JPH07272736A - Control device for fuel cell system - Google Patents

Control device for fuel cell system

Info

Publication number
JPH07272736A
JPH07272736A JP6060739A JP6073994A JPH07272736A JP H07272736 A JPH07272736 A JP H07272736A JP 6060739 A JP6060739 A JP 6060739A JP 6073994 A JP6073994 A JP 6073994A JP H07272736 A JPH07272736 A JP H07272736A
Authority
JP
Japan
Prior art keywords
fuel cell
current
voltage
detecting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6060739A
Other languages
Japanese (ja)
Other versions
JP3378081B2 (en
Inventor
Yoshihiro Kiriki
義博 桐木
Shogo Watanabe
正五 渡辺
Yasuaki Hasegawa
泰明 長谷川
Hajime Yamane
肇 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP06073994A priority Critical patent/JP3378081B2/en
Publication of JPH07272736A publication Critical patent/JPH07272736A/en
Application granted granted Critical
Publication of JP3378081B2 publication Critical patent/JP3378081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent damage of a fuel fuel cell by monitoring a generating condition of the fuel cell, and limiting a current supplied to a load, when generated voltage is smaller than a prescribed value. CONSTITUTION:In a sensor 32 of a fuel cell system 10, a current value given to a load is detected, and in a sensor 34, generated voltage of a fuel cell 12 is monitored. In a sensor 36, a temperature of hydrogen gas, just after discharged from the fuel cell 12, is detected, to indirectly detect a reaction temperature of the cell 12. In a control unit 30, the reaction temperature of the cell 12 serves as a parameter, to use a table of storing permissible minimum voltage in each temperature, and a minimum voltage threshold value is set to compare this threshold value with monitor voltage of the sensor 34. When the monitor voltage is smaller than the threshold value, an insufficient amount of water is decided to perform a current cut by a current limiting means 38, so as to protect the cell 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池システムの制
御装置に関し、より詳しくは、固体高分子電解質型燃料
電池の損傷を未然に防止するようにしたものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a fuel cell system, and more particularly to a device for preventing damage to a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】近時の環境問題すなわち大気汚染に対し
て電気自動車が注目され、蓄電池を搭載した電気自動車
にあっては既に実用化の段階に入っている。しかし、蓄
電池式車両は、電池の蓄電能力との関係で走行距離が比
較的短く、また充電時間が長い等の解決に困難な問題を
有しているため、これを解消し得る電気自動車として燃
料電池式車両の出現が待たれている(特開平2ー168
803号公報参照)。
2. Description of the Related Art Recently, electric vehicles have been drawing attention to environmental problems, that is, air pollution, and electric vehicles equipped with a storage battery have already been put into practical use. However, battery-powered vehicles have difficult problems to solve, such as a relatively short mileage and a long charging time due to the storage capacity of the battery. The advent of battery-powered vehicles is awaited (Japanese Patent Laid-Open No. 2-168).
803).

【0003】燃料電池のなかには、米国特許第 4,988,5
83号明細書に見られるように、固体高分子電解質型燃料
電池(PEFC)が知られており、自動車用燃料電池の
今後の展開を考えると、液状電解質の流出を回避できる
点から高分子電解質型燃料電池の採用が望ましいと考え
られる。
Some fuel cells include US Pat. No. 4,988,5.
As can be seen in Japanese Patent No. 83, solid polymer electrolyte fuel cells (PEFC) are known, and in view of future development of fuel cells for automobiles, polymer electrolytes can be avoided from the viewpoint of avoiding liquid electrolyte outflow. It is considered desirable to use a fuel cell.

【0004】ところで、固体高分子電解質は、その高分
子膜中に存在する水分子とイオン導電率とが密接な関係
を有し、高分子膜中に水分を含んでいないとイオン伝導
体として機能しないことが知られている。例えば、過フ
ッ素スルホン酸ポリマの電荷担体は水和プロトン( H+
・xH2O : x=3 程度が有効) である。このため、固体高
分子電解質に水分を供給する手法として、供給ガスを加
湿することが行われている。
By the way, the solid polymer electrolyte has a close relation between the water molecules existing in the polymer membrane and the ionic conductivity, and functions as an ionic conductor unless the polymer membrane contains water. It is known not to. For example, perfluorinated sulfonic acid polymer charge carriers are hydrated protons (H +
・ XH 2 O: About x = 3 is effective). Therefore, as a method of supplying water to the solid polymer electrolyte, humidification of the supply gas is performed.

【0005】[0005]

【発明が解決しようとする課題】自動車用動力源として
燃料電池を用いる場合、低負荷から高負荷まで広い範囲
の使用状態に対応できるようにする必要があるが、ここ
で問題となるのが、燃料電池に無理を与えて、燃料電池
を損傷してしまうことである。例えば高分子電解質膜に
含まれる水分量が不足したときには、薄膜電極組立体つ
まり電解質膜と触媒とからなる組立体の性能が劣化して
しまう。この水分量の不足は、例えば低温時あるいは冷
間時に発生し易い。
When a fuel cell is used as a power source for an automobile, it is necessary to be able to cope with a wide range of usage conditions from low load to high load, but the problem here is that It is to overdo the fuel cell and damage it. For example, when the amount of water contained in the polymer electrolyte membrane is insufficient, the performance of the thin film electrode assembly, that is, the assembly including the electrolyte membrane and the catalyst is deteriorated. This lack of water content is likely to occur, for example, at low temperature or cold.

【0006】低温時には、その飽和蒸気圧が低いことに
伴って、必要十分な水分を供給ガスに与えることが難し
くなる。燃料電池が所定温度よりも低い冷間時において
も同様に十分な水分量を電解質膜に供給することが難し
くなる。特に、自動車の場合には、使用状況が常に高負
荷で使用されるとは限らず低負荷で使用することが多い
こと、および/又は、燃料電池はエネルギ変換効率が高
いため発電ロスによる発熱量が小さいことから、燃料電
池が所定温度まで昇温するのに時間を必要とするため、
上述した問題に対して何らかの対策が必要となる。
At a low temperature, it becomes difficult to supply necessary and sufficient moisture to the supply gas due to its low saturated vapor pressure. Similarly, it becomes difficult to supply a sufficient amount of water to the electrolyte membrane even when the fuel cell is cold below a predetermined temperature. In particular, in the case of automobiles, the usage situation is not always high load but is often low load, and / or the fuel cell has high energy conversion efficiency, and therefore the amount of heat generated by power generation loss is high. Is small, it takes time for the fuel cell to heat up to a predetermined temperature.
Some measures must be taken against the above problems.

【0007】そこで、本発明の主なる目的は、燃料電池
の損傷を未然に防止するようにした燃料電池システムの
制御装置を提供することにある。本発明の他の目的は、
水分量不足による燃料電池の損傷を未然に防止するよう
にした燃料電池システムの制御装置を提供することにあ
る。
Therefore, a main object of the present invention is to provide a control device for a fuel cell system which prevents damage to the fuel cell. Another object of the present invention is to
It is an object of the present invention to provide a control device for a fuel cell system, which prevents damage to the fuel cell due to insufficient water content.

【0008】[0008]

【課題を達成するための手段】かかる技術的課題を達成
すべく、第1の発明にあっては、基本的には、固体高分
子電解質型燃料電池と、該燃料電池の発電状態を監視す
る発電状態モニタ手段と、該発電状態モニタ手段からの
信号を受け、前記燃料電池の発電電圧が所定値よりも小
さいときに、負荷に供給する電流を制限する電流制限手
段とを備えた構成としてある。
In order to achieve the above technical object, in the first invention, basically, a solid polymer electrolyte fuel cell and a power generation state of the fuel cell are monitored. Power generation state monitoring means and current limiting means for receiving a signal from the power generation state monitoring means and limiting the current supplied to the load when the power generation voltage of the fuel cell is smaller than a predetermined value. .

【0009】また、負荷変動に伴う発電電圧の変化量
は、燃料電池の温度によって異なる。また、燃料電池に
異常が発生したときには、電圧の変化量が大きなものと
なる。この点に着目して、第2の発明にあっては、固体
高分子電解質型燃料電池と、該燃料電池の温度を検出す
る温度検出手段と、前記燃料電池の発電電圧の変化量を
検出する電圧変化量検出手段と、負荷の消費電流値を検
出する電流検出手段と、前記温度検出手段、前記電圧変
化量検出手段および前記電流検出手段からの信号を受
け、前記燃料電池の温度と前記燃料電池の発電電圧の変
化量とをパラメータとして保存された最大許容電流値に
基づいて電流しきい値を設定し、該電流しきい値と、前
記電流検出手段が検出した消費電流値とを比較して、負
荷の消費電流値が前記電流しきい値よりも大きいとき
に、負荷に供給する電流を制限する構成としてある。
Further, the amount of change in the generated voltage due to the load change differs depending on the temperature of the fuel cell. Further, when an abnormality occurs in the fuel cell, the amount of change in voltage becomes large. Focusing on this point, in the second invention, the solid polymer electrolyte fuel cell, the temperature detecting means for detecting the temperature of the fuel cell, and the change amount of the generated voltage of the fuel cell are detected. The voltage change amount detecting means, the current detecting means for detecting the current consumption value of the load, the temperature detecting means, the voltage change amount detecting means and the current detecting means, and receiving the signals from the temperature of the fuel cell and the fuel. The current threshold value is set based on the maximum allowable current value stored with the amount of change in the generated voltage of the battery as a parameter, and the current threshold value and the current consumption value detected by the current detection means are compared. Thus, when the current consumption value of the load is larger than the current threshold value, the current supplied to the load is limited.

【0010】また、第3の発明にあっては、固体高分子
電解質型燃料電池と、該燃料電池の暖機状態を検出する
暖機検出手段と、該暖機検出手段から信号を受け、前記
燃料電池が冷えているときに、負荷に供給する電流を制
限する電流制限手段とを備えた構成としてある。
In the third invention, the solid polymer electrolyte fuel cell, the warm-up detecting means for detecting the warm-up state of the fuel cell, and the signal from the warm-up detecting means are received, When the fuel cell is cold, current limiting means for limiting the current supplied to the load is provided.

【0011】また、第4の発明にあっては、固体高分子
電解質型燃料電池と、該燃料電池の電解質に与える水分
量を調整する水分量調整手段と、前記燃料電池の負荷を
検出する負荷検出手段と、該負荷検出手段からの信号を
受け、前記電解質に含まれる水分量が燃料電池の負荷に
応じた量となるように、前記水分量調整手段を制御する
制御手段とを有する構成としてある。
According to the fourth aspect of the invention, a solid polymer electrolyte fuel cell, a water amount adjusting means for adjusting the amount of water given to the electrolyte of the fuel cell, and a load for detecting the load of the fuel cell. And a control means for receiving the signal from the load detection means and controlling the water content adjustment means so that the water content in the electrolyte becomes an amount according to the load of the fuel cell. is there.

【0012】[0012]

【作用】第1の発明によれば、前記燃料電池の発電電圧
が所定値よりも小さいときに、負荷に供給する電流を制
限する電流制限手段が設けらえているため、燃料電池の
電圧が異常低下して燃料電池の損傷の問題が発生しまう
のを未然に防止することが可能になる。
According to the first aspect of the present invention, when the generated voltage of the fuel cell is smaller than a predetermined value, current limiting means for limiting the current supplied to the load is provided, so that the voltage of the fuel cell is abnormal. It is possible to prevent the deterioration of the fuel cell and the problem of fuel cell damage.

【0013】また、第2の発明について説明すれば、燃
料電池の温度と前記燃料電池の発電電圧の変化量とをパ
ラメータとして保存された最大許容電流値に基づいて電
流しきい値を設定し、該電流しきい値と消費電流値とを
比較して、負荷の消費電流値が前記電流しきい値よりも
大きいときに、負荷に供給する電流を制限するようにし
てあるため、燃料電池が何らかの原因で能力低下をした
としても、それに応じて電流制限が行われるため、燃料
電池の損傷を未然に防止することができる。
Explaining the second invention, the current threshold value is set based on the maximum allowable current value stored with the temperature of the fuel cell and the amount of change in the generated voltage of the fuel cell as parameters. The current threshold value is compared with the current consumption value, and when the current consumption value of the load is larger than the current threshold value, the current supplied to the load is limited. Even if the capacity is reduced due to the cause, the current is limited accordingly, so that the fuel cell can be prevented from being damaged.

【0014】また、第3の発明にあっては、燃料電池が
冷えているときに、負荷に供給する電流を制限するよう
にしてあるため、能力低下する冷間時での燃料電池の損
傷を未然に防止することが可能になる。
Further, according to the third aspect of the invention, since the current supplied to the load is limited when the fuel cell is cold, damage to the fuel cell in the cold state when the capacity is deteriorated is caused. It becomes possible to prevent it in advance.

【0015】また、第4の発明にあっては、燃料電池の
電解質に含まれる水分量が、常に、水分量調整手段によ
って燃料電池の負荷に応じた量に調整されるため、電解
質に含まれる水分量の不足を原因とする燃料電池の損傷
を防止することが可能になる。
Further, according to the fourth aspect of the invention, the amount of water contained in the electrolyte of the fuel cell is always adjusted to the amount according to the load of the fuel cell by the water content adjusting means, so that it is contained in the electrolyte. It is possible to prevent damage to the fuel cell due to insufficient water content.

【0016】[0016]

【実施例】以下に本発明の実施例を添付した図面に基づ
いて説明する。図1は、車両(図示せず)に搭載された
燃料電池システムの概略を示す。燃料電池システム10
は燃料電池12を含み、この燃料電池12は、水素イオ
ン伝導体を用いた固体高分子電解質型燃料電池が採用さ
れている。燃料電池12は、ポート12a〜12dを有
し、これらポートのうち、対をなすポート12a、12
bは酸化剤としての空気を供給する空気系14に接続さ
れ、ポート12c、12dは燃料としての水素ガスを供
給する水素循環系16に接続されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 schematically shows a fuel cell system mounted on a vehicle (not shown). Fuel cell system 10
Includes a fuel cell 12. As the fuel cell 12, a solid polymer electrolyte fuel cell using a hydrogen ion conductor is adopted. The fuel cell 12 has ports 12a to 12d, and of these ports, a pair of ports 12a, 12d.
b is connected to an air system 14 that supplies air as an oxidant, and ports 12c and 12d are connected to a hydrogen circulation system 16 that supplies hydrogen gas as a fuel.

【0017】空気系14は、エアコンプレッサ18およ
び脱イオンフィルタ20を有し、エアコンプレッサ18
で所定圧に加圧された空気はフィルタ20を通過して浄
化された後にポート12aを通って燃料電池12に供給
され、反応水を含む余剰空気はポート12bから排出さ
れる。水素循環系16は、ポート12cに接続された供
給管22と、ポート12dに接続された還流管24とを
有し、供給管22の上流端には例えば水素吸蔵合金タン
クのような水素ガス源(図示せず)が接続されて、水素
ガスは図外のガス源から供給管22、ポート12cを通
って燃料電池12に供給される。還流管24は、他端が
供給管22に接続され、またその途中部分に脱イオンフ
ィルタ26が介装されて、ポート12dから排出された
余剰水素は還流管24を通り脱イオンフィルタ26で浄
化された後に供給管22に戻される。
The air system 14 has an air compressor 18 and a deionization filter 20, and the air compressor 18
The air that has been pressurized to a predetermined pressure is passed through the filter 20 and purified, and then supplied to the fuel cell 12 through the port 12a, and the surplus air containing the reaction water is discharged from the port 12b. The hydrogen circulation system 16 has a supply pipe 22 connected to the port 12c and a reflux pipe 24 connected to the port 12d, and a hydrogen gas source such as a hydrogen storage alloy tank is provided at the upstream end of the supply pipe 22. (Not shown) is connected, and hydrogen gas is supplied to the fuel cell 12 from a gas source (not shown) through the supply pipe 22 and the port 12c. The other end of the reflux pipe 24 is connected to the supply pipe 22, and a deionization filter 26 is interposed in the middle of the reflux pipe 24. Excess hydrogen discharged from the port 12d passes through the reflux pipe 24 and is purified by the deionization filter 26. Then, it is returned to the supply pipe 22.

【0018】尚、上述した水素循環系16には、図示を
省略したが、燃料電池12に供給する水素ガスを加湿す
る加湿装置例えば純水タンクが配設され、このタンク内
の純水中に水素ガスを通すことにより、水素ガスの加湿
が行われる。また、燃料電池12は、図示を省略した一
対のポートを有し、この一対のポートを通じて温調水の
循環が行われ、この温調水によって燃料電池12は所定
温度に維持されるようになっている。
Although not shown, the above-mentioned hydrogen circulation system 16 is provided with a humidifier for humidifying the hydrogen gas supplied to the fuel cell 12, for example, a deionized water tank. The hydrogen gas is humidified by passing the hydrogen gas. Further, the fuel cell 12 has a pair of ports (not shown), the temperature-controlled water is circulated through the pair of ports, and the temperature-controlled water keeps the fuel cell 12 at a predetermined temperature. ing.

【0019】図1に示す参照符号30は制御ユニットを
示し、制御ユニット30は、例えばCPU、ROM、R
AMを備えたマイクロコンピュータで構成されている。
制御ユニット30には、センサ32、34、36からの
信号が入力される。センサ32は負荷に与えられている
電流値を検出するものである。センサ34は、燃料電池
12(各セル)の発電電圧をモニタするものである。セ
ンサ36は、燃料電池12の反応温度を検出するもので
あり、ここでは、水素ガス還流管26に設けられて、燃
料電池12から排出された直後の水素ガスの温度を検出
することにより、間接的に燃料電池12の反応温度の検
出が行われる。尚、センサ36を空気系14に設けて、
燃料電池12から排出された直後の酸素の温度を検出す
るようにしてもよい。他方、制御ユニット30からは、
電流制限手段38に向けて制御信号が出力される。
Reference numeral 30 shown in FIG. 1 indicates a control unit, and the control unit 30 includes, for example, a CPU, a ROM, and an R.
It is composed of a microcomputer equipped with AM.
Signals from the sensors 32, 34, 36 are input to the control unit 30. The sensor 32 detects the current value applied to the load. The sensor 34 monitors the power generation voltage of the fuel cell 12 (each cell). The sensor 36 detects the reaction temperature of the fuel cell 12. Here, the sensor 36 is provided in the hydrogen gas recirculation pipe 26, and indirectly detects the temperature of the hydrogen gas immediately after being discharged from the fuel cell 12. Specifically, the reaction temperature of the fuel cell 12 is detected. In addition, by providing the sensor 36 in the air system 14,
The temperature of oxygen immediately after being discharged from the fuel cell 12 may be detected. On the other hand, from the control unit 30,
A control signal is output to the current limiting means 38.

【0020】制御ユニット30による制御内容について
説明すると、セル電圧が異常に低いときには、負荷に与
える電流(消費電流)のカットが電流制限手段38によ
り行われる。より具体的に説明すると、制御ユニット3
0は、燃料電池の反応温度(排出水素ガスの温度)をパ
ラメータとして、許容することのできる最低電圧を各温
度毎に保存したテーブルを用いて、『最低電圧しきい
値』が設定され、この『最低電圧しきい値』とモニタ電
圧とを比較することによって、電流カット制御が行われ
る。すなわち、モニタ電圧が『最低電圧しきい値』より
小さいときには、水分量が不足しているとして、燃料電
池12を保護するために電流制限手段38による電流カ
ットが行われ(負荷に供給する電流を遮断)、他方、モ
ニタ電圧が『最低電圧しきい値』以上であるときには、
十分な水分量を含んでおり燃料電池12の損傷の問題は
発生しないとして、電流制限手段38による電流カット
の解除が行われる。
The control contents of the control unit 30 will be explained. When the cell voltage is abnormally low, the current limiting means 38 cuts the current (consumption current) applied to the load. More specifically, the control unit 3
For 0, the "minimum voltage threshold value" is set using a table in which the minimum allowable voltage is stored for each temperature using the reaction temperature of the fuel cell (temperature of exhaust hydrogen gas) as a parameter. The current cut control is performed by comparing the "minimum voltage threshold value" with the monitor voltage. That is, when the monitor voltage is smaller than the “minimum voltage threshold value”, it is determined that the water content is insufficient, and the current is cut by the current limiting means 38 to protect the fuel cell 12 (the current supplied to the load is On the other hand, if the monitor voltage is above the "minimum voltage threshold",
Assuming that the fuel cell 12 contains a sufficient amount of water and does not cause a problem of damage to the fuel cell 12, the current limiting means 38 cancels the current cut.

【0021】この制御について、より詳しく説明する
と、水素ガスの加湿量は飽和水蒸気圧によって規制を受
けるため、低温時においては加湿量が不足し易い。加湿
量が不足すると、薄膜電極組立体中に、イオンが流れ易
い部分と流れ難い部分とができ、電流を流し続けると、
結果として薄膜電極組立体を損傷してしまう可能性があ
る。
This control will be described in more detail. Since the humidification amount of hydrogen gas is regulated by the saturated steam pressure, the humidification amount tends to be insufficient at low temperatures. If the amount of humidification is insufficient, there will be a portion where ions easily flow and a portion where ions do not easily flow in the thin film electrode assembly, and if current is continued to flow,
As a result, the thin film electrode assembly may be damaged.

【0022】図4は、電流を一定としたときの温度ー電
圧特性を示す。同図において、電流が一定のときには
(I3 )、温度がT3 以下で発電効率が著しく低下す
る。また、電流がI2 のときには、温度がT2 以下で発
電効率が著しく低下する。また、電流がI1 のときに
は、温度がT1 以下で発電効率が著しく低下する。した
がって、予め、温度をパラメータとする次のようなテー
ブルを作成し、検出温度に対応する許容最低電圧よりも
低い発電電圧となったときには、電流を制限して、燃料
電池12を保護するようにしたものである。
FIG. 4 shows temperature-voltage characteristics when the current is constant. In the figure, when the current is constant (I 3 ), the temperature is T 3 or lower and the power generation efficiency is significantly reduced. Further, when the current is I 2 , the temperature is lower than T 2 and the power generation efficiency is significantly reduced. Further, when the current is I 1 , the temperature is lower than T 1 and the power generation efficiency is significantly reduced. Therefore, the following table having temperature as a parameter is created in advance, and when the generated voltage is lower than the allowable minimum voltage corresponding to the detected temperature, the current is limited to protect the fuel cell 12. It was done.

【0023】制御用テーブル 温度 ・ ・ T1 ・ ・ T2 ・ ・ T3 ・ ・ ・ 許容最低電圧 ・ ・ V1 ・ ・ V2 ・ ・ V3 ・ ・ ・ Control table temperature ・ ・ T 1・ ・ T 2・ ・ T 3・ ・ ・ Allowable minimum voltage ・ ・ V 1・ ・ V 2・ ・ V 3・ ・ ・

【0024】他の制御例として、燃料電池の温度(排出
水素ガス温度)と電圧変化量とをパラメータとする最大
許容電流値マップを用いて、『最大電流しきい値』が設
定され、検出した電流値が『最大電流しきい値』以上で
あるときには、燃料電池12を保護するために電流制限
手段38により消費電流を『最大電流しきい値』に抑え
る電流制限が行われる。他方、検出した電流値が『最大
電流しきい値』より小さいときには、電流制限手段38
による電流制限の解除が行われる。
As another control example, a "maximum current threshold value" is set and detected using a maximum allowable current value map in which the temperature of the fuel cell (exhaust hydrogen gas temperature) and the voltage change amount are used as parameters. When the current value is equal to or more than the “maximum current threshold value”, the current limiting means 38 limits the consumption current to the “maximum current threshold value” to protect the fuel cell 12. On the other hand, when the detected current value is smaller than the “maximum current threshold value”, the current limiting means 38
The current limit is released by.

【0025】この制御について詳しく説明すると、図5
は温度一定のときの電流ー電圧特性を示すものである。
同図から分かるように、一定の負荷変動に伴う電圧変化
量は温度によって異なる。特性線Aは、高温であって十
分な水分量を含んでいるときのものである(正常)。特
性線Bは、低温であって十分な水分量を含んでいるとき
のものである(正常)。また、燃料電池の異常は、発電
電圧に現れる。ちなみに、特性線Cは、高温であって水
分量が不足しているときのものである。以上のことか
ら、温度Tと電圧変化量ΔVとをパラメータとした最大
許容電流マップによって、『最大電流しきい値』を設定
し、このしきい値を越えたときには、電流制限を行うよ
うにしたものである。この電流制限に関し、走行中にい
きなり電流の供給を遮断したときには、大きなトルクシ
ョックが発生することになるため、燃料電池12に損傷
を与えない範囲つまり『最大電流しきい値』に抑える電
流制限を行うようにしたものである。
This control will be described in detail with reference to FIG.
Shows the current-voltage characteristics when the temperature is constant.
As can be seen from the figure, the voltage change amount due to a constant load change varies depending on the temperature. Characteristic line A is when the temperature is high and the water content is sufficient (normal). Characteristic curve B is when the temperature is low and the water content is sufficient (normal). Further, the abnormality of the fuel cell appears in the generated voltage. By the way, the characteristic line C is when the temperature is high and the water content is insufficient. From the above, the "maximum current threshold value" is set by the maximum allowable current map using the temperature T and the voltage change amount ΔV as parameters, and when the threshold value is exceeded, the current is limited. It is a thing. Regarding this current limit, when the current supply is suddenly cut off during running, a large torque shock will occur. Therefore, the current limit for limiting the current limit to the range that does not damage the fuel cell 12, that is, the "maximum current threshold value" is set. It's something that you do.

【0026】図2、図3は、本発明の第2実施例を示す
もので、本実施例において、上記第1実施例と同一の要
素には同一の参照符号を付すことにより、その説明を省
略し、以下に、本実施例の特徴部分を説明する。本実施
例にあっては、水素循環系16に直接加湿装置40を含
み、この加湿装置40は、水素供給管22における燃料
電池12の近傍に配設されている。加湿装置40は、図
3に示すように、超音波発生器42とインジェクタ44
とヒータ46とで構成されている。超音波発生器42は
振動子としてのホーン42aを有し、インジェクタ44
はその噴射口44aがホーン42aに臨ませて配置され
ている。インジェクタ44には、導水管48を介して純
水が供給され、このインジェクタ44の直上流にヒータ
46が設けられている。ヒータ46で温められた純水は
インジェクタ44に供給され、インジェクタ44からホ
ーン42aに向けて純水が噴射される。ここにインジェ
クタ44は、デュテイ制御によりその噴射量が制御され
る等、現在自動車の燃料噴射に多用されているものと基
本的には同一の構成であるので、その詳細な説明は省略
する。
2 and 3 show a second embodiment of the present invention. In this embodiment, the same elements as those of the first embodiment are designated by the same reference numerals, and the description thereof will be made. It is omitted, and the characteristic part of this embodiment will be described below. In the present embodiment, the hydrogen circulation system 16 includes a direct humidifying device 40, and the humidifying device 40 is arranged in the hydrogen supply pipe 22 near the fuel cell 12. As shown in FIG. 3, the humidifier 40 includes an ultrasonic generator 42 and an injector 44.
And a heater 46. The ultrasonic wave generator 42 has a horn 42a as a vibrator, and an injector 44
Is arranged so that its injection port 44a faces the horn 42a. Pure water is supplied to the injector 44 via a water conduit 48, and a heater 46 is provided immediately upstream of the injector 44. The pure water heated by the heater 46 is supplied to the injector 44, and the pure water is jetted from the injector 44 toward the horn 42a. Here, the injector 44 has basically the same configuration as that which is widely used for fuel injection of automobiles, such as the injection amount being controlled by the duty control, and therefore detailed description thereof will be omitted.

【0027】制御ユニット30から加湿装置40に向け
て制御信号が出力される。制御ユニット30による加湿
装置40の制御内容について説明すると、先ず、ヒータ
46は、インジェクタ44に送り込む純水の温度を燃料
電池12内部の温度と等しくすうように制御される。ま
た、インジェクタ44は、その噴射量が燃料電池12の
負荷(センサ32で検出された消費電流値)に応じた要
求水分量となるようにデュテイ制御される。この制御
は、電流値をパラメータとして保存されている要求水分
量のテーブルを用いて行われる。
A control signal is output from the control unit 30 to the humidifying device 40. The control contents of the humidifying device 40 by the control unit 30 will be described. First, the heater 46 is controlled so that the temperature of the pure water sent to the injector 44 becomes equal to the temperature inside the fuel cell 12. Further, the injector 44 is duty-controlled so that the injection amount thereof becomes a required water amount corresponding to the load of the fuel cell 12 (consumption current value detected by the sensor 32). This control is performed using a table of the required water content stored with the current value as a parameter.

【0028】以上の構成により、燃料電池12の内部温
度と等しい温度まで温められた純水は、燃料電池12の
要求水分量がインジェクタ44から噴射されることか
ら、燃料電池12の水分不足の発生を抑えることができ
る。また、この噴射された純水は、超音波発生器42に
よって、その霧化が促進される。そして、霧化状態の純
水は水素ガス供給管22に導入され、この純水によっ
て、供給管22を通過する水素ガスが加湿される。
With the above structure, the pure water heated to a temperature equal to the internal temperature of the fuel cell 12 is injected with the required amount of water from the fuel cell 12 from the injector 44. Can be suppressed. Further, atomization of the injected pure water is promoted by the ultrasonic generator 42. Then, the atomized pure water is introduced into the hydrogen gas supply pipe 22, and the pure water humidifies the hydrogen gas passing through the supply pipe 22.

【0029】以上、本発明の実施例を説明したが、本発
明はこれに限定されることなく、次の変形例を包含する
ものである。すなわち、燃料電池12の温調水の温度を
検出し、この温調水の温度が所定温度よりも低いときに
は、燃料電池12が冷間状態にあるとして、電流制限手
段38により、負荷に与える電流を制限するようにして
もよい。この場合、温調水の温度に応じて、温調水の温
度が高くなるに従って、徐々に負荷に与える電流の制限
量を小さくするようにしてもよい。
Although the embodiment of the present invention has been described above, the present invention is not limited to this and includes the following modifications. That is, the temperature of the temperature-controlled water of the fuel cell 12 is detected, and when the temperature of the temperature-controlled water is lower than the predetermined temperature, it is determined that the fuel cell 12 is in the cold state, and the current limiting unit 38 supplies the current to the load. May be restricted. In this case, depending on the temperature of the temperature-controlled water, as the temperature of the temperature-controlled water rises, the limiting amount of the current applied to the load may be gradually reduced.

【0030】[0030]

【発明の効果】以上の説明から明らかなように、本発明
によれば、燃料電池の損傷を防止することができる。
As is apparent from the above description, according to the present invention, it is possible to prevent the fuel cell from being damaged.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の制御に用いられる燃料電
池システムの全体系統図。
FIG. 1 is an overall system diagram of a fuel cell system used for control of a first embodiment of the present invention.

【図2】本発明の他の実施例の制御に用いられる燃料電
池システムの全体系統図。
FIG. 2 is an overall system diagram of a fuel cell system used for control of another embodiment of the present invention.

【図3】図2に示す直接加熱装置の拡大断面図。3 is an enlarged cross-sectional view of the direct heating device shown in FIG.

【図4】第1制御例の理解を助けるための説明図であっ
て、燃料電池の温度と電圧との関係を示す特性図。
FIG. 4 is an explanatory diagram for helping understanding of a first control example and is a characteristic diagram showing a relationship between temperature and voltage of the fuel cell.

【図5】第2制御例の理解を助けるための説明図であっ
て、燃料電池の電流と電圧との関係を示す特性図。
FIG. 5 is an explanatory diagram for helping understanding of a second control example and is a characteristic diagram showing a relationship between current and voltage of the fuel cell.

【符号の説明】[Explanation of symbols]

10 燃料電池システム 12 固体高分子電解質型燃料電池 30 制御ユニット 32 消費電流検出用センサ 34 発電電圧検出用センサ 36 反応温度検出用センサ 38 電流制限手段 44 純水噴射用インジェクタ 10 Fuel Cell System 12 Solid Polymer Electrolyte Fuel Cell 30 Control Unit 32 Consumption Current Detection Sensor 34 Generation Voltage Detection Sensor 36 Reaction Temperature Detection Sensor 38 Current Limiting Means 44 Pure Water Injection Injector

フロントページの続き (72)発明者 山根 肇 広島県安芸郡府中町新地3番1号 マツダ 株式会社内Front page continued (72) Inventor Hajime Yamane 3-1, Shinchi, Fuchu-cho, Aki-gun, Hiroshima Mazda Motor Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質型燃料電池と、 該燃料電池の発電状態を監視する発電状態モニタ手段
と、 該発電状態モニタ手段からの信号を受け、前記燃料電池
の発電電圧が所定値よりも小さいときに、負荷に供給す
る電流を制限する電流制限手段とを備えている、ことを
特徴とする燃料電池システムの制御装置。
1. A solid polymer electrolyte fuel cell, a power generation state monitoring means for monitoring a power generation state of the fuel cell, and a signal from the power generation state monitoring means, and a power generation voltage of the fuel cell is lower than a predetermined value. And a current limiting means for limiting the current supplied to the load when the fuel cell system control device is small.
【請求項2】 前記発電状態モニタ手段が、前記燃料電
池の反応温度を検出する温度検出手段と、前記燃料電池
の発電電圧を検出する電圧検出手段とを含み、 前記電流制限手段が、前記燃料電池の反応温度をパラメ
ータとして保存された最低電圧値と、前記電圧検出手段
が検出した燃料電池の発電電圧とを比較して、該燃料電
池の発電電圧が前記最低電圧値よりも小さいときに、負
荷に供給する電流を制限する、請求項1に記載の制御装
置。
2. The power generation state monitoring means includes a temperature detection means for detecting a reaction temperature of the fuel cell and a voltage detection means for detecting a power generation voltage of the fuel cell, and the current limiting means includes the fuel. The lowest voltage value stored using the reaction temperature of the cell as a parameter and the power generation voltage of the fuel cell detected by the voltage detecting means are compared, and when the power generation voltage of the fuel cell is smaller than the lowest voltage value, The control device according to claim 1, which limits a current supplied to the load.
【請求項3】 固体高分子電解質型燃料電池と、 該燃料電池の温度を検出する温度検出手段と、 前記燃料電池の発電電圧の変化量を検出する電圧変化量
検出手段と、 負荷の消費電流値を検出する電流検出手段と、 前記温度検出手段、前記電圧変化量検出手段および前記
電流検出手段からの信号を受け、前記燃料電池の温度と
前記燃料電池の発電電圧の変化量とをパラメータとして
保存された最大許容電流値に基づいて電流しきい値を設
定し、該電流しきい値と、前記電流検出手段が検出した
消費電流値とを比較して、負荷の消費電流値が前記電流
しきい値よりも大きいときに、負荷に供給する電流を制
限する、ことを特徴とする燃料電池システムの制御装
置。
3. A solid polymer electrolyte fuel cell, a temperature detecting means for detecting a temperature of the fuel cell, a voltage change amount detecting means for detecting a change amount of a power generation voltage of the fuel cell, and a current consumption of a load. Current detection means for detecting a value, the temperature detection means, receives a signal from the voltage change amount detection means and the current detection means, the temperature of the fuel cell and the change amount of the generated voltage of the fuel cell as a parameter A current threshold value is set on the basis of the stored maximum allowable current value, and the current threshold value is compared with the current consumption value detected by the current detection means, and the current consumption value of the load is A control device for a fuel cell system, which limits a current supplied to a load when the fuel cell system is larger than a threshold value.
【請求項4】 固体高分子電解質型燃料電池と、 該燃料電池の暖機状態を検出する暖機検出手段と、 該暖機検出手段から信号を受け、前記燃料電池が冷えて
いるときに、負荷に供給する電流を制限する電流制限手
段とを備えている、ことを特徴とする燃料電池システム
の制御装置。
4. A solid polymer electrolyte fuel cell, warm-up detection means for detecting a warm-up state of the fuel cell, and a signal from the warm-up detection means, when the fuel cell is cold, A control device for a fuel cell system, comprising: a current limiting means for limiting a current supplied to a load.
【請求項5】 固体高分子電解質型燃料電池と、 該燃料電池の暖機状態を検出する暖機検出手段と、 該暖機検出手段から信号を受け、前記燃料電池が冷えて
いるときに、負荷に供給する電流を制限する第1電流制
限手段と、 前記燃料電池の温度を検出する温度検出手段と、 前記燃料電池の発電電圧を検出する電圧検出手段と、 前記温度検出手段および前記電圧検出手段からの信号を
受け、前記温度検出手段が検出した前記燃料電池の温度
に基づいて、前記燃料電池の温度をパラメータとして保
存された最低電圧値を設定し、該最低電圧値と、前記電
圧検出手段が検出した燃料電池の発電電圧とを比較し
て、該燃料電池の発電電圧が前記最低電圧値よりも小さ
いときに、負荷に供給する電流を制限する第2電流制限
手段と、 前記燃料電池の発電電圧の変化量を検出する電圧変化量
検出手段と、 負荷の消費電流値を検出する電流検出手段とを含み、 前記温度検出手段、前記電圧検出手段および前記電圧変
化量検出手段からの信号を受け、前記燃料電池の温度と
前記燃料電池の発電電圧の変化量とをパラメータとして
保存された最大許容電流値に基づいて電流しきい値を設
定し、該電流しきい値と、前記電流検出手段が検出した
消費電流値とを比較して、消費電流値が前記電流しきい
値よりも大きいときに、負荷に供給する電流を制限する
第3電流制限手段とを有する、ことを特徴とする燃料電
池システムの制御装置。
5. A solid polymer electrolyte fuel cell, warm-up detecting means for detecting a warm-up state of the fuel cell, and a signal from the warm-up detecting means, when the fuel cell is cold, First current limiting means for limiting a current supplied to a load, temperature detecting means for detecting a temperature of the fuel cell, voltage detecting means for detecting a generated voltage of the fuel cell, the temperature detecting means and the voltage detecting Receiving a signal from the means, and based on the temperature of the fuel cell detected by the temperature detecting means, sets a stored minimum voltage value using the temperature of the fuel cell as a parameter, and detects the minimum voltage value and the voltage detection value. A second current limiting means for limiting the current supplied to the load when the generated voltage of the fuel cell detected by the means is compared with the generated voltage of the fuel cell is smaller than the minimum voltage value; From The voltage change amount detecting means for detecting the change amount of the electric voltage and the current detecting means for detecting the consumption current value of the load are included, and the signals from the temperature detecting means, the voltage detecting means and the voltage change amount detecting means are detected. A current threshold value is set based on the maximum allowable current value stored using the temperature of the fuel cell and the amount of change in the generated voltage of the fuel cell as parameters, and the current threshold value and the current detection means. And a third current limiting unit that limits the current supplied to the load when the current consumption value is larger than the current threshold value. Battery system controller.
【請求項6】 固体高分子電解質型燃料電池と、 該燃料電池の電解質に与える水分量を調整する水分量調
整手段と、 前記燃料電池の負荷を検出する負荷検出手段と、 該負荷検出手段からの信号を受け、前記電解質に含まれ
る水分量が燃料電池の負荷に応じた量となるように、前
記水分量調整手段を制御する制御手段とを有する、こと
を特徴とする燃料電池システムの制御装置。
6. A solid polymer electrolyte fuel cell, a water amount adjusting means for adjusting the amount of water given to the electrolyte of the fuel cell, a load detecting means for detecting a load of the fuel cell, and a load detecting means. And a control means for controlling the water content adjusting means so that the water content contained in the electrolyte becomes an amount according to the load of the fuel cell. apparatus.
JP06073994A 1994-03-30 1994-03-30 Control device for fuel cell system Expired - Fee Related JP3378081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06073994A JP3378081B2 (en) 1994-03-30 1994-03-30 Control device for fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06073994A JP3378081B2 (en) 1994-03-30 1994-03-30 Control device for fuel cell system

Publications (2)

Publication Number Publication Date
JPH07272736A true JPH07272736A (en) 1995-10-20
JP3378081B2 JP3378081B2 (en) 2003-02-17

Family

ID=13150936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06073994A Expired - Fee Related JP3378081B2 (en) 1994-03-30 1994-03-30 Control device for fuel cell system

Country Status (1)

Country Link
JP (1) JP3378081B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231991A (en) * 1996-02-23 1997-09-05 Toyota Motor Corp Fuel cell system
JP2002184438A (en) * 2000-12-18 2002-06-28 Toyota Motor Corp Fuel cell system having gas humidifying function
JP2002237319A (en) * 2001-02-07 2002-08-23 Toyota Motor Corp Humidifying state control of fuel cell
JP2002246053A (en) * 2001-02-13 2002-08-30 Denso Corp Fuel cell system
EP1262361A2 (en) * 2001-05-29 2002-12-04 Honda Giken Kogyo Kabushiki Kaisha Control device for a fuel cell
US6524733B1 (en) 1999-02-23 2003-02-25 Toyota Jidosha Kabushiki Kaisha Fuel cell system with humidity determination
WO2003079479A1 (en) * 2002-03-20 2003-09-25 Sony Corporation Fuel battery device and method for controlling fuel battery
JP2004311333A (en) * 2003-04-10 2004-11-04 Nissan Motor Co Ltd Device for controlling power generation amount of fuel cell
JP2005141939A (en) * 2003-11-04 2005-06-02 Denso Corp Fuel cell system
JP2005285610A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Fuel cell system
JP2006059745A (en) * 2004-08-23 2006-03-02 Iwatani Internatl Corp Apparatus for monitoring cell voltage of hydrogen fuel cell, and method for using the same
JP2006228608A (en) * 2005-02-18 2006-08-31 Honda Motor Co Ltd Fuel cell system and its control method
JP2006286649A (en) * 2006-06-07 2006-10-19 Nissan Motor Co Ltd Control device for fuel cell system
JP2006309979A (en) * 2005-04-26 2006-11-09 Nissan Motor Co Ltd Control apparatus and control method of fuel cell
JP2007012429A (en) * 2005-06-30 2007-01-18 Equos Research Co Ltd Fuel cell system
JP2008243829A (en) * 2008-06-23 2008-10-09 Toyota Motor Corp Operation method for fuel cell system
WO2008132565A2 (en) 2007-04-26 2008-11-06 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2008282664A (en) * 2007-05-10 2008-11-20 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and its control method
JP2008300299A (en) * 2007-06-01 2008-12-11 Honda Motor Co Ltd Fuel cell system
US7473479B2 (en) 2003-12-26 2009-01-06 Honda Motor Co., Ltd. Current limiting system and current limiting method for fuel cells
JP2009043687A (en) * 2007-08-10 2009-02-26 Equos Research Co Ltd Fuel cell system starting method
JP2009112190A (en) * 2007-10-26 2009-05-21 Nan Ya Printed Circuit Board Corp Driving device and energy management module
WO2009084447A1 (en) * 2007-12-27 2009-07-09 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2010049827A (en) * 2008-08-19 2010-03-04 Honda Motor Co Ltd Fuel cell system
US20100068576A1 (en) * 2007-05-29 2010-03-18 Hitoshi Hamada Fuel cell system
DE112008001661T5 (en) 2007-07-02 2010-05-27 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Fuel cell system and power control method for this
JP2010541149A (en) * 2007-09-26 2010-12-24 インテリジェント エナジー リミテッド Fuel cell device
JP2014082059A (en) * 2012-10-15 2014-05-08 Rohm Co Ltd Power generation device
US8846259B2 (en) 2009-03-30 2014-09-30 Honda Motor Co., Ltd. Method of controlling output of fuel cell system and vehicle with fuel cell system
JP2016096083A (en) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 Fuel battery system
KR101867917B1 (en) * 2016-04-12 2018-06-15 현대자동차주식회사 Current Control Method of Fuel Cell Stack and Fuel Cell System Using the Method
JP2019149317A (en) * 2018-02-28 2019-09-05 トヨタ自動車株式会社 Fuel cell system
US11183699B2 (en) 2018-10-22 2021-11-23 Honda Motor Co., Ltd. Fuel cell system and method of controlling fuel cell system

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231991A (en) * 1996-02-23 1997-09-05 Toyota Motor Corp Fuel cell system
US6524733B1 (en) 1999-02-23 2003-02-25 Toyota Jidosha Kabushiki Kaisha Fuel cell system with humidity determination
US6790549B2 (en) 1999-02-23 2004-09-14 Toyota Jidosha Kabushiki Kaisha Fuel cell system with humidity determination
DE10007973B4 (en) * 1999-02-23 2008-04-24 Toyota Jidosha Kabushiki Kaisha, Toyota The fuel cell system
JP2002184438A (en) * 2000-12-18 2002-06-28 Toyota Motor Corp Fuel cell system having gas humidifying function
JP2002237319A (en) * 2001-02-07 2002-08-23 Toyota Motor Corp Humidifying state control of fuel cell
JP2002246053A (en) * 2001-02-13 2002-08-30 Denso Corp Fuel cell system
EP1262361A2 (en) * 2001-05-29 2002-12-04 Honda Giken Kogyo Kabushiki Kaisha Control device for a fuel cell
EP1262361A3 (en) * 2001-05-29 2007-01-17 Honda Giken Kogyo Kabushiki Kaisha Control device for a fuel cell
WO2003079479A1 (en) * 2002-03-20 2003-09-25 Sony Corporation Fuel battery device and method for controlling fuel battery
KR101004689B1 (en) * 2002-03-20 2011-01-04 소니 가부시키가이샤 Fuel battery device and method for controlling fuel battery
US7560179B2 (en) 2002-03-20 2009-07-14 Sony Corporation Fuel cell apparatus and method for controlling fuel
CN1317787C (en) * 2002-03-20 2007-05-23 索尼公司 Fuel cell device and method of controlling fuel cell
JP2004311333A (en) * 2003-04-10 2004-11-04 Nissan Motor Co Ltd Device for controlling power generation amount of fuel cell
JP2005141939A (en) * 2003-11-04 2005-06-02 Denso Corp Fuel cell system
JP4686971B2 (en) * 2003-11-04 2011-05-25 株式会社デンソー Fuel cell system
US7473479B2 (en) 2003-12-26 2009-01-06 Honda Motor Co., Ltd. Current limiting system and current limiting method for fuel cells
JP4575693B2 (en) * 2004-03-30 2010-11-04 トヨタ自動車株式会社 Fuel cell system
JP2005285610A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Fuel cell system
JP2006059745A (en) * 2004-08-23 2006-03-02 Iwatani Internatl Corp Apparatus for monitoring cell voltage of hydrogen fuel cell, and method for using the same
JP4659410B2 (en) * 2004-08-23 2011-03-30 岩谷産業株式会社 Cell voltage monitoring device for hydrogen fuel cell and method of using the same
JP2006228608A (en) * 2005-02-18 2006-08-31 Honda Motor Co Ltd Fuel cell system and its control method
JP2006309979A (en) * 2005-04-26 2006-11-09 Nissan Motor Co Ltd Control apparatus and control method of fuel cell
JP2007012429A (en) * 2005-06-30 2007-01-18 Equos Research Co Ltd Fuel cell system
JP2006286649A (en) * 2006-06-07 2006-10-19 Nissan Motor Co Ltd Control device for fuel cell system
JP4529948B2 (en) * 2006-06-07 2010-08-25 日産自動車株式会社 Control device for fuel cell system
WO2008132565A2 (en) 2007-04-26 2008-11-06 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8778549B2 (en) 2007-04-26 2014-07-15 Toyota Jidosha Kabushiki Kaisha Fuel cell system
EP2903069A1 (en) * 2007-04-26 2015-08-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2008132565A3 (en) * 2007-04-26 2009-01-15 Toyota Motor Co Ltd Fuel cell system
JP2008277044A (en) * 2007-04-26 2008-11-13 Toyota Motor Corp Fuel cell system
JP2008282664A (en) * 2007-05-10 2008-11-20 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation system and its control method
US20100068576A1 (en) * 2007-05-29 2010-03-18 Hitoshi Hamada Fuel cell system
US9118049B2 (en) * 2007-05-29 2015-08-25 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8435686B2 (en) * 2007-06-01 2013-05-07 Honda Motor Co., Ltd. Fuel cell system
JP2008300299A (en) * 2007-06-01 2008-12-11 Honda Motor Co Ltd Fuel cell system
US8227123B2 (en) 2007-07-02 2012-07-24 Toyota Jidosha Kabushiki Kaisha Fuel cell system and current control method with PI compensation based on minimum cell voltage
DE112008001661T5 (en) 2007-07-02 2010-05-27 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Fuel cell system and power control method for this
JP2009043687A (en) * 2007-08-10 2009-02-26 Equos Research Co Ltd Fuel cell system starting method
US9705141B2 (en) 2007-09-26 2017-07-11 Intelligent Energy Limited Fuel cell system
JP2010541149A (en) * 2007-09-26 2010-12-24 インテリジェント エナジー リミテッド Fuel cell device
JP2009112190A (en) * 2007-10-26 2009-05-21 Nan Ya Printed Circuit Board Corp Driving device and energy management module
US8129937B2 (en) 2007-10-26 2012-03-06 Nan Ya Pcb Corp. Driving device and energy management module
WO2009084447A1 (en) * 2007-12-27 2009-07-09 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US9225028B2 (en) 2007-12-27 2015-12-29 Toyota Jidosha Kabushiki Kaisha Fuel cell system
JP2008243829A (en) * 2008-06-23 2008-10-09 Toyota Motor Corp Operation method for fuel cell system
JP2010049827A (en) * 2008-08-19 2010-03-04 Honda Motor Co Ltd Fuel cell system
US8846259B2 (en) 2009-03-30 2014-09-30 Honda Motor Co., Ltd. Method of controlling output of fuel cell system and vehicle with fuel cell system
JP2014082059A (en) * 2012-10-15 2014-05-08 Rohm Co Ltd Power generation device
JP2016096083A (en) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 Fuel battery system
CN105633431A (en) * 2014-11-14 2016-06-01 丰田自动车株式会社 Fuel cell system
KR101867917B1 (en) * 2016-04-12 2018-06-15 현대자동차주식회사 Current Control Method of Fuel Cell Stack and Fuel Cell System Using the Method
JP2019149317A (en) * 2018-02-28 2019-09-05 トヨタ自動車株式会社 Fuel cell system
US11183699B2 (en) 2018-10-22 2021-11-23 Honda Motor Co., Ltd. Fuel cell system and method of controlling fuel cell system

Also Published As

Publication number Publication date
JP3378081B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
JP3378081B2 (en) Control device for fuel cell system
US10122030B2 (en) Fuel cell system and method of controlling operation of fuel cell
US8460835B2 (en) Fuel cell system
KR101109714B1 (en) Fuel cell system
KR101135659B1 (en) Fuel cell system
KR100456300B1 (en) Fuel cell vehicle
US7678480B2 (en) Fuel cell system
US20100291447A1 (en) Fuel cell system
CN108878926B (en) Fuel cell structure, thermal system and control logic for efficient heating of fuel cell stacks
US11450869B2 (en) Fuel cell system
US11063277B2 (en) Method of controlling an ignition of a fuel cell vehicle
JP2002034171A (en) Power control method for electric motor car
JP3872791B2 (en) Intermittent cooling of fuel cells
US10256484B2 (en) Fuel cell system and method for controlling fuel cell system
JPH07263010A (en) Supply gas humidifier for fuel cell system
US8148033B2 (en) Fuel cell system with suppressed noise and vibration
JP6258378B2 (en) Control method of fuel cell system
KR20140126862A (en) Fuel cell system and control method of the same which improve cold-startability of a fuel cell vehicle
JP4267759B2 (en) Method for treating surplus hydrogen in reformed fuel cell power supply system
US8993185B2 (en) Method for determining an average cell voltage for fuel cells
JP7422122B2 (en) fuel cell system
JP2014082082A (en) Fuel cell system
US11705562B2 (en) Fuel cell system
US20210367282A1 (en) Fuel cell system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371