JP4685934B2 - 鋳造用塩中子 - Google Patents

鋳造用塩中子 Download PDF

Info

Publication number
JP4685934B2
JP4685934B2 JP2008516682A JP2008516682A JP4685934B2 JP 4685934 B2 JP4685934 B2 JP 4685934B2 JP 2008516682 A JP2008516682 A JP 2008516682A JP 2008516682 A JP2008516682 A JP 2008516682A JP 4685934 B2 JP4685934 B2 JP 4685934B2
Authority
JP
Japan
Prior art keywords
salt
ions
casting
salt core
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008516682A
Other languages
English (en)
Other versions
JPWO2007136032A1 (ja
Inventor
盾 八百川
浩一 安斎
養司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Yamaha Motor Co Ltd
Original Assignee
Tohoku University NUC
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Yamaha Motor Co Ltd filed Critical Tohoku University NUC
Priority to JP2008516682A priority Critical patent/JP4685934B2/ja
Publication of JPWO2007136032A1 publication Critical patent/JPWO2007136032A1/ja
Application granted granted Critical
Publication of JP4685934B2 publication Critical patent/JP4685934B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • B22C9/105Salt cores

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Description

本発明は、水溶性を有する鋳造用塩中子に関するものである。
例えば、アルミニウムダイカスト等の鋳造は、よく知られているように、アルミニウム合金の溶湯を金型内に高速・高圧で射出し、所望とする形状の構造体を鋳造する技術である。このような鋳造において、例えば内燃機関のシリンダブロックのような水冷用のウォータージャケットなど中空構造を有する鋳造物を成形する場合、中子が用いられる。このようなときに用いられる中子は、ゲートから高速で射出される金属溶湯が衝突して大きな衝撃を受けやすく、また、凝固完了まで鋳造圧力も大きいために、高圧および高温に耐えられる強度が要求される。また、中子は、鋳造後、鋳造物から除去することになるが、複雑な内部構造を有する鋳造物などの場合に、一般的なフェノールレジンで固めた砂中子を使用した場合、除去することが容易ではない。これに対し、高温の水などにより溶解することで除去が可能な水溶性の塩中子がある(文献1:特開昭48−039696号公報,文献2:特開昭50−136225号公報,文献3:特開昭52−010803号公報)。
上述のような塩中子は、炭酸ナトリウム(Na2CO3),塩化カリウム(KCl),および塩化ナトリウム(NaCl)などよりなる混合塩を用い、これらを溶融させて成形し、高い耐圧強度を得るとともに、鋳造における作業性や安定性を向上させるようにしている。
しかしながら、塩を溶融して鋳造して塩中子を形成する場合、凝固の過程で起きる凝固収縮などの体積の変化により塩中子にひけ巣やミクロポロシティや微細な熱亀裂などが発生し、精確に型どおりに成形することが容易ではなかった。このように、従来の技術では、溶融塩を用いた鋳造では、塩中子が容易に製造できないという問題があった。
本発明は、以上のような問題点を解消するためになされたものであり、ナトリウム,カリウムなどの塩を溶融させて成形する塩の鋳造物よりなる水溶性を有する鋳造用塩中子が、十分な強度を備えた状態でより容易に製造できるようにすることを目的とする。
本発明に係る鋳造用塩中子は、ナトリウムイオンおよびカリウムイオンの少なくとも1つと、臭素イオンと炭酸イオンとを含む溶融塩によって形成したものである。例えば、溶融塩は、ナトリウムイオンと臭素イオンと炭酸イオンとから構成したものであるればよい。この場合、溶融塩は、全陰イオン中の炭酸イオンのモル成分比を30mol%とすればよい。また、溶融塩は、全陰イオン中の炭酸イオンのモル成分比を50〜80mol%とすると良い。
また、溶融塩は、カリウムイオンと臭素イオンと炭酸イオンとから構成し、全陰イオン中の炭酸イオンのモル成分比を30,50〜90mol%としたものであっても良い。また、溶融塩は、ナトリウムイオンとカリウムイオンと臭素イオンと炭酸イオンとから構成し、溶融温度を600℃を超えて680℃までの範囲とし、全陽イオン中のカリウムイオンのモル成分比を50〜90mol%とし、全陰イオン中の炭酸イオンのモル成分比を40〜80mol%としたものであっても良い。
また、母相の中に複数の粒状晶が分散した状態に形成されていると良い。この粒状晶は、ナトリウムイオン及びカリウムイオンの少なくとも1つと炭酸イオンとから構成されたものであればよい。
本発明によれば、ナトリウムイオンおよびカリウムイオンの少なくとも1つと、臭素イオンと炭酸イオンとを含む溶融塩によって形成したので、ナトリウム,カリウムなどの塩を溶融させて成形する塩の鋳造物よりなる水溶性を有する鋳造用塩中子が、十分な強度を備えた状態でより容易に製造できるようになる。
図1は、本発明の実施例に係る鋳造用塩中子を使用して鋳造した場合のシリンダブロックの斜視図である。 図2は、抗折試験片の抗折強度を示すグラフである。 図3は、抗折試験片の抗折強度を示すグラフである。 図4は、カリウムイオンの陽イオン比および炭酸イオンの陰イオン比と液相線温度との関係に加え、抗折試験片の抗折強度を示す特性図(状態図)である。 図5は、塩中子の凝固組織のSEM写真である。 図6は、塩中子の凝固組織のSEM写真である。 図7は、塩中子の凝固組織のSEM写真である。 図8は、塩中子の凝固組織のSEM写真である。 図9Aは、抗折強度測定に用いる試験片の状態を示す構成図である。 図9Bは、抗折強度測定に用いる試験片の状態を示す部分的な断面図である。 図10は、抗折強度測定を説明するための説明図である。
以下、本発明の実施例について図を参照して説明する。はじめに、本発明の実施例に係る鋳造用塩中子の使用形態について図1を用いて説明する。図1は、本発明に係る鋳造用塩中子を使用して鋳造した場合のシリンダブロックの斜視図で、同図は一部を破断した状態で描いてある。図1において、符号1で示すものは、本発明に係る鋳造用塩中子としての塩中子2を使用して鋳造されたアルミニウム合金よりなるエンジン用シリンダブロックである。このシリンダブロック1は、自動二輪車用水冷式4サイクル4気筒エンジンの一部であり、ダイカスト鋳造法によって所定の形状に成形されている。
図1に示すシリンダブロック1は、四箇所のシリンダボア3,シリンダボア3を有するシリンダボディ4,およびシリンダボディ4の下端から下方に延びる上部クランクケース5が一体に形成されている。上部クランクケース5は、下端部に下部クランクケース(図示せず)が取り付けられ、この下部クランクケースとともに軸受を介してクランク軸(図示せず)を回転自在に軸支している。
シリンダボディ4は、いわゆるクローズドデッキ型のものであり、塩中子2を用いてウォータージャケット6が内部に形成されている。ウォータージャケット6は、冷却水通路形成部7,冷却水入口8,主冷却水通路9,連通路10を含んで構成されている。冷却水通路形成部7は、シリンダボディ4の一側部に突設されシリンダボア3の並設方向に延在している。また、冷却水入口8は、冷却水通路形成部7に形成されている。主冷却水通路9は、冷却水通路形成部7の内部に形成された冷却水分配通路(図示せず)に連通されるとともに全てのシリンダボア3の周囲を覆うように形成されている。また、連通路10は、主冷却水通路9から図1において上側へ延びてシリンダボディ4の上端の図示していないシリンダヘッドとの合わせ面4aに開口している。
上述したウォータージャケット6は、冷却水入口8から流入した冷却水を冷却水分配通路によってシリンダボアの周囲の主冷却水通路9に供給し、さらに、この冷却水を主冷却水通路9から連通路10を通してシリンダヘッド(図示せず)内の冷却水通路に導くように構成されている。このようにウォータージャケット6が形成されることにより、このシリンダボディ4は、シリンダヘッドが接続される上端の合わせ面4aにウォータージャケット6の連通路10が開口する他は、シリンダボディ4の天井壁(合わせ面4aを形成する壁)で覆われることになりクローズドデッキ型の構成となる。
ウォータージャケット6を形成するための塩中子2は、ウォータージャケット6の各部を一体に接続した形状に形成されている。図1においては、塩中子2の形状(ウォータージャケット6の形状)を理解し易いように、シリンダボディ4の一部を破断した状態で描いてある。
この実施例に係る塩中子2は、ナトリウム及びカリウムの少なくとも1つと臭素との塩と、炭酸との塩とを使用し、これらの混合塩を溶融した溶融塩によって形成したものであり、例えば、ダイカスト鋳造法によってウォータージャケット6の形状となるように形成されている。塩中子2の構成成分については以下に詳述する。なお、塩中子2は、ダイカスト鋳造法の他に、例えばグラビティ鋳造法など、他の鋳造法によっても形成することができる。ダイカスト鋳造法による塩中子2の形成では、先ず、後述する複数の塩からなる混合物を加熱して溶融させ溶湯を造る。次に、この溶湯を塩中子用の金型に高圧注入して凝固させ、凝固後に金型から取り出すことによって行う。
塩中子2は、図1に示すように、冷却水入口8と冷却水分配通路とを形成する通路形成部2aと、四箇所のシリンダボア3の周囲を囲む形状の環状部2bと、環状部2bから上方へ突出する複数の凸部2cとが全て一体に形成されている。これらの凸部2cによってウォータージャケット6の連通路10が形成される。塩中子2は、従来からよく知られているように、鋳造時には幅木(図示せず)によって金型(図示せず)内の所定の位置に支持されており、鋳造後に温水または蒸気によって溶解させて除去する。
塩中子2を鋳造後に除去するためには、例えば、塩酸と温水などからなる溶解液が貯留された溶解槽(図示せず)にシリンダブロック1を浸漬させることによって行うことができる。シリンダブロック1を溶解液中に浸漬させることにより、塩中子2における通路形成部2aと、合わせ面4aに露出する凸部2cとが溶解液に接触して溶解する。この溶解部分は、徐々に拡がり、最終的に全ての部位が溶解する。このような中子の除去工程では、ウォータージャケット6内に残存した塩中子2の溶解を促進するために、穴から圧力をもって温水または蒸気を吹き付けるようにしてもよい。塩中子2は、凸部2cが形成される部位に凸部2cの代わりに幅木を挿入することもできる。
また、塩中子2を鋳造物であるシリンダブロック1から除去する工程で、塩酸を用いれば、炭酸ガスが発泡するため、この発泡による撹拌作用が得られ、溶解の促進が効果的に行える。また、塩中子2は、炭酸カリウムや炭酸ナトリウムを含むため、これが水に溶解するとアルカリ性を呈することになる。このようにアルカリ性の状態では、アルミニウムの鋳造物であるシリンダブロック1が腐食するなどの問題がある。この問題に対しても、塩酸を添加してpHを7近くに管理することでシリンダブロックの腐食を防止できる。
次に、塩中子2について説明する。本実施例における塩中子2は、陽イオンとしてのカリウムおよびナトリウムの少なくとも1つと、陰イオンとしての臭素を少なくとも含んで構成されたものである。言い換えると、塩中子2は、ナトリウムイオン及びカリウムイオンの少なくとも1つと、臭素イオンとからなる溶融塩によって形成したものである。なお、塩中子2は、陰イオンとして炭酸も含んで構成されている。
例えば、塩中子2は、臭化ナトリウムと炭酸ナトリウムとの混合塩を溶融して溶湯(溶融塩)とし、この溶湯を用いて鋳造したものである。また、塩中子2は、臭化カリウムと炭酸カリウムとの混合塩を溶解して溶湯とし、この溶湯を用いて鋳造したものである。また、塩中子2は、臭化カリウムと炭酸ナトリウムとの混合塩を溶解して溶湯とし、この溶湯を用いて鋳造したものである。また、塩中子2は、臭化ナトリウムと炭酸カリウムとの混合塩を溶解して溶湯とし、この溶湯を用いて鋳造したものである。また、塩中子2は、臭化カリウム,臭化ナトリウム,炭酸ナトリウム,及び炭酸カリウムの少なくとも3つを混合した混合塩を溶解して溶湯とし、この溶湯を用いて鋳造したものである。また、塩中子2は、少なくとも、臭化カリウム,臭化ナトリウム,炭酸ナトリウム,及び炭酸カリウムの4つを混合した混合塩を溶解して溶湯とし、この溶湯を用いて鋳造したものである。
なお、陽イオンとしてのカリウムイオンおよびナトリウムイオンの少なくとも1つと、陰イオンとしての臭素と炭酸イオンのほかに、他のイオンが含まれていてもよい。例えば、陰イオンとして、臭素イオンと炭酸イオンに加えて、硫酸イオン,硝酸イオン,及び塩素イオンなど他の陰イオンが含まれていてもよい。
なお、前述では、混合塩を溶解した溶湯を用いて鋳造を行うようにしたが、これに限るものではなく、例えば半凝固などの固液共存の溶湯を用いて鋳造を行うダイカスト鋳造法などによって塩中子2を製造するようにしてもよい。例えば、上述した複数の塩からなる混合物(混合塩)を加熱して溶融させ溶湯を造る。次に、この溶湯の温度を低下させて半凝固(固液共存)の状態とし、半凝固の状態の溶湯を塩中子用の金型に高圧注入して凝固させ、凝固後に金型から取り出すことによって塩中子2を作製してもよい。
上述した本実施例に係る塩中子2(鋳造用塩中子)によれば、臭化物を用いているので、臭化物を用いずに塩化物の塩から構成されている塩中子に比較して凝固収縮率が小さく、ひけ巣などが生じにくくなっている。また、臭化物は塩化物に比較して溶融潜熱が小さいので、臭素を含むようにした塩中子2は、含まない場合に比較して溶解エネルギーが削減できるようになる。また、臭化物は塩化物に比較して水への溶解度が大きいので、臭素を含むようにした塩中子2は、含まない場合に比較して当量の水により多く溶解するようになり、より迅速に除去することが可能となる。このように、本実施例に係る塩中子2によれば、ナトリウム,カリウムなどの塩を溶融させて成形する塩の鋳造物よりなる水溶性を有する鋳造用塩中子が、より容易に製造できるようになる。
次に、臭化ナトリウムと炭酸ナトリウムとの混合塩を溶解して製造した塩中子の、臭素イオンと炭酸イオンとの陰イオン比を可変させたときの、抗折強度(測定値)の変化について、表1,表2及び図2に示す。これは、塩中子を形成するための溶融塩が、ナトリウムイオン,臭素イオン,及び炭酸イオンから構成されている場合である。表1では、作製した試験片の抗折強度の測定結果(最大抗折荷重)を示し、表2では、作製した試験片の抗折強度の測定結果(最大抗折強度)を示している。表1および表2は、測定結果の表し方を変えているだけで、他は同一である。なお、各イオンの濃度は、JIS規格K0127のイオンクロマトグラフ分析通則に制定された分析方法により測定したものである。表1,表2及び図2に示すように、全陰イオン中の炭酸イオンの濃度YCO3 2-を30〜80mol%としている塩中子が、抗折強度13.9MPaを超える高い抗折強度が得られている。特に、YCO3 2-を50〜80mol%としている塩中子は、より高い抗折強度が得られている。
Figure 0004685934
Figure 0004685934
次に、臭化カリウムと炭酸カリウムとの混合塩を溶解して製造した塩中子の、臭素イオンと炭酸イオンとの陰イオン比を可変させたときの、抗折強度(測定値)の変化について、表3,表4及び図3に示す。これは、塩中子を形成するための溶融塩が、カリウムイオン,臭素イオン,及び炭酸イオンから構成されている場合である。表3では、作製した試験片の抗折強度の測定結果(最大抗折荷重)を示し、表4では、作製した試験片の抗折強度の測定結果(最大抗折強度)を示している。表3および表4は、測定結果の表し方を変えているだけで、他は同一である。なお、各イオンの濃度は、JIS規格K0127のイオンクロマトグラフ分析通則に制定された分析方法により測定したものである。表3,表4及び図3に示すように、全陰イオン中の炭酸イオンの濃度YCO3 2-を60〜80mol%としている塩中子が、抗折強度16.0MPaを超える高い抗折強度が得られている。
Figure 0004685934
Figure 0004685934
次に、臭化ナトリウム,臭化カリウム,炭酸カリウム,及び炭酸ナトリウムの混合塩を溶解して製造した塩中子の、臭素イオンと炭酸イオンとの陰イオン比を可変させたときの、抗折強度(測定値)の変化について、表5,表6,及び表7に示す。これらは、塩中子を形成するための溶融塩が、ナトリウムイオン,カリウムイオン,臭素イオン,及び炭酸イオンから構成されている場合である。以下の表5,表6,及び表7,では、作製した試験片の抗折強度の測定結果(最大抗折強度)を示している。また、上述同様に、各イオンの濃度は、JIS規格K0127のイオンクロマトグラフ分析通則に制定された分析方法により測定したものである。
Figure 0004685934
Figure 0004685934
Figure 0004685934
また、図4に、カリウムイオンの陽イオン比および炭酸イオンの陰イオン比と、溶融温度(液相線温度)との関係(Na-K-Br-CO3系の状態図)を示す。これは、上記表2,4,5,6,7の結果に対応するものであり、最も大きな丸が平均抗折強度20MPaを超えたものを示し、次に大きな丸が平均抗折強度15〜20MPaを示し、次に大きな丸が平均抗折強度10〜15MPaを示し、一番小さな丸が平均抗折強度0〜10MPaを示している。また、図4には、K+0mol%,CO3 2-0mol%の場合のNaBrの液相線温度、Na+0mol%,CO3 2-0mol%の場合のKBrの液相線温度、K+0mol%,Br-0mol%の場合のNa2CO3の液相線温度、Na+0mol%,Br-0mol%の場合のK2CO3の液相線温度も示している。なお、図4において、太線で共晶線を示している。
表5,6,7及び図4に示すように、溶融塩を、ナトリウムイオンとカリウムイオンと臭素イオンと炭酸イオンとから構成した場合、溶融温度が600℃を超えて680℃までの範囲で、全陽イオン中のカリウムイオンの濃度XK-(モル成分比)を50〜90mol%とし、全陰イオン中の炭酸イオンの濃度YCO3 2-(モル成分比)を40〜80mol%としている塩中子において、抗折強度16.0MPaを超える高い抗折強度が得られている。なお、中子を形成する型の耐久性や、中子を形成するためのプロセスコストなどの観点から、溶融塩の溶融温度は、高くても680℃程度とした方がよい。
次に、上述した塩中子の凝固組織の走査型電子顕微鏡(SEM)観察結果について説明する。まず、図5は、全陽イオン中のカリウムイオンの濃度を50mol%とし、全陰イオン中の炭酸イオンの濃度を70mol%とした溶融塩をもとに作製した塩中子の凝固組織のSEM写真である。この組成の溶融塩により作製した塩中子は、図4に示すように、抗折強度が20MPa以上と、非常に高い強度を備えるものである。この塩中子においては、図5に示すように、母相の中に複数の粒状晶が均一に分散した状態が観察される。このように観察される粒状晶の部分の組成を、エネルギー分散型X線分析装置により分析すると、全陽イオン中のカリウムイオンの濃度が32mol%,全陰イオン中の炭酸イオンの濃度が100mol%であった。
また、図6は、全陽イオン中のカリウムイオンの濃度を60mol%とし、全陰イオン中の炭酸イオンの濃度を70mol%とした溶融塩をもとに作製した塩中子の凝固組織のSEM写真である。この組成の溶融塩により作製した塩中子は、図4に示すように、抗折強度が15〜20MPaと、高い強度を備えるものである。この塩中子においては、図6に示すように、母相の中に複数の粒状晶が均一に分散した状態が観察される。このように観察される粒状晶の部分の組成を、エネルギー分散型X線分析装置により分析すると、全陽イオン中のカリウムイオンの濃度が42mol%,全陰イオン中の炭酸イオンの濃度が100mol%であった。
また、図7は、全陽イオン中のカリウムイオンの濃度を40mol%とし、全陰イオン中の炭酸イオンの濃度を70mol%とした溶融塩をもとに作製した塩中子の凝固組織のSEM写真である。この組成の溶融塩により作製した塩中子は、図4に示すように、抗折強度が0〜10MPaと、あまり高い強度が得られていないものである。この塩中子においては、図7に示すように、母相の中に比較的大きな樹枝状結晶が観察される。このように観察される樹枝状結晶の部分の組成を、エネルギー分散型X線分析装置により分析すると、全陽イオン中のカリウムイオンの濃度が22mol%,全陰イオン中の炭酸イオンの濃度が100mol%であった。
以上のことより、より高い強度の塩中子は、母相の中に複数の粒状晶が分散した状態に形成されているものであればよいことが分かる。上述したSEMにより観察される粒状晶及び樹枝状結晶は、溶融塩の冷却過程で最初に形成される結晶(初晶)であり、比較的溶融温度の高い組成となっている部分である。この初晶が形成された後、比較的融点の低い共晶を含む部分が凝固し、初晶の周囲に母相の部分として形成されるようになる。このように共晶の母相のなかに形成される初晶が、大きな樹枝状結晶ではなく、より微細な粒状晶となれば、得られた塩中子に高い強度が得られるものと考えられる。
以上のことは、図5,図6,図7に示した組成比以外でも成立することが多い。例えば、カリウムイオンが含まれていない、ナトリウムイオン,臭素イオン,及び炭酸イオンから構成されている塩中子の場合、全陰イオン中の炭酸イオンの濃度が30mol%の場合と、50〜80mol%の場合において高い抗折強度が得られているが、この中の60%の場合においても、図8に示すように、塩中子の凝固組織において、母相の中に複数の粒状晶が分散した状態が観察されている。
よく知られているように、NaBrは、劈開破壊をする脆弱な物質であり、上述したように10MPa未満と低い抗折強度しか得られていない。これに対し、炭酸塩を加えて混合塩とすると、凝固した組成が、NaBrとNa2CO3とから構成されたものとなり、より高い抗折強度が得られるようになるものと考えられる。また、このように炭酸塩を単純に加えるだけではなく、上述したように、比較的融点の低い母相の中に比較的融点の高い組成の結晶組織が形成される状態となる組成を選択することで、より高い強度の塩中子が得られるようになる。母相の中に初晶の結晶が混在している状態により、亀裂の進展などが妨げられるようになり、この結果として高い強度が得られるようになるものと考えられる。ここで、初晶が大きな樹枝状結晶の場合は、亀裂の進展がおきやすい状態であるが、これに対して初晶がより小さな粒状晶の状態であれば、前述したように、より高い強度が得られるようになる。
次に、抗折強度の測定について説明する。抗折強度の測定は、所定の寸法とした角樹枝状の試験片を作製し、この試験片に荷重をかけ、破壊に要した最大荷重より抗折荷重を求める。先ず、試験片の作製について説明する。所定の金型を用い、図9A,図9Bに示すような棒状の試験片901を形成する。使用した金型は、例えば、SCM440Hなどのクロームモリブデン鋼から構成されたものである。図9Aでは、金型に溶湯を充填するにあたって用いた押し湯の部分902も示しているが、抗折強度の測定においては、部分902を切り取る。なお、図9Aは側面図,図9Bは図9Aのb−b位置での断面図を示し、図中に示している寸法は、金型における設計値である。
上述したようにして作製した棒状の試験片901の、抗折強度の測定は、図10に示すように、先ず、試験片901の中央部に間隔が50mm開いた状態で配置された2つの支持部1001で試験片901を支持する。このように支持された状態で、2つの支持部1001の中間箇所において、間隔が10mmとなる2箇所の荷重部1002により、試験片901に荷重をかける。試験片901に加える荷重を徐々に大きくしてゆき、試験片901の破壊に要した最大荷重を表1及び表3に示す抗折荷重とした。
ここで、抗折強度σ(MPa)は、抗折荷重Pより「σ=3LP/BH2」の式により求めることができる。上記式において、Hは試験片の断面における荷重方向の長さを示し、Bは試験片の断面における荷重方向に垂直な長さを示し、Lは支点となる支持部1001から荷重が加わる荷重部1002までの間隔である。ところで、試験片901は、上記金型に流し込むことで形成しているため、湯じわやひけ巣があり精確に型どおりの寸法になりにくい。このため、抗折強度の算出は、試験片の断面が長方形であるものと近似し、H≒20mm,B≒18mm,L=20mmとして計算している。この近似をすることで,実際の強度より0〜20%程強度を低く見積もる状態になり、例えば、抗折荷重1200Nで破断した試験片は,抗折強度10MPaの強度をもつ理想的な試験片より強いものと考えることができる。
本発明は、アルミニウムダイカスト等の鋳造における中子として、好適に用いられる。

Claims (9)

  1. ナトリウムイオン及びカリウムイオンの少なくとも1つと、臭素イオンと炭酸イオンとを含む溶融塩によって形成したことを特徴とする鋳造用塩中子。
  2. 請求項1記載の鋳造用塩中子において、
    前記溶融塩は、ナトリウムイオンと臭素イオンと炭酸イオンとから構成したものである
    ことを特徴とする鋳造用塩中子。
  3. 請求項2記載の鋳造用塩中子において、
    前記溶融塩は、全陰イオン中の炭酸イオンのモル成分比を30mol%とした
    ことを特徴とする鋳造用塩中子。
  4. 請求項2記載の鋳造用塩中子において、
    前記溶融塩は、全陰イオン中の炭酸イオンのモル成分比を50〜80mol%とした
    ことを特徴とする鋳造用塩中子。
  5. 請求項1記載の鋳造用塩中子において、
    前記溶融塩は、カリウムイオンと臭素イオンと炭酸イオンとから構成し、全陰イオン中の炭酸イオンのモル成分比を30mol%としたものである
    ことを特徴とする鋳造用塩中子。
  6. 請求項1記載の鋳造用塩中子において、
    前記溶融塩は、カリウムイオンと臭素イオンと炭酸イオンとから構成し、全陰イオン中の炭酸イオンのモル成分比を50〜90mol%としたものである
    ことを特徴とする鋳造用塩中子。
  7. 請求項1記載の鋳造用塩中子において、
    前記溶融塩は、
    ナトリウムイオンとカリウムイオンと臭素イオンと炭酸イオンとから構成し、
    溶融温度を600℃を超えて680℃までの範囲とし、
    全陽イオン中のカリウムイオンのモル成分比を50〜90mol%とし、
    全陰イオン中の炭酸イオンのモル成分比を40〜80mol%とした
    ものであることを特徴とする鋳造用塩中子。
  8. 請求項1記載の鋳造用塩中子において、
    母相の中に複数の粒状晶が分散した状態に形成されている
    ことを特徴とする鋳造用塩中子。
  9. 請求項8記載の鋳造用塩中子において、
    前記粒状晶は、ナトリウムイオン及びカリウムイオンの少なくとも1つと炭酸イオンとから構成されたものである
    ことを特徴とする鋳造用塩中子。
JP2008516682A 2006-05-19 2007-05-21 鋳造用塩中子 Active JP4685934B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008516682A JP4685934B2 (ja) 2006-05-19 2007-05-21 鋳造用塩中子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006140063 2006-05-19
JP2006140063 2006-05-19
JP2008516682A JP4685934B2 (ja) 2006-05-19 2007-05-21 鋳造用塩中子
PCT/JP2007/060369 WO2007136032A1 (ja) 2006-05-19 2007-05-21 鋳造用塩中子

Publications (2)

Publication Number Publication Date
JPWO2007136032A1 JPWO2007136032A1 (ja) 2009-10-01
JP4685934B2 true JP4685934B2 (ja) 2011-05-18

Family

ID=38723344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008516682A Active JP4685934B2 (ja) 2006-05-19 2007-05-21 鋳造用塩中子

Country Status (4)

Country Link
US (1) US20090288797A1 (ja)
EP (1) EP2022578A4 (ja)
JP (1) JP4685934B2 (ja)
WO (1) WO2007136032A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2586546A1 (de) * 2011-10-31 2013-05-01 Bühler AG Verfahren zur Herstellung von Salzkernen
ITMI20120950A1 (it) 2012-06-01 2013-12-02 Flavio Mancini Metodo e impianto per ottenere getti pressofusi in leghe leggere con anime non metalliche
US8820389B1 (en) * 2012-10-31 2014-09-02 Brunswick Corporation Composite core for the casting of engine head decks
DE102012022390B3 (de) * 2012-11-15 2014-04-03 Audi Ag Verfahren zur kalten Herstellung eines Salzkerns für das Druckgießen
WO2014108419A1 (de) * 2013-01-09 2014-07-17 Emil Müller GmbH Mit salzschmelze infiltrierte salzkerne vorzugsweise für druckgussapplikationen
US9527131B1 (en) * 2013-12-20 2016-12-27 Brunswick Corporation Congruent melting salt alloys for use as salt cores in high pressure die casting
CN103801671B (zh) * 2014-01-21 2016-07-13 北京交通大学 一种氧枪喷头毛坯的制造方法
KR102478505B1 (ko) * 2016-12-23 2022-12-15 현대자동차주식회사 알루미늄 주조용 솔트코어 및 이의 제조방법
KR102215760B1 (ko) * 2017-01-19 2021-02-15 현대자동차주식회사 접합부의 강도가 향상된 고압주조용 솔트코어

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839696B1 (ja) * 1969-12-27 1973-11-26
WO2005028142A1 (ja) * 2003-09-17 2005-03-31 Yamaha Hatsudoki Kabushiki Kaisha 鋳造用中子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3501320A (en) * 1967-11-20 1970-03-17 Gen Motors Corp Die casting core
JPS4839696A (ja) 1971-09-27 1973-06-11
JPS5215446B2 (ja) * 1974-04-19 1977-04-30
JPS5210803A (en) 1975-07-12 1977-01-27 Inst Gorunogo Dera Akademii Na Device for retaining shank of cold chisel
JPS5314618A (en) * 1976-07-28 1978-02-09 Hitachi Ltd Water soluble casting mould

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839696B1 (ja) * 1969-12-27 1973-11-26
WO2005028142A1 (ja) * 2003-09-17 2005-03-31 Yamaha Hatsudoki Kabushiki Kaisha 鋳造用中子

Also Published As

Publication number Publication date
US20090288797A1 (en) 2009-11-26
JPWO2007136032A1 (ja) 2009-10-01
WO2007136032A1 (ja) 2007-11-29
EP2022578A4 (en) 2013-08-28
EP2022578A1 (en) 2009-02-11

Similar Documents

Publication Publication Date Title
JP4685934B2 (ja) 鋳造用塩中子
JP5363468B2 (ja) 鋳造用塩中子の製造方法
JP4685933B2 (ja) 鋳造用塩中子の製造方法及び鋳造用塩中子
CN104480354B (zh) 一种高强可溶解铝合金材料的制备方法
Tiedje Solidification, processing and properties of ductile cast iron
JP4819567B2 (ja) 鋳造用中子
CN107931533A (zh) 一种基于熔盐的可溶型芯及其制备方法与应用
JP2004223608A (ja) 球状黒鉛鋳鉄の金型鋳造方法
CN105970010B (zh) 一种替代qt400轻型汽车转向器的铝合金材料及其重力铸造方法
Cantas et al. Effects of composition on the physical properties of water-soluble salt cores
Ohnaka et al. Mechanism and estimation of porosity defects in ductile cast iron
CN107971461A (zh) 一种基于单体熔盐的可溶型芯及其制备方法与应用
JP2005059081A (ja) 高強度水溶性中子、及びその製造方法
JP4403233B2 (ja) 鋳造用コアの製造方法
JP2008036702A (ja) 金属鋳物用鋳造型
PL216825B1 (pl) Sposób wytwarzania odlewów precyzyjnych
Marlatt et al. Development in lost foam casting of magnesium
Puspitasari et al. Casting quality enhancement using new binders on sand casting and high-pressure rheo-die casting
US7182121B1 (en) Investment casting method and materials
JP2000117415A (ja) 鋳型材の除去方法および網目構造金属体の製造方法
Samuel et al. Role of Solidification Conditions in Determining the Microstructure of Al-Si Cast Alloys
CN104878286A (zh) 一种船用柴油机机身铸造材料及其制备方法
CN107774883A (zh) 一种基于多元熔盐体系的可溶型芯及其制备方法与应用
CN107838365A (zh) 一种基于二元熔盐体系的可溶型芯及其制备方法与应用
Ramegowda Development of water-based core technology for light alloys

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4685934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250