JP4681853B2 - Stacked solid-state imaging device - Google Patents

Stacked solid-state imaging device Download PDF

Info

Publication number
JP4681853B2
JP4681853B2 JP2004327308A JP2004327308A JP4681853B2 JP 4681853 B2 JP4681853 B2 JP 4681853B2 JP 2004327308 A JP2004327308 A JP 2004327308A JP 2004327308 A JP2004327308 A JP 2004327308A JP 4681853 B2 JP4681853 B2 JP 4681853B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion unit
imaging device
state imaging
blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004327308A
Other languages
Japanese (ja)
Other versions
JP2006140249A (en
Inventor
幹緒 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2004327308A priority Critical patent/JP4681853B2/en
Publication of JP2006140249A publication Critical patent/JP2006140249A/en
Application granted granted Critical
Publication of JP4681853B2 publication Critical patent/JP4681853B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、カラー画像を撮像する積層型固体撮像装置に関する。   The present invention relates to a stacked solid-state imaging device that captures a color image.

従来、デジタルカメラやデジタルビデオカメラ等に搭載されるCCDやCMOSイメージセンサ等の単版式カラー固体撮像装置は、数百万画素の光電変換素子と各画素から信号を読み出す信号読出回路とを同一の半導体基板上に形成する構成であった。この場合、各光電変換素子の受光面の面積を広くとることができず、受光面の寸法が入射光の波長オーダとなり、一画素で検出できる光量が少なくなって感度が低下してきていると共に、歩留りが低下してコストが嵩むという不利益があった。   Conventionally, single-type color solid-state imaging devices such as CCD and CMOS image sensors mounted on digital cameras and digital video cameras have the same photoelectric conversion elements of millions of pixels and signal readout circuits for reading signals from each pixel. It was the structure formed on a semiconductor substrate. In this case, the area of the light receiving surface of each photoelectric conversion element cannot be widened, the size of the light receiving surface is in the wavelength order of incident light, the amount of light that can be detected by one pixel is reduced, and the sensitivity is reduced. There was a disadvantage that the yield decreased and the cost increased.

そこで、従来では、半導体基板に信号読出回路だけを設け、半導体基板の上層部に赤色検出用の光電変換膜と緑色検出用の光電変換膜と青色検出用の光電変換膜とを積層させた構成を有する積層型固体撮像装置が開発されている。   Therefore, conventionally, only a signal readout circuit is provided on a semiconductor substrate, and a red detection photoelectric conversion film, a green detection photoelectric conversion film, and a blue detection photoelectric conversion film are laminated on the upper layer portion of the semiconductor substrate. A stacked solid-state image pickup device having the above has been developed.

しかし、光電変換膜を半導体基板上に3層の光電変換膜を積層することは構造が複雑になり製造することが困難であり、製造コストも嵩んでしまう欠点がある。このため、下記特許文献1では、半導体基板上に従来のCCDやCMOSイメージセンサと同様に赤色検出用の光電変換素子と青色検出用の光電変換素子を製造し、この半導体基板の上部に緑色検出用の光電変換膜を一層だけ積層した構成の積層型固体撮像装置を提案している。
また、下記特許文献2,3では、積層型撮像素子において、CCD型やCMOS型の撮像素子上にアモルファスシリコンを積層して受光部の開口率を向上する構成が記載されている。
However, laminating three layers of photoelectric conversion films on a semiconductor substrate has a drawback that the structure becomes complicated and difficult to manufacture, and the manufacturing cost increases. For this reason, in the following Patent Document 1, a photoelectric conversion element for red detection and a photoelectric conversion element for blue detection are manufactured on a semiconductor substrate in the same manner as a conventional CCD or CMOS image sensor, and green detection is performed on the upper part of the semiconductor substrate. Has proposed a stacked solid-state imaging device having a structure in which only one photoelectric conversion film is stacked.
Patent Documents 2 and 3 below describe a configuration in which, in a stacked image sensor, amorphous silicon is stacked on a CCD or CMOS image sensor to improve the aperture ratio of the light receiving unit.

特開2003−332551号公報JP 2003-332551 A 特開平1−295458号公報JP-A-1-295458 特開平5−167056号公報Japanese Patent Laid-Open No. 5-167056

光電変換膜を1層だけ半導体基板の上に積層して3原色のうちの1色を検出し、他の2色が半導体基板に設けたフォトダイオード(光電変換素子)で検出する構成にすると、光電変換膜の1画素の面積を広くとることができるため、光電変換膜で受光する波長領域の光の受光量を増やすことができ、感度が向上する。   When a single photoelectric conversion film is stacked on a semiconductor substrate to detect one of the three primary colors, and the other two colors are detected by photodiodes (photoelectric conversion elements) provided on the semiconductor substrate, Since the area of one pixel of the photoelectric conversion film can be increased, the amount of light received in the wavelength region received by the photoelectric conversion film can be increased, and the sensitivity is improved.

しかし、半導体基板に設けられたフォトダイオードに入射する光が、光電変換膜に接続された透明の画素電極膜を透過する際に吸収されてしまうため、光の利用効率で更なる改善の余地があった。   However, since light incident on the photodiode provided on the semiconductor substrate is absorbed when passing through the transparent pixel electrode film connected to the photoelectric conversion film, there is room for further improvement in light utilization efficiency. there were.

