JP4682592B2 - Grinding wheel - Google Patents

Grinding wheel Download PDF

Info

Publication number
JP4682592B2
JP4682592B2 JP2004329625A JP2004329625A JP4682592B2 JP 4682592 B2 JP4682592 B2 JP 4682592B2 JP 2004329625 A JP2004329625 A JP 2004329625A JP 2004329625 A JP2004329625 A JP 2004329625A JP 4682592 B2 JP4682592 B2 JP 4682592B2
Authority
JP
Japan
Prior art keywords
grinding wheel
grindstone
core
shaft
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004329625A
Other languages
Japanese (ja)
Other versions
JP2006136987A (en
Inventor
昌史 頼経
伸司 相馬
賀生 若園
隆行 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2004329625A priority Critical patent/JP4682592B2/en
Publication of JP2006136987A publication Critical patent/JP2006136987A/en
Application granted granted Critical
Publication of JP4682592B2 publication Critical patent/JP4682592B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Description

本発明は、回転するワークを研削加工する研削盤の砥石車に関し、特に、回転する砥石車が回転力により遠心膨張しても加工面である砥石表面が均等に膨張するだけでテーパ状になることがなく、ツルーイングまたはドレッシング(以下、ツルーイングという)が低回転数で容易に行え、かつ、加工精度に優れた研削盤の砥石車に関するものである。   The present invention relates to a grinding wheel of a grinding machine that grinds a rotating workpiece, and in particular, even if the rotating grinding wheel is centrifugally expanded by a rotational force, the grinding wheel surface that is a processing surface is simply expanded to be tapered. The present invention relates to a grinding wheel of a grinding machine that can easily perform truing or dressing (hereinafter referred to as truing) at a low rotational speed and is excellent in processing accuracy.

従来、研削盤の砥石車としては、円盤状の砥石コアの外周面に砥石層が形成され、中心部に砥石軸への取付穴およびその取付穴の周囲に砥石車を砥石軸等へ固定するための固定用穴部が形成されているものが知られている(例えば、特許文献1)。そして、この砥石車は、固定用穴部から取付ボルト等により前記の砥石軸の取付けハブ部あるいはフランジ部へ取付けられ、または別部材の取付け用フランジ等を介して砥石軸に取付けられている。   Conventionally, as a grinding wheel of a grinding machine, a grinding wheel layer is formed on the outer peripheral surface of a disc-shaped grinding wheel core, and a grinding wheel is fixed to a grinding wheel shaft or the like around a mounting hole for the grinding wheel shaft at the center. There is known one in which a fixing hole is formed (for example, Patent Document 1). And this grinding wheel is attached to the mounting hub part or flange part of the said grinding wheel axis | shaft with a fixing bolt etc. from the fixing hole part, or is attached to the grinding wheel axis | shaft via the attachment flange etc. of another member.

また、砥石車の砥石形状を修正するためのツルーイング装置が知られている(例えば、特許文献2)。
特開2002−103236号公報(図1、図2) 特許第2749154号公報
Further, a truing device for correcting the grinding wheel shape of a grinding wheel is known (for example, Patent Document 2).
JP 2002-103236 A (FIGS. 1 and 2) Japanese Patent No. 2749154

しかし、砥石車のツルーイングは、加工を開始する前に砥石形状を修正し、砥石の切れ味を再生するために行われるが、上記特許文献1に示したような従来の砥石車の断面形状は、砥石車が停止している場合についてのみ考慮され、回転時の形状変化は考慮されていない。   However, the truing of the grinding wheel is performed in order to correct the grinding wheel shape before starting the processing and regenerate the sharpness of the grinding wheel, but the cross-sectional shape of the conventional grinding wheel as shown in Patent Document 1 is as follows. Only the case where the grinding wheel is stopped is considered, and the shape change during rotation is not considered.

すなわち、回転する砥石車には、遠心力が働き、その結果、砥石コアは遠心力により膨張する。砥石コアの軸線方向の各部に働く遠心力は各部各々の回転速度、半径及び重量(砥石層を含む、以下同じ)による。砥石車はフランジ等を介して砥石軸に取付けられているが、砥石コアが砥石軸側に当接して拘束力が発生する拘束領域は砥石コアの両面で異なっている。そして、砥石コアの遠心力による膨張は、上記の遠心力と砥石コアの各部各々の剛性および上記の砥石コアの拘束力との関係で決まる。   That is, a centrifugal force acts on the rotating grinding wheel, and as a result, the grinding wheel core expands due to the centrifugal force. Centrifugal force acting on each part of the grinding wheel core in the axial direction depends on the rotational speed, radius and weight of each part (including the grinding wheel layer, the same applies hereinafter). The grinding wheel is attached to the grinding wheel shaft via a flange or the like, but the restraining regions where the grinding wheel core abuts on the grinding wheel shaft side and restraining force is generated are different on both sides of the grinding wheel core. The expansion of the grindstone core due to the centrifugal force is determined by the relationship between the centrifugal force, the rigidity of each part of the grindstone core, and the restraining force of the grindstone core.

図7は、従来の砥石車の停止時と回転時の形状変化を示す図である。図7(a)に示すように、従来の砥石車は停止時には形状変化はないが、砥石車の回転時には、砥石コアの軸線方向の各部に働く遠心力と前記拘束力との関係に従い、砥石車、すなわち砥石コアは一般に不均等に遠心膨張し、図7(b)に示すように、砥石外周面がテーパ状になったりする。これは、砥石車の回転時に、砥石コアが砥石軸に拘束されている側と砥石軸に拘束されていない側とで拘束力が異なり、拘束されていない側の方が拘束されている側よりも砥石コアの半径方向への弾性変形に係る剛性が小さくなることによる。この結果、砥石コアが拘束力が大きい方向へ変形し、砥石コアおよびその外周部に形成された砥石層が不均等に遠心膨張する。この形状変化は、砥石車の回転数にも依存するので、ツルーイングは、砥石車の加工時と同一の回転数で行う必要がある。   FIG. 7 is a diagram showing a change in shape when the conventional grinding wheel is stopped and rotated. As shown in FIG. 7A, the conventional grinding wheel does not change its shape when stopped, but when the grinding wheel rotates, the grinding wheel follows the relationship between the centrifugal force acting on each part in the axial direction of the grinding wheel core and the restraining force. A car, that is, a grindstone core, generally centrifugally expands unevenly, and the grindstone outer peripheral surface becomes tapered as shown in FIG. This is because when the grinding wheel rotates, the restraining force differs between the side where the grinding wheel core is restrained by the grinding wheel shaft and the side where it is not restrained by the grinding wheel shaft, and the side that is not restrained is more restrained than the side where it is restrained. This is also because the rigidity related to the elastic deformation of the grindstone core in the radial direction becomes small. As a result, the grindstone core is deformed in the direction in which the restraining force is large, and the grindstone core and the grindstone layer formed on the outer periphery of the grindstone core are unevenly expanded. Since this shape change also depends on the rotational speed of the grinding wheel, truing must be performed at the same rotational speed as when the grinding wheel is processed.

最近のCBN(立方晶窒化硼素:Cubic Boron Nitrid)砥粒を用いた砥石車を装着した研削盤では、砥石車の周速度を速くして研削効率を向上するために砥石車は高速で回転駆動される。砥石車を切れ味よくツルーイングするために、砥石車とツルーイングロールとの周速比は、一般的に、0.75〜0.8に設定される。   In recent grinders equipped with a grinding wheel using CBN (Cubic Boron Nitrid) abrasive grains, the grinding wheel is driven at high speed in order to increase the peripheral speed of the grinding wheel and improve the grinding efficiency. Is done. In order to true the grinding wheel sharply, the peripheral speed ratio between the grinding wheel and the truing roll is generally set to 0.75 to 0.8.

例えば、砥石車の周速を120m/sにすると、ツルーイングロールの直径は100mm程度であるので、ツルーイングロールの回転数は15,000〜20,000rpmとなり、ツルーイングロールをきわめて高速回転することができる回転軸に取り付ける必要がある。しかし、このような高速回転可能なツルアは高価であり、比較的低速でしか回転できないツルアを採用した場合、加工時の回転速度以下の条件でツルーイングし、そのツルーイングされた砥石車で加工することになるので、工作物にこの形状誤差が転写されることになり、研削精度の低下を招くことになる。   For example, when the peripheral speed of the grinding wheel is set to 120 m / s, the diameter of the truing roll is about 100 mm. Therefore, the rotational speed of the truing roll is 15,000 to 20,000 rpm, and the truing roll can be rotated at a very high speed. It is necessary to attach to the rotating shaft. However, such a truer that can rotate at a high speed is expensive. When a truer that can rotate only at a relatively low speed is used, it is trued under the condition of the rotation speed at the time of machining, and it is machined with the true wheel. As a result, this shape error is transferred to the workpiece, resulting in a decrease in grinding accuracy.

従って、本発明の目的は、所定の回転数で回転する砥石車が回転力により遠心膨張しても加工面である砥石表面が均等に膨張するだけでテーパ状等になることがなく、ツルーイングが低回転数で容易に行え、かつ、加工精度に優れた研削盤の砥石車を提供することにある。   Therefore, the object of the present invention is that even if a grinding wheel rotating at a predetermined number of revolutions is centrifugally expanded by a rotational force, the grinding wheel surface as a processing surface does not become a taper shape or the like only by expanding uniformly, and truing is prevented. An object of the present invention is to provide a grinding wheel for a grinding machine that can be easily performed at a low rotational speed and has excellent processing accuracy.

第1の発明は、上記の目的を達成するため、砥石コア部とその外周部に形成された砥石層とを有して構成され、回転可能に支持され取付けのためのフランジ部を有する砥石軸に取付けられて所定の回転数で回転する砥石車において、前記砥石コア部は、前記砥石軸の前記フランジ部へのボルト固定のための複数の固定用穴部と、前記複数の固定用穴部の内側に設けられて前記砥石軸を貫通させる取付穴と、前記砥石軸のフランジ部側の端面に前記砥石軸と同心状に周設された切欠き溝とを有し、前記フランジ部側の端面の剛性が、前記フランジ部とは反対側の端面の剛性よりも小さいことを特徴とする研削盤の砥石車を提供することである。
In order to achieve the above-mentioned object, the first invention comprises a grindstone core portion and a grindstone layer formed on the outer peripheral portion thereof. The grindstone shaft is rotatably supported and has a flange portion for attachment. In the grinding wheel that is attached to the wheel and rotates at a predetermined rotational speed, the grinding wheel core portion includes a plurality of fixing hole portions for fixing bolts to the flange portion of the grinding wheel shaft, and the plurality of fixing hole portions. And a notch groove provided concentrically with the grindstone shaft on the end surface on the flange portion side of the grindstone shaft, and provided on the flange portion side. An object of the present invention is to provide a grinding wheel for a grinding machine, wherein the rigidity of the end face is smaller than the rigidity of the end face opposite to the flange portion.

本発明によれば、所定の回転数で砥石コア部をその軸線方向の各位置において遠心膨張力が等しくなる形状に構成するので、回転する砥石車が回転力により遠心膨張しても加工面である砥石表面はほぼ均等に膨張する。そのことによって、研削盤の砥石車において、ツルーイングが低回転数で容易に行え、かつ、加工時において高精度の砥石形状が得られる。   According to the present invention, the grindstone core portion is configured in a shape where the centrifugal expansion force becomes equal at each position in the axial direction at a predetermined rotational speed. Some grindstone surfaces expand almost evenly. As a result, in a grinding wheel of a grinding machine, truing can be easily performed at a low rotational speed, and a highly accurate grinding wheel shape can be obtained during processing.

(第1の実施の形態)
以下、本発明の第1の実施の形態に係る砥石車および砥石車が装着される研削盤の全体構成について説明する。
(First embodiment)
Hereinafter, the overall configuration of the grinding wheel according to the first embodiment of the present invention and the grinding machine on which the grinding wheel is mounted will be described.

(研削盤の全体の構成)
図1は、研削盤の全体構成の概略を示す平面図である。以下に、第1の実施の形態に係る研削盤の全体構成の概略について説明する。
(Overall configuration of grinding machine)
FIG. 1 is a plan view schematically showing the overall configuration of the grinding machine. Below, the outline of the whole structure of the grinding machine which concerns on 1st Embodiment is demonstrated.

研削盤100は、コンピュータ数値制御装置(CNC)により全体の駆動が制御されるものである。研削盤100の基台部分を構成するベッド10の上面には、Z軸レール11が設けられており、このZ軸レール11を介してベッド10上の後部側にZ軸移動体20が載置され、Z軸方向(左右方向)に移動駆動される。Z軸移動体20の上面には、X軸レール21が設けられており、このX軸レール21を介してZ軸移動体20上にX軸移動体である砥石台30が載置され、X軸方向(前後方向)に移動駆動される。そして、この砥石台30は、砥石駆動モータ53を搭載する砥石台本体50を備えている。また、砥石台本体50には砥石軸ユニット51が搭載され、この砥石軸ユニット51には回転可能に支持される砥石軸52に取付けられ、砥石駆動モータ53から駆動ベルト54を介して回転駆動される砥石車Tが備えられている。ベッド10上の前部側に載置されたワークテーブル40には、ワークWを支持すると共に回転駆動する左右一対の主軸台41が設けられている。また、この左右一対の主軸台41は、ワークWの端部を支持する主軸42を具備しており、この主軸42を回転させることで、支持したワークWを回転駆動する。   The entire driving of the grinding machine 100 is controlled by a computer numerical control device (CNC). A Z-axis rail 11 is provided on the upper surface of the bed 10 constituting the base portion of the grinding machine 100, and the Z-axis moving body 20 is placed on the rear side of the bed 10 via the Z-axis rail 11. Then, it is driven to move in the Z-axis direction (left-right direction). An X-axis rail 21 is provided on the upper surface of the Z-axis moving body 20, and a grindstone table 30 that is an X-axis moving body is placed on the Z-axis moving body 20 via the X-axis rail 21. It is driven to move in the axial direction (front-rear direction). The wheel head 30 includes a wheel head main body 50 on which a wheel driving motor 53 is mounted. In addition, a grindstone shaft unit 51 is mounted on the grindstone base body 50. The grindstone shaft unit 51 is attached to a grindstone shaft 52 that is rotatably supported by the grindstone shaft unit 51, and is rotationally driven by a grindstone drive motor 53 via a drive belt 54. A grinding wheel T is provided. The work table 40 placed on the front side of the bed 10 is provided with a pair of left and right headstocks 41 that support the work W and rotate. The pair of left and right headstocks 41 includes a main shaft 42 that supports the end portion of the workpiece W, and the main workpiece 42 is rotated to rotationally drive the supported workpiece W.

主軸台41の主軸42には、円盤状のツルア43が同心的に設けられている。このように加工点に近い位置にツルアを設けることにより加工時に近い振動状態でツルーイングすることができる。また、別体のツルアを設置するよりも部品点数を削減して小型化を図ることができるとともに、コスト削減もできる。ただし、主軸42により回転されるので、ツルアは比較的低速回転である。   A disc-shaped tourer 43 is provided concentrically on the spindle 42 of the spindle stock 41. Thus, by providing a truer at a position close to the processing point, truing can be performed in a vibration state close to that at the time of processing. In addition, the number of parts can be reduced and the size can be reduced as compared with the case where a separate truer is installed, and the cost can be reduced. However, since it is rotated by the main shaft 42, the truer rotates at a relatively low speed.

図2は、第1の実施の形態の砥石車の断面図である。以下の説明において、x軸を砥石軸52の中心軸方向とし、y軸を外周へ向かう半径方向としており、原点は、砥石軸52の中心軸線上と砥石コア55のフランジ部52fと反対側の端面55gとの交点としている。砥石車Tは、円盤状の砥石コア55と、砥石コア55の外周面に形成される砥石層56と、中心部に砥石軸52への取付穴52hおよびその取付穴の周囲に砥石コア55を砥石軸52等へ固定するための固定用穴部55hとを有する。この砥石車Tは、固定用穴部55hから取付ボルトB等の固着手段により前記砥石軸52の取付けハブ部あるいはフランジ部52fへ取付けられる。または、別部材の取付け用フランジ等を介して砥石軸52に取付けてもよい。   FIG. 2 is a cross-sectional view of the grinding wheel according to the first embodiment. In the following description, the x-axis is the central axis direction of the grindstone shaft 52 and the y-axis is the radial direction toward the outer periphery, and the origin is on the central axis of the grindstone shaft 52 and on the opposite side of the flange portion 52f of the grindstone core 55. The intersection with the end face 55g. The grinding wheel T includes a disc-shaped grinding wheel core 55, a grinding wheel layer 56 formed on the outer peripheral surface of the grinding wheel core 55, a mounting hole 52h to the grinding wheel shaft 52 in the center, and a grinding stone core 55 around the mounting hole. And a fixing hole 55h for fixing to the grindstone shaft 52 or the like. The grinding wheel T is attached to the mounting hub portion or the flange portion 52f of the grinding wheel shaft 52 by fixing means such as a mounting bolt B from the fixing hole 55h. Or you may attach to the grindstone axis | shaft 52 via the flange for attachment of another member.

砥石コア55には、砥石コア55のフランジ部52f側の端面55fに取付穴52hを中心に同心状に周設された切欠き溝57が形成されている。   The grindstone core 55 is provided with a notch groove 57 concentrically provided around the mounting hole 52h on the end surface 55f of the grindstone core 55 on the flange 52f side.

(砥石車Tの動作)
砥石車Tが回転すると、遠心力が働き、その結果、砥石コア55は遠心力により膨張する。ここで、砥石コア55に作用する力は次のようである。砥石コア55のx軸方向の各部に遠心力が作用し、これは回転速度、半径及び重量により決まる。また、砥石コア55のx軸方向の各部には、切欠き溝57よりも内径側(y軸方向内側)で、砥石軸52への固定によって拘束力が発生し、端面55fで大きく、端面55gでより小さい。また、砥石コア55のx軸方向の各部は、剛性を有し、これは主に砥石コア55の形状と縦弾性係数で決まる。従って、砥石コア55および砥石層56の遠心膨張量は、x軸方向の各部における遠心力、拘束力および剛性で決定されることになる。
(Operation of grinding wheel T)
When the grinding wheel T rotates, centrifugal force works, and as a result, the grinding wheel core 55 expands by centrifugal force. Here, the force acting on the grindstone core 55 is as follows. Centrifugal force acts on each part of the grindstone core 55 in the x-axis direction, and this is determined by the rotational speed, radius and weight. Further, at each part in the x-axis direction of the grindstone core 55, a restraining force is generated by being fixed to the grindstone shaft 52 on the inner diameter side (inner side in the y-axis direction) than the notch groove 57, and is large at the end surface 55f, and the end surface 55g Smaller than Moreover, each part of the x-axis direction of the grindstone core 55 has rigidity, and this is mainly determined by the shape of the grindstone core 55 and the longitudinal elastic modulus. Therefore, the centrifugal expansion amounts of the grindstone core 55 and the grindstone layer 56 are determined by the centrifugal force, the restraining force, and the rigidity in each part in the x-axis direction.

砥石コア55に形成された切欠き溝57は、上記述べた砥石コア55のx軸方向の各部の重量と剛性に影響を与え、切欠き溝57の大きさで重量が決まる。また、切欠き溝57によってこれより外径側(y軸方向外側)の砥石コア55自体の拘束力が決まって剛性が決まる。   The notch groove 57 formed in the grindstone core 55 affects the weight and rigidity of each part in the x-axis direction of the grindstone core 55 described above, and the weight is determined by the size of the notch groove 57. Further, the notch groove 57 determines the restraint force of the grindstone core 55 itself on the outer diameter side (y-axis direction outer side), thereby determining the rigidity.

第1の実施の形態では、砥石コア55の切欠き溝57は、フランジ部52f側の端面55fに設けられているので、砥石コア55は端面55fの方に位置する部分の方が重量が小さく、切欠き溝57より外径側では砥石コア55自体の拘束力が小さくて剛性も小さく、一方で上記述べたように、切欠き溝57よりも内径側では砥石コア55の砥石軸52への固定によって拘束力は大きい。従って、切欠き溝57を適当に設けることで、取付穴52hを起点として図7(b)のように図2中右へ反る遠心膨張量と、切欠き溝57を起点として図2中左へ反る遠心膨張量が合成される。よって、遠心力と拘束力と剛性で決定される遠心膨張の量あるいは力をx軸方向の各部においてほぼ均等にすることが可能となる。ここで、切欠き溝57の形状は、砥石コア形状(砥石幅、砥石径)や砥石回転速度によって決定するが、これらを変化させて解析あるいは設計することで砥石コア55および切欠き溝57の形状の最適化を行うことができる。   In the first embodiment, since the notch groove 57 of the grindstone core 55 is provided on the end surface 55f on the flange portion 52f side, the portion of the grindstone core 55 that is located toward the end surface 55f has a smaller weight. On the outer diameter side of the notch groove 57, the restraining force of the grindstone core 55 itself is small and the rigidity is small. On the other hand, on the inner diameter side of the notch groove 57, the grindstone core 55 is connected to the grindstone shaft 52 as shown in FIG. The restraint force is large by fixing. Accordingly, by appropriately providing the notch groove 57, the centrifugal expansion amount that warps to the right in FIG. 2 as shown in FIG. 7B from the mounting hole 52h, and the left in FIG. 2 starting from the notch groove 57. The amount of centrifugal expansion that warps is synthesized. Therefore, the amount or force of centrifugal expansion determined by the centrifugal force, the restraining force, and the rigidity can be made substantially equal in each part in the x-axis direction. Here, the shape of the notch groove 57 is determined by the shape of the grindstone core (grindstone width, grindstone diameter) and the grindstone rotation speed. By changing or analyzing them, the shape of the grindstone core 55 and the notch groove 57 can be changed. Shape optimization can be performed.

(第1の実施の形態の効果)
上記した第1の実施の形態によると、砥石車Tが所定の回転数で回転した場合、回転による遠心膨張力が等しく加工面である砥石表面は均等に膨張するので、砥石の形状精度がよく加工精度が向上する。また、砥石表面は遠心膨張によって停止時と相似的に膨張し、テーパ状等になることがないので、所定の回転数以下でツルーイングを行ってもそれによる砥石表面の形状精度低下への影響は小さい。従って、ツルーイングが低回転数で可能となることから、ツルーイング用のモータが小型化でき、省スペース、コスト削減、省エネルギー、低振動および熱による変位が低減できる効果を有する。また、CBN砥石を使用した高速回転の研削盤において特に効果が大きい。
(Effects of the first embodiment)
According to the first embodiment described above, when the grinding wheel T is rotated at a predetermined number of rotations, the grinding stone surface, which is the processing surface with the same centrifugal expansion force due to the rotation, is evenly expanded, so the shape accuracy of the grinding wheel is good. Machining accuracy is improved. In addition, the grinding wheel surface expands similar to when stopped due to centrifugal expansion, and does not become tapered, etc., so even if truing is performed at a predetermined rotation speed or less, the effect on the reduction in shape accuracy of the grinding wheel surface is not affected. small. Accordingly, since truing can be performed at a low rotational speed, a truing motor can be reduced in size, and space saving, cost reduction, energy saving, low vibration, and displacement due to heat can be reduced. The effect is particularly great in a high-speed grinder using a CBN grindstone.

(第2の実施の形態)
図3は、第2の実施の形態の砥石車の断面図である。以下に本発明の第2の実施の形態に係る砥石車について説明する。尚、以下の説明で、第1の実施の形態と同一の構成および機能を有する部分においては同一の符号を付している。
(Second Embodiment)
FIG. 3 is a cross-sectional view of the grinding wheel of the second embodiment. The grinding wheel according to the second embodiment of the present invention will be described below. In the following description, parts having the same configuration and function as those of the first embodiment are denoted by the same reference numerals.

砥石コア55は、図3に示すように、端面55fにおいて外周側の方がx位置が大きく、端面55gにおいても外周側の方がx位置が大きく、断面として非対称な形状である。あるいは、断面としてy軸に対して傾斜した形状ともいえる。このような形状であると、図3において、砥石層56が存在するx位置で考えると、x位置が小さい部分すなわち端面55gの近傍では、y方向(径方向)において砥石コア55自体の拘束力が大きく剛性が大きい。一方、x位置が大きい部分すなわち端面55fの近傍では、y方向(径方向)内側において砥石コア55が存在せず砥石コア55自体の拘束力が小さく剛性が小さい。従って、取付穴52hを起点として図3中右へ反る遠心膨張量と、端面55fの傾斜開始点を起点として図3中左へ反る遠心膨張量とが合成される。よって、端面55gの近傍と端面55fの近傍とで、所定の砥石車Tの回転数における遠心膨張力を等しくするような断面形状とすることができる。よって、第1の実施の形態と同様に、遠心膨張力をx軸方向の各部においてほぼ均等にすることが可能となる。   As shown in FIG. 3, the grindstone core 55 has an asymmetric cross-sectional shape with a larger x position on the outer peripheral side of the end surface 55 f and a larger x position on the outer peripheral side of the end surface 55 g. Alternatively, it can be said that the cross-sectional shape is inclined with respect to the y-axis. With such a shape, when considering the x position where the grindstone layer 56 exists in FIG. 3, the binding force of the grindstone core 55 itself in the y direction (radial direction) in the portion where the x position is small, that is, in the vicinity of the end face 55 g. Is large and rigid. On the other hand, in the portion where the x position is large, that is, in the vicinity of the end face 55f, the grindstone core 55 does not exist inside the y direction (radial direction), and the restraining force of the grindstone core 55 itself is small and the rigidity is small. Therefore, the centrifugal expansion amount that warps to the right in FIG. 3 from the mounting hole 52h and the centrifugal expansion amount that warps to the left in FIG. 3 from the inclination start point of the end face 55f are combined. Therefore, it can be set as the cross-sectional shape which makes the centrifugal expansion force in the rotation speed of the predetermined grinding wheel T equal in the vicinity of the end surface 55g and the vicinity of the end surface 55f. Therefore, similarly to the first embodiment, it is possible to make the centrifugal expansion force substantially uniform in each part in the x-axis direction.

(第2の実施の形態の効果)
上記した第2の実施の形態によると、第1の実施の形態による好ましい効果に加えて、第1の実施の形態のような切欠き溝を有しないので、応力集中が生じにくく、高速回転において破壊強度の向上が図られる。
(Effect of the second embodiment)
According to the second embodiment described above, in addition to the preferable effects of the first embodiment, since there is no notch groove as in the first embodiment, stress concentration is unlikely to occur, and at high speed rotation The breaking strength is improved.

(比較例)
図4に、第1の実施の形態で示した切欠き溝付形状の砥石車と、第2の実施の形態で示した傾斜形状の砥石車と、従来例で示したストレート形状の場合の回転に伴う形状変化の1例を示す。解析条件を、砥石コア材質としてチタン(Ti)、砥石周速として120m/s、砥石径として160mmとした。
(Comparative example)
FIG. 4 shows a grinding wheel with a notched groove shown in the first embodiment, an inclined grinding wheel shown in the second embodiment, and a rotation in the case of the straight shape shown in the conventional example. An example of the shape change accompanying this is shown. The analysis conditions were titanium (Ti) as the grinding stone core material, 120 m / s as the grinding wheel peripheral speed, and 160 mm as the grinding stone diameter.

グラフの左端x=0は端面55gの位置であり、グラフの右端x=20は端面55fの位置である。これら両端の砥石遠心膨張量の差は、従来例で示したストレート形状の砥石車の場合は、1.42μmであるのに対して、第1の実施の形態で示した切欠き溝付形状の砥石車の場合は、0.03μm、第2の実施の形態で示した傾斜形状の砥石車の場合は、0.37μmであった。これより、第1の実施の形態で示した切欠き溝付形状または第2の実施の形態で示した傾斜形状の砥石車とすることで、大幅な形状精度の向上が図られていることがわかる。   The left end x = 0 of the graph is the position of the end face 55g, and the right end x = 20 of the graph is the position of the end face 55f. The difference in the grinding wheel centrifugal expansion amount at both ends is 1.42 μm in the case of the straight grinding wheel shown in the conventional example, whereas the difference in the notched groove shape shown in the first embodiment is. In the case of the grinding wheel, it was 0.03 μm, and in the case of the inclined grinding wheel shown in the second embodiment, it was 0.37 μm. From this, the shape accuracy with the notch groove shown in the first embodiment or the inclined grinding wheel shown in the second embodiment is greatly improved. Recognize.

(第3の実施の形態)
図5は、第3の実施の形態の砥石車の断面図である。以下に、本発明の第3の実施の形態に係る砥石車について説明する。
(Third embodiment)
FIG. 5 is a sectional view of the grinding wheel of the third embodiment. The grinding wheel according to the third embodiment of the present invention will be described below.

砥石コア55は、図5に示すように、網掛けで図示した硬化層領域Sにおいて、端面55gの表面から所定の深さまで高周波焼入れ等の硬化処理が施されている。具体的には、レーザ光を照射して端面55gの表層部のみを加熱し、レーザ光が通り過ぎた後、自己冷却により急冷し、その部分を焼入れ改質するもので、焼入れ部の硬度が大きくなりその部分の縦弾性係数が大きくなっている。従って、図5において、x位置が小さい部分すなわち端面55gの近傍では、剛性が大きい。   As shown in FIG. 5, the grinding stone core 55 is subjected to a hardening process such as induction hardening from the surface of the end face 55 g to a predetermined depth in the hardened layer region S illustrated by shading. Specifically, only the surface layer portion of the end face 55g is heated by irradiating the laser beam, and after the laser beam passes, it is rapidly cooled by self-cooling, and the portion is quenched and modified, and the hardness of the quenched portion is large. That is, the longitudinal elastic modulus of the portion is large. Accordingly, in FIG. 5, the rigidity is large in the portion where the x position is small, that is, in the vicinity of the end face 55g.

一方、x位置が大きい部分すなわち端面55fの近傍では、剛性が小さい。従って、拘束力が小さく剛性が大きい端面55gの近傍と、拘束力が大きく剛性が小さい端面55fの近傍とで、所定の砥石車Tの回転数における遠心膨張力を等しくすることができる。よって、第1の実施の形態と同様に、遠心膨張力をx軸方向の各部においてほぼ均等にすることが可能となる。   On the other hand, the rigidity is small in the portion where the x position is large, that is, in the vicinity of the end face 55f. Therefore, the centrifugal expansion force at a predetermined rotational speed of the grinding wheel T can be made equal between the vicinity of the end face 55g having a small restraining force and high rigidity and the vicinity of the end face 55f having a large restraining force and low rigidity. Therefore, similarly to the first embodiment, it is possible to make the centrifugal expansion force substantially uniform in each part in the x-axis direction.

(第3の実施の形態の効果)
上記した第3の実施の形態によると、第1の実施の形態による好ましい効果に加えて、第1の実施の形態のような切欠き溝57を有しないので、応力集中が生じにくく、高速回転において破壊強度の向上が図られる。また、第2の実施の形態による好ましい効果に加えて、第2の実施の形態のように断面において非対称な形状とする必要がなく製作が容易である。また、焼入れ深さを調節することで容易に微調整が可能である。
(Effect of the third embodiment)
According to the third embodiment described above, in addition to the preferable effects of the first embodiment, since the notched groove 57 as in the first embodiment is not provided, stress concentration is unlikely to occur and high-speed rotation is achieved. In this case, the fracture strength can be improved. Moreover, in addition to the preferable effect by 2nd Embodiment, it is not necessary to make it an asymmetrical shape in a cross section like 2nd Embodiment, and manufacture is easy. Further, fine adjustment can be easily performed by adjusting the quenching depth.

(第4の実施の形態)
図6は、第4の実施の形態の砥石車の断面図である。以下に、本発明の第4の実施の形態に係る砥石車について説明する。
(Fourth embodiment)
FIG. 6 is a sectional view of a grinding wheel according to the fourth embodiment. The grinding wheel according to the fourth embodiment of the present invention will be described below.

砥石コア55は、図6に示すように、端面55gの表面に砥石コア55の材質よりも縦弾性係数の大きな材質の補強版58が一体的に固着されている。補強版58は、取付ボルトBにより砥石コア55と共締めで固定されていてもよく、また、補強版58が端面55gに接着あるいは溶接等によって固定されていてもよい。従って、図6において、x位置が小さい部分すなわち端面55gの近傍では、剛性が大きい。一方、x位置が大きい部分すなわち端面55fの近傍では、剛性が小さい。従って、拘束力が小さく剛性が大きい端面55gの近傍と、拘束力が大きく剛性が小さい端面55fの近傍とで、所定の砥石車Tの回転数における遠心膨張力を等しくすることができる。よって、第1の実施の形態と同様に、遠心膨張力をx軸方向の各部においてほぼ均等にすることが可能となる。   As shown in FIG. 6, the grindstone core 55 is integrally fixed to a reinforcing plate 58 made of a material having a longitudinal elastic modulus larger than that of the grindstone core 55. The reinforcing plate 58 may be fixed together with the grindstone core 55 by the mounting bolt B, or the reinforcing plate 58 may be fixed to the end surface 55g by adhesion or welding. Therefore, in FIG. 6, the rigidity is large in the portion where the x position is small, that is, in the vicinity of the end face 55g. On the other hand, the rigidity is small in the portion where the x position is large, that is, in the vicinity of the end face 55f. Therefore, the centrifugal expansion force at a predetermined rotational speed of the grinding wheel T can be made equal between the vicinity of the end face 55g having a small restraining force and high rigidity and the vicinity of the end face 55f having a large restraining force and low rigidity. Therefore, similarly to the first embodiment, it is possible to make the centrifugal expansion force substantially uniform in each part in the x-axis direction.

(第4の実施の形態の効果)
上記した第4の実施の形態によると、第1の実施の形態による好ましい効果に加えて、第1の実施の形態のような切欠き溝57を有しないので、応力集中が生じにくく、高速回転において破壊強度の向上が図られる。また、第2の実施の形態による好ましい効果に加えて、第2の実施の形態のように断面において非対称な形状とする必要がなく製作が容易である。また、補強版58の取付け時に、砥石車の静的バランスあるいは動的バランスをとることが可能になり、砥石車の交換に伴う振動をさらに低減することが可能になる。
(Effect of the fourth embodiment)
According to the fourth embodiment described above, in addition to the preferable effects of the first embodiment, since the notched groove 57 as in the first embodiment is not provided, stress concentration is unlikely to occur and high-speed rotation is achieved. In this case, the fracture strength can be improved. Moreover, in addition to the preferable effect by 2nd Embodiment, it is not necessary to make it an asymmetrical shape in a cross section like 2nd Embodiment, and manufacture is easy. In addition, when the reinforcing plate 58 is attached, it is possible to achieve a static balance or a dynamic balance of the grinding wheel, and it is possible to further reduce vibration associated with the replacement of the grinding wheel.

研削盤の全体構成の概略を示す平面図である。It is a top view which shows the outline of the whole structure of a grinding machine. 第1の実施の形態の砥石車の断面図である。It is sectional drawing of the grinding wheel of 1st Embodiment. 第2の実施の形態の砥石車の断面図である。It is sectional drawing of the grinding wheel of 2nd Embodiment. 第1の実施の形態で示した切欠き溝付形状の砥石車と、第2の実施の形態で示した傾斜形状の砥石車と、従来例で示したストレート形状の場合の回転に伴う形状変化の1例を示す比較図である。Shape change associated with rotation in the case of the grinding wheel having the notched groove shape shown in the first embodiment, the grinding wheel having the inclined shape shown in the second embodiment, and the straight shape shown in the conventional example. It is a comparison figure which shows one example of these. 第3の実施の形態の砥石車の断面図である。It is sectional drawing of the grinding wheel of 3rd Embodiment. 第4の実施の形態の砥石車の断面図である。It is sectional drawing of the grinding wheel of 4th Embodiment. 従来の砥石車の停止時と回転時の形状変化を示す図である。It is a figure which shows the shape change at the time of the stop of the conventional grinding wheel, and rotation.

符号の説明Explanation of symbols

10 ベッド
11 Z軸レール
20 Z軸移動体
21 X軸レール
30 砥石台
40 ワークテーブル
41 主軸台
42 主軸
43 ツルア
50 砥石台本体
51 砥石軸ユニット
52f フランジ部
52h 取付穴
52 砥石軸
53 砥石駆動モータ
54 駆動ベルト
55 砥石コア
55h 固定用穴部
55f、55g 端面
56 砥石層
57 切欠き溝
58 補強版
100 研削盤
B 取付ボルト
S 硬化層領域
T 砥石車
W ワーク
10 Bed 11 Z-axis rail 20 Z-axis moving body 21 X-axis rail 30 Grinding wheel base 40 Work table 41 Spindle base 42 Spindle 43 Truer 50 Grinding wheel base body 51 Grinding wheel shaft unit 52f Flange portion 52h Mounting hole 52 Grinding wheel shaft 53 Grinding wheel drive motor 54 Driving belt 55 Grinding wheel core 55h Fixing hole 55f, 55g End face 56 Grinding wheel layer 57 Notch groove 58 Reinforcement plate 100 Grinding machine B Mounting bolt S Hardened layer area T Grinding wheel W Workpiece

Claims (1)

砥石コア部とその外周部に形成された砥石層とを有して構成され、回転可能に支持され取付けのためのフランジ部を有する砥石軸に取付けられて所定の回転数で回転する砥石車において、
前記砥石コア部は、前記砥石軸の前記フランジ部へのボルト固定のための複数の固定用穴部と、前記複数の固定用穴部の内側に設けられて前記砥石軸を貫通させる取付穴と、前記砥石軸のフランジ部側の端面に前記砥石軸と同心状に周設された切欠き溝とを有し、前記フランジ部側の端面の剛性が、前記フランジ部とは反対側の端面の剛性よりも小さいことを特徴とする砥石車。
In a grinding wheel that has a grinding wheel core portion and a grinding wheel layer formed on the outer periphery thereof, is rotatably supported and is attached to a grinding wheel shaft having a flange portion for attachment, and rotates at a predetermined rotational speed. ,
The grindstone core portion includes a plurality of fixing hole portions for fixing bolts to the flange portion of the grindstone shaft, and an attachment hole provided inside the plurality of fixing hole portions and penetrating the grindstone shaft. And a notch groove concentrically provided with the grindstone shaft on the end surface on the flange portion side of the grindstone shaft, and the rigidity of the end surface on the flange portion side is that of the end surface opposite to the flange portion. A grinding wheel characterized by being smaller than rigidity.
JP2004329625A 2004-11-12 2004-11-12 Grinding wheel Expired - Fee Related JP4682592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329625A JP4682592B2 (en) 2004-11-12 2004-11-12 Grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004329625A JP4682592B2 (en) 2004-11-12 2004-11-12 Grinding wheel

Publications (2)

Publication Number Publication Date
JP2006136987A JP2006136987A (en) 2006-06-01
JP4682592B2 true JP4682592B2 (en) 2011-05-11

Family

ID=36618114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329625A Expired - Fee Related JP4682592B2 (en) 2004-11-12 2004-11-12 Grinding wheel

Country Status (1)

Country Link
JP (1) JP4682592B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009269158A (en) * 2008-05-12 2009-11-19 Disco Abrasive Syst Ltd Cutting blade
JP2011173221A (en) * 2010-02-25 2011-09-08 Disco Corp Cutting blade

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138194A (en) * 1984-07-30 1986-02-24 Hitachi Ltd High speed rotor
JPS6288575A (en) * 1985-10-14 1987-04-23 Mitsubishi Metal Corp Grinding wheel
JPH0578465U (en) * 1992-03-31 1993-10-26 豊田工機株式会社 Grindstone holding device
JPH09225823A (en) * 1996-02-22 1997-09-02 Koyo Mach Ind Co Ltd Attaching structure for grinding wheel
JPH10118939A (en) * 1996-10-14 1998-05-12 Noritake Co Ltd Grinding wheel
JPH11309603A (en) * 1998-04-28 1999-11-09 Hitachi Via Mechanics Ltd Main spindle of machine tool
JP2002103236A (en) * 2000-09-27 2002-04-09 Toyoda Mach Works Ltd Grinding wheel
JP2002200565A (en) * 2000-12-28 2002-07-16 Toyoda Mach Works Ltd Grinding wheel for high speed rotation and manufacturing method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138194A (en) * 1984-07-30 1986-02-24 Hitachi Ltd High speed rotor
JPS6288575A (en) * 1985-10-14 1987-04-23 Mitsubishi Metal Corp Grinding wheel
JPH0578465U (en) * 1992-03-31 1993-10-26 豊田工機株式会社 Grindstone holding device
JPH09225823A (en) * 1996-02-22 1997-09-02 Koyo Mach Ind Co Ltd Attaching structure for grinding wheel
JPH10118939A (en) * 1996-10-14 1998-05-12 Noritake Co Ltd Grinding wheel
JPH11309603A (en) * 1998-04-28 1999-11-09 Hitachi Via Mechanics Ltd Main spindle of machine tool
JP2002103236A (en) * 2000-09-27 2002-04-09 Toyoda Mach Works Ltd Grinding wheel
JP2002200565A (en) * 2000-12-28 2002-07-16 Toyoda Mach Works Ltd Grinding wheel for high speed rotation and manufacturing method therefor

Also Published As

Publication number Publication date
JP2006136987A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP4999560B2 (en) Wheel spindle device for grinding machine
US7121928B2 (en) High smoothness grinding process and apparatus for metal material
JP5167920B2 (en) Grinding machine and grinding method
EP0980302B1 (en) Diamond tip disk saw
RU2138384C1 (en) Method and device for grinding of concave-profile cams
JP2008521625A (en) Shaft journal processing method
JP5156483B2 (en) Piston machining apparatus and piston machining method
US6988933B2 (en) Truing method and apparatus
JP5018058B2 (en) Truing device and truing method for grinding wheel
JP4940729B2 (en) Workpiece grinding method and grinding apparatus
JP5703761B2 (en) Truing method for grinding machine and grinding wheel
JP4682592B2 (en) Grinding wheel
JP2009095911A (en) Turning device and cylindrical grinder provided with turning device
JP3071640B2 (en) Deep hole inner surface grinding method for workpieces
JP2005254333A (en) Cylindrical grinding machine and grinding method
JP5206194B2 (en) Truing method and truing device for grinding wheel
JP2008137094A (en) Grinding method for workpiece such as material for long drill
JP4929790B2 (en) Truing method of grinding wheel
JP4051518B2 (en) Traction surface grinding method for half toroidal CVT disc
JPH01240266A (en) Grinder
JP2002283203A (en) Rough cutting combined grinding wheel co-used for chamfering processing and processing method of optical element
JP4090153B2 (en) Peripheral surface grinding apparatus and grinding method for cylindrical workpiece
US10099342B2 (en) Truer, truing apparatus including truer, grinder, and truing method
JP4124012B2 (en) Camshaft manufacturing method
JP7562985B2 (en) Truing Equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4682592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees