JP2010177605A - Method of manufacturing infrared imaging element - Google Patents

Method of manufacturing infrared imaging element Download PDF

Info

Publication number
JP2010177605A
JP2010177605A JP2009021124A JP2009021124A JP2010177605A JP 2010177605 A JP2010177605 A JP 2010177605A JP 2009021124 A JP2009021124 A JP 2009021124A JP 2009021124 A JP2009021124 A JP 2009021124A JP 2010177605 A JP2010177605 A JP 2010177605A
Authority
JP
Japan
Prior art keywords
imaging device
silicon layer
lens
light
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009021124A
Other languages
Japanese (ja)
Other versions
JP5394762B2 (en
Inventor
Kazunao Arai
一尚 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2009021124A priority Critical patent/JP5394762B2/en
Publication of JP2010177605A publication Critical patent/JP2010177605A/en
Application granted granted Critical
Publication of JP5394762B2 publication Critical patent/JP5394762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an infrared imaging element that resolves troubles such that imaging sensitivities vary depending on a light-receiving spot and can obtain stable images. <P>SOLUTION: Thickness distribution of an imaging device chip 40 that is obtained by laminating an optical absorption layer 10 and a silicon layer 20 on a substrate 30 is measured. When a spot exceeding a desired thickness is found, the surface of the silicon layer 20 at the portion is polished and the thickness is reduced. Thereafter, a lens unit 51 having a number of lenses 50 is laminated on the surface of the silicon layer 20 and an imaging element 1 is obtained. The distance from the surface of the lens 50 to the optical absorption layer 10 becomes constant and a stable image can be obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、赤外線撮像素子の製造方法に関する。   The present invention relates to a method for manufacturing an infrared imaging device.

近年のシリコンLSI技術の進歩に伴い、半導体基板上に多数の赤外線検出器を1次元または2次元アレイ状に配置した光電変換回路と信号電荷読み出し用の電荷転送回路とを組み合わせた赤外線固体撮像素子が開発されている。中でも赤外線検出器としてPtSi/p−Siショットキーバリアダイオードを用い、電荷転送回路としてCCD(Charge Coupled Device:電荷結合素子)などを用いた3〜5μm帯用赤外線固体撮像素子は、赤外レンズ、駆動回路、クーラーなどと組み合わせて赤外線カメラとして既に実用化されている(特許文献1等参照)。   Along with recent advances in silicon LSI technology, an infrared solid-state imaging device that combines a photoelectric conversion circuit in which a large number of infrared detectors are arranged in a one-dimensional or two-dimensional array on a semiconductor substrate and a charge transfer circuit for reading signal charges Has been developed. Among them, an infrared solid-state imaging device for 3 to 5 μm band using a PtSi / p-Si Schottky barrier diode as an infrared detector and a CCD (Charge Coupled Device) as a charge transfer circuit is an infrared lens, It has already been put into practical use as an infrared camera in combination with a drive circuit, a cooler, and the like (see Patent Document 1, etc.).

一般に赤外線撮像素子は、図1および図2に示すように、赤外線を吸収する光吸収層10と、赤外線を含む光を透過させるシリコン層20とが、電気信号を出力する基板30の表面側にこの順で積層されて撮像デバイスチップ40が構成され、この撮像デバイスチップ40のシリコン層20に、多数のレンズ50がマトリクス状に配列されたレンズユニット51が貼り合わされた構成である。   In general, as shown in FIGS. 1 and 2, an infrared imaging element includes a light absorbing layer 10 that absorbs infrared light and a silicon layer 20 that transmits light containing infrared light on the surface side of a substrate 30 that outputs an electrical signal. The imaging device chip 40 is configured by stacking in this order, and a lens unit 51 in which a large number of lenses 50 are arranged in a matrix is bonded to the silicon layer 20 of the imaging device chip 40.

この撮像素子1では、レンズユニット51側から撮像対象物の光が入射し、その光は各レンズ50で集光されて赤外線を含む光がシリコン層20を透過し、光吸収層10では赤外線が吸収され、各レンズ50ごとに結像した像の光による明暗を電荷の量に光電変換し、それを順次読み出して画像情報としての電気信号に変換される。   In this imaging device 1, light of the imaging target is incident from the lens unit 51 side, the light is collected by each lens 50, and light including infrared light passes through the silicon layer 20, and infrared light is transmitted through the light absorption layer 10. The light and darkness of the image that is absorbed and imaged for each lens 50 is photoelectrically converted into an amount of electric charge, which is sequentially read out and converted into an electrical signal as image information.

特開平5−206432号公報JP-A-5-206432

ところで、図1および図2に示した従来の撮像素子にあっては、シリコン層20の表面(レンズ50側の面)に微細な凹凸が存在することにより、撮像感度が受光箇所すなわちレンズ50によって異なってしまい、感度が変化して撮像が不安定になる場合があった。   By the way, in the conventional imaging device shown in FIGS. 1 and 2, since there are fine irregularities on the surface of the silicon layer 20 (the surface on the lens 50 side), the imaging sensitivity depends on the light receiving location, that is, the lens 50. In some cases, the sensitivity changes and imaging becomes unstable.

よって本発明は、受光箇所によって撮像感度が異なるといった不具合が解消され、安定した撮像を得ることができる赤外線撮像素子の製造方法を提供することを目的としている。   Therefore, an object of the present invention is to provide a method for manufacturing an infrared imaging device that can solve the problem that the imaging sensitivity varies depending on the light receiving location and can obtain stable imaging.

本発明は、光を集光するレンズと、該レンズで集光された光のうち少なくとも赤外線を透過させるシリコン層と、該シリコン層を透過した赤外線を吸収する光吸収層とを含む撮像素子の製造方法であって、シリコン層に光吸収層が積層された撮像デバイスを得る撮像デバイス製造工程と、該撮像デバイスの厚さ分布を測定する厚さ分布測定工程と、該厚さ分布の測定結果に基づいて撮像デバイスにおける厚さが所望の厚さを超えている箇所を、シリコン層側から選択的に研磨するシリコン層研磨工程と、レンズと光吸収層との間にシリコン層が挟まれる状態に、該レンズを撮像デバイスに積層させるレンズ積層工程とを含むことを特徴としている。   The present invention relates to an imaging device including a lens that collects light, a silicon layer that transmits at least infrared rays of the light collected by the lens, and a light absorption layer that absorbs infrared rays that have passed through the silicon layer. An imaging device manufacturing process for obtaining an imaging device in which a light absorption layer is laminated on a silicon layer, a thickness distribution measuring process for measuring a thickness distribution of the imaging device, and a measurement result of the thickness distribution The silicon layer polishing process for selectively polishing from the silicon layer side where the thickness in the imaging device exceeds the desired thickness based on the above, and a state in which the silicon layer is sandwiched between the lens and the light absorption layer And a lens laminating step of laminating the lens on the imaging device.

本発明では、はじめに得た撮像デバイスの厚さ分布を測定し、所望の厚さを超えている箇所が認められたら、その箇所のシリコン層の表面を研磨して厚さを減じる。この後、シリコン層の表面にレンズを積層して撮像素子を得る。シリコン層の表面を研磨して撮像デバイスの厚さを所望の範囲内におさめる処理をすることにより、レンズの表面から光吸収層までの距離を一定に近付けることができ、このため、レンズの光吸収層に対する集光度を一定とすることができる。したがって光に応じて出力される電気信号に基づく撮像感度が安定し、結果として安定した撮像を得ることができる。   In the present invention, the thickness distribution of the imaging device obtained first is measured, and if a location exceeding the desired thickness is recognized, the surface of the silicon layer at that location is polished to reduce the thickness. Thereafter, a lens is laminated on the surface of the silicon layer to obtain an imaging device. By polishing the surface of the silicon layer to reduce the thickness of the imaging device within a desired range, the distance from the lens surface to the light absorbing layer can be made constant, and thus the lens light The degree of light collection with respect to the absorption layer can be made constant. Therefore, the imaging sensitivity based on the electrical signal output according to the light is stabilized, and as a result, stable imaging can be obtained.

本発明によれば、レンズの表面から光吸収層までの距離が一定に近付けることができ、これにより、受光箇所によって撮像感度が異なるといった不具合が解消され、安定した撮像が得られる赤外線撮像素子を提供することができるといった効果を奏する。   According to the present invention, the distance from the surface of the lens to the light absorption layer can be made constant, thereby eliminating the problem that the imaging sensitivity differs depending on the light receiving location, and an infrared imaging device that can obtain stable imaging. There is an effect that it can be provided.

赤外線撮像素子の構造を模式的に示す斜視図である。It is a perspective view which shows the structure of an infrared imaging element typically. 同断面図である。FIG. 本発明の一実施形態に係る赤外線撮像素子の製造方法の過程を(a)〜(c)の順に示す斜視図である。It is a perspective view which shows the process of the manufacturing method of the infrared imaging element which concerns on one Embodiment of this invention in order of (a)-(c).

以下、図3を参照して本発明の一実施形態に係る赤外線撮像素子の製造方法を説明する。
[1]撮像デバイスチップ製造工程
図3(a)に示すように、矩形状の半導体等からなる基板30の表面側に、該基板30と同寸・同形状の光吸収層10およびシリコン層20をこの順で貼り合わせて積層し、撮像デバイスチップ40を得る。これら貼り合わせは、所定の接着剤を使用する。光吸収層10は単結晶シリコン等の赤外線吸収材料からなるもので、シリコン層20は赤外線を含む光を透過させるシリコン材料からなる。
Hereinafter, with reference to FIG. 3, the manufacturing method of the infrared image pick-up element which concerns on one Embodiment of this invention is demonstrated.
[1] Imaging Device Chip Manufacturing Process As shown in FIG. 3A, the light absorption layer 10 and the silicon layer 20 having the same size and shape as the substrate 30 are formed on the surface side of the substrate 30 made of a rectangular semiconductor or the like. Are stacked in this order to obtain the imaging device chip 40. A predetermined adhesive is used for the bonding. The light absorbing layer 10 is made of an infrared absorbing material such as single crystal silicon, and the silicon layer 20 is made of a silicon material that transmits light including infrared light.

[2]厚さ分布測定工程
撮像デバイスチップ40の厚さ分布を所定の厚さ測定装置で測定し、撮像デバイスチップ40が所望の厚さの範囲内であるか否かを調べる。
[2] Thickness distribution measurement step The thickness distribution of the imaging device chip 40 is measured by a predetermined thickness measuring device to check whether the imaging device chip 40 is within a desired thickness range.

[3]シリコン層研磨工程
厚さ分布を測定した結果、所望の厚さを超えている箇所が認められたら、その箇所のシリコン層20側の表面を研磨して厚さを所望範囲内に減じる。
[3] Silicon Layer Polishing Step If the location exceeding the desired thickness is found as a result of measuring the thickness distribution, the surface on the silicon layer 20 side of the location is polished to reduce the thickness within the desired range. .

[4]レンズ積層工程
シリコン層20の表面に、多数のレンズ50がマトリクス状に配列されたレンズユニット51を接着剤を用いて貼り合わせ、レンズユニット51と光吸収層10との間にシリコン層20が挟まれた撮像素子1を得る。
[4] Lens Laminating Step A lens unit 51 in which a large number of lenses 50 are arranged in a matrix is bonded to the surface of the silicon layer 20 using an adhesive, and a silicon layer is interposed between the lens unit 51 and the light absorption layer 10. An image sensor 1 with 20 sandwiched between them is obtained.

以上が一実施形態の製造方法であり、得られた撮像素子1によれば、レンズユニット51側から入射した光が各レンズ50で集光されて赤外線を含む光がシリコン層20を透過し、光吸収層10で赤外線が吸収される。そして、各レンズ50ごとに結像した像の光による明暗を電荷の量に光電変換し、それを順次読み出して画像情報としての電気信号に変換される。   The above is the manufacturing method of one embodiment, and according to the obtained image pickup device 1, the light incident from the lens unit 51 side is collected by each lens 50, and the light containing infrared light passes through the silicon layer 20, Infrared rays are absorbed by the light absorption layer 10. Then, the light and darkness of the image formed for each lens 50 is photoelectrically converted into an amount of electric charge, which is sequentially read out and converted into an electrical signal as image information.

さて、上記製造方法では、レンズユニット51をシリコン層20の表面に積層する前に、撮像デバイスチップ40の厚さ分布を測定して所望厚さを超える箇所のシリコン層20を研磨して厚さを減じ、撮像デバイスチップの厚さを所望の範囲内におさめる処理を施すことをポイントとしている。   In the above manufacturing method, before the lens unit 51 is laminated on the surface of the silicon layer 20, the thickness distribution of the imaging device chip 40 is measured to polish the silicon layer 20 at a location exceeding the desired thickness. The point is to perform a process of reducing the thickness of the imaging device chip within a desired range.

これによりシリコン層20に積層したレンズ50の表面から光吸収層10までの距離を一定に近付けることができ、レンズ50の光吸収層10に対する集光度を一定とすることができる。したがって光に応じて出力される電気信号に基づく撮像感度が安定し、結果として安定した撮像を得ることができる。   Thereby, the distance from the surface of the lens 50 laminated | stacked on the silicon layer 20 to the light absorption layer 10 can be closely approached, and the condensing degree with respect to the light absorption layer 10 of the lens 50 can be made constant. Therefore, the imaging sensitivity based on the electrical signal output according to the light is stabilized, and as a result, stable imaging can be obtained.

なお、上記撮像デバイスチップ40は、多数の該撮像デバイスチップ40の集合体であるウェーハ状の撮像デバイスを分割して得られるものであり、上記実施形態では、該ウェーハを分割した後の1つの撮像デバイスチップ40のシリコン層20に研磨処理を施しているが、分割前のウェーハの段階でシリコン層20を研磨してもよい。   The imaging device chip 40 is obtained by dividing a wafer-like imaging device that is an aggregate of a large number of imaging device chips 40. In the above embodiment, the imaging device chip 40 is a single piece after dividing the wafer. Although the silicon layer 20 of the imaging device chip 40 is polished, the silicon layer 20 may be polished at the stage of the wafer before division.

1…赤外線撮像素子
10…光吸収層
20…シリコン層
30…基板
40…撮像デバイスチップ
50…レンズ
51…レンズユニット
DESCRIPTION OF SYMBOLS 1 ... Infrared image sensor 10 ... Light absorption layer 20 ... Silicon layer 30 ... Substrate 40 ... Imaging device chip 50 ... Lens 51 ... Lens unit

Claims (1)

光を集光するレンズと、該レンズで集光された光のうち少なくとも赤外線を透過させるシリコン層と、該シリコン層を透過した赤外線を吸収する光吸収層とを含む撮像素子の製造方法であって、
前記シリコン層に前記光吸収層が積層された撮像デバイスを得る撮像デバイス製造工程と、
該撮像デバイスの厚さ分布を測定する厚さ分布測定工程と、
該厚さ分布の測定結果に基づいて前記撮像デバイスにおける厚さが所望の厚さを超えている箇所を、前記シリコン層側から選択的に研磨するシリコン層研磨工程と、
前記レンズと前記光吸収層との間に前記シリコン層が挟まれる状態に、該レンズを前記撮像デバイスに積層させるレンズ積層工程と、
を含むことを特徴とする赤外線撮像素子の製造方法。
A method of manufacturing an imaging device, comprising: a lens that collects light; a silicon layer that transmits at least infrared light of the light collected by the lens; and a light absorption layer that absorbs infrared light transmitted through the silicon layer. And
An imaging device manufacturing process for obtaining an imaging device in which the light absorption layer is laminated on the silicon layer;
A thickness distribution measuring step for measuring the thickness distribution of the imaging device;
A silicon layer polishing step of selectively polishing from the silicon layer side a portion where the thickness of the imaging device exceeds a desired thickness based on the measurement result of the thickness distribution;
A lens laminating step of laminating the lens on the imaging device in a state where the silicon layer is sandwiched between the lens and the light absorption layer;
A method for manufacturing an infrared imaging device, comprising:
JP2009021124A 2009-02-02 2009-02-02 Infrared imaging device manufacturing method Active JP5394762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021124A JP5394762B2 (en) 2009-02-02 2009-02-02 Infrared imaging device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021124A JP5394762B2 (en) 2009-02-02 2009-02-02 Infrared imaging device manufacturing method

Publications (2)

Publication Number Publication Date
JP2010177605A true JP2010177605A (en) 2010-08-12
JP5394762B2 JP5394762B2 (en) 2014-01-22

Family

ID=42708215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021124A Active JP5394762B2 (en) 2009-02-02 2009-02-02 Infrared imaging device manufacturing method

Country Status (1)

Country Link
JP (1) JP5394762B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209414A (en) * 1997-01-22 1998-08-07 Nikon Corp Thermal infrared image sensor
JP2007048862A (en) * 2005-08-09 2007-02-22 Tokyo Seimitsu Co Ltd Polishing system and method thereof
JP2008227250A (en) * 2007-03-14 2008-09-25 Fujifilm Corp Compound type solid-state image pickup element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209414A (en) * 1997-01-22 1998-08-07 Nikon Corp Thermal infrared image sensor
JP2007048862A (en) * 2005-08-09 2007-02-22 Tokyo Seimitsu Co Ltd Polishing system and method thereof
JP2008227250A (en) * 2007-03-14 2008-09-25 Fujifilm Corp Compound type solid-state image pickup element

Also Published As

Publication number Publication date
JP5394762B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
US6107618A (en) Integrated infrared and visible image sensors
JP2003264280A (en) Detector
US20090146234A1 (en) Microelectronic imaging units having an infrared-absorbing layer and associated systems and methods
JP4786035B2 (en) Semiconductor device
US20100006963A1 (en) Wafer level processing for backside illuminated sensors
JP2005072364A (en) Solid state imaging element and its manufacturing method
JP2007053324A (en) Solid-state imaging device and method of manufacturing same
JP6724212B2 (en) Solid-state image sensor and electronic device
TW200832688A (en) Solid-state image capturing apparatus and electronic information device
US20120200749A1 (en) Imagers with structures for near field imaging
KR101621241B1 (en) Image sensor and fabricating method thereof
US20100084556A1 (en) Optical-infrared composite sensor and method of fabricating the same
JP2000323692A (en) Solid-state image sensing device
JP6732039B2 (en) Direct read pixel alignment
US20130175430A1 (en) Sparsely-bonded cmos hybrid imager
JP4528879B2 (en) Solid-state imaging device and manufacturing method thereof
JP2008204978A (en) Imaging device
JP5027339B1 (en) Imaging apparatus and manufacturing method
JP2005136325A (en) Solid state imaging device and its manufacturing method
JP5394762B2 (en) Infrared imaging device manufacturing method
US20200144314A1 (en) Detector architecture using photodetector substrates and semiconductor devices
JP2015170638A (en) Imaging element package and imaging device
JP5520646B2 (en) Photoelectric conversion film laminated solid-state imaging device and imaging apparatus not equipped with a microlens
KR100649011B1 (en) Image sensor using the optic fiber
JPH0222973A (en) Solid-state image pickup device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131017

R150 Certificate of patent or registration of utility model

Ref document number: 5394762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250