上記特許文献1には、光電変換膜に接続される画素電極膜の配置と半導体基板上に設けられたフォトダイオードの配置との関係が記載されていないため、光電変換膜に入射した光が光電変換膜に接続された透明電極膜によって吸収されてしまうといった問題を解決できなかった。   Patent Document 1 does not describe the relationship between the arrangement of the pixel electrode film connected to the photoelectric conversion film and the arrangement of the photodiode provided on the semiconductor substrate. The problem of absorption by the transparent electrode film connected to the conversion film could not be solved.

また、上記特許文献2,3では、半導体基板に設けられた蓄積ダイオードなどの光電変換素子上を覆うように画素電極膜が形成されているため、該画素電極膜によって吸収されることに起因して光電変換素子で受光される光の利用効率が低減することが避けられなかった。   In Patent Documents 2 and 3, since the pixel electrode film is formed so as to cover the photoelectric conversion element such as a storage diode provided on the semiconductor substrate, it is caused by absorption by the pixel electrode film. Thus, it is inevitable that the utilization efficiency of light received by the photoelectric conversion element is reduced.

本発明は、上記事情に鑑みてなされたもので、その目的は、半導体基板に設けられた光電変換部で受光する光を増やすことができる積層型固体撮像装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a stacked solid-state imaging device capable of increasing light received by a photoelectric conversion unit provided on a semiconductor substrate.

本発明の上記目的は、青の波長の光を検出する青色光電変換部と赤の波長の光を検出する赤色光電変換部とが2次元状に配列された半導体基板と、該半導体基板の上に積層され、緑の波長の光を検出する光電変換膜とを備えた積層型固体撮像装置であって、前記光電変換膜が前記青色光電変換部及び前記赤色光電変換部を覆うように配され、前記光電変換膜には画素毎に一定の間隔で配置された画素電極膜が接続され、前記青色光電変換部及び前記赤色光電変換部が、前記半導体基板に対して垂直な方向から見たときに、前記画素電極膜同士の間にそれぞれ配置されていることを特徴とする積層型固体撮像装置によって達成される。 The object of the present invention is to provide a semiconductor substrate in which a blue photoelectric conversion unit for detecting light of a blue wavelength and a red photoelectric conversion unit for detecting light of a red wavelength are arranged two-dimensionally, and on the semiconductor substrate. And a photoelectric conversion film that detects light having a green wavelength, and the photoelectric conversion film is disposed so as to cover the blue photoelectric conversion unit and the red photoelectric conversion unit. The photoelectric conversion film is connected to pixel electrode films arranged at regular intervals for each pixel, and when the blue photoelectric conversion unit and the red photoelectric conversion unit are viewed from a direction perpendicular to the semiconductor substrate. In addition, the present invention is achieved by a stacked solid-state imaging device, which is disposed between the pixel electrode films.

上記積層型固体撮像装置は、光電変換膜が透過性の有機半導体であることを特徴とする。   In the stacked solid-state imaging device, the photoelectric conversion film is a transmissive organic semiconductor.

上記積層型固体撮像装置は、光電変換膜には電荷蓄積部が接続され、光の入射方向視において、電荷蓄積部の面積が、青色光電変換部及び赤色光電変換部の各面積より小さいことを特徴とする。 In the stacked solid-state imaging device, a charge accumulation unit is connected to the photoelectric conversion film, and the area of the charge accumulation unit is smaller than each area of the blue photoelectric conversion unit and the red photoelectric conversion unit in the incident direction of light. Features.

上記積層型固体撮像装置は、前記青色光電変換部及び前記赤色光電変換部の上方で且つ前記光電変換膜の下方に、入射する光を透過するカラーフィルタがそれぞれ設けられ、前記カラーフィルタの光入射側の面にマイクロレンズがそれぞれ設けられていることを特徴とする。 In the stacked solid-state imaging device, a color filter that transmits incident light is provided above the blue photoelectric conversion unit and the red photoelectric conversion unit and below the photoelectric conversion film , respectively. Microlenses are provided on the side surfaces, respectively.

本発明によれば、半導体基板に設けられた光電変換部で受光する光を増やすことができる積層型固体撮像装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the lamination type solid-state imaging device which can increase the light received by the photoelectric conversion part provided in the semiconductor substrate can be provided.

以下、本発明の実施形態を図面に基づいて詳しく説明する。
図1は、本発明に係る積層型固体撮像装置の第1の実施形態を示す平面図である。図1に示すように、積層型固体撮像装置10は、半導体基板1を備え、該半導体基板1の表面には、複数の青色光電変換部3と複数の赤色光電変換部4とが配列されている。青色光電変換部3は、青色の波長を受光して青色の信号電荷を蓄積する構成であり、赤色光電変換部4は、赤色の波長の光を受光して赤色の信号電荷を蓄積する構成である。本実施形態では、青色光電変換部3と赤色光電変換部4としては、フォトダイオードを使用する。本実施形態では、青色光電変換部3と赤色光電変換部4は、光の入射方向(図1を正面視した方向)に対して垂直となる、菱形の平面を有する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a plan view showing a first embodiment of a stacked solid-state imaging device according to the present invention. As shown in FIG. 1, the stacked solid-state imaging device 10 includes a semiconductor substrate 1, and a plurality of blue photoelectric conversion units 3 and a plurality of red photoelectric conversion units 4 are arranged on the surface of the semiconductor substrate 1. Yes. The blue photoelectric conversion unit 3 is configured to receive blue wavelength and accumulate blue signal charge, and the red photoelectric conversion unit 4 is configured to receive red wavelength light and accumulate red signal charge. is there. In the present embodiment, photodiodes are used as the blue photoelectric conversion unit 3 and the red photoelectric conversion unit 4. In the present embodiment, the blue photoelectric conversion unit 3 and the red photoelectric conversion unit 4 have a rhombic plane that is perpendicular to the incident direction of light (the direction when FIG. 1 is viewed from the front).

また、半導体基板1には、緑色の波長を受光して受光量に応じた電荷を発生する画素電極膜12と、該画素電極膜12に電気的に接続され、画素電極膜12から緑色の信号電荷を蓄積する信号蓄積部2とが設けられている。本実施形態では、画素電極膜12及び信号蓄積部2は、光の入射方向に対して垂直となる菱形の平面を有し、信号蓄積部2における該平面の面積は、青色光電変換部3及び赤色光電変換部4より小さく、青色光電変換部3及び赤色光電変換部4の各面積の20%から30%の範囲とする。   The semiconductor substrate 1 receives a green wavelength and generates a charge corresponding to the amount of received light. The pixel electrode film 12 is electrically connected to the pixel electrode film 12 and receives a green signal from the pixel electrode film 12. A signal storage unit 2 for storing electric charge is provided. In the present embodiment, the pixel electrode film 12 and the signal storage unit 2 have a rhombic plane perpendicular to the light incident direction, and the area of the plane in the signal storage unit 2 is equal to that of the blue photoelectric conversion unit 3 and It is smaller than the red photoelectric conversion unit 4 and is in a range of 20% to 30% of each area of the blue photoelectric conversion unit 3 and the red photoelectric conversion unit 4.

なお、図1において、Rは赤色を意味し、Gは緑色を意味し、Bは青色を意味しており、緑色の信号蓄積部2,青色光電変換部3及び赤色光電変換部4の配列を示している。   In FIG. 1, R means red, G means green, B means blue, and the arrangement of the green signal storage unit 2, blue photoelectric conversion unit 3, and red photoelectric conversion unit 4 is as follows. Show.

信号蓄積部2と青色光電変換部3と赤色光電変換部4とは、信号蓄積部2を介して青色光電変換部3と赤色光電変換部4とが交互に位置するように、正方の格子状に配置されている。具体的には、図1に示すように、水平方向及び垂直方向に対して、G,R,G,B,G・・・と繰り返し配置されている。   The signal storage unit 2, the blue photoelectric conversion unit 3, and the red photoelectric conversion unit 4 have a square lattice shape so that the blue photoelectric conversion unit 3 and the red photoelectric conversion unit 4 are alternately positioned via the signal storage unit 2. Is arranged. Specifically, as shown in FIG. 1, G, R, G, B, G... Are repeatedly arranged in the horizontal direction and the vertical direction.

半導体基板1の上面には、平面視した状態で、信号蓄積部2と青色光電変換部3との間、及び、信号蓄積部2と赤色光電変換部4との間にはそれぞれ、図1の平面視において上下方向に延びるように垂直転送路6が設けられている。垂直転送路6は、信号蓄積部2の面積と青色光電変換部3並びに赤色光電変換部4の各面積の大きさに合わせて近接するように、蛇行した状態で形成されている。   On the upper surface of the semiconductor substrate 1 in a plan view, between the signal storage unit 2 and the blue photoelectric conversion unit 3 and between the signal storage unit 2 and the red photoelectric conversion unit 4, respectively, as shown in FIG. The vertical transfer path 6 is provided so as to extend in the vertical direction in plan view. The vertical transfer path 6 is formed in a meandering state so as to be close to each other in accordance with the area of the signal storage unit 2 and the size of each area of the blue photoelectric conversion unit 3 and the red photoelectric conversion unit 4.

半導体基板1の一部近傍には、垂直転送路6に対して垂直に延びる水平転送路7が設けられている。信号蓄積部2,青色光電変換部3及び赤色光電変換部4に蓄積された信号電荷は、後述するように順次に垂直転送路6に読み出されて該垂直転送路6に沿って転送され、垂直転送路6から水平転送路7に移送された後、水平転送路7から出力される。こうすることで、積層型固体撮像装置10は、撮像時に受光した光からR,G,Bの各色信号を読み出すことができる。   A horizontal transfer path 7 extending perpendicularly to the vertical transfer path 6 is provided in the vicinity of a part of the semiconductor substrate 1. The signal charges stored in the signal storage unit 2, the blue photoelectric conversion unit 3 and the red photoelectric conversion unit 4 are sequentially read out to the vertical transfer path 6 and transferred along the vertical transfer path 6 as will be described later. After being transferred from the vertical transfer path 6 to the horizontal transfer path 7, it is output from the horizontal transfer path 7. By doing so, the stacked solid-state imaging device 10 can read R, G, and B color signals from the light received during imaging.

図2は、本実施形態の積層型固体撮像装置の構成を説明する断面図である。
積層型固体撮像装置10は、半導体基板1の上面部に、信号蓄積部2と、青色光電変換部3と、赤色光電変換部4とが形成されている。本実施形態では、半導体基板1をn型半導体とし、青色光電変換部3及び赤色光電変換部4を構成するフォトダイオードにpウェル層とn領域を形成した。
FIG. 2 is a cross-sectional view illustrating the configuration of the stacked solid-state imaging device of the present embodiment.
In the stacked solid-state imaging device 10, the signal storage unit 2, the blue photoelectric conversion unit 3, and the red photoelectric conversion unit 4 are formed on the upper surface portion of the semiconductor substrate 1. In the present embodiment, the semiconductor substrate 1 is an n-type semiconductor, and the p-well layer and the n region are formed in the photodiodes constituting the blue photoelectric conversion unit 3 and the red photoelectric conversion unit 4.

半導体基板1の上面部において、信号蓄積部2,青色光電変換部3及び赤色光電変換部4のそれぞれに対応するように水平方向に間隔をおいて垂直転送路6が設けられている。   On the upper surface of the semiconductor substrate 1, vertical transfer paths 6 are provided at intervals in the horizontal direction so as to correspond to the signal storage unit 2, the blue photoelectric conversion unit 3, and the red photoelectric conversion unit 4.

垂直転送路6の上面には転送電極17が形成されている。また、絶縁層19に入射した光が垂直転送路6に照射されてスミアが生じることを防止するため、該転送電極17を覆うように遮光膜18が形成されている。   A transfer electrode 17 is formed on the upper surface of the vertical transfer path 6. In addition, a light shielding film 18 is formed so as to cover the transfer electrode 17 in order to prevent smear from being generated by the light incident on the insulating layer 19 being applied to the vertical transfer path 6.

半導体基板1の上面部には、光透過性を有する絶縁層19が積層されている。絶縁層19において、青色光電変換部3の積層方向(図2の上下方向)に対して上方に青色を透過するカラーフィルタ13が設けられ、赤色光電変換部4の積層方向の上方に赤色を透過するカラーフィルタ14が設けられている。転送電極17,遮光膜18及びカラーフィルタ13,14は、絶縁層19に埋設される。 On the upper surface portion of the semiconductor substrate 1, an insulating layer 19 having optical transparency is laminated. In the insulating layer 19, a color filter 13 that transmits blue is provided above the stacking direction of the blue photoelectric conversion unit 3 (vertical direction in FIG. 2), and red is transmitted above the stacking direction of the red photoelectric conversion unit 4. A color filter 14 is provided. The transfer electrode 17, the light shielding film 18, and the color filters 13 and 14 are embedded in the insulating layer 19.

絶縁層19の上面には画素電極膜12が画素毎に区分けして形成されている。これら画素電極膜12が、半導体基板1に設けられた信号蓄積部2に、柱状の縦型配線16によって電気的に接続されている。   A pixel electrode film 12 is formed on the upper surface of the insulating layer 19 so as to be divided for each pixel. These pixel electrode films 12 are electrically connected to the signal storage portion 2 provided on the semiconductor substrate 1 by columnar vertical wirings 16.

画素電極膜12の上には、光の入射方向からみた半導体基板1の面全体にわたって、透過性の有機半導体である光電変換膜11が形成されている。光電変換膜11の表面には光透過性を有する対向電極15が形成されている。   On the pixel electrode film 12, a photoelectric conversion film 11 that is a transparent organic semiconductor is formed over the entire surface of the semiconductor substrate 1 as viewed from the light incident direction. A counter electrode 15 having optical transparency is formed on the surface of the photoelectric conversion film 11.

積層型固体撮像装置10に光が入射すると、入射光の緑色の波長領域の光が光電変換膜11に吸収され、光電荷が光電変換膜11内に発生する。そして、この光電荷は、対向電極15にバイアス電圧を印加することで、縦型配線16を通って信号蓄積部2に導かれて蓄積される。   When light enters the stacked solid-state imaging device 10, light in the green wavelength region of incident light is absorbed by the photoelectric conversion film 11, and photoelectric charges are generated in the photoelectric conversion film 11. Then, the photocharge is guided to the signal storage unit 2 through the vertical wiring 16 and is stored by applying a bias voltage to the counter electrode 15.

入射光のうち青色及び赤色の波長領域の光は光電変換膜11を透過する。青色光は、カラーフィルタ13を透過して青色光電変換部3に入射し、青色光の光量に応じた信号電荷が発生して青色光電変換部3に蓄積される。赤色光は、カラーフィルタ14を透過して赤色光電変換部4に入射し、赤色光の光量に応じた信号電荷が発生して赤色光電変換部4に蓄積される。   Of the incident light, light in the blue and red wavelength regions passes through the photoelectric conversion film 11. The blue light passes through the color filter 13 and enters the blue photoelectric conversion unit 3, and signal charges corresponding to the amount of blue light are generated and accumulated in the blue photoelectric conversion unit 3. The red light passes through the color filter 14 and enters the red photoelectric conversion unit 4, and a signal charge corresponding to the amount of red light is generated and accumulated in the red photoelectric conversion unit 4.

信号蓄積部2,青色光電変換部3及び赤色光電変換部4に蓄積された各色の信号電荷は、垂直転送路6に読み出されて水平転送路7に転送され、該水平転送路7を経由して半導体基板1から出力される。   The signal charges of each color accumulated in the signal storage unit 2, the blue photoelectric conversion unit 3, and the red photoelectric conversion unit 4 are read out to the vertical transfer path 6 and transferred to the horizontal transfer path 7, via the horizontal transfer path 7. And output from the semiconductor substrate 1.

本実施形態の積層型固体撮像装置10は、画素変換膜12が一定の間隔で配置され、青色光電変換部3及び赤色光電変換部4が、半導体基板1に対して垂直な方向(図1を正面視した状態の方向)から見たときに画素電極膜12同士の間にそれぞれ配置されている。 すると、光電変換膜11を透過して青色光電変換部3及び赤色光電変換部4に入射する光が、画素電極膜12を透過する量をできるだけ小さくすることができる。このため、画素電極膜12を透過することに起因して青色光電変換部3及び赤色光電変換部4に入射すべき光が吸収されてしまうことを抑制でき、赤色及び青色の波長領域の光の利用効率を向上させることができる。   In the stacked solid-state imaging device 10 according to the present embodiment, the pixel conversion films 12 are arranged at regular intervals, and the blue photoelectric conversion unit 3 and the red photoelectric conversion unit 4 are perpendicular to the semiconductor substrate 1 (see FIG. 1). When viewed from the front), the pixel electrode films 12 are disposed between the pixel electrode films 12. Then, the amount of light that passes through the photoelectric conversion film 11 and enters the blue photoelectric conversion unit 3 and the red photoelectric conversion unit 4 can pass through the pixel electrode film 12 as small as possible. For this reason, it can suppress that the light which should enter into the blue photoelectric conversion part 3 and the red photoelectric conversion part 4 resulting from permeate | transmitting the pixel electrode film | membrane 12 can be suppressed, and the light of the wavelength area | region of red and blue Utilization efficiency can be improved.

ここで、青色光電変換部3及び赤色光電変換部4における光入射側の面における重点が、半導体基板1に対して垂直な方向から見たときに画素電極膜12同士の間にそれぞれ位置している。青色光電変換部3及び赤色光電変換部4における光入射側の各面積のうち70%から100%が、光入射方向(図1の正面視の方向)に対して画素電極膜12と重ならないことが好ましい。   Here, the points on the light incident side of the blue photoelectric conversion unit 3 and the red photoelectric conversion unit 4 are positioned between the pixel electrode films 12 when viewed from a direction perpendicular to the semiconductor substrate 1. Yes. 70% to 100% of each area on the light incident side in the blue photoelectric conversion unit 3 and the red photoelectric conversion unit 4 does not overlap the pixel electrode film 12 with respect to the light incident direction (front view direction in FIG. 1). Is preferred.

また、本実施形態では、入射光を光電変換膜11で受光して光電荷を蓄積する構成であるため、半導体基板1に設けられた信号蓄積部2に直接光を照射させる必要がない。このため、本実施形態の積層型固体撮像装置10では、図2に示すように、光の入射方向視において、信号蓄積部2の表面の面積を、青色光電変換部3や赤色光電変換部4の各面積より小さくすることができる。   Further, in the present embodiment, the configuration is such that incident light is received by the photoelectric conversion film 11 and photoelectric charges are accumulated, so that it is not necessary to directly irradiate the signal accumulation unit 2 provided on the semiconductor substrate 1 with light. Therefore, in the stacked solid-state imaging device 10 according to the present embodiment, as shown in FIG. 2, the surface area of the signal storage unit 2 in the light incident direction is set to the blue photoelectric conversion unit 3 or the red photoelectric conversion unit 4. It can be made smaller than each area.

本実施形態の積層型固体撮像装置10は、半導体基板1に青色光電変換部3と赤色光電変換部4とを設け、その上層に緑色の波長領域の光を受光する光電変換膜11を形成する構成としたがこれに限定されない。以下の実施形態も含め、積層型固体撮像装置10は、3原色のうち2色に対応する第1の光電変換部及び第2の光電変換部を半導体基板にそれぞれ設けて他の1色の波長領域の光を受光する光電変換膜を該半導体基板に積層する構成とすることができる。   In the stacked solid-state imaging device 10 of this embodiment, a blue photoelectric conversion unit 3 and a red photoelectric conversion unit 4 are provided on a semiconductor substrate 1 and a photoelectric conversion film 11 that receives light in the green wavelength region is formed thereon. Although it was set as the structure, it is not limited to this. In the multilayer solid-state imaging device 10 including the following embodiments, the first photoelectric conversion unit and the second photoelectric conversion unit corresponding to two of the three primary colors are provided on the semiconductor substrate, respectively, and the wavelength of the other one color. A photoelectric conversion film that receives light in the region can be stacked over the semiconductor substrate.

次に、本発明にかかる第2の実施形態を説明する。なお、以下に説明する実施形態において、すでに説明した部材などと同等な構成・作用を有する部材等については、図中に同一符号又は相当符号を付すことにより、説明を簡略化或いは省略する。   Next, a second embodiment according to the present invention will be described. In the embodiments described below, members having the same configuration / action as those already described are denoted by the same or corresponding reference numerals in the drawings, and description thereof is simplified or omitted.

図3は、本実施形態の積層型固体撮像装置の平面図を示し、図4は、本実施形態の積層型固体撮像装置の構成を説明する断面図を示している。
積層型固体撮像装置30は、青色光電変換部33と赤色光電変換部34とが2次元状に配列された半導体基板31と、該半導体基板31の上に積層され、緑色の波長の光を検出する光電変換膜41とを備えている。半導体基板31に設けられた青色光電変換部33、赤色光電変換部34、信号蓄積部32、画素電極膜42,縦型配線46、転送電極47及び遮光膜48の機能は、図1及び2に示した第1の実施形態と同様である。
FIG. 3 is a plan view of the stacked solid-state imaging device of the present embodiment, and FIG. 4 is a cross-sectional view illustrating the configuration of the stacked solid-state imaging device of the present embodiment.
The stacked solid-state imaging device 30 detects a light having a green wavelength by laminating a blue photoelectric conversion unit 33 and a red photoelectric conversion unit 34 on a semiconductor substrate 31 arranged in a two-dimensional form, and the semiconductor substrate 31. The photoelectric conversion film 41 is provided. Functions of the blue photoelectric conversion unit 33, the red photoelectric conversion unit 34, the signal storage unit 32, the pixel electrode film 42, the vertical wiring 46, the transfer electrode 47, and the light shielding film 48 provided on the semiconductor substrate 31 are illustrated in FIGS. This is the same as the first embodiment shown.

図3に示すように、本実施形態の積層型固体撮像装置30において、画素電極膜42,青色光電変換膜33及び赤色光電変換膜34が、光の入射方向に対して垂直な、長方形状の面を有する。図3を正面視した状態において、青色光電変換膜33と赤色光電変換膜34の面が、上下方向に長尺となり、且つ、画素電極膜42の面が左右方向に長尺となるように配置されている。   As shown in FIG. 3, in the stacked solid-state imaging device 30 of the present embodiment, the pixel electrode film 42, the blue photoelectric conversion film 33, and the red photoelectric conversion film 34 have a rectangular shape perpendicular to the light incident direction. Has a surface. 3, the blue photoelectric conversion film 33 and the red photoelectric conversion film 34 are arranged so that the surfaces of the blue photoelectric conversion film 33 and the red photoelectric conversion film 34 are long in the vertical direction, and the surface of the pixel electrode film 42 is long in the left-right direction. Has been.

本実施形態の積層型固体撮像装置30は、上記第1の実施形態と同様に、青色光電変換部33及び赤色光電変換部34が、半導体基板31に対して垂直な方向から見たときに画素電極膜42同士の間にそれぞれ配置されている。また、青色光電変換部33及び赤色光電変換部34における光入射側の面における重点が、半導体基板31に対して垂直な方向から見たときに画素電極膜42同士の間にそれぞれ位置している構成とすれば、図3に示すように、光の入射方向に対して、画素電極膜42と青色光電変換部33並びに赤色光電変換部34とが一部重なっていても構わない。   As in the first embodiment, the stacked solid-state imaging device 30 according to the present embodiment includes pixels when the blue photoelectric conversion unit 33 and the red photoelectric conversion unit 34 are viewed from a direction perpendicular to the semiconductor substrate 31. They are respectively disposed between the electrode films 42. Further, the emphasis on the light incident side surface of the blue photoelectric conversion unit 33 and the red photoelectric conversion unit 34 is located between the pixel electrode films 42 when viewed from a direction perpendicular to the semiconductor substrate 31. As shown in FIG. 3, the pixel electrode film 42, the blue photoelectric conversion unit 33, and the red photoelectric conversion unit 34 may partially overlap with each other in the light incident direction.

また、入射光を光電変換膜41で受光して光電荷を蓄積する構成であるため、光の入射方向において、信号蓄積部32の表面の面積を、青色光電変換部33や赤色光電変換部34の各面積より小さくすることができる。このとき、図3に示すように、垂直転送路36を、信号蓄積部32,青色光電変換部33及び赤色光電変換部34にそれぞれ近接するように、適宜蛇行させた状態で形成する。   In addition, since the photoelectric conversion film 41 receives incident light and accumulates photocharges, the surface area of the signal storage unit 32 in the light incident direction is set to the blue photoelectric conversion unit 33 or the red photoelectric conversion unit 34. It can be made smaller than each area. At this time, as shown in FIG. 3, the vertical transfer path 36 is formed in a meandering state so as to be close to the signal storage unit 32, the blue photoelectric conversion unit 33, and the red photoelectric conversion unit 34, respectively.

本実施形態の積層型固体撮像装置30は、画素電極膜42を透過することに起因して青色光電変換部33及び赤色光電変換部34に入射すべき光が吸収されてしまうことを抑制でき、赤色及び青色の波長領域の光の利用効率を向上させることができる。   The stacked solid-state imaging device 30 of the present embodiment can suppress the absorption of light that should enter the blue photoelectric conversion unit 33 and the red photoelectric conversion unit 34 due to transmission through the pixel electrode film 42, The utilization efficiency of light in the red and blue wavelength regions can be improved.

次に、本発明にかかる第3の実施形態を説明する。
図5は、本実施形態の積層型固体撮像装置の構成を説明する断面図である。本実施形態の積層型固体撮像装置の構成は、基本的に図1及び図2に示す第1の積層型固体撮像装置と同様の構成であり、以下、異なる構成について説明する。
Next, a third embodiment according to the present invention will be described.
FIG. 5 is a cross-sectional view illustrating the configuration of the stacked solid-state imaging device of the present embodiment. The configuration of the multilayer solid-state imaging device of this embodiment is basically the same as that of the first multilayer solid-state imaging device shown in FIGS. 1 and 2, and different configurations will be described below.

図5に示すように、積層型固体撮像装置50は、青色の波長領域を透過するカラーフィルタ13と、赤色の波長領域を透過するカラーフィルタ14の上面のそれぞれに、光入射側に凸面を有し且つ下側面を平面としたマイクロレンズ51を備えた構成である。マイクロレンズ51の下側面の面積は、該カラーフィルタ13,14の上面の面積をよりも大きくすることが好ましい。   As shown in FIG. 5, the stacked solid-state imaging device 50 has a convex surface on the light incident side on each of the upper surface of the color filter 13 that transmits the blue wavelength region and the color filter 14 that transmits the red wavelength region. And a microlens 51 having a flat bottom surface. The area of the lower surface of the microlens 51 is preferably larger than the area of the upper surface of the color filters 13 and 14.

本実施形態の積層型固体撮像装置50によれば、画素電極膜12を透過することで青色光電変換部3及び赤色光電変換部4に入射すべき光が吸収されてしまうことを抑制できるとともに、画素電極膜12を透過せずに絶縁層19に入射した光がマイクロレンズ51に照射されることによって集光され、カラーフィルタ13,14に射出されるようになる。 このため、積層型固体撮像装置50の光入射面に対して斜めに入射した光が、画素電極膜12を透過せずに絶縁層19に入射しても、マイクロレンズ51によってカラーフィルタ13,14へ導くことができるため、光の利用効率がより一層向上する。   According to the stacked solid-state imaging device 50 of the present embodiment, it is possible to suppress absorption of light to be incident on the blue photoelectric conversion unit 3 and the red photoelectric conversion unit 4 through the pixel electrode film 12, and Light that has entered the insulating layer 19 without passing through the pixel electrode film 12 is condensed by irradiating the microlens 51, and is emitted to the color filters 13 and 14. For this reason, even if light incident obliquely to the light incident surface of the multilayer solid-state imaging device 50 is incident on the insulating layer 19 without passing through the pixel electrode film 12, the color filters 13 and 14 are formed by the microlens 51. Therefore, the light utilization efficiency is further improved.

なお、本発明は、前述した実施形態に限定されるものではなく、適宜な変形、改良などが可能である。
例えば、図2に示す固体撮像装置10において、信号蓄積部2に光が入射することを防止するため画像電極膜12の縁部に半導体基板1側に向って延設されたフランジ状の遮光部を設けてもよい。または、半導体基板1及び垂直転送路6の表面全体に遮光層を形成することで、信号蓄積部2に光が入射することを防止する構成としてもよい。
In addition, this invention is not limited to embodiment mentioned above, A suitable deformation | transformation, improvement, etc. are possible.
For example, in the solid-state imaging device 10 shown in FIG. 2, a flange-shaped light shielding portion that extends toward the semiconductor substrate 1 at the edge of the image electrode film 12 in order to prevent light from entering the signal storage portion 2. May be provided. Alternatively, a light blocking layer may be formed on the entire surface of the semiconductor substrate 1 and the vertical transfer path 6 to prevent light from entering the signal storage unit 2.

積層型固体撮像装置の第1の実施形態を示す平面図である。It is a top view which shows 1st Embodiment of a laminated | stacked solid-state imaging device. 第1の実施形態の積層型固体撮像装置の構成を説明する断面図である。It is sectional drawing explaining the structure of the laminated | stacked solid-state imaging device of 1st Embodiment. 積層型固体撮像装置の第2の実施形態の平面図である。It is a top view of 2nd Embodiment of a laminated | stacked solid-state imaging device. 第2の実施形態の積層型固体撮像装置の構成を説明する断面図である。It is sectional drawing explaining the structure of the laminated | stacked solid-state imaging device of 2nd Embodiment. 第3の実施形態の積層型固体撮像装置の構成を説明する断面図である。It is sectional drawing explaining the structure of the lamination type solid-state imaging device of 3rd Embodiment.

符号の説明Explanation of symbols

1,31 半導体基板
2,32 信号蓄積部
3,33 青色光電変換部
4,34 赤色光電変換部
6,36 垂直転送路
7,37 水平転送路
10,30,50 積層型固体撮像装置
11,41 光電変換膜
12,42 画素電極膜
13,14,43,44 カラーフィルタ
51 マイクロレンズ
DESCRIPTION OF SYMBOLS 1,31 Semiconductor substrate 2,32 Signal storage part 3,33 Blue photoelectric conversion part 4,34 Red photoelectric conversion part 6,36 Vertical transfer path 7,37 Horizontal transfer path 10,30,50 Stack type solid-state imaging device 11,41 Photoelectric conversion film 12, 42 Pixel electrode film 13, 14, 43, 44 Color filter 51 Micro lens

Claims (4)

青の波長の光を検出する青色光電変換部と赤の波長の光を検出する赤色光電変換部とが2次元状に配列された半導体基板と、該半導体基板の上に積層され、緑の波長の光を検出する光電変換膜とを備えた積層型固体撮像装置であって、
前記光電変換膜が前記青色光電変換部及び前記赤色光電変換部を覆うように配され、
前記光電変換膜には画素毎に一定の間隔で配置された画素電極膜が接続され、前記青色光電変換部及び前記赤色光電変換部が、前記半導体基板に対して垂直な方向から見たときに、前記画素電極膜同士の間にそれぞれ配置されていることを特徴とする積層型固体撮像装置。
A semiconductor substrate in which a blue photoelectric conversion unit for detecting light of a blue wavelength and a red photoelectric conversion unit for detecting light of a red wavelength are arranged two-dimensionally, and the semiconductor substrate is stacked on the semiconductor substrate, and the green wavelength A stacked solid-state imaging device comprising a photoelectric conversion film for detecting the light of
The photoelectric conversion film is arranged so as to cover the blue photoelectric conversion unit and the red photoelectric conversion unit,
A pixel electrode film disposed at a constant interval for each pixel is connected to the photoelectric conversion film, and the blue photoelectric conversion unit and the red photoelectric conversion unit are viewed from a direction perpendicular to the semiconductor substrate. A stacked solid-state imaging device, wherein the stacked-type solid-state imaging device is disposed between the pixel electrode films.
前記光電変換膜が透過性の有機半導体であることを特徴とする請求項1に記載の積層型固体撮像装置。   The stacked solid-state imaging device according to claim 1, wherein the photoelectric conversion film is a transparent organic semiconductor. 前記光電変換膜には電荷蓄積部が接続され、光の入射方向視において、前記電荷蓄積部の面積が、前記青色光電変換部及び前記赤色光電変換部の各面積より小さいことを特徴とする請求項1又は2に記載の積層型固体撮像装置。   A charge storage unit is connected to the photoelectric conversion film, and an area of the charge storage unit is smaller than each area of the blue photoelectric conversion unit and the red photoelectric conversion unit in a light incident direction view. Item 3. The stacked solid-state imaging device according to Item 1 or 2. 前記青色光電変換部及び前記赤色光電変換部の上方で且つ前記光電変換膜の下方に、入射する光を透過するカラーフィルタがそれぞれ設けられ、前記カラーフィルタの光入射側の面にマイクロレンズがそれぞれ設けられていることを特徴とする請求項1から3のいずれか1つに記載の積層型固体撮像装置。 A color filter that transmits incident light is provided above the blue photoelectric conversion unit and the red photoelectric conversion unit and below the photoelectric conversion film , respectively, and a microlens is provided on the light incident side surface of the color filter. The stacked solid-state imaging device according to claim 1, wherein the stacked solid-state imaging device is provided.
JP2004327308A 2004-11-11 2004-11-11 Stacked solid-state imaging device Expired - Fee Related JP4681853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004327308A JP4681853B2 (en) 2004-11-11 2004-11-11 Stacked solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004327308A JP4681853B2 (en) 2004-11-11 2004-11-11 Stacked solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2006140249A JP2006140249A (en) 2006-06-01
JP4681853B2 true JP4681853B2 (en) 2011-05-11

Family

ID=36620880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004327308A Expired - Fee Related JP4681853B2 (en) 2004-11-11 2004-11-11 Stacked solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4681853B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242261A (en) * 2010-05-18 2011-12-01 Fujifilm Corp Radiation detector
KR101389790B1 (en) * 2012-05-24 2014-04-29 한양대학교 산학협력단 Image sensor and method of operating the same
KR102083550B1 (en) * 2013-03-15 2020-04-14 삼성전자주식회사 Image sensor and method of forming the same
TWI620445B (en) 2013-03-25 2018-04-01 Sony Corp Camera element and electronic equipment
KR102105284B1 (en) 2013-06-21 2020-04-28 삼성전자 주식회사 Image sensor, manufacturing the same, and image processing device having the image sensor
KR102076217B1 (en) * 2013-08-06 2020-03-02 삼성전자주식회사 Image sensor and electronic device including the same
JP6527868B2 (en) * 2014-07-22 2019-06-05 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic device
KR102296736B1 (en) 2014-08-27 2021-08-31 삼성전자주식회사 Staked image sensor
KR102531712B1 (en) * 2015-08-19 2023-05-11 삼성전자주식회사 Stacked image sensor and method of manufacturing the same
KR102573163B1 (en) * 2015-08-21 2023-08-30 삼성전자주식회사 Image sensor and electronic device including the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332551A (en) * 2002-05-08 2003-11-21 Canon Inc Color image pickup device and color photoreceptor device
JP2004165242A (en) * 2002-11-11 2004-06-10 Canon Inc Color imaging device and color light receiving element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332551A (en) * 2002-05-08 2003-11-21 Canon Inc Color image pickup device and color photoreceptor device
JP2004165242A (en) * 2002-11-11 2004-06-10 Canon Inc Color imaging device and color light receiving element

Also Published As

Publication number Publication date
JP2006140249A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
KR102577844B1 (en) Image sensor
JP4538353B2 (en) Photoelectric conversion film stacked color solid-state imaging device
JP4866656B2 (en) Photoelectric conversion film stacked color solid-state imaging device
JP4839008B2 (en) Single-plate color solid-state image sensor
JP6724212B2 (en) Solid-state image sensor and electronic device
JP2015128131A (en) Solid state image sensor and electronic apparatus
KR20110084367A (en) Imaging device
JP2008227250A (en) Compound type solid-state image pickup element
JP4700947B2 (en) Single layer color solid-state imaging device with photoelectric conversion film
JP5331119B2 (en) Solid-state imaging device and imaging apparatus
JP2012038768A (en) Solid-state imaging element and imaging device
US11594568B2 (en) Image sensor and electronic device
JP4681853B2 (en) Stacked solid-state imaging device
JP4404561B2 (en) MOS type color solid-state imaging device
JP3571982B2 (en) Solid-state imaging device and solid-state imaging system having the same
JP5504382B2 (en) Solid-state imaging device and imaging apparatus
JP4696104B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
JP4495949B2 (en) Two-plate color solid-state imaging device and digital camera
JP2004273952A (en) Ccd solid-state color image pickup device
JP6633850B2 (en) Stacked solid-state imaging device
JP4491352B2 (en) Solid-state image sensor
JP2005175893A (en) Two-plate type color solid-state image pickup device and digital camera
JP4538336B2 (en) Solid-state imaging device
JP2006186573A (en) Two-board type color solid-state image pickup device and digital camera

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees