JP2008227250A - Compound type solid-state image pickup element - Google Patents

Compound type solid-state image pickup element Download PDF

Info

Publication number
JP2008227250A
JP2008227250A JP2007064971A JP2007064971A JP2008227250A JP 2008227250 A JP2008227250 A JP 2008227250A JP 2007064971 A JP2007064971 A JP 2007064971A JP 2007064971 A JP2007064971 A JP 2007064971A JP 2008227250 A JP2008227250 A JP 2008227250A
Authority
JP
Japan
Prior art keywords
solid
imaging device
state image
state imaging
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2007064971A
Other languages
Japanese (ja)
Inventor
Shinji Uie
眞司 宇家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007064971A priority Critical patent/JP2008227250A/en
Publication of JP2008227250A publication Critical patent/JP2008227250A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact, light compound-type solid-state image pickup element capable of simultaneously capturing two images in the same object. <P>SOLUTION: A first solid-state image pickup element 1 for receiving and photoelectrically converting incident light and a second solid-state image pickup element 2 for receiving and photoelectrically converting light through the first solid-state image pickup element 1 are overlapped. At least one of the first and second solid-state image pickup elements 1, 2 is preferably a back irradiation type solid-state image pickup element. Further, the pixel pitch of the second solid-state image pickup element 2 is allowed to be equal to or an integer multiple of that of the first solid-state image pickup element 1 for arrangement and overlapping. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、同一被写体の2つの画像を同時に撮像することができる複合型固体撮像素子に関する。   The present invention relates to a composite solid-state imaging device capable of simultaneously capturing two images of the same subject.

例えば、下記の特許文献1には、同一被写体の2つの画像を同時に撮像できるカメラが開示されている。この従来のカメラは内部に2つの固体撮像素子を搭載し、入射光をハーフミラーなどの光路分割素子で2分割し、ハーフミラーを直進した一方の分割入射光を第1固体撮像素子で受光して被写体の動画像を撮像し、ハーフミラーで直角方向に反射した他方の分割入射光を第2固体撮像素子で受光して被写体の静止画像を撮像する様になっている。   For example, Patent Document 1 below discloses a camera that can simultaneously capture two images of the same subject. This conventional camera has two solid-state image sensors inside, and divides the incident light into two by an optical path dividing element such as a half mirror, and receives one divided incident light that has traveled straight through the half mirror with the first solid-state image sensor. Then, a moving image of the subject is picked up, and the other split incident light reflected in the right-angle direction by the half mirror is received by the second solid-state image pickup device to pick up a still image of the subject.

特開2006―86967号公報JP 2006-86967 A

同一被写体の2つの画像を同時に撮像する場合、従来は、ハーフミラーなどの光路分割素子を2つの固体撮像素子の間に介在させて入射光を2分割する構成になっているため、装置が大型化してしまうという問題がある。   When capturing two images of the same subject at the same time, conventionally, an optical path dividing element such as a half mirror is interposed between two solid-state imaging elements so that incident light is divided into two. There is a problem of becoming.

本発明の目的は、同一被写体の2つの画像を同時に撮像できる小型軽量な複合型固体撮像素子を提供することにある。   An object of the present invention is to provide a compact and lightweight composite solid-state imaging device capable of simultaneously capturing two images of the same subject.

本発明の複合型固体撮像素子は、入射光を受光し光電変換する第1固体撮像素子と、該第1固体撮像素子を透過した光を受光し光電変換する第2固体撮像素子とを重ね合わせて構成したことを特徴とする。   The composite solid-state imaging device according to the present invention includes a first solid-state imaging device that receives incident light and performs photoelectric conversion, and a second solid-state imaging device that receives and photoelectrically converts light transmitted through the first solid-state imaging device. It is characterized by being configured.

本発明の複合型固体撮像素子は、前記第1固体撮像素子および前記第2固体撮像素子の少なくとも一方を裏面照射型固体撮像素子としたことを特徴とする。   The composite solid-state imaging device of the present invention is characterized in that at least one of the first solid-state imaging device and the second solid-state imaging device is a back-illuminated solid-state imaging device.

本発明の複合型固体撮像素子は、前記第2固体撮像素子の画素ピッチが前記第1固体撮像素子の画素ピッチと等ピッチまたは整数倍で整列して重ね合わされていることを特徴とする。   The composite solid-state imaging device of the present invention is characterized in that the pixel pitch of the second solid-state imaging device is aligned and overlapped with the pixel pitch of the first solid-state imaging device at an equal pitch or an integral multiple.

本発明の複合型固体撮像素子は、前記第1固体撮像素子で光電変換する光の中心波長の焦点位置を前記第1固体撮像素子の光電変換領域に合わせたときに前記第2固体撮像素子で光電変換する光の中心波長の焦点位置を該第2固体撮像素子の光電変換領域に合わせる焦点距離調整用スペーサを前記第1固体撮像素子と前記第2固体撮像素子との間に介挿したことを特徴とする。   The composite solid-state imaging device according to the present invention is configured such that when the focal position of the center wavelength of light photoelectrically converted by the first solid-state imaging device is matched with the photoelectric conversion region of the first solid-state imaging device, the second solid-state imaging device. A focal length adjustment spacer for aligning the focal position of the center wavelength of the light to be photoelectrically converted with the photoelectric conversion region of the second solid-state image sensor is interposed between the first solid-state image sensor and the second solid-state image sensor. It is characterized by.

本発明の複合型固体撮像素子は、前記焦点距離調整用スペーサが光学フィルタを兼用する構成としたことを特徴とする。   The composite solid-state imaging device according to the present invention is characterized in that the focal length adjusting spacer also serves as an optical filter.

本発明の複合型固体撮像素子は、前記第2固体撮像素子がMOSタイプの裏面照射型固体撮像素子であることを特徴とする。   The composite solid-state imaging device of the present invention is characterized in that the second solid-state imaging device is a MOS type back-illuminated solid-state imaging device.

本発明の複合型固体撮像素子は、前記MOSタイプの裏面照射型固体撮像素子が動画像撮像用もしくはモニタリング用であることを特徴とする。   The composite solid-state imaging device of the present invention is characterized in that the MOS-type back-illuminated solid-state imaging device is used for moving image capturing or monitoring.

本発明の複合型固体撮像素子は、前記第1固体撮像素子がCCDタイプの裏面照射型固体撮像素子であることを特徴とする。   The composite solid-state imaging device of the present invention is characterized in that the first solid-state imaging device is a CCD type back-illuminated solid-state imaging device.

本発明の複合型固体撮像素子は、前記CCDタイプの裏面照射型固体撮像素子が静止画像撮像用であることを特徴とする。   The composite solid-state image pickup device of the present invention is characterized in that the CCD type back-illuminated solid-state image pickup device is used for still image pickup.

本発明の複合型固体撮像素子は、前記第1固体撮像素子が紫外光撮像用であることを特徴とする。   The composite solid-state imaging device of the present invention is characterized in that the first solid-state imaging device is for ultraviolet light imaging.

本発明の複合型固体撮像素子は、前記第2固体撮像素子が近赤外光撮像用であることを特徴とする。   The composite solid-state imaging device of the present invention is characterized in that the second solid-state imaging device is for near-infrared light imaging.

本発明の複合型固体撮像素子は、前記第1固体撮像素子が紫外光及び可視光撮像用であり、前記第2固体撮像素子が可視光及び近赤外光撮像用であることを特徴とする。   The composite solid-state imaging device of the present invention is characterized in that the first solid-state imaging device is for ultraviolet light and visible light imaging, and the second solid-state imaging device is for visible light and near-infrared light imaging. .

本発明によれば、第1固体撮像素子と第2固体撮像素子とを入射光の同一光軸上に直列に並べて重ね合わせる構成のため、ビームスプリッタ等が不要となり小型軽量化を図ることができ、同一被写体の2つの画像を同時に撮像することが可能となる。また、第1固体撮像素子を透過した光を第2固体撮像素子が光電変換する構成のため、光利用効率が高くなる。   According to the present invention, since the first solid-state imaging device and the second solid-state imaging device are arranged in series on the same optical axis of the incident light and overlapped, a beam splitter or the like is not required, and a reduction in size and weight can be achieved. It is possible to simultaneously capture two images of the same subject. In addition, since the light transmitted through the first solid-state imaging device is converted by the second solid-state imaging device, the light use efficiency is increased.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る複合型固体撮像素子の要部断面模式図である。図示する実施形態の複合型固体撮像素子100は、図2に示すCCDタイプの裏面照射型固体撮像素子1と、図3に示すCMOSタイプの裏面照射型固体撮像素子2とを、図1に示すスペーサ3を介して貼り合わせることで構成されている。実際には、多数の固体撮像素子1を製造した半導体ウェハと、多数の固体撮像素子2を製造した半導体ウェハとを、スペーサ3を介して貼り合わせ、個々の複合型固体撮像素子100をダイシングして個片化することで製造される。   FIG. 1 is a schematic cross-sectional view of an essential part of a composite solid-state imaging device according to an embodiment of the present invention. A composite type solid-state imaging device 100 of the illustrated embodiment includes a CCD-type back-illuminated solid-state imaging device 1 shown in FIG. 2 and a CMOS-type back-illuminated solid-state imaging device 2 shown in FIG. It is comprised by bonding through the spacer 3. In practice, a semiconductor wafer on which a large number of solid-state image sensors 1 are manufactured and a semiconductor wafer on which a large number of solid-state image sensors 2 are manufactured are bonded together via spacers 3 and each composite solid-state image sensor 100 is diced. It is manufactured by dividing it into individual pieces.

2枚の半導体ウェハをスペーサを介して貼り合わせる技術としては、例えば三菱重工技報VOL.43 No.1:2006の51頁「MEMSデバイスの高効率・低コスト生産に貢献するウェハ常温接合装置」後藤崇之等に記載されている技術などがある。   As a technique for bonding two semiconductor wafers through a spacer, for example, Mitsubishi Heavy Industries Technical Report VOL. 43 No. 1: 2006, page 51 “Wafer Room Temperature Bonding Equipment Contributing to High-Efficiency and Low-Cost Production of MEMS Devices”, and the technology described in Takayuki Goto et al.

尚、図1に示す実施形態では、CCDタイプとCMOSタイプとを貼り合わせているが、両方ともCCDタイプでも良く、また、両方ともCMOSタイプでも良い。あるいは別のタイプの固体撮像素子を貼り合わせても良い。また、CCDタイプには、インターライントランスファ型やフレームトランスファー型,フルフレーム型などがあるが、そのCCDタイプでもよい。   In the embodiment shown in FIG. 1, the CCD type and the CMOS type are bonded together, but both may be a CCD type or both may be a CMOS type. Alternatively, another type of solid-state imaging device may be bonded. The CCD type includes an interline transfer type, a frame transfer type, a full frame type, and the like.

図2に示すCCDタイプの裏面照射型固体撮像素子1はインターライン型CCDであり、p型半導体基板20の表面側に垂直電荷転送路(VCCD)21とフォトダイオード(光電変換素子)22とが形成され、裏面側に、カラーフィルタ(赤(R),緑(G),青(B))層23及びマイクロレンズ24が積層される。   2 is an interline type CCD, and a vertical charge transfer path (VCCD) 21 and a photodiode (photoelectric conversion element) 22 are provided on the surface side of a p-type semiconductor substrate 20. The color filter (red (R), green (G), blue (B)) layer 23 and the microlens 24 are laminated on the back side.

半導体基板20の裏面側表面部には高濃度p層25が形成され、このp層25が接地される。高濃度p層25の上には入射光に対して透明な酸化シリコンや窒化シリコン等の絶縁層26が積層され、その上に、窒化シリコンやダイヤモンド構造炭素膜等の入射光に対して透明な高屈折率層27が反射防止層として積層され、その上に、カラーフィルタ層23,マイクロレンズ(トップレンズ)層24が順に積層される。各マイクロレンズ24は、対向する位置に設けられた対応のフォトダイオード(光電変換素子)22の中心に焦点が合うように形成される。   A high-concentration p-layer 25 is formed on the rear surface side surface portion of the semiconductor substrate 20, and this p-layer 25 is grounded. An insulating layer 26 such as silicon oxide or silicon nitride that is transparent to incident light is laminated on the high-concentration p layer 25, and transparent to incident light such as silicon nitride or diamond structure carbon film. A high refractive index layer 27 is stacked as an antireflection layer, and a color filter layer 23 and a microlens (top lens) layer 24 are sequentially stacked thereon. Each microlens 24 is formed so as to be focused on the center of a corresponding photodiode (photoelectric conversion element) 22 provided at an opposing position.

カラーフィルタ層23は画素(フォトダイオード)単位に区画され、カラーフィルタ層23の半導体基板20側の隣接区画間には、画素間の混色を防ぐための遮光部材28が設けられる。この遮光部材28は、裏面から入射する被写界光が垂直電荷転送路21に裏面側から浸入するのも阻止する。   The color filter layer 23 is partitioned in units of pixels (photodiodes), and a light shielding member 28 for preventing color mixture between the pixels is provided between adjacent partitions of the color filter layer 23 on the semiconductor substrate 20 side. The light shielding member 28 also prevents the object light incident from the back surface from entering the vertical charge transfer path 21 from the back surface side.

半導体基板20の表面側に形成される垂直電荷転送路(VCCD)21は、高濃度n層の埋め込みチャネル31と、半導体基板20の表面側最表面に形成されたシリコン酸化膜やONO(酸化膜―窒化膜―酸化膜)構造の絶縁膜でなるゲート絶縁層32を介して積層された転送電極膜33とで構成される。   A vertical charge transfer path (VCCD) 21 formed on the surface side of the semiconductor substrate 20 includes a buried channel 31 of a high concentration n layer and a silicon oxide film or ONO (oxide film) formed on the outermost surface side of the semiconductor substrate 20. (Transfer electrode film 33) laminated with a gate insulating layer 32 made of an insulating film of (nitride film-oxide film) structure.

垂直電荷転送路21は、図示しない水平電荷転送路(HCCD)が延びる方向に対して垂直方向に延びる様に形成され、且つ、複数本の垂直電荷転送路21が形成される。そして、隣接する垂直電荷転送路21間に、垂直電荷転送路21に沿う方向に複数のn領域(フォトダイオード)22が所定ピッチで形成される。   The vertical charge transfer path 21 is formed so as to extend in a direction perpendicular to a direction in which a horizontal charge transfer path (HCCD) (not shown) extends, and a plurality of vertical charge transfer paths 21 are formed. A plurality of n regions (photodiodes) 22 are formed at a predetermined pitch in the direction along the vertical charge transfer path 21 between the adjacent vertical charge transfer paths 21.

信号電荷の蓄積領域となるフォトダイオード22の表面側の表面部には暗電流抑制用の薄いp型高濃度表面層38が形成され、表面層38の中央表面部に、コンタクト部としてn層39が形成される。 A thin p-type high-concentration surface layer 38 for suppressing dark current is formed on the surface portion of the photodiode 22 serving as a signal charge accumulation region, and an n + layer as a contact portion is formed on the central surface portion of the surface layer 38. 39 is formed.

垂直電荷転送路21の埋め込みチャネル(n層)31の下には基板20よりp濃度の高いp層41が形成されており、このn層31及びp層41と、図示の例では右隣のフォトダイオード22との間に、素子分離帯としてのp領域43が形成される。 A p layer 41 having a p concentration higher than that of the substrate 20 is formed under the buried channel (n + layer) 31 of the vertical charge transfer path 21. The n layer 31 and the p layer 41 are adjacent to the right side in the illustrated example. A p + region 43 as an element isolation band is formed between the photodiode 22 and the photodiode 22.

垂直電荷転送路21の埋め込みチャネル31の下に形成されたp層41は、図示の例では左隣のn領域22の表面端部の上まで延び、この端部分のp表面層38は、n領域22の右端面位置より後退した位置になっている。そして、転送電極膜33の左端面は、p層41の左端面まで重なる様に延設され、n領域22と、転送電極膜33及びp層41の表面端部とが若干オーバーラップする構成になっている。 The p layer 41 formed below the buried channel 31 of the vertical charge transfer path 21 extends to the upper surface end portion of the n region 22 on the left side in the illustrated example, and the p + surface layer 38 at this end portion is The position is set backward from the position of the right end surface of the n region 22. The left end surface of the transfer electrode film 33 extends so as to overlap with the left end surface of the p layer 41, and the n region 22 and the surface end portions of the transfer electrode film 33 and the p layer 41 slightly overlap. It has become.

この様なオーバーラップ構成が可能なのは、裏面照射型では半導体基板20の表面側に面積的な余裕があるためである。被写体からの入射光が、基板20の表面側から入射する表面照射型イメージセンサでは、開口を確保するため面積的余裕がなく、転送電極膜の端部をフォトダイオード上部へ延設するのが容易でないが、裏面照射型では容易となる。   Such an overlap configuration is possible because the back-illuminated type has an area margin on the front surface side of the semiconductor substrate 20. In a front-illuminated image sensor in which incident light from a subject enters from the front side of the substrate 20, there is no area margin to secure an opening, and it is easy to extend the end of the transfer electrode film above the photodiode. However, the backside illumination type is easy.

本実施形態の様に、転送電極膜33とn領域22との間にp層41を介在させると、転送電極膜(読出電極兼用)33に印加する読出電圧の低電圧化を図ることができ、CCD型固体撮像素子の低消費電力化を図ることが可能となる。   If the p layer 41 is interposed between the transfer electrode film 33 and the n region 22 as in this embodiment, the read voltage applied to the transfer electrode film (also used as the read electrode) 33 can be reduced. Thus, it is possible to reduce the power consumption of the CCD solid-state imaging device.

半導体基板20の最表面に形成される絶縁層32の上に例えばポリシリコン膜でなる転送電極膜33が形成され、その上に、2酸化シリコン等の絶縁層45が積層される。そして、n層39の上の絶縁層32,45に開口が開けられ、この開口がタングステン等の金属材料で埋められることでコンタクト部39に接続される配線46が形成される。各配線46は固体撮像素子1の外部に引き出され、裏面照射型固体撮像素子1のオーバーフロードレインとして機能する。 A transfer electrode film 33 made of, for example, a polysilicon film is formed on the insulating layer 32 formed on the outermost surface of the semiconductor substrate 20, and an insulating layer 45 such as silicon dioxide is stacked thereon. Then, openings are formed in the insulating layers 32 and 45 on the n + layer 39, and the openings 46 are filled with a metal material such as tungsten, whereby the wiring 46 connected to the contact portion 39 is formed. Each wiring 46 is drawn out of the solid-state imaging device 1 and functions as an overflow drain of the back-illuminated solid-state imaging device 1.

斯かる構成の裏面照射型固体撮像素子1で被写体画像を撮像する場合、被写界からの入射光は、半導体基板20の裏面側から入射する。この入射光はマイクロレンズ24で集光され、カラーフィルタ層23を通り、半導体基板20内に浸入する。   When a subject image is picked up by the backside illumination type solid-state imaging device 1 having such a configuration, incident light from the object scene enters from the backside of the semiconductor substrate 20. The incident light is collected by the microlens 24, passes through the color filter layer 23, and enters the semiconductor substrate 20.

マイクロレンズ24で集光された光が半導体基板1内に入射すると、この入射光は当該マイクロレンズ24及びカラーフィルタ23に対応するフォトダイオード22の方向に集光しながら進み、半導体基板20に光吸収され、光電変換されて正孔電子対が発生する。発生した正孔は、p層25を通しアースに廃棄される。   When the light condensed by the microlens 24 enters the semiconductor substrate 1, the incident light travels while condensing in the direction of the photodiode 22 corresponding to the microlens 24 and the color filter 23, and enters the semiconductor substrate 20. It is absorbed and photoelectrically converted to generate hole electron pairs. The generated holes are discarded to the ground through the p layer 25.

各画素の光電変換領域(p層25からn領域22までの領域)で発生した電子は、当該画素におけるn領域22に蓄積され、読出電極兼用の転送電極膜33に読出電圧が印加されると、n領域22から、図示する例では右隣の埋め込みチャネル31に読み出される。以後、垂直電荷転送路21に沿って水平電荷転送路(図示せず)まで転送され、水平電荷転送路に沿ってアンプまで転送され、アンプが信号電荷量に応じた電圧値信号を撮像画像信号として出力する。   Electrons generated in the photoelectric conversion region (region from the p layer 25 to the n region 22) of each pixel are accumulated in the n region 22 in the pixel, and when a read voltage is applied to the transfer electrode film 33 serving as a read electrode. , N region 22 is read out to buried channel 31 on the right in the illustrated example. Thereafter, the signal is transferred along the vertical charge transfer path 21 to the horizontal charge transfer path (not shown), transferred along the horizontal charge transfer path to the amplifier, and the amplifier outputs a voltage value signal corresponding to the signal charge amount to the captured image signal. Output as.

図3に示すCMOSタイプの固体撮像素子2は、p型半導体基板50に製造される。p型半導体基板50の裏面側にはアースに接続される高濃度p型不純物層51が形成され、その裏面側表面には、2酸化シリコン等の絶縁層52が形成される。   A CMOS type solid-state imaging device 2 shown in FIG. 3 is manufactured on a p-type semiconductor substrate 50. A high-concentration p-type impurity layer 51 connected to the ground is formed on the back side of the p-type semiconductor substrate 50, and an insulating layer 52 such as silicon dioxide is formed on the back side surface.

p型半導体基板50の表面側には、フォトダイオードを構成するn領域53が形成され、その表面に、暗電流抑制用の高濃度p型表面層54が形成される。図示する例では、n領域53及び表面層54の左隣には基板50より不純物濃度が高いp領域55が形成され、素子分離領域として機能する。   An n region 53 constituting a photodiode is formed on the surface side of the p-type semiconductor substrate 50, and a high-concentration p-type surface layer 54 for suppressing dark current is formed on the surface. In the illustrated example, a p region 55 having an impurity concentration higher than that of the substrate 50 is formed on the left side of the n region 53 and the surface layer 54 and functions as an element isolation region.

n領域53の右隣には若干離間した位置にドレインとなるn領域57が形成され、その下部に基板50より不純物濃度が高いp領域58が形成される。このp領域58は、図示の例では左隣のn領域53の表面端部の上まで延び、この端部分のp表面層54は、n領域53の右端面位置より後退した位置になっている。そして、n領域53とp領域58とが若干オーバーラップする構成になっている。このオーバーラップ構成は、図2のp領域41のオーバーラップ構成と同様に、読出電圧の低電圧化を図るためである。 An n region 57 serving as a drain is formed at a position slightly adjacent to the right of the n region 53, and a p region 58 having an impurity concentration higher than that of the substrate 50 is formed below the n region 57. In the illustrated example, the p region 58 extends to above the surface end portion of the n region 53 adjacent to the left, and the p + surface layer 54 at the end portion is located at a position recessed from the right end surface position of the n region 53. Yes. The n region 53 and the p region 58 slightly overlap each other. This overlap configuration is intended to reduce the read voltage similarly to the overlap configuration of the p region 41 in FIG.

n領域57の表面中央部分にはコンタクト部としての高濃度n領域59が形成され、n領域57及びp領域58の右隣には、図示しない右側のn領域53と素子分離を行うp領域55が設けられる。   A high-concentration n region 59 as a contact portion is formed at the center of the surface of the n region 57, and a p region 55 that performs element isolation with the right n region 53 (not shown) is adjacent to the right side of the n region 57 and the p region 58. Is provided.

p型半導体基板50の表面側最表面には、2酸化シリコン等のゲート絶縁膜61が形成され、n領域57の左端から上記オーバーラップしたp領域58の左端までの絶縁膜61の上に、ポリシリコンでなるゲート電極膜62が形成される。   A gate insulating film 61 such as silicon dioxide is formed on the outermost surface of the p-type semiconductor substrate 50. On the insulating film 61 from the left end of the n region 57 to the left end of the overlapped p region 58, A gate electrode film 62 made of polysilicon is formed.

ゲート電極膜62及び絶縁膜61の上には絶縁層63が形成され、この中にCMOSイメージセンサ等で用いられる3層配線64が埋設される。また、3層配線64と、コンタクト部59及びゲート電極膜62とは夫々配線65,66で接続される。   An insulating layer 63 is formed on the gate electrode film 62 and the insulating film 61, and a three-layer wiring 64 used in a CMOS image sensor or the like is embedded therein. Further, the three-layer wiring 64, the contact portion 59, and the gate electrode film 62 are connected by wirings 65 and 66, respectively.

斯かるCMOSタイプの裏面照射型固体撮像素子2に裏面側から被写界光が入射すると、入射光は基板50に吸収されて正孔電子対が発生する。正孔は高濃度p型層51からアースに廃棄され、電子は、n領域53に蓄積される。   When the field light is incident on the CMOS back-illuminated solid-state imaging device 2 from the back side, the incident light is absorbed by the substrate 50 to generate hole electron pairs. Holes are discarded from the high-concentration p-type layer 51 to the ground, and electrons are accumulated in the n region 53.

n領域53の蓄積電荷は、ゲート電極膜62に読み出し電圧が印加されると対応のドレイン57に読み出され、この電荷量に応じた撮像画像信号が3層配線64により素子2の外部に読み出される。   The accumulated charge in the n region 53 is read out to the corresponding drain 57 when a read voltage is applied to the gate electrode film 62, and a captured image signal corresponding to this charge amount is read out of the element 2 by the three-layer wiring 64. It is.

本実施形態の複合型固体撮像素子100は、図1に示す様に、上述したCCDタイプの裏面照射型固体撮像素子1の上(表面側)に、スペーサ3を介して、CMOSタイプの裏面照射型固体撮像素子2を貼り合わせることで構成される。   As shown in FIG. 1, the composite solid-state imaging device 100 of the present embodiment has a CMOS-type backside illumination on the CCD-type backside-illuminated solid-state imaging device 1 (on the front side) via a spacer 3. This is configured by attaching the solid-state solid-state imaging device 2 together.

図示する例では、固体撮像素子1の画素(n領域22)ピッチに対して固体撮像素子2の画素(n領域53)ピッチを2倍とし、固体撮像素子2の素子分離領域55を、固体撮像素子1の遮光部材28に整列させて設けているが、両固体撮像素子1,2の画素ピッチを等ピッチとしたり、3倍以上の整数倍とすることでも良い。   In the illustrated example, the pixel (n region 53) pitch of the solid-state image sensor 2 is doubled with respect to the pixel (n region 22) pitch of the solid-state image sensor 1, and the element separation region 55 of the solid-state image sensor 2 is solid-state imaged. Although arranged in alignment with the light-shielding member 28 of the element 1, the pixel pitch of both the solid-state imaging elements 1 and 2 may be equal pitch, or may be an integer multiple of 3 times or more.

被写体からの入射光は、紫外光から可視光,近赤外光,赤外光まで及ぶ。シリコンなどの半導体基板は、光吸収係数の波長依存性があり、波長が短い光は侵入距離の浅い部分で多く吸収されて正孔電子対が発生し、波長が長い光は侵入距離の深い部分で大きく吸収されて正孔電子対が発生する。   Incident light from the subject ranges from ultraviolet light to visible light, near infrared light, and infrared light. A semiconductor substrate such as silicon has a wavelength dependency of a light absorption coefficient. Light with a short wavelength is absorbed in a portion with a shallow penetration distance to generate a hole electron pair, and light with a long wavelength is a portion with a deep penetration distance. The hole electron pair is generated due to the large absorption at.

従って、図1に示す複合型固体撮像素子100を構成する固体撮像素子1の厚さ(光電変換素子として機能する半導体部分の厚さ)を薄くしておくと、固体撮像素子1は、可視光の半分位の光を吸収して被写体の画像を撮像するが、可視光のうちの残り半分位の光は固体撮像素子1を透過して固体撮像素子2に漏れ込み、固体撮像素子2は可視光の被写体画像を撮像することができる。   Accordingly, if the thickness of the solid-state image sensor 1 constituting the composite solid-state image sensor 100 shown in FIG. 1 (thickness of the semiconductor portion functioning as a photoelectric conversion element) is reduced, the solid-state image sensor 1 becomes visible light. However, the remaining half of the visible light passes through the solid-state image sensor 1 and leaks into the solid-state image sensor 2, and the solid-state image sensor 2 is visible. A light subject image can be captured.

固体撮像素子2の厚さ(光電変換素子として機能する半導体部分の厚さ)が薄ければ、近赤外光や赤外光は固体撮像素子2も透過してしまうことになるが、固体撮像素子2の厚さを厚くしておけば、固体撮像素子2は、近赤外光や赤外光による被写体画像を撮像することができる。   If the thickness of the solid-state image sensor 2 (thickness of the semiconductor portion functioning as a photoelectric conversion element) is thin, near-infrared light and infrared light will also be transmitted through the solid-state image sensor 2. If the thickness of the element 2 is increased, the solid-state imaging element 2 can capture a subject image using near infrared light or infrared light.

このため、固体撮像素子1や固体撮像素子2の夫々の厚さ(同上)は、どの様な波長域の被写体画像を撮像するかによって設計することになる。例えば、固体撮像素子1の厚さ(同上)を1μm未満や0.5μm未満とする(カバーガラスやマイクロレンズやフィルタ等の光学特性をその波長帯に合わせたものにする)ことで、光入射側に配置される固体撮像素子1は、近紫外光や紫外光の被写体画像を撮像することができ、固体撮像素子2に透過する可視光の光量を増大させることができる。   For this reason, the thickness (same as above) of each of the solid-state imaging device 1 and the solid-state imaging device 2 is designed depending on what wavelength range the subject image is captured. For example, by making the thickness (same as above) of the solid-state imaging device 1 less than 1 μm or less than 0.5 μm (by making optical characteristics of the cover glass, microlens, filter, etc. suitable for the wavelength band), light incidence The solid-state imaging device 1 disposed on the side can capture a subject image of near-ultraviolet light or ultraviolet light, and can increase the amount of visible light transmitted through the solid-state imaging device 2.

図1に示す実施形態の複合型固体撮像素子100では、固体撮像素子1で被写体の可視光像を静止画像として撮像し、固体撮像素子2で、被写体の近赤外光像や赤外光像を動画像として撮像する構成にしている。   In the composite solid-state imaging device 100 of the embodiment shown in FIG. 1, the solid-state imaging device 1 captures a visible light image of a subject as a still image, and the solid-state imaging device 2 captures a near-infrared light image or an infrared light image of the subject. Is taken as a moving image.

このため、固体撮像素子1の厚さ(p層25からn領域22までの距離)を3〜5μmとし、固体撮像素子2の厚さを5μm以上や10μm以上(例えば20〜30μm)としている。   Therefore, the thickness of the solid-state imaging device 1 (distance from the p layer 25 to the n region 22) is set to 3 to 5 μm, and the thickness of the solid-state imaging device 2 is set to 5 μm or more or 10 μm or more (for example, 20 to 30 μm).

例えば、デジタルカメラで静止画像を撮像する場合、固体撮像素子から静止画像を取り込む前に、固体撮像素子から動画状態で出力される撮像画像データを用いて、AE(自動露出)処理やAF(自動焦点)処理等を行うのが普通である。そこで、本実施形態の複合型固体撮像素子100では、CMOSタイプの裏面照射型固体撮像素子2の出力信号を用いてAE処理やAF処理を行い、CCDタイプの裏面照射型固体撮像素子1で静止画像の撮像を行う。   For example, when a still image is captured by a digital camera, AE (automatic exposure) processing or AF (automatic) is performed using captured image data output in a moving image state from the solid-state image sensor before capturing the still image from the solid-state image sensor. It is usual to perform focus processing. Therefore, in the composite solid-state imaging device 100 of the present embodiment, AE processing and AF processing are performed using the output signal of the CMOS type back-illuminated solid-state imaging device 2, and the CCD-type back-illuminated solid-state imaging device 1 is stationary. Take an image.

このとき問題となるのは、入射光の結像位置(焦点位置)が、波長依存性を持つことである。短波長の光の焦点位置は手前となり、長波長の焦点位置は奥の方となる。つまり、図1に示す固体撮像素子1の光電変換領域に被写体入射光(可視光)の焦点位置が合うようにしても、このとき、固体撮像素子2の光電変換領域に被写体入射光(近赤外光)の焦点位置が合わなければ、固体撮像素子2の出力を用いてAF処理を行っても、固体撮像素子1は被写体のピンボケな静止画像しか撮像できなくなってしまう。   The problem at this time is that the imaging position (focal position) of the incident light has wavelength dependency. The focal position of the short wavelength light is in front, and the focal position of the long wavelength is in the back. That is, even if the subject incident light (visible light) is focused on the photoelectric conversion region of the solid-state image sensor 1 shown in FIG. If the focus position of (external light) does not match, even if AF processing is performed using the output of the solid-state imaging device 2, the solid-state imaging device 1 can only capture a defocused still image of the subject.

そこで、本実施形態の複合型固体撮像素子100では、固体撮像素子1の光電変換対象波長域の中心波長における焦点位置を固体撮像素子1の光電変換領域に合わせたとき、固体撮像素子2の光電変換対象波長域の中心波長における焦点位置が固体撮像素子2の光電変換領域に合うように、焦点調整用の透明なスペーサ3を介挿している。このスペーサ3に、光学的フィルタ機能を持たせることも可能である。   Therefore, in the composite solid-state imaging device 100 of the present embodiment, when the focal position at the center wavelength of the photoelectric conversion target wavelength region of the solid-state imaging device 1 is matched with the photoelectric conversion region of the solid-state imaging device 1, the photoelectric of the solid-state imaging device 2 is detected. A transparent spacer 3 for focus adjustment is inserted so that the focal position at the center wavelength of the conversion target wavelength region matches the photoelectric conversion region of the solid-state imaging device 2. The spacer 3 can also have an optical filter function.

図1に示す複合型固体撮像素子100で、固体撮像素子1,2共に可視光像を撮像できる厚さに設計した場合、静止画像を撮像する固体撮像素子1の個々の画素22には異なる色のカラーフィルタ23が設けられているためカラーの静止画像を撮像できる。   When the composite solid-state imaging device 100 shown in FIG. 1 is designed to have a thickness that allows the solid-state imaging devices 1 and 2 to capture a visible light image, the individual pixels 22 of the solid-state imaging device 1 that captures a still image have different colors. Since the color filter 23 is provided, a color still image can be taken.

しかし、固体撮像素子2の各画素53は、4つの画素22の異なる色のカラーフィルタを通した光が混色して入射するため、カラーの動画像を撮像することはできず、モノクロの動画像しか撮像できない。勿論、AE処理,AF処理だけであれば問題ないが、カラーの動画像を撮像したい場合には、4つの画素22のカラーフィルタのうちの一色を選択するカラーフィルタをスペーサ3に設けることで、カラーの動画像を撮像することが可能となる。   However, since each pixel 53 of the solid-state imaging device 2 is mixed with light that has passed through the color filters of different colors of the four pixels 22, a color moving image cannot be captured, and a monochrome moving image cannot be captured. I can only take images. Of course, there is no problem if only AE processing and AF processing are performed, but when a color moving image is to be captured, a color filter for selecting one of the color filters of the four pixels 22 is provided in the spacer 3, A color moving image can be captured.

以上述べた様に、上述した実施形態では、2つの固体撮像素子を貼り合わせて複合型固体撮像素子を製造したため、同一被写体の2つの画像を同時に撮像することが可能となる。しかも、入射光の光路を分割するハーフミラーなどを用いていないため、カメラに搭載したとき小型軽量化を図ることが可能となる。しかも、入射光の多くを半導体基板に吸収して光電変換するため、光利用効率が高く、明るい画像を撮像することができる。   As described above, in the above-described embodiment, since a composite solid-state image sensor is manufactured by bonding two solid-state image sensors, it is possible to simultaneously capture two images of the same subject. In addition, since a half mirror that divides the optical path of incident light is not used, it is possible to reduce the size and weight when mounted on a camera. In addition, since much of the incident light is absorbed by the semiconductor substrate and subjected to photoelectric conversion, light utilization efficiency is high and a bright image can be taken.

また、上述した実施形態では、光入射側に配置した固体撮像素子1をCCDタイプとしたため、高S/Nの静止画像を撮像することができ、固体撮像素子1を透過した入射光を受光する固体撮像素子2をランダムアクセス可能なCMOSタイプとしたため、AE処理,AF処理を高速に行うことが可能となる。   In the above-described embodiment, since the solid-state imaging device 1 arranged on the light incident side is a CCD type, a high S / N still image can be taken and incident light transmitted through the solid-state imaging device 1 is received. Since the solid-state imaging device 2 is a random access CMOS type, AE processing and AF processing can be performed at high speed.

尚、上述した実施形態では、固体撮像素子1,2共に裏面照射型としているが、これに限るものではない。半導体基板の光入射面の側にフォトダイオードを設けた表面照射型は、光電変換領域が浅くなるため短波長領域の入射光しか利用できず、光利用効率が低い。このため、固体撮像素子1,2共に表面照射型にすると、上述した固体撮像素子1,2の厚さの設計の自由度がなくなってしまう。   In the above-described embodiment, the solid-state imaging devices 1 and 2 are both back-illuminated, but the present invention is not limited to this. The surface irradiation type in which a photodiode is provided on the light incident surface side of the semiconductor substrate can use only incident light in a short wavelength region because the photoelectric conversion region becomes shallow, and the light utilization efficiency is low. For this reason, if the solid-state imaging devices 1 and 2 are both of the surface irradiation type, the degree of freedom in designing the thickness of the solid-state imaging devices 1 and 2 described above is lost.

これに対し、裏面照射型は、半導体基板に入射した光の光電変換領域を深くとることができるため光利用効率が高く、また、上述した厚さの設計の自由度が広くなる。このため、固体撮像素子1,2の少なくとも一方を裏面照射型とするのが良い。   On the other hand, the back-illuminated type can take a deep photoelectric conversion region of light incident on the semiconductor substrate, so that the light use efficiency is high, and the above-described thickness design flexibility is widened. For this reason, it is preferable that at least one of the solid-state imaging devices 1 and 2 is a back-illuminated type.

また、CMOSタイプの固体撮像素子は、配線層が3層配線となるので、3層配線が入射光の光路に入らない様にするのが好ましく、図1に示す実施形態の様に、固体撮像素子2をCMOSタイプとして、且つ裏面照射型とするのが良い。   Further, in the CMOS type solid-state imaging device, since the wiring layer is a three-layer wiring, it is preferable to prevent the three-layer wiring from entering the optical path of the incident light, and as in the embodiment shown in FIG. The element 2 is preferably a CMOS type and a back-illuminated type.

尚、図1に示した複合型固体撮像素子100において、マイクロレンズ24から絶縁膜61に至るまでの間に設けられた構成部材の多くは半導体製あるいは酸化膜等であるため光透過性を有するが、遮光部材28とオーバーフロードレイン用電極46は金属であるため光透過性が無い。特に第2固体撮像素子2への光路中に存在する電極46は光が当たると光を散乱させるため、図示の例では、n領域53の真下に電極46を設けているが、この電極46を、n領域53への光路からなるべく避ける位置に設けるのが良いことは勿論である。   In the composite solid-state imaging device 100 shown in FIG. 1, since most of the constituent members provided between the microlens 24 and the insulating film 61 are made of a semiconductor or an oxide film, they have light transmittance. However, since the light shielding member 28 and the overflow drain electrode 46 are made of metal, they do not transmit light. In particular, since the electrode 46 existing in the optical path to the second solid-state imaging device 2 scatters light when it hits, in the illustrated example, the electrode 46 is provided directly under the n region 53. Needless to say, it should be provided at a position avoiding the optical path to the n region 53 as much as possible.

本発明に係る複合型固体撮像素子は、小型軽量な固体撮像素子で被写体の2つの画像を同時に撮像することができるため、デジタルカメラ等に搭載すると有用である。   The composite solid-state imaging device according to the present invention is useful when mounted on a digital camera or the like because it can simultaneously capture two images of a subject with a small and lightweight solid-state imaging device.

本発明の一実施形態に係る複合型固体撮像素子の断面模式図である。1 is a schematic cross-sectional view of a composite solid-state imaging device according to an embodiment of the present invention. 図1に示す複合型固体撮像素子を構成するCCDタイプの裏面照射型固体撮像素子の断面模式図である。FIG. 2 is a schematic cross-sectional view of a CCD-type back-illuminated solid-state image sensor constituting the composite solid-state image sensor shown in FIG. 1. 図1に示す複合型固体撮像素子を構成するCMOSタイプの裏面照射型固体撮像素子の断面模式図である。FIG. 2 is a schematic cross-sectional view of a CMOS-type back-illuminated solid-state image sensor constituting the composite solid-state image sensor shown in FIG. 1.

符号の説明Explanation of symbols

1 CCDタイプの裏面照射型固体撮像素子
2 CMOSタイプの裏面照射型固体撮像素子
3 焦点距離調整用のスペーサ
20,50 p型半導体基板
21 垂直電荷転送路(VCCD)
22,53 フォトダイオードを構成するn領域
23 カラーフィルタ
24 マイクロレンズ
25,51 高濃度p型不純物層
57 ドレイン(n領域)
64 3層配線
100 複合型固体撮像素子
DESCRIPTION OF SYMBOLS 1 CCD type back-illuminated solid-state image sensor 2 CMOS type back-illuminated solid-state image sensor 3 Focal length adjustment spacers 20 and 50 p-type semiconductor substrate 21 Vertical charge transfer path (VCCD)
22, 53 n region 23 constituting photodiode 23 color filter 24 micro lens 25, 51 high concentration p-type impurity layer 57 drain (n region)
64 Three-layer wiring 100 Composite type solid-state imaging device

Claims (12)

入射光を受光し光電変換する第1固体撮像素子と、該第1固体撮像素子を透過した光を受光し光電変換する第2固体撮像素子とを重ね合わせて構成したことを特徴とする複合型固体撮像素子。   A composite type comprising a first solid-state imaging device that receives incident light and performs photoelectric conversion and a second solid-state imaging device that receives and photoelectrically converts light transmitted through the first solid-state imaging device. Solid-state image sensor. 前記第1固体撮像素子および前記第2固体撮像素子の少なくとも一方を裏面照射型固体撮像素子としたことを特徴とする請求項1に記載の複合型固体撮像素子。   2. The composite solid-state image sensor according to claim 1, wherein at least one of the first solid-state image sensor and the second solid-state image sensor is a back-illuminated solid-state image sensor. 前記第2固体撮像素子の画素ピッチが前記第1固体撮像素子の画素ピッチと等ピッチまたは整数倍で整列して重ね合わされていることを特徴とする請求項1または請求項2に記載の複合型固体撮像素子。   3. The composite type according to claim 1, wherein a pixel pitch of the second solid-state image sensor is aligned and overlapped with a pixel pitch of the first solid-state image sensor at an equal pitch or an integer multiple. Solid-state image sensor. 前記第1固体撮像素子で光電変換する光の中心波長の焦点位置を前記第1固体撮像素子の光電変換領域に合わせたときに前記第2固体撮像素子で光電変換する光の中心波長の焦点位置を該第2固体撮像素子の光電変換領域に合わせる焦点距離調整用スペーサを前記第1固体撮像素子と前記第2固体撮像素子との間に介挿したことを特徴とする請求項1乃至請求項3のいずれかに記載の複合型固体撮像素子。   The focal position of the center wavelength of light photoelectrically converted by the second solid-state image sensor when the focal position of the center wavelength of light photoelectrically converted by the first solid-state image sensor is matched with the photoelectric conversion region of the first solid-state image sensor 2. A focal length adjustment spacer for aligning with a photoelectric conversion region of the second solid-state imaging device is interposed between the first solid-state imaging device and the second solid-state imaging device. 4. The composite solid-state imaging device according to any one of 3 above. 前記焦点距離調整用スペーサが光学フィルタを兼用する構成としたことを特徴とする請求項4に記載の複合型固体撮像素子。   The composite solid-state imaging device according to claim 4, wherein the focal length adjustment spacer also serves as an optical filter. 前記第2固体撮像素子がMOSタイプの裏面照射型固体撮像素子であることを特徴とする請求項1乃至請求項5のいずれかに記載の複合型固体撮像素子。   6. The composite solid-state image pickup device according to claim 1, wherein the second solid-state image pickup device is a MOS type back-illuminated solid-state image pickup device. 前記MOSタイプの裏面照射型固体撮像素子が動画像撮像用もしくはモニタリング用であることを特徴とする請求項6に記載の複合型固体撮像素子。   7. The composite solid-state image pickup device according to claim 6, wherein the MOS type back-illuminated solid-state image pickup device is for moving image pickup or monitoring. 前記第1固体撮像素子がCCDタイプの裏面照射型固体撮像素子であることを特徴とする請求項1乃至請求項7のいずれかに記載の複合型固体撮像素子。   8. The composite solid-state image sensor according to claim 1, wherein the first solid-state image sensor is a CCD type back-illuminated solid-state image sensor. 前記CCDタイプの裏面照射型固体撮像素子が静止画像撮像用であることを特徴とする請求項8に記載の複合型固体撮像素子。 9. The composite solid-state image pickup device according to claim 8, wherein the CCD type back-illuminated solid-state image pickup device is used for still image pickup. 前記第1固体撮像素子が紫外光撮像用であることを特徴とする請求項1乃至請求項9のいずれかに記載の複合型固体撮像素子。   The composite solid-state imaging device according to claim 1, wherein the first solid-state imaging device is for ultraviolet light imaging. 前記第2固体撮像素子が近赤外光撮像用であることを特徴とする請求項1乃至請求項9のいずれかに記載の複合型固体撮像素子。   The composite solid-state imaging device according to claim 1, wherein the second solid-state imaging device is for near-infrared light imaging. 前記第1固体撮像素子が紫外光及び可視光撮像用であり、前記第2固体撮像素子が可視光及び近赤外光撮像用であることを特徴とする請求項1乃至請求項9のいずれかに記載の複合型固体撮像素子。   The first solid-state imaging device is for ultraviolet light and visible light imaging, and the second solid-state imaging device is for visible light and near-infrared light imaging. A composite type solid-state imaging device described in 1.
JP2007064971A 2007-03-14 2007-03-14 Compound type solid-state image pickup element Abandoned JP2008227250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007064971A JP2008227250A (en) 2007-03-14 2007-03-14 Compound type solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007064971A JP2008227250A (en) 2007-03-14 2007-03-14 Compound type solid-state image pickup element

Publications (1)

Publication Number Publication Date
JP2008227250A true JP2008227250A (en) 2008-09-25

Family

ID=39845499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007064971A Abandoned JP2008227250A (en) 2007-03-14 2007-03-14 Compound type solid-state image pickup element

Country Status (1)

Country Link
JP (1) JP2008227250A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764142A (en) * 2008-12-24 2010-06-30 东部高科股份有限公司 Image sensor and manufacturing method thereof
JP2010177605A (en) * 2009-02-02 2010-08-12 Disco Abrasive Syst Ltd Method of manufacturing infrared imaging element
WO2010095374A1 (en) * 2009-02-23 2010-08-26 パナソニック株式会社 Image sensor and image capture device provided with same
JP2011238773A (en) * 2010-05-11 2011-11-24 Panasonic Corp Composite type imaging element and imaging apparatus having the same
JP2013021569A (en) * 2011-07-12 2013-01-31 Univ Of Tokyo Imaging device and imaging apparatus using the same
JP2013187475A (en) * 2012-03-09 2013-09-19 Olympus Corp Solid state imaging device and camera system
WO2014017314A1 (en) 2012-07-24 2014-01-30 ソニー株式会社 Image pickup element, electronic device, and information processing device
JP2014135535A (en) * 2013-01-08 2014-07-24 Olympus Corp Imaging apparatus
JP2015099875A (en) * 2013-11-20 2015-05-28 オリンパス株式会社 Image pickup element
JP2015216171A (en) * 2014-05-08 2015-12-03 オリンパス株式会社 Solid-state image pickup device
WO2016021312A1 (en) * 2014-08-08 2016-02-11 ソニー株式会社 Image capturing device and image capturing element
US9294691B2 (en) 2011-09-06 2016-03-22 Sony Corporation Imaging device, imaging apparatus, manufacturing apparatus and manufacturing method
JP2016062996A (en) * 2014-09-16 2016-04-25 株式会社東芝 Photodetector
US9536923B2 (en) 2012-02-24 2017-01-03 Canon Kabushiki Kaisha Solid-state image pickup device and image pickup system
JP2017121063A (en) * 2017-01-12 2017-07-06 株式会社ニコン Imaging device
CN107105977A (en) * 2015-01-21 2017-08-29 奥林巴斯株式会社 Endoscope apparatus
JP2018139272A (en) * 2017-02-24 2018-09-06 キヤノン株式会社 Imaging element and imaging device
JP2020061759A (en) * 2019-12-19 2020-04-16 株式会社ニコン Imaging device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764142A (en) * 2008-12-24 2010-06-30 东部高科股份有限公司 Image sensor and manufacturing method thereof
JP2010177605A (en) * 2009-02-02 2010-08-12 Disco Abrasive Syst Ltd Method of manufacturing infrared imaging element
WO2010095374A1 (en) * 2009-02-23 2010-08-26 パナソニック株式会社 Image sensor and image capture device provided with same
JP5190537B2 (en) * 2009-02-23 2013-04-24 パナソニック株式会社 Image pickup device and image pickup apparatus including the same
US8593563B2 (en) 2009-02-23 2013-11-26 Panasonic Corporation Imaging device and imaging apparatus including the same
JP2011238773A (en) * 2010-05-11 2011-11-24 Panasonic Corp Composite type imaging element and imaging apparatus having the same
US8654224B2 (en) 2010-05-11 2014-02-18 Panasonic Corporation Composite imaging element and imaging device equipped with same
JP2013021569A (en) * 2011-07-12 2013-01-31 Univ Of Tokyo Imaging device and imaging apparatus using the same
US9294691B2 (en) 2011-09-06 2016-03-22 Sony Corporation Imaging device, imaging apparatus, manufacturing apparatus and manufacturing method
US10115756B2 (en) 2012-02-24 2018-10-30 Canon Kabushiki Kaisha Solid-state image pickup device and image pickup system having light shielding portion with first and second films on respective under face and upper face sides
US9536923B2 (en) 2012-02-24 2017-01-03 Canon Kabushiki Kaisha Solid-state image pickup device and image pickup system
JP2013187475A (en) * 2012-03-09 2013-09-19 Olympus Corp Solid state imaging device and camera system
WO2014017314A1 (en) 2012-07-24 2014-01-30 ソニー株式会社 Image pickup element, electronic device, and information processing device
TWI641120B (en) * 2012-07-24 2018-11-11 日商新力股份有限公司 Imaging element, electronic device and information processing device
EP4057353A2 (en) 2012-07-24 2022-09-14 Sony Group Corporation Imaging element, electronic device, and information processing device
KR102156949B1 (en) * 2012-07-24 2020-09-16 소니 주식회사 Image pickup element, electronic device, and information processing device
US9577012B2 (en) 2012-07-24 2017-02-21 Sony Corporation Imaging element, electronic device, and information processing device
CN104541372A (en) * 2012-07-24 2015-04-22 索尼公司 Image pickup element, electronic device, and information processing device
KR20150037810A (en) * 2012-07-24 2015-04-08 소니 주식회사 Image pickup element, electronic device, and information processing device
JP2014135535A (en) * 2013-01-08 2014-07-24 Olympus Corp Imaging apparatus
WO2015076022A1 (en) * 2013-11-20 2015-05-28 オリンパス株式会社 Image-capturing element
JP2015099875A (en) * 2013-11-20 2015-05-28 オリンパス株式会社 Image pickup element
US10342417B2 (en) 2013-11-20 2019-07-09 Olympus Corporation Image-capturing element
JP2015216171A (en) * 2014-05-08 2015-12-03 オリンパス株式会社 Solid-state image pickup device
US10491791B2 (en) 2014-08-08 2019-11-26 Sony Corporation Imaging apparatus and image sensor
WO2016021312A1 (en) * 2014-08-08 2016-02-11 ソニー株式会社 Image capturing device and image capturing element
JP2016062996A (en) * 2014-09-16 2016-04-25 株式会社東芝 Photodetector
CN107105977A (en) * 2015-01-21 2017-08-29 奥林巴斯株式会社 Endoscope apparatus
JP2017121063A (en) * 2017-01-12 2017-07-06 株式会社ニコン Imaging device
JP2018139272A (en) * 2017-02-24 2018-09-06 キヤノン株式会社 Imaging element and imaging device
JP7071055B2 (en) 2017-02-24 2022-05-18 キヤノン株式会社 Image sensor and image sensor
JP2020061759A (en) * 2019-12-19 2020-04-16 株式会社ニコン Imaging device

Similar Documents

Publication Publication Date Title
JP2008227250A (en) Compound type solid-state image pickup element
KR101893325B1 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
JP4751865B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
JP4866656B2 (en) Photoelectric conversion film stacked color solid-state imaging device
JP4950703B2 (en) Solid-state image sensor
US7990444B2 (en) Solid-state imaging device and camera
US7535073B2 (en) Solid-state imaging device, camera module and electronic equipment module
US7859027B2 (en) Back irradiating type solid state imaging device
JP5793688B2 (en) Solid-state imaging device
JP4599417B2 (en) Back-illuminated solid-state image sensor
WO2014156933A1 (en) Imaging element and imaging device
JP4667408B2 (en) Manufacturing method of back-illuminated solid-state imaging device
JP2015106621A (en) Solid-state imaging element and manufacturing method, and electronic equipment
JP6724212B2 (en) Solid-state image sensor and electronic device
US20120153418A1 (en) Solid-state imaging device and manufacturing method thereof
TWI483391B (en) Solid state camera device
JP4696104B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
JP5504382B2 (en) Solid-state imaging device and imaging apparatus
JP4495949B2 (en) Two-plate color solid-state imaging device and digital camera
WO2010134147A1 (en) Solid state imaging element
JP2014011239A (en) Solid state image pickup device and method for manufacturing the same
JP4677425B2 (en) Solid-state image sensor for imaging color images
JP4751846B2 (en) CCD solid-state imaging device
JP2006323018A (en) Optical module
JP2006186573A (en) Two-board type color solid-state image pickup device and digital camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20100713