JP4686423B2 - 付着量測定システム及び測定方法 - Google Patents

付着量測定システム及び測定方法 Download PDF

Info

Publication number
JP4686423B2
JP4686423B2 JP2006246613A JP2006246613A JP4686423B2 JP 4686423 B2 JP4686423 B2 JP 4686423B2 JP 2006246613 A JP2006246613 A JP 2006246613A JP 2006246613 A JP2006246613 A JP 2006246613A JP 4686423 B2 JP4686423 B2 JP 4686423B2
Authority
JP
Japan
Prior art keywords
substance
adhesion amount
adhering
adhesion
anode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006246613A
Other languages
English (en)
Other versions
JP2008070140A (ja
Inventor
雅人 岡村
哲夫 大里
長佳 市川
英浩 浦田
端 四柳
純一 高木
誠二 山本
一男 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006246613A priority Critical patent/JP4686423B2/ja
Publication of JP2008070140A publication Critical patent/JP2008070140A/ja
Application granted granted Critical
Publication of JP4686423B2 publication Critical patent/JP4686423B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、化学プラントや発電所等の既存プラントの構造材や配管の表面等に付着した、光または熱によりアノード電流を生成する付着物質の付着量を測定する付着量測定システム及び付着量測定方法に関する。
大型建築物の構造材や配管等に付着した付着物質の分析は、構造材等の形状を維持した状態での測定が非常に困難で、対象物の一部を切り出したり、対象物と同一形状の試験用部品を製作し、この試験用部品に模擬実験等により付着させた付着物質の付着量を測定するなどの工夫が必要となる。特に前者の場合には、構造材等に変化を伴うことが多い。取り外し可能な部位あるいは対象物であれば、その形状を保持したまま分析を実施することが可能であるが、対象物等が測定装置に対応した形状をしていなければならない。
また、測定に必要な前処理には元の状態、条件がそのまま保持されない破壊分析が多く、一度取り出したサンプルは再利用できないのが通常である。非破壊分析では繰り返し利用が可能であるが、例えば、測定対象の付着物が放射能を帯びていたり、大気中での測定作業が困難な場合には、遮蔽運搬や雰囲気制御等、測定以前で多くの課題を伴う。
通常、特定元素分析による付着量等の測定は、溶液状にして測定するICP-AES(誘導結合プラズマ発光分光分析装置)やICP-MS(誘導結合プラズマ質量分析装置)、原子吸光分析装置、イオンクロマトグラフによる測定が利用される。また、固体で測定できる分析装置としてはXPS(X線光電子分析装置)、XRF(蛍光X線分析装置)、AES(オージェ電子分光分析装置)、EPMA(電子マイクロアナライザ)等の装置が利用される。これらの装置の他に多くの汎用装置が存在するが、プラント等の現場での分析には、装置の設置やプラントライン等の改良が必要なことが多く、コストの増加に繋がる。
化学プラントや発電所等で高温配管に付着した酸化物や種々の化合物、あるいは人工的に付着させた物質を測定する際には、対象物としての構造材の表面から付着物を掻き取る掻き取り作業(特許文献1参照)や溶解工程が必要となり、既存の構造材の形状を変化させる恐れがある。特に、人工的に付着させた付着物質の付着量の測定は、目標付着量に達成したか否かを検証するのに多くの課題があり、現物配管等を模擬した条件での付着量測定(特許文献2参照)しか実施できず、実際の対象箇所にどれだけ付着したかを測定する方法は存在していない。
特開2001−242279号公報 特開2003−139891号公報
上述のように、大型の化学プラントや発電所等の構造材や配管の表面に実際に付着している付着物質の付着量を、構造材や配管の形状や性状を変化させずに、低コストで正確に測定することは困難であった。
本発明の目的は、上述の事情を考慮してなされたものであり、対象物に実際に付着した付着物質の付着量を、対象物の形状や性状等を変化させることなく正確且つ低コストに測定できる付着量測定システム及び付着量測定方法を提供することにある。
本発明は、導電性物質からなる対象物内に溶媒が収容され、上記対象物に付着した、光または熱によりアノード電流を生成する付着物質の付着量を測定する付着量測定システムであって、上記付着物質に光または熱を付与する付与手段と、この光または熱が付与された付着物質を流れるアノード電流を検出する電流検出手段とを有し、上記付着物質の付着量と当該付着物質を流れるアノード電流との予め求めた相関関係に基づき、上記電流検出手段にて検出されたアノード電流から上記付着物質の付着量を測定することを特徴とするものである。
本発明によれば、導電性物質からなる対象物に付着した、光または熱によりアノード電流を生成する付着物質に、付与手段により光または熱を付与し、この付着物質を流れるアノード電流を電流検出手段が検出し、付着物質の付着量と当該付着物質を流れるアノード電流との予め求めた相関関係に基づき、電流検出手段が検出したアノード電流から上記付着物質の付着量を測定している。このことから、対象物に実際に付着した付着物質の付着量を正確に測定することができる。
また、対象物に付着した付着物質の付着量を測定するに際し、対象物に何ら物理的な力が作用しないので、当該対象物の形状や性状等を変化させることがなく、しかも、付着量測定のために対象物に工夫を施す必要がないので、低コスト化も実現できる。
以下、本発明を実施するための最良の形態を、図面に基づき説明する。但し、本発明は、これらの実施の形態に限定されるものではない。
[A]第1の実施の形態(図1〜図4)
図1は、本発明に係る付着量測定システムの第1の実施の形態の概要を示す構成図である。図2は、図1の付着量測定システムにおいて用いられる、ステンレス鋼製の試験片に付着した付着物質の付着量と当該付着物質を流れるアノード電流の電流密度との相関関係を示すグラフである。
図1に示す付着量測定システム10は、化学プラントや発電所などの構造材や配管(本実施の形態では、対象物としての配管11)の内表面に付着した、光によりアノード電流を生成する付着物質12の付着量を測定するものであり、この付着物質12に紫外光21を付与する付与手段としての紫外光照射装置13と、電流検出手段としてのポテンシオスタット14とを有して構成される。
上記配管11は導電性物質、特に導電性の高い金属、炭素化合物または導電性樹脂などから構成される。金属としてはステンレス鋼(SUS)などの鉄鋼、鋳鉄などの非鉄鋼、ニッケル基合金やクロム基合金などの非鉄金属、または溶接された金属等が挙げられる。また、炭素化合物としてはグラファイトやダイヤモンドなどが挙げられる。更に導電性樹脂としては、導電性カーボンを含むポリプロピレンや銅微粉末を含むポリエステルなどが挙げられる。本実施の形態では配管11は、ステンレス鋼SUS316Lにて構成されている。
この配管11内には、透明な溶媒22が満たされて収容されている。この溶媒22はアルコールなどの有機物、または水である。本実施の形態では上記溶媒22は水(常温水)である。
上記付着物質12は、光の照射または熱の供給により励起電子が発生してアノード電流を生じさせる、光励起物質または熱励起物質としてのn型半導体である。このn型半導体は、TiO(酸化チタン)、BaTiO(酸化チタン(IV)バリウム)、Bi(酸化ビスマス)、ZnO(酸化亜鉛)、WO(酸化タングステン)、SrTiO(酸化チタン(IV)ストロンチウム)、Fe(酸化鉄)、FeTiO(酸化チタン(IV)鉄)、MnTiO(酸化チタン(IV)マンガン)、SnO(酸化スズ)、ZrO(酸化ジルコニウム)、CeO(酸化セリウム)、In(酸化インジウム)、Al(酸化アルミニウム)、MgO(酸化マグネシウム)、MgFe(酸化二鉄(III)マグネシウム(II))、NiFe(酸化二鉄(III)ニッケル(II))、MnO(酸化マンガン)、MoO(酸化モリブデン)、Nb(酸化ニオブ)、SiO(酸化ケイ素)、PbO(酸化鉛)、V(酸化バナジウム)、ZnFe(酸化二鉄(III)亜鉛(II))、ZnAl(四酸化亜鉛二アルミニウム)、ZnCo(四酸化亜鉛二コバルト)、Ta(酸化タンタル)から選択される少なくとも一種以上が挙げられる。
本実施の形態では、付着物質12として酸化チタンが用いられる。チタンなどの貴金属を構造材や配管の表面に付着させることで、応力腐食割れの感受性を低減させることが可能となる。なお、本実施の形態では、付着物質12はn型半導体を用いたが、これに限らず、光のみにより励起電子を生じさせる物質であってもよい。
前記紫外光照射装置13は、紫外光発生装置15にて紫外光21を発生させ、この紫外光21を光ファイバー16等を用いて配管11内へ導き、当該配管11の内表面に付着した付着物質12(酸化チタン)へ上記紫外光21を照射するものである。上記紫外光発生装置15が発生する紫外光21は、波長が200nm以上400nm以下の光を含む。エネルギーの高い紫外光であることから波長400nm以下が必要となり、または実用上の理由から波長200nm以上が好ましい。
前記ポテンシオスタット14は、紫外光21の照射により付着物質12に生成されるアノード電流を検出するものであり、参照電極17及び対極18を有し、更に、ケーブル19を用いて配管11を本体20に接続することで当該配管11を作用極として機能させる。このポテンシオスタット14は、紫外光照射装置13にて付着物質12(酸化チタン)に上述の紫外光21を照射させた状態で、参照電極17を基準として対極18と配管11(作用極)との間の電位を変化させ、付着物質12にて生成されたアノード電流を、対極18及び配管11間を流れる電流として、その時の電位と共に検出する。
付着物質12の付着量と当該付着物質12を流れるアノード電流の電流密度との間には相関関係が成立する。図2は、ステンレス鋼SUS316L製の配管試験片に付着物質12(酸化チタン)が付着した状態で、紫外光照射装置13から波長254nmの紫外光21を0.5mW/cmの強度で付着物質12へ照射したとき、各付着量についてのアノード電流の電流密度の変化を予め実験等で求め、示したものであり、付着物質12の付着量と当該付着物質12を流れるアノード電流の電流密度との相関関係を示している。この相関関係に基づき、ポテンシオスタット14にて検出されたアノード電流の電流密度と電流検出時の電位とから、付着物質12の付着量を算出して測定する。
この相関関係から付着物質12の付着量を算出して測定する手順は、当該相関関係をパーソナルコンピュータなどの演算装置に記憶させ、この演算装置をポテンシオスタット14に接続し、このポテンシオスタット14にて検出されたアノード電流を入力して上記演算装置が算出し実行してもよい。
ここで、本実施の形態では、配管11がステンレス鋼製の場合を一例として述べたが、例えばニッケル基合金製であっても、付着量測定システム10を適用できる。つまり、図3は、ニッケル基合金Alloy600製の配管試験片に付着物質12(酸化チタン)が付着した状態で、紫外光照射装置13から波長254nmの紫外光21を0.5mW/cmの強度で付着物質12へ照射したとき、各付着量についてのアノード電流の電流密度の変化を示したものであり、付着物質12の付着量と当該付着物質12を流れるアノード電流の電流密度との相関関係の一例を示している。この相関関係においても、付着物質12の付着量に応じてアノード電流の電流密度が変化している。
従って、配管11がニッケル基合金製の場合にも、ステンレス鋼製の場合と同様に、配管11に付着した付着物質12へ紫外光照射装置13から同様の紫外光21を照射し、ポテンシオスタット14にて検出されたアノード電流の電流密度と電流検出時の電位とから、上述のような相関関係に基づき付着物質12の付着量を算出して測定することが可能となる。
従って、本実施の形態によれば、次の効果(1)〜(3)を奏する。
(1)導電性物質からなる配管11の内表面に付着した、光によりアノード電流を生成する付着物質12(酸化チタン)に、紫外光照射装置13により紫外光21を照射し、この付着物質12を流れるアノード電流をポテンシオスタット14が検出し、付着物質12の付着量と当該付着物質12を流れるアノード電流の電流密度との相関関係(例えば図2)に基づき、ポテンシオスタット14が検出したアノード電流の電流密度と電流検出時の電位から付着物質12の付着量を測定している。このことから、配管11の内表面に実際に付着した付着物質の付着量を正確に測定することができる。
(2)配管11の内表面に付着した付着物質12の付着量を測定する際に、配管11を掻き取るなど、当該配管11に何ら物理的な力を作用することがないので、配管11の形状や性状などを変化させることがなく、しかも、付着量測定のために配管11のラインを変更するなど、配管11に工夫や改良を施す必要がないので、低コスト化も実現できる。
(3)例えば、プラントの配管11の内表面に酸化チタンを付着物質12として人工的に付着させ、高温水等に暴露した状態にした時、配管11の応力腐食割れの感受性を低減させるために、上記酸化チタンの付着量を20μg/cm以上に常に保持する必要がある場合には、プラントの定期検査期間中に付着量測定システム10を用いて酸化チタンの付着量を確認できる。酸化チタンの付着量の経時変化を把握することにより、次回に酸化チタンを付着すべき時期を予測することが可能となる。図4には、配管11に酸化チタンを付着させたときの、時間経過による付着量変化を示したものである。この図4に示すように、付着量の挙動(減少傾向)を把握することで、酸化チタンの再付着時期Aを予め予測でき、事前に準備が可能となる。
[B]第2の実施の形態(図5)
この第2の実施の形態では、前記第1の実施の形態と同様な部分は、同一の符号を用いることにより説明を省略する。
図5は、本発明に係る付着量測定システムの第2の実施の形態の前提となる、付着物質に照射される光の光量と当該付着物質を流れるアノード電流の電流密度との関係を予め実験等で求め、示すグラフである。具体的には、図5は、付着物質12としての酸化チタンが50μg/cm付着された配管試験片と付着されていない配管試験片とを用い、これらの試験片に254nmの波長の紫外光21を照射したときに、付着物質12に流れるアノード電流の電流密度についての光強度依存性を調査した結果である。付着物質12を流れるアノード電流の電流密度は、付着物質12(酸化チタン)が付着していない試験片では、紫外光21の強度(光量)を変化させてもほとんど変化しないが、付着物質12が付着した試験片では、紫外光21の強度(光量)が変化すると大きく変化する。
そこで、本実施の形態の付着量測定システム30(図1)では、まず、所定波長の紫外光21の異なった複数の各光量ごとに、付着物質12の付着量と当該付着物質12を流れるアノード電流の電流密度との相関関係を、図2の場合と同様にして予め実験等で求め作成しておく。次に、紫外光照射装置13により、配管11の内表面に付着した付着物質12に対し所定波長の紫外光21を異なった光量で照射する。付着物質12の異なった光量ごとに、ポテンシオスタット14により付着物質12を流れるアノード電流を電位と共に検出する。
これら紫外光21の異なった光量ごとに検出されたアノード電流の電流密度と電流検出時の電位とを用い、紫外光21の異なった光量ごとに作成された上述の相関関係に基づいて、紫外光21の異なった光量ごとに付着物質12の付着量を算出する。そして、これら複数の付着量の平均値等を算出して、付着物質12の付着量を測定する。
従って、本実施の形態によれば、所定波長の紫外光21の異なった光量ごとに付着物質12の付着量を算出し、これら複数の算出値を用いて付着物質12の付着量を求め測定していることから、付着物質12の付着量の測定精度を向上させることができる。その他、この第2の実施の形態においても、前記第1の実施の形態の効果(1)〜(3)と同様な効果を奏する。
[C]第3の実施の形態(図6〜図8)
図6は、本発明に係る付着量測定システムの第3の実施の形態の概要を示す構成図である。図7は、図6の付着量測定システムにおいて用いられる、ステンレス鋼製の試験片に付着した付着物質の付着量と当該付着物質を流れるアノード電流の電流密度との相関関係を示すグラフである。この第3の実施の形態において、前記第1の実施の形態と同様な部分は、同一の符号を付すことにより説明を省略する。
この第3の実施の形態の付着量測定システム40は、配管11等の対象物に付着された付着物質42が熱によりアノード電流を生成する熱励起物質の場合に、この付着物質42の付着量を測定するものである。従って、本実施の形態の付着量測定システム40では、前記第1の実施の形態の付着量測定システム10の紫外線照射装置13に代えて、付着物質42に熱を付与する付与手段として発熱装置41を備えている。
n型半導体の多くは、光よりは少ないものの、熱によっても励起電子を発生し、従ってアノード電流を生成する。熱により励起されやすい物質ほど低付着量まで高精度に測定が可能となる。付着物質42(熱励起物質)は上記n型半導体に限らず、熱のみによって励起電子を生じさせる物質であってもよい。但し、本実施の形態では、付着物質42としてn型半導体の酸化チタンが用いられている。
上記発熱装置41は、配管11において測定箇所に接触して設置されたヒータなどの熱源や、測定箇所の上流側に設置された発熱体であってもよい。また、プラントが運転中に高温水を配管11内に流す場合には、この高温水を生成する熱源も本発熱装置41に含まれる。運転中に配管11内に高温水が流れるプラントでは、プラント運転中に付着量測定システム40を用いて、付着物質42の付着量を測定することが可能となる。
この発熱装置41により付着物質42は、溶媒22である水を介して、例えば100℃以上800℃以下の温度に設定される。100℃以上であれば付着物質42に励起電子が発生しやすい。また、実用上の理由から800℃以下が好ましい。
付着量測定システム40は、発熱装置41から付着物質42へ熱エネルギーを与え、この付着物質42にて生成されたアノード電流をポテンシオスタット14が、その時の電位と共に検出し、この検出されたアノード電流の電流密度と電流検出時の電位とから、付着物質42の付着量と当該付着物質42を流れるアノード電流の電流密度との相関関係(図7)に基づいて、付着物質42の付着量を算出して測定する。
図7は具体的には、ステンレス鋼SUS316L製の配管試験片に付着物質42(酸化チタン)が付着した状態で、発熱装置41により配管11中の溶媒22である水を288℃に加熱し、従って付着物質42を288℃の温度に設定したとき、各付着量についてのアノード電流の電流密度の変化を、予め実験等示したものであり、付着物質42の付着量と当該付着物質42を流れるアノード電流の電流密度との相関関係を示している。この相関関係に基づき、ポテンシオスタット14にて検出されたアノード電流の電流密度と電流検出時の電位とから、付着物質12の付着量を算出して測定する。
この相関関係から付着物質12の付着量を算出し測定する手順は、当該相関関係をパーソナルコンピュータなどの演算装置に記憶させ、この演算装置をポテンシオスタット14に接続し、このポテンシオスタット14にて検出されたアノード電流を入力して上記演算装置が算出し実行してもよい。
ここで、本実施の形態では、配管11がステンレス鋼製の場合を一例として述べたが、例えばニッケル基合金製であっても、付着量測定システム40を適用できる。つまり、図8は、ニッケル基合金Alloy600製の配管試験片に付着物質42(酸化チタン)が付着した状態で、発熱装置41により配管11中の水を加熱し、付着物質42を加熱して288℃の温度に設定したとき、各付着量についてのアノード電流の電流密度の変化を示したものであり、付着物質42の付着量と当該付着物質42を流れるアノード電流の電流密度との相関関係の一例を示している。この相関関係においても、付着物質42の付着量に応じてアノード電流の電流密度が変化している。
従って、配管11がニッケル基合金製の場合にも、ステンレス鋼製の場合と同様にして、配管11に付着した付着物質42を発熱装置41により加熱し、ポテンシオスタット14にて検出されたアノード電流の電流密度と電流検出時の電位とから、上述のような相関関係に基づき付着物質42の付着量を算出して測定することが可能となる。
従って、本実施の形態によれば、前記第1の実施の形態の効果(2)及び(3)と同様な効果を奏する他、次の効果(4)を奏する。
(4)導電性物質からなる配管11の内表面に付着した、熱によりアノード電流を生成する付着物質42に、発熱装置41により熱を付与し、この付着物質42を流れるアノード電流をポテンシオスタット14が検出し、付着物質42の付着量と当該付着物質42を流れるアノード電流の電流密度との相関関係(例えば図7)に基づき、ポテンシオスタット14が検出したアノード電流の電流密度と電流検出時の電位から付着物質42の付着量を測定している。このことから、配管11の内表面に実際に付着した付着物質42の付着量を正確に測定することができる。
[D]第4の実施の形態(図9)
この第4の実施の形態では、前記第1及び第3の実施の形態と同様な部分は、同一の符号を用いることにより説明を省略する。
図9は、本発明に係る付着量測定システムの第4の実施の形態の前提となる、付着物質の温度と当該付着物質を流れるアノード電流の電流密度との関係を予め実験等で求め、示すグラフである。具体的には、図9は、付着物質42としての酸化チタンが50μg/cm付着された配管試験片を用い、この試験片に熱を与えて温度を変化させたときに、付着物質42に流れるアノード電流の電流密度についての温度依存性を調査した結果である。付着物質42を流れるアノード電流の電流密度は、付着物質42の温度が変化すると、励起電子の影響により大きく変化する。
そこで、本実施の形態の付着量測定システム50(図6)では、まず、付着物質42の異なった各温度ごとに、付着物質42の付着量と当該付着物質42を流れるアノード電流の電流密度との相関関係を、図7の場合と同様にして作成しておく。次に、発熱装置41により配管11内の水を加熱し、付着物質42を異なった温度に設定する。付着物質42の異なった温度ごとに、ポテンシオスタット14により付着物質42を流れるアノード電流を電位と共に検出する。
これら付着物質42の異なった温度ごとに検出されたアノード電流の電流密度と電流検出時の電位とを用い、付着物質42の異なった温度ごとに作成された上述の相関関係に基づいて、付着物質42の異なった温度ごとに付着物質42の付着量を算出する。そして、これら複数の付着量の平均値等を算出して、付着物質42の付着量を測定する。
従って、本実施の形態によれば、付着物質42の異なった温度ごとに付着物質42の付着量を算出し、これら複数の算出値を用いて付着物質42の付着量を求め測定していることから、付着物質42の付着量の測定精度を向上させることができる。その他、この第4の実施の形態においても、前記第1の実施の形態の効果(2)及び(3)、並びに第3の実施の形態の効果(4)と同様な効果を奏する。
[E]第5の実施の形態(図10)
この第5の実施の形態では、前記第1の実施の形態と同様な部分は、同一の符号を用いることにより説明を省略する。
図10は、本発明に係る付着量測定システムの第5の実施の形態の前提となる、異なる付着物質と各付着物質を流れるアノード電流の電流密度との関係を予め実験等で求め、示すグラフである。具体的には、図10は、ステンレス鋼SUS316L製の複数の配管試験片のそれぞれに、付着物質12として異なる光触媒物質(例えば、WO、ZnO、Feなど)を付着させ、各試験片に紫外線照射装置13から波長254nmの紫外光21を0.5mW/cmの強度で照射させたとき、各光触媒物質についてのアノード電流の電流密度の変化を示したものである。
この光触媒物質は、光励起物質と同様に、光の照射により励起電子を発生し、これによりアノード電流が生成される。このアノード電流は、図10に示すように、光触媒物質の種類によって異なり、各光触媒物質に固有のものであることが分かる。
そこで、本実施の形態の付着量測定システム60(図1)では、配管11に光触媒物質を付着物質12として付着させ、この光触媒物質が予め分かっている場合には、その光触媒物質について、付着量と当該光触媒物質を流れるアノード電流の電流密度との相関関係を、図2に示すように予め作成しておく。これにより、第1実施の形態と同様にして、紫外線照射装置13及びポテンシオスタット14を用いて、その光触媒物質の付着量を測定することが可能となる。
従って、本実施の形態においても、前記第1の実施の形態の効果(1)〜(3)と同様な効果を奏する。
本発明に係る付着量測定システムの第1の実施の形態の概要を示す構成図。 図1の付着量測定システムにおいて用いられる、ステンレス鋼製の試験片に付着した付着物質の付着量と当該付着物質を流れるアノード電流の電流密度との相関関係を示すグラフ。 図1の付着量測定システムにおいて用いられる、ニッケル基合金製の試験片に付着した付着物質の付着量と当該付着物質を流れるアノード電流の電流密度との相関関係を示すグラフ。 図1の配管に付着した付着物質の付着量の経時変化を示すグラフ。 本発明に係る付着量測定システムの第2の実施の形態の前提となる、付着物質に照射される光の光量と当該付着物質を流れるアノード電流の電流密度との関係を示すグラフ。 本発明に係る付着量測定システムの第3の実施の形態の概要を示す構成図。 図6の付着量測定システムにおいて用いられる、ステンレス鋼製の試験片に付着した付着物質の付着量と当該付着物質を流れるアノード電流の電流密度との相関関係を示すグラフ。 図6の付着量測定システムにおいて用いられる、ニッケル基合金製の試験片に付着した付着物質の付着量と当該付着物質を流れるアノード電流の電流密度との相関関係を示すグラフ。 本発明に係る付着量測定システムの第4の実施の形態の前提となる、付着物質の温度と当該付着物質を流れるアノード電流の電流密度との関係を示すグラフ。 本発明に係る付着量測定システムの第5の実施の形態の前提となる、異なる付着物質と各付着物質を流れるアノード電流の電流密度との関係を示すグラフ。
符号の説明
10 付着量測定システム
11 配管(対象物)
12 付着物質
13 紫外光照射装置(付与手段)
14 ポテンシオスタット(電流検出手段)
21 紫外光
30 付着量測定システム
40 付着量測定システム
41 発熱装置(付与手段)
42 付着物質
50、60 付着量測定システム

Claims (11)

  1. 導電性物質からなる対象物内に溶媒が収容され、上記対象物に付着した、光または熱によりアノード電流を生成する付着物質の付着量を測定する付着量測定システムであって、
    上記付着物質に光または熱を付与する付与手段と、
    この光または熱が付与された付着物質を流れるアノード電流を検出する電流検出手段とを有し、
    上記付着物質の付着量と当該付着物質を流れるアノード電流との予め求めた相関関係に基づき、上記電流検出手段にて検出されたアノード電流から上記付着物質の付着量を測定することを特徴とする付着量測定システム。
  2. 前記付着物質の付着量を、当該付着物質を流れるアノード電流を検出することで測定するに際し、付与手段が上記付着物質に光量の異なる光を付与し、または上記付着物質が異なる温度となるように異なる熱量の熱を付与し、電流検出手段が異なる光量または温度毎に当該付着物質を流れるアノード電流を検出し、これら複数の検出データから上記付着物質の付着量を測定することを特徴とする請求項1に記載の付着量測定システム。
  3. 前記溶媒が、水または有機物であることを特徴とする請求項1または2に記載の付着量測定システム。
  4. 前記導電性物質が、金属、炭素化合物または導電性樹脂であることを特徴とする請求項1乃至3のいずれかに記載の付着量測定システム。
  5. 前記金属が、鉄鋼、非鉄鋼、非鉄金属または溶接金属であることを特徴とする請求項4に記載の付着量測定システム。
  6. 前記炭素化合物が、グラファイトまたはダイヤモンドであることを特徴とする請求項4に記載の付着量測定システム。
  7. 前記光が、200nm以上400nm以下の波長を含んでいることを特徴とする請求項1乃至6のいずれかに記載の付着量測定システム。
  8. 前記熱が、付着物質を100℃以上800℃以下に設定するものであることを特徴とする請求項1乃至7のいずれかに記載の付着量測定システム。
  9. 前記アノード電流を生成する付着物質が、n型半導体であることを特徴とする請求項1乃至8のいずれかに記載の付着量測定システム。
  10. 前記n型半導体が、TiO、BaTiO、Bi、ZnO、WO、SrTiO、Fe、FeTiO、MnTiO、SnO、ZrO、CeO、In、MgO、MgFe、NiFe、MnO、MoO、Nb、PbO、V、ZnFe、ZnAlZnCo 、Taから選択される少なくとも一種以上であることを特徴とする請求項9に記載の付着量測定システム。
  11. 導電性物質からなる対象物内に溶媒が収容され、上記対象物に付着した、光または熱によりアノード電流を生成する付着物質の付着量を測定する付着量測定方法であって、
    上記付着物質に光または熱を付与し、この光または熱が付与された付着物質を流れるアノード電流を検出し、この検出されたアノード電流から、上記付着物質の付着量と当該付着物質を流れるアノード電流との予め求めた相関関係に基づき、上記付着物質の付着量を測定することを特徴とする付着量測定方法。
JP2006246613A 2006-09-12 2006-09-12 付着量測定システム及び測定方法 Expired - Fee Related JP4686423B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006246613A JP4686423B2 (ja) 2006-09-12 2006-09-12 付着量測定システム及び測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006246613A JP4686423B2 (ja) 2006-09-12 2006-09-12 付着量測定システム及び測定方法

Publications (2)

Publication Number Publication Date
JP2008070140A JP2008070140A (ja) 2008-03-27
JP4686423B2 true JP4686423B2 (ja) 2011-05-25

Family

ID=39291862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006246613A Expired - Fee Related JP4686423B2 (ja) 2006-09-12 2006-09-12 付着量測定システム及び測定方法

Country Status (1)

Country Link
JP (1) JP4686423B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5457650B2 (ja) * 2008-08-28 2014-04-02 株式会社東芝 原子炉構造材における酸化チタンの付着量制御方法
JP5509246B2 (ja) * 2012-04-11 2014-06-04 株式会社東芝 酸化チタンの付着量監視方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016120A (ja) * 1998-06-29 2000-01-18 Kawasaki Heavy Ind Ltd 車両用走行制御装置
JP2001004789A (ja) * 1999-06-23 2001-01-12 Toshiba Corp 原子炉構造材及び原子炉構造材の腐食低減方法
JP2001242279A (ja) * 2000-02-28 2001-09-07 Hitachi Ltd 原子炉圧力容器内配管の内壁付着物モニタリング方法および内壁付着物採取装置
JP2003139891A (ja) * 2001-11-06 2003-05-14 Toshiba Corp 原子炉構造材料の光触媒皮膜形成方法
JP2003232886A (ja) * 2002-02-06 2003-08-22 Toshiba Corp 金属材料の腐食低減方法
JP2005195346A (ja) * 2003-12-26 2005-07-21 Toshiba Corp 原子炉構造材の腐食低減方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473795A (en) * 1983-02-23 1984-09-25 International Business Machines Corporation System for resist defect measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000016120A (ja) * 1998-06-29 2000-01-18 Kawasaki Heavy Ind Ltd 車両用走行制御装置
JP2001004789A (ja) * 1999-06-23 2001-01-12 Toshiba Corp 原子炉構造材及び原子炉構造材の腐食低減方法
JP2001242279A (ja) * 2000-02-28 2001-09-07 Hitachi Ltd 原子炉圧力容器内配管の内壁付着物モニタリング方法および内壁付着物採取装置
JP2003139891A (ja) * 2001-11-06 2003-05-14 Toshiba Corp 原子炉構造材料の光触媒皮膜形成方法
JP2003232886A (ja) * 2002-02-06 2003-08-22 Toshiba Corp 金属材料の腐食低減方法
JP2005195346A (ja) * 2003-12-26 2005-07-21 Toshiba Corp 原子炉構造材の腐食低減方法

Also Published As

Publication number Publication date
JP2008070140A (ja) 2008-03-27

Similar Documents

Publication Publication Date Title
Papavinasam Electrochemical polarization techniques for corrosion monitoring
JP5552200B2 (ja) ダイヤモンド電極を用いた電気化学的被着及び分光学的分析方法及び装置
Wildgoose et al. High‐temperature electrochemistry: a review
Mishra et al. Energy-dispersive X-ray spectroscopy techniques for nanomaterial
Domenech et al. Application of modified Tafel analysis to the identification of corrosion products on archaeological metals using voltammetry of microparticles
Schroer et al. Design and testing of electrochemical oxygen sensors for service in liquid lead alloys
Guo et al. Multielectrode array sensors to enable long-duration corrosion monitoring and control of concentrating solar power systems
Campbell et al. Laser-induced breakdown spectroscopy of light water reactor simulated used nuclear fuel: Main oxide phase
Scenini et al. Investigation of the role of electrokinetic effects in corrosion deposit formation
JP4686423B2 (ja) 付着量測定システム及び測定方法
Manard et al. Direct uranium isotopic analysis of swipe surfaces by microextraction-ICP-MS
JPH0821793A (ja) 金属材料の耐腐食性評価方法、高耐食合金の設計方法、金属材料の腐食状態診断方法およびプラントの運転方法
Morgan XPS insights: Sample degradation in X‐ray photoelectron spectroscopy
Ohnet et al. Ruthenium behavior in the reactor cooling system in case of a PWR severe accident
Muzeau et al. Electrochemical behaviour of stainless steel in PWR primary coolant conditions: Effects of radiolysis
Nakamura New insights on structural dynamics of electrochemical interface by time-resolved surface X-ray diffraction
Calderoni et al. Corrosion issues in molten salt reactor (MSR) systems
Xia et al. Characterization of passive film formed on 304 SS in simulated alkaline water chemistries containing sulfur at 300° C
JP4155409B2 (ja) トレーサー水素による材料劣化性状評価方法および評価装置
Oudriss et al. Experimental techniques for dosage and detection of hydrogen
Hoyt et al. In-Process Monitoring of Molten Salt Composition by Voltammetry and Automated Sampling-based Techniques
Fayfar et al. In-Situ Analysis of Corrosion Products in Molten Salt: X-ray Absorption Reveals Both Ionic and Metallic Species
Galbács et al. Nuclear Applications of Laser‐Induced Breakdown Spectroscopy
Vaculovič et al. Elemental mapping of structural materials for a nuclear reactor by means of LA-ICP-MS
Fayfar et al. In-situ analysis of corrosion products in molten salt: concurrent X-ray absorption and electrochemistry reveal both ionic and metallic species

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees