vicinity of the air outlet 112 (region indicated by A in FIG. 3) is a region where water tends to stay. The air-side separator 110 corresponds to the first separator of the present invention, the air flow path groove 113 corresponds to the oxidizing gas flow path of the present invention, and the air inlet 111 corresponds to the oxidizing gas inlet of the present invention. The air outlet 112 corresponds to the oxidizing gas outlet of the present invention.

図4は図2の右側から見た水素側セパレータ120の透視図であり、水素側セパレータ120は、水素流路30に接続される水素入口部121および水素出口部122と、水素入口部121から水素出口部122に向かって水素を流すための水素流路溝123とを備えている。水素側セパレータ120では、水素出口部122近傍(図4中のBで示す領域)が水が溜まりやすい領域となっている。なお、水素側セパレータ120は本発明の第2セパレータに相当し、水素流路溝123は本発明の燃料ガス流路に相当し、水素入口部121は本発明の燃料ガスの入口部に相当し、水素出口部122は本発明の燃料ガスの出口部に相当する。   4 is a perspective view of the hydrogen side separator 120 as viewed from the right side of FIG. 2. The hydrogen side separator 120 includes a hydrogen inlet part 121 and a hydrogen outlet part 122 connected to the hydrogen flow path 30, and a hydrogen inlet part 121. And a hydrogen passage groove 123 for flowing hydrogen toward the hydrogen outlet portion 122. In the hydrogen-side separator 120, the vicinity of the hydrogen outlet portion 122 (region indicated by B in FIG. 4) is a region where water tends to accumulate. The hydrogen separator 120 corresponds to the second separator of the present invention, the hydrogen channel groove 123 corresponds to the fuel gas channel of the present invention, and the hydrogen inlet 121 corresponds to the fuel gas inlet of the present invention. The hydrogen outlet 122 corresponds to the fuel gas outlet of the present invention.

図5は図2における−極側の要部の拡大図、図6は図5のA−A線に沿う断面図である。図2、図5、図6に示すように、集電板130は、主集電板131と2つの副集電板132、133に分割されている。この主集電板131および2つの副集電板132、133は、絶縁材よりなる絶縁枠140内に、相互に絶縁された状態で装着されている。   5 is an enlarged view of the main part on the negative electrode side in FIG. 2, and FIG. 6 is a cross-sectional view taken along the line AA in FIG. As shown in FIGS. 2, 5, and 6, the current collector 130 is divided into a main current collector 131 and two sub current collectors 132 and 133. The main current collecting plate 131 and the two sub current collecting plates 132 and 133 are mounted in an insulated frame 140 made of an insulating material while being insulated from each other.

第1副集電板132は、空気側セパレータ110の空気流路溝113における空気入口部111よりも空気出口部112に近い位置、詳細には、空気出口部112近傍(図3に符号Aを付して示す部位)、より詳細には、空気出口部112と一部が重なる位置に、対向して配置されている。第1副集電板132と主集電板131との間は、導電性の第1集電線151により接続されている。第1集電線151には、この第1集電線151を流れる電流を検出する第1電流センサ161が装着されている。   The first sub-current collector 132 is positioned closer to the air outlet 112 than the air inlet 111 in the air flow channel 113 of the air-side separator 110, in detail, near the air outlet 112 (reference symbol A in FIG. 3). In more detail, the air outlet portion 112 and the air outlet portion 112 are arranged so as to face each other. The first sub collector plate 132 and the main collector plate 131 are connected by a conductive first collector wire 151. A first current sensor 161 that detects a current flowing through the first current collecting line 151 is attached to the first current collecting line 151.

第2副集電板133は、水素側セパレータ120の水素流路溝123における水素入口部121よりも水素出口部122に近い位置、詳細には、水素出口部122近傍(図4に符号Bを付して示す部位)、より詳細には、水素出口部122と一部が重なる位置に、対向して配置されている。第2副集電板133と主集電板131との間は、導電性の第2集電線152により接続されている。第2集電線152には、この第2集電線152を流れる電流を検出する第2電流センサ162が装着されている。   The second sub-current collector plate 133 is positioned closer to the hydrogen outlet portion 122 than the hydrogen inlet portion 121 in the hydrogen passage groove 123 of the hydrogen side separator 120, specifically, in the vicinity of the hydrogen outlet portion 122 (reference symbol B in FIG. 4). (Part shown), more specifically, the hydrogen outlet portion 122 is disposed so as to face the portion where it partially overlaps. The second sub current collector 133 and the main current collector 131 are connected by a conductive second current collector 152. A second current sensor 162 that detects a current flowing through the second power collection line 152 is attached to the second power collection line 152.

なお、各電流センサ161、162は、例えばホール素子を用いることができる。   Each current sensor 161, 162 can use, for example, a Hall element.

また、第1副集電板132と第1集電線151と第1電流センサ161、第2副集電板133と第2集電線152と第2電流センサ162は、それぞれが本発明の局所電流測定手段を構成している。局所電流測定手段は、燃料電池10を構成するすべてのセルに設けてもよく、一部のセルのみに設けてもよい。   In addition, the first sub current collector 132, the first current collector 151, the first current sensor 161, the second sub current collector 133, the second current collector 152, and the second current sensor 162 are each a local current of the present invention. It constitutes a measuring means. The local current measuring means may be provided in all the cells constituting the fuel cell 10 or may be provided only in a part of the cells.

次に、上記構成の電流センサ161、162の作動を説明する。   Next, the operation of the current sensors 161 and 162 having the above configuration will be described.

まず、電気負荷11からの電力要求に応じて、燃料電池10への空気供給量および水素供給量を制御する。具体的には、空気ポンプ21の回転数を制御して空気供給量を制御し、水素ポンプ34の回転数を制御して水素供給量を制御する。この際、空気供給量は、予め電圧ばらつきを発生しない供給量に設定する。そして、空気および水素の供給により、燃料電池10では電気化学反応により発電が起こり、発電した電力は負荷11に供給される。   First, the air supply amount and the hydrogen supply amount to the fuel cell 10 are controlled according to the power demand from the electric load 11. Specifically, the air supply amount is controlled by controlling the rotational speed of the air pump 21, and the hydrogen supply amount is controlled by controlling the rotational speed of the hydrogen pump 34. At this time, the air supply amount is set in advance to a supply amount that does not cause voltage variation. With the supply of air and hydrogen, the fuel cell 10 generates power by an electrochemical reaction, and the generated power is supplied to the load 11.

負荷11を通った電流は−極の主集電板131に流れ込む。主集電板131に流れ込んだ電流は、そのままMEA100に流れ込む電流と、第1集電線151および第1副集電板132を介してMEA100に流れ込む電流と、第2集電線152および第2副集電板133を介してMEA100に流れ込む電流とに分かれる。   The current passing through the load 11 flows into the negative collector plate 131. The current flowing into the main current collecting plate 131 is the current flowing into the MEA 100 as it is, the current flowing into the MEA 100 via the first current collecting wire 151 and the first sub current collecting plate 132, and the second current collecting wire 152 and the second sub current collecting. The current flows into the MEA 100 via the electric plate 133.

そして、第1集電線151を流れる電流は、MEA100における空気出口部112近い部位を流れる局所電流(以下、空気出口側電流Ia・outという)に相当するため、第1電流センサ161によって、空気入口側電流Ia・outを検出することができる。   Since the current flowing through the first current collecting line 151 corresponds to a local current flowing through a portion of the MEA 100 near the air outlet 112 (hereinafter referred to as air outlet side current Ia · out), the first current sensor 161 causes the air inlet The side current Ia · out can be detected.

また、第2集電線152を流れる電流は、MEA100における水素出口部122に近い部位を流れる局所電流(以下、水素出口側電流Ih・outという)に相当するため、第2電流センサ162によって、水素出口側電流Ih・outを検出することができる。   Further, the current flowing through the second current collecting line 152 corresponds to a local current flowing through a portion near the hydrogen outlet 122 in the MEA 100 (hereinafter referred to as hydrogen outlet side current Ih · out). The outlet side current Ih · out can be detected.

図7は、燃料電池10内の水分量と燃料電池の電流の変化を示している。図7に示すように、燃料電池10内の水分量が過剰になると電流が低下する。このように、燃料電池10内の水分量と電流とは相関関係がある。   FIG. 7 shows changes in the amount of water in the fuel cell 10 and the current in the fuel cell. As shown in FIG. 7, when the amount of water in the fuel cell 10 becomes excessive, the current decreases. Thus, there is a correlation between the amount of water in the fuel cell 10 and the current.

また、特に燃料電池10内で水分が溜まりやすい特定領域(図3中のAで示す領域、図4中のBで示す領域)の局所電流値が低下しやすい。このため、特定領域A、Bの局所電流値が燃料電池10の平均電流値からある程度以上落ち込んだ場合、特定領域A、Bにおいて水分が過剰となり、異常が発生していると判断できる。したがって、燃料電池10の出力制限処理を開始する基準となる所定値(出力制限開始電流値)を燃料電池10の平均電流値に所定割合(例えば50%)を乗じた値として設定し、特定領域A、Bの局所電流値が所定値を下回った場合に異常発生と判断して燃料電池10の出力制限を行うことができる。   In particular, the local current value in a specific region (region indicated by A in FIG. 3 and region indicated by B in FIG. 4) in which moisture easily accumulates in the fuel cell 10 tends to decrease. For this reason, when the local current value in the specific areas A and B falls more than a certain amount from the average current value of the fuel cell 10, it can be determined that the moisture is excessive in the specific areas A and B and an abnormality has occurred. Therefore, a predetermined value (output limit start current value) that is a reference for starting the output limiting process of the fuel cell 10 is set as a value obtained by multiplying the average current value of the fuel cell 10 by a predetermined ratio (for example, 50%), and the specific region. When the local current values of A and B are less than a predetermined value, it is determined that an abnormality has occurred and the output of the fuel cell 10 can be limited.

すなわち、燃料電池10内で水分が溜まりやすい空気出口部112近傍や水素出口部122近傍の電流I、すなわち、空気出口側電流Ia・outや水素出口側電流Ih・outが所定電流値を監視することで、燃料電池10の出力制限を行うか否かを適切に判断することができる。なお、燃料電池10の出力制限処理を開始する基準となる所定値は、燃料電池10の平均電流値の所定割合(例えば50%)であるので、燃料電池10が出力している電流値によって変化する値である。   That is, the current I in the vicinity of the air outlet portion 112 or the hydrogen outlet portion 122 where water easily collects in the fuel cell 10, that is, the air outlet side current Ia · out and the hydrogen outlet side current Ih · out monitor the predetermined current value. Thus, it is possible to appropriately determine whether or not to limit the output of the fuel cell 10. Note that the predetermined value serving as a reference for starting the output limiting process of the fuel cell 10 is a predetermined ratio (for example, 50%) of the average current value of the fuel cell 10, and thus varies depending on the current value output by the fuel cell 10. The value to be

次に、本実施形態の燃料電池システムの始動時における燃料電池10の出力制御について、図8および図9に基づいて説明する。図8は制御部40が行う出力制限処理の制御内容を示すフローチャートであり、図9は各種制御フラグが変化するタイミングを示すタイミングチャートである。   Next, output control of the fuel cell 10 at the start of the fuel cell system of the present embodiment will be described based on FIGS. 8 and 9. FIG. 8 is a flowchart showing the control contents of the output restriction process performed by the control unit 40, and FIG. 9 is a timing chart showing timings when various control flags change.

まず、温度センサ14にて検出した燃料電池10の温度が所定温度(例えば60℃)以上であるか否かを判定する(S10)。この結果、燃料電池10の温度が所定温度を上回っている場合には終了し、燃料電池10の温度が所定温度を下回っている場合にのみ、以下の処理を行う。   First, it is determined whether or not the temperature of the fuel cell 10 detected by the temperature sensor 14 is equal to or higher than a predetermined temperature (for example, 60 ° C.) (S10). As a result, the process is terminated when the temperature of the fuel cell 10 is higher than the predetermined temperature, and the following process is performed only when the temperature of the fuel cell 10 is lower than the predetermined temperature.

電流センサ13により燃料電池10の平均電流値を検出するとともに、電流センサ161、162により局所電流値を検出する(S11)。次に、局所電流値が第1所定値(平均電流値の例えば50%)以下であるか否かを判定する(S12)。複数の電流センサ161、162を設けている場合には、各電流センサ161、162により測定した局所電流値のいずれかが所定値以下となったか否かを判定すればよい。   The current sensor 13 detects the average current value of the fuel cell 10 and the current sensors 161 and 162 detect local current values (S11). Next, it is determined whether or not the local current value is equal to or less than a first predetermined value (for example, 50% of the average current value) (S12). When a plurality of current sensors 161 and 162 are provided, it may be determined whether any of the local current values measured by the current sensors 161 and 162 is equal to or less than a predetermined value.

この結果、局所電流値が第1所定値以下でない場合には上記ステップS10に移動し、局所電流値が第1所定値以下である場合には燃料電池10の出力制限処理を行う(S13)。このとき、電流低下フラグがオンになり、出力制限フラグがオンになる(図9)。   As a result, if the local current value is not equal to or less than the first predetermined value, the process proceeds to step S10. If the local current value is equal to or less than the first predetermined value, the output limiting process of the fuel cell 10 is performed (S13). At this time, the current drop flag is turned on, and the output restriction flag is turned on (FIG. 9).

出力制限処理では、燃料電池10の平均電流値が局所電流値に近づくように、平均電流値を低下させる制御を行う。具体的には、燃料電池10に対する酸化ガス(酸素)の供給量を減少させる、あるいは燃料電池10に対する負荷11の要求電力を抑えることで平均電流値を低下させることができる。   In the output restriction process, control is performed to reduce the average current value so that the average current value of the fuel cell 10 approaches the local current value. Specifically, the average current value can be lowered by reducing the supply amount of the oxidizing gas (oxygen) to the fuel cell 10 or suppressing the required power of the load 11 for the fuel cell 10.

また、燃料電池10の出力制限制御は徐々に行う。例えば燃料電池10の平均電流値を局所電流値まで直ちに低下させるのではなく、平均電流値を局所電流値に徐々に近づけるよう制御する。図9に示すように、燃料電池10の出力制限を行っていない場合を制限率0%とし、燃料電池10の平均電流値を0にした場合を制限率100%とした場合、制限率を直ちに局所電流の値にするのではなく、制限率を0%から徐々に増加させるように制御を行う。これにより、運転者に違和感を与えることを抑制することができ、ドライバビリティの悪化を防止することができる。   Further, the output restriction control of the fuel cell 10 is gradually performed. For example, instead of immediately reducing the average current value of the fuel cell 10 to the local current value, control is performed so that the average current value gradually approaches the local current value. As shown in FIG. 9, when the output rate of the fuel cell 10 is not limited, the rate of restriction is 0%. When the average current value of the fuel cell 10 is 0, the rate of restriction is 100%. Control is performed so that the limiting rate is gradually increased from 0%, not the local current value. Thereby, it can suppress giving a driver a sense of incongruity, and it can prevent the deterioration of drivability.

次に、電流センサ13により燃料電池10の平均電流値を検出するとともに、電流センサ161、162により局所電流値を検出する(S14)。次に、局所電流値が第2所定値(出力制限終了電流値)以下であるか否かを判定する(S15)。第2所定値は、燃料電池10の出力制限を終了する基準となる値である。本実施形態では、第2所定値の燃料電池10の平均電流値に対する割合を第1所定値より高く設定し、平均電流値の例えば75%としている。   Next, the current sensor 13 detects the average current value of the fuel cell 10 and the current sensors 161 and 162 detect local current values (S14). Next, it is determined whether or not the local current value is equal to or less than a second predetermined value (output limit end current value) (S15). The second predetermined value is a value serving as a reference for ending the output restriction of the fuel cell 10. In the present embodiment, the ratio of the second predetermined value to the average current value of the fuel cell 10 is set to be higher than the first predetermined value, for example, 75% of the average current value.

この結果、局所電流値が第2所定値以上でない場合には上記ステップS13に移動し、燃料電池10の出力制限処理を継続する。一方、局所電流値が第2所定値以上である場合には、燃料電池10の出力制限を保持し(S16)、運転条件が変化したか否か、例えば運転者がアクセルをオフにしたか否かを判定する(S17)。このとき、電流低下フラグがオフとなり、燃料電池10の制限率は保持する(図9)。   As a result, if the local current value is not equal to or greater than the second predetermined value, the process proceeds to step S13, and the output limiting process of the fuel cell 10 is continued. On the other hand, if the local current value is greater than or equal to the second predetermined value, the output limit of the fuel cell 10 is maintained (S16), whether or not the driving condition has changed, for example, whether or not the driver has turned off the accelerator. Is determined (S17). At this time, the current reduction flag is turned off, and the limiting rate of the fuel cell 10 is maintained (FIG. 9).

この結果、運転者がアクセルをオフにしていない場合には上記ステップS16に戻り、燃料電池10の出力制限処理を継続する。一方、運転者がアクセルをオフにした場合には、燃料電池10の出力制限を解除する(S18)。その後、上記ステップS10に戻る。このとき、出力制限フラグがオフとなり、燃料電池10の制限率が0%になる。   As a result, when the driver does not turn off the accelerator, the process returns to step S16, and the output limiting process of the fuel cell 10 is continued. On the other hand, when the driver turns off the accelerator, the output restriction of the fuel cell 10 is released (S18). Thereafter, the process returns to step S10. At this time, the output restriction flag is turned off, and the restriction rate of the fuel cell 10 becomes 0%.

例えば運転者がアクセルを踏み続けている場合に、燃料電池10の出力制限を解除すると突然燃料電池10の出力が上昇することとなり、運転者に違和感を与えドライバビリティが悪化する。これに対し、本実施形態のように運転条件が変化するまで燃料電池10の出力制限を維持することで、運転者に違和感を与えることを防止でき、ドライバビリティが悪化することを防止できる。   For example, when the driver keeps stepping on the accelerator, when the output restriction of the fuel cell 10 is released, the output of the fuel cell 10 suddenly increases, which makes the driver feel uncomfortable and drivability deteriorates. On the other hand, by maintaining the output limit of the fuel cell 10 until the driving conditions change as in the present embodiment, it is possible to prevent the driver from feeling uncomfortable and to prevent drivability from deteriorating.

以上のように、燃料電池10内における水の溜まりやすい箇所の局所電流値を監視することにより、燃料電池10内における異常発生を早期に検出することができる。また、局所電流値に基づいて燃料電池10の出力制限を行うことにより、燃料電池10を早期に復帰させることができ、燃料電池車両が路上で停止することを防止できる。   As described above, the occurrence of abnormality in the fuel cell 10 can be detected at an early stage by monitoring the local current value at a location where water tends to accumulate in the fuel cell 10. Further, by limiting the output of the fuel cell 10 based on the local current value, the fuel cell 10 can be returned early, and the fuel cell vehicle can be prevented from stopping on the road.

(他の実施形態)
なお、上記実施形態では、ステップS17において燃料電池10の出力制限を解除する条件と運転者によるアクセルオフとしたが、他の運転条件の変化により燃料電池10の出力制限を解除するように構成してもよい。
(Other embodiments)
In the above-described embodiment, the conditions for releasing the output restriction of the fuel cell 10 and the driver's accelerator-off are set in step S17. However, the output restriction of the fuel cell 10 is released by changing other operating conditions. May be.

また、上記実施形態では、燃料電池セルに2個の電流センサを設けて2箇所の電流を測定したが、これに限らず、1個の電流センサで1箇所の電流を測定するように構成してもよく、さらに3個以上の電流センサで3箇所以上の電流を測定してもよい。   In the above embodiment, two current sensors are provided in the fuel cell and two currents are measured. However, the present invention is not limited to this, and a single current sensor is used to measure one current. Alternatively, three or more current sensors may be used to measure three or more currents.

本発明の一実施形態に係る燃料電池システムの全体構成を示す模式図である1 is a schematic diagram showing an overall configuration of a fuel cell system according to an embodiment of the present invention. 図1の燃料電池10の単セルを示す模式的な斜視図である。It is a typical perspective view which shows the single cell of the fuel cell 10 of FIG. 図2の右側から見た空気側セパレータ110の透視図である。FIG. 3 is a perspective view of an air side separator 110 viewed from the right side of FIG. 2. 図2の右側から見た水素側セパレータ120の透視図である。FIG. 3 is a perspective view of a hydrogen separator 120 viewed from the right side of FIG. 2. 図2における−極側の要部の拡大図である。FIG. 3 is an enlarged view of a main part on the negative side in FIG. 2. 図5のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 燃料電池10内の水分量と燃料電池の電流の変化を示す特性図である。FIG. 6 is a characteristic diagram showing changes in the amount of water in the fuel cell 10 and the current in the fuel cell. 制御部40が行う出力制限処理の制御内容を示すフローチャートである。It is a flowchart which shows the control content of the output restriction process which the control part 40 performs. 各種制御フラグが変化するタイミングを示すタイミングチャートである。It is a timing chart which shows the timing when various control flags change.

符号の説明Explanation of symbols

10…燃料電池、13…電流センサ、14…温度センサ、40…制御部(出力制御手段)、161、162…電流測定手段の主要部をなす電流センサ(局所電流測定手段)。   DESCRIPTION OF SYMBOLS 10 ... Fuel cell, 13 ... Current sensor, 14 ... Temperature sensor, 40 ... Control part (output control means), 161, 162 ... Current sensor (local current measurement means) which forms the main part of current measurement means.

Claims (3)

酸素を主成分とする酸化ガスと水素を主成分とする燃料ガスとを電気化学反応させて電気エネルギを発生させる燃料電池(10)と、
前記燃料電池(10)内において液滴が滞留しやすい酸化ガス出口部(112)近傍(A)または燃料ガス出口部(122)近傍(B)における局所電流値を測定する局所電流測定手段(151、161、152、162)と、
前記燃料電池(10)で発生する電気を集電する集電手段(130)と、
前記局所電流測定手段(151、161、152、162)にて測定した局所電流値が所定の出力制限開始電流値を下回る場合には、前記燃料電池(10)の出力制限処理を行う出力制限手段(40)とを備え、
前記集電手段(130)は、少なくとも2つに分割されており、
前記局所電流測定手段(151、161、152、162)は、分割された前記集電手段(130)のうち、前記酸化ガス出口部(112)近傍(A)に対向する箇所または前記燃料ガス出口部(122)近傍(B)に対向する箇所の局所電流値を測定するようになっていることを特徴とする燃料電池システム。
A fuel cell (10) for generating electric energy by electrochemically reacting an oxidizing gas containing oxygen as a main component and a fuel gas containing hydrogen as a main component;
Local current measuring means (151) for measuring a local current value in the vicinity (A) of the oxidizing gas outlet (112) or in the vicinity (B) of the fuel gas outlet (122) where droplets tend to stay in the fuel cell (10). 161, 152, 162),
Current collecting means (130) for collecting electricity generated in the fuel cell (10);
When the local current value measured by the local current measuring means (151, 161, 152, 162) falls below a predetermined output restriction start current value, an output restriction means for performing output restriction processing of the fuel cell (10) (40)
The current collecting means (130) is divided into at least two,
The local current measuring means (151, 161, 152, 162) is a portion of the divided current collecting means (130) facing the vicinity of the oxidizing gas outlet (112) (A) or the fuel gas outlet. A fuel cell system characterized by measuring a local current value at a location facing the vicinity (B) of the portion (122) .
前記燃料電池(10)の単位面積当たりの電流値である平均電流値を測定する平均電流測定手段(13)を備え、前記出力制限開始電流値は前記平均電流測定手段により測定した前記平均電流値に対し異常が発生したと判断できる所定割合を乗じた値であることを特徴とする請求項1に記載の燃料電池システム。 Said fuel cell (10) comprises an average current measuring means for measuring the average current value is a current value per unit area (13), the output restriction start current value the average current the average current value measured by the measuring means The fuel cell system according to claim 1, wherein the fuel cell system is a value obtained by multiplying a predetermined ratio by which it can be determined that an abnormality has occurred. 前記出力制限手段(40)による前記出力制限処理では、前記燃料電池(10)の前記平均電流値を前記局所電流値に近づけるように、前記平均電流値を低下させることを特徴とする請求項2に記載の燃料電池システム。 Wherein in accordance with the output limitation process is output restriction means (40), the average current value of the fuel cell (10) as close to the local current value, according to claim 2, characterized in that reducing the average current value The fuel cell system described in 1.
JP2003374599A 2003-09-05 2003-11-04 Fuel cell system Expired - Fee Related JP4686971B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003374599A JP4686971B2 (en) 2003-11-04 2003-11-04 Fuel cell system
US10/931,981 US7670700B2 (en) 2003-09-05 2004-09-02 Fuel cell system, related method and current measuring device for fuel cell system
DE102004042780A DE102004042780A1 (en) 2003-09-05 2004-09-03 Fuel cell system, associated method and current measuring device for a fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003374599A JP4686971B2 (en) 2003-11-04 2003-11-04 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2005141939A JP2005141939A (en) 2005-06-02
JP4686971B2 true JP4686971B2 (en) 2011-05-25

Family

ID=34686267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374599A Expired - Fee Related JP4686971B2 (en) 2003-09-05 2003-11-04 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4686971B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513308B2 (en) * 2003-11-04 2010-07-28 株式会社デンソー Fuel cell system
JP5168848B2 (en) * 2006-08-10 2013-03-27 日産自動車株式会社 Fuel cell system
JP5289361B2 (en) 2010-03-11 2013-09-11 Jx日鉱日石エネルギー株式会社 Fuel cell system and current control method thereof
JP7174680B2 (en) * 2019-08-26 2022-11-17 本田技研工業株式会社 Separator, power generation cell, fuel cell stack and liquid detection device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184777A (en) * 1986-02-07 1987-08-13 Sanyo Electric Co Ltd Current collecting device of fuel cell
JPH0775214A (en) * 1993-07-08 1995-03-17 Daimler Benz Ag Method and device for regulating output dynamically in travelling vehicle provided with fuel cell
JPH07272736A (en) * 1994-03-30 1995-10-20 Mazda Motor Corp Control device for fuel cell system
JPH09306519A (en) * 1996-05-14 1997-11-28 Fuji Electric Co Ltd Power generating device for phosphoric acid fuel cell
JP2001176520A (en) * 1999-12-16 2001-06-29 Araco Corp Fuel cell and separator for fuel cell
JP2002343397A (en) * 2001-05-16 2002-11-29 Nissan Motor Co Ltd Control device for fuel cell system
JP2003051331A (en) * 2001-05-29 2003-02-21 Honda Motor Co Ltd Fuel cell power source device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62184777A (en) * 1986-02-07 1987-08-13 Sanyo Electric Co Ltd Current collecting device of fuel cell
JPH0775214A (en) * 1993-07-08 1995-03-17 Daimler Benz Ag Method and device for regulating output dynamically in travelling vehicle provided with fuel cell
JPH07272736A (en) * 1994-03-30 1995-10-20 Mazda Motor Corp Control device for fuel cell system
JPH09306519A (en) * 1996-05-14 1997-11-28 Fuji Electric Co Ltd Power generating device for phosphoric acid fuel cell
JP2001176520A (en) * 1999-12-16 2001-06-29 Araco Corp Fuel cell and separator for fuel cell
JP2002343397A (en) * 2001-05-16 2002-11-29 Nissan Motor Co Ltd Control device for fuel cell system
JP2003051331A (en) * 2001-05-29 2003-02-21 Honda Motor Co Ltd Fuel cell power source device

Also Published As

Publication number Publication date
JP2005141939A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4380231B2 (en) Fuel cell system
JP4415537B2 (en) Fuel cell system
JP5126480B2 (en) Fuel cell system
CN100502119C (en) Control apparatus and control method for fuel cell
US9225028B2 (en) Fuel cell system
JP5435320B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
JP4639680B2 (en) Fuel cell system
WO2008146928A1 (en) Fuel cell system
JP2009151997A (en) Fuel battery system
JP4696643B2 (en) Fuel cell system, control method thereof, and vehicle equipped with the same
JP2001307758A (en) Fuel cell system and electric vehicle
JP4569350B2 (en) Electric motor system and method for controlling electric motor system
JP5113634B2 (en) Fuel cell system
JPH10326625A (en) Method and device for operating fuel cell and gas supplying device
JP4513308B2 (en) Fuel cell system
US8092947B1 (en) Fuel cell system
JP4686971B2 (en) Fuel cell system
US8349508B2 (en) Fuel cell control unit for limiting power output
JP4764109B2 (en) Fuel cell system
JP6304366B2 (en) Fuel cell system
JP2009193900A (en) Fuel cell system
JP2010251103A (en) Fuel cell system
JP5011670B2 (en) Fuel cell voltage regulator
CN107452974A (en) Lack hydrogen determination methods and scarce hydrogen judgment means
JP2011018461A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R151 Written notification of patent or utility model registration

Ref document number: 4686971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees