JP4680296B2 - Interferometric measuring method and interferometric measuring apparatus using the same - Google Patents

Interferometric measuring method and interferometric measuring apparatus using the same Download PDF

Info

Publication number
JP4680296B2
JP4680296B2 JP2008506076A JP2008506076A JP4680296B2 JP 4680296 B2 JP4680296 B2 JP 4680296B2 JP 2008506076 A JP2008506076 A JP 2008506076A JP 2008506076 A JP2008506076 A JP 2008506076A JP 4680296 B2 JP4680296 B2 JP 4680296B2
Authority
JP
Japan
Prior art keywords
wavelength
light
interference
wavelength filter
selection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008506076A
Other languages
Japanese (ja)
Other versions
JPWO2007108060A1 (en
Inventor
文之 高橋
博之 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2007108060A1 publication Critical patent/JPWO2007108060A1/en
Application granted granted Critical
Publication of JP4680296B2 publication Critical patent/JP4680296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は,干渉計測方法及びこれを用いる干渉計測装置に関し,特に光学窓のついたパッケージで保護された光学部品の表面形状を,干渉法を使用して高精度に計測する方法及びこれを用いる干渉計測装置に関する。   The present invention relates to an interference measurement method and an interference measurement apparatus using the same, and more particularly to a method for measuring the surface shape of an optical component protected by a package with an optical window with high accuracy using an interference method and the same. The present invention relates to an interference measurement apparatus.

微細構造を有し,並進移動や傾き等の変位を伴うMEMS(Micro
Electro Mechanical Systems)として,光学部品の例では波長多重通信に使用される光フィルタ,光クロスコネクター等がある。
MEMS (Micro) with micro structure and accompanying displacement such as translation and tilt
Electro Mechanical Systems) include optical filters and optical cross connectors used for wavelength division multiplexing in the example of optical components.

図1は,光学窓11のついたパッケージ100で保護されたMEMS光学部品10の断面を示す図である。かかる光学部品10の加工精度や,動的特性を評価するために,干渉計測装置を用いることが知られている。(例えば,特許文献1,2)。   FIG. 1 is a diagram showing a cross section of a MEMS optical component 10 protected by a package 100 with an optical window 11. In order to evaluate the processing accuracy and dynamic characteristics of the optical component 10, it is known to use an interference measuring device. (For example, Patent Documents 1 and 2).

かかる特許文献1,2に示される干渉計測装置を用いる方法は,物体反射光と参照光を干渉させる干渉光学系を有し,前記干渉光学系により生成される干渉縞を観察するものである。   The methods using the interference measuring apparatus disclosed in Patent Documents 1 and 2 have an interference optical system that causes object reflected light and reference light to interfere with each other, and observe interference fringes generated by the interference optical system.

図2A,図2Bは,かかる干渉計測方法を使用してMEMSを計測する従来の方法を説明する図である。   2A and 2B are diagrams illustrating a conventional method for measuring MEMS using such an interference measurement method.

図2Aはガラス越し計測を前提としない干渉光学系を示す図である。まずレンズ2を通して照射光Loをハーフミラー4に入力する。ハーフミラー4で,入射した照射光Loを参照ミラー8と計測対象10に向かう2つの方向に分ける。   FIG. 2A is a diagram showing an interference optical system that does not assume measurement through glass. First, the irradiation light Lo is input to the half mirror 4 through the lens 2. The half mirror 4 divides the incident irradiation light Lo into two directions toward the reference mirror 8 and the measurement object 10.

参照ミラー8と計測対象10からそれぞれ反射した光はハーフミラー4で再び重なり干渉縞が発生し,計測光Lrとしてレンズ15を通して出力される。ここで,干渉計測にはレーザとそれ以外の光源が使用されるが,レーザは可干渉距離が非常に長く,不要な部分での干渉が生じるなどの理由から,レーザ以外の光源が使用されることが多い。   The light reflected from the reference mirror 8 and the measurement object 10 is overlapped again by the half mirror 4 to generate interference fringes, which are output through the lens 15 as measurement light Lr. Here, lasers and other light sources are used for interference measurement, but lasers use light sources other than lasers because they have a very long coherence distance and cause interference in unnecessary parts. There are many cases.

レーザ以外の光源では可干渉距離が比較的短いため,干渉縞を発生させるには参照ミラー8側と計測対象10側の光学距離がおよそ等しくなくてはならない。ところが図2Aに示すように計測対象10の前に光学窓11がある場合,計測対象10側の光学距離は,(n-1)dだけ増える。なお,nは,光学窓材料の屈折率であり,dは光学窓の厚みである。   Since the coherence distance is relatively short with a light source other than a laser, the optical distance between the reference mirror 8 side and the measurement object 10 side must be approximately equal in order to generate interference fringes. However, when the optical window 11 is in front of the measurement object 10 as shown in FIG. 2A, the optical distance on the measurement object 10 side is increased by (n−1) d. Here, n is the refractive index of the optical window material, and d is the thickness of the optical window.

したがって,ハーフミラー4からの参照ミラー8側と計測対象10側で光学距離が異なってしまい干渉縞が生じなくなる。   Therefore, the optical distance is different between the reference mirror 8 side from the half mirror 4 and the measurement target 10 side, and interference fringes are not generated.

このために,図2Bに示すように,参照ミラー8側にも両者の光学距離を同じにするために,補償ガラス7を挿入し,参照ミラー8側と計測対象10側で光学距離が異なってしまうという問題を回避することが考えられる。   For this reason, as shown in FIG. 2B, in order to make the optical distance of both the same on the reference mirror 8 side, the compensation glass 7 is inserted, and the optical distance is different between the reference mirror 8 side and the measurement object 10 side. It is conceivable to avoid the problem of end.

ここで,図2Aにおいては,問題点として光学距離の差のみを注目している。しかし,光学窓11越しの干渉計測では光学窓11に成膜した光学薄膜(反射防止膜等)からの反射光が原因で干渉縞コントラストが落ちて干渉計測が困難となる問題が生じることも考慮しなければならない。   Here, in FIG. 2A, only the difference in optical distance is focused as a problem. However, in the interference measurement through the optical window 11, it is also considered that the interference fringe contrast is lowered due to the reflected light from the optical thin film (antireflection film or the like) formed on the optical window 11 and the interference measurement becomes difficult. Must.

なお,ここでは説明のため計測対象である光学部品は通信用であり使用波長が赤外であるとして説明する。このような場合,光学窓11に成膜する反射防止膜は通信に使用される赤外光を反射しないように設計されている。しかし,それ以外の波長域については無関心である場合がある。   For the sake of explanation, it is assumed that the optical component to be measured is for communication and the wavelength used is infrared. In such a case, the antireflection film formed on the optical window 11 is designed not to reflect infrared light used for communication. However, other wavelength ranges may be indifferent.

例えば,図2Cに示す波長域と反射率の関係を示すグラフにおいて,目的の波長領域(この場合赤外)Iでは,反射率を低く抑えているが,それ以外の波長域(可視光領域)IIで反射率は考慮されていず,反射光Lr0を生じる特性を持つ反射防止膜11aが成膜された光学窓11を通して計測対象を計測しなければならない場合が生じる。   For example, in the graph showing the relationship between the wavelength region and the reflectance shown in FIG. 2C, the reflectance is kept low in the target wavelength region (in this case, infrared) I, but the other wavelength region (visible light region). In II, the reflectance is not taken into consideration, and there is a case where the measurement target must be measured through the optical window 11 on which the antireflection film 11a having the characteristic of generating the reflected light Lr0 is formed.

図3Aに示すように,計測対象10からの反射光Lr1と参照ミラー8からの参照光Lr2がハーフミラー4で干渉し,干渉光Lrが出力される。通常干渉計測は,可視光領域IIの波長域で行うため,図3Bに,図3Aの○で囲んだ部分を拡大して示すように,光学窓11の反射防止膜11aにより,照射光の一部Lr0が反射してしまう。   As shown in FIG. 3A, the reflected light Lr1 from the measurement object 10 and the reference light Lr2 from the reference mirror 8 interfere with each other at the half mirror 4, and the interference light Lr is output. Since normal interference measurement is performed in the wavelength region of the visible light region II, as shown in FIG. 3B by enlarging a portion surrounded by a circle in FIG. The portion Lr0 is reflected.

すなわち,図3Bに示すように,光学窓11に反射防止膜11aが生膜されていて,上記のように,赤外光を反射しないように設計されているが,可視光域IIでの反射は考慮されていない。したがって,反射防止膜11a面で,可視光領域IIでの反射光Lro が生じる。このような,計測対象10以外からの反射光Lroは,干渉縞のコントラスト悪化の原因となる。   That is, as shown in FIG. 3B, an antireflection film 11a is formed on the optical window 11 and is designed not to reflect infrared light, as described above, but is reflected in the visible light region II. Is not considered. Therefore, the reflected light Lro in the visible light region II is generated on the surface of the antireflection film 11a. Such reflected light Lro from other than the measurement object 10 causes the contrast of the interference fringes to deteriorate.

図4は,光学窓11越しによる干渉計測における問題点を更に説明する図である。いま,図4aに示すように,可視光域IIにおける波長λ1とλ2で干渉計測を行った場合,波長λ2では反射率が低く不要反射が少ない。このために,コントラストの高い干渉縞が取得できる(図4b,図4c)。一方,波長λ1を使用した場合,光学窓11の反射防止膜11aによる反射光Lro が多くなり干渉縞コントラストが低下する(図4d,図4e)。FIG. 4 is a diagram for further explaining the problem in the interference measurement through the optical window 11. As shown in FIG. 4a, when interference measurement is performed at wavelengths λ 1 and λ 2 in the visible light region II, the reflectance is low at wavelength λ 2 and there is little unnecessary reflection. For this reason, interference fringes with high contrast can be acquired (FIGS. 4b and 4c). On the other hand, when the wavelength λ 1 is used, the reflected light Lro due to the antireflection film 11a of the optical window 11 increases and the interference fringe contrast decreases (FIGS. 4d and 4e).

このように,干渉縞のコントラストが低下すると,計測対象10であるMEMSの高さの計測結果にノイズが増え,コントラスト低下の程度によっては計測自体が不可能となる場合がある。
反射防止膜 特開2002−5619号公報 特開2004−177225号公報
Thus, when the contrast of the interference fringes decreases, noise increases in the measurement result of the height of the MEMS that is the measurement target 10, and measurement itself may be impossible depending on the degree of the contrast decrease.
Anti-reflection film JP-A-2002-5619 JP 2004-177225 A

したがって,本発明の目的は,かかる反射防止膜による不要反射波によって起きる干渉縞のコントラストの低下による問題を解決する干渉計測方法およびこれを用いる干渉装置を提供することにある。   Accordingly, an object of the present invention is to provide an interference measurement method and an interference apparatus using the same, which solve the problem caused by the decrease in contrast of interference fringes caused by unnecessary reflected waves by such an antireflection film.

かかる目的を達成する本発明の第1の側面は,光学薄膜が形成された光学窓で保護された計測対象の表面形状を計測する干渉計測装置であって,広帯域な波長分布特性を有する光を出力する照明装置と,前記照明装置から出力される光を入力し,中心波長の異なる複数の波長フィルタを切り替え可能で,少なくとも一の波長光を選択出力す る,波長フィルタ選択手段と,前記波長フィルタ選択手段により選択された波長光を参照光と,前記計測対象向かう照射光とに分岐し,更に前記照射光による前記計測対象からの反射光と前記参照光による干渉光を生成出力するハーフミラーを有し,
前記波長フィルタ選択手段は,前記ハーフミラーからの干渉光における干渉縞のコントラストが所定閾値以上若しくは最大となる波長フィルタの組み合わせを選択するように構成されたことを特徴とする。
A first aspect of the present invention that achieves such an object is an interference measurement apparatus that measures the surface shape of a measurement target protected by an optical window in which an optical thin film is formed, and that has a broad wavelength distribution characteristic. An illuminating device to output, a wavelength filter selecting means for inputting light output from the illuminating device, switching a plurality of wavelength filters having different center wavelengths, and selectively outputting at least one wavelength light; and the wavelength A half mirror that splits the wavelength light selected by the filter selection means into reference light and irradiation light directed to the measurement target, and further generates and outputs reflected light from the measurement target by the irradiation light and interference light by the reference light Have
The wavelength filter selection unit is configured to select a combination of wavelength filters that make the contrast of interference fringes in the interference light from the half mirror be equal to or greater than a predetermined threshold value.

前記第1の側面において,前記波長フィルタ選択手段は,複数の波長光を選択出力し,前記複数の波長光における干渉光の干渉縞の平均的コントラストが所定閾値以上若しくは最大となる波長フィルタの組み合わせを選択するように構成してもよい。   In the first aspect, the wavelength filter selection means selectively outputs a plurality of wavelength lights, and a combination of wavelength filters that makes an average contrast of interference fringes of interference light in the plurality of wavelength lights equal to or greater than a predetermined threshold value. May be selected.

また,前記第1の側面において,前記波長フィルタ選択手段は,現在選択中の波長フィルタで取得した干渉縞コントラストを空間的に平均した値が所定の閾値以下である場合,別の波長フィルタを選択し,干渉縞コントラストが所定の閾値以上となる波長フィルタの組み合わせを選択するように構成してもよい。   In the first aspect, the wavelength filter selection unit selects another wavelength filter when a spatial average value of interference fringe contrast acquired by the currently selected wavelength filter is equal to or less than a predetermined threshold value. Alternatively, a combination of wavelength filters with which the interference fringe contrast is equal to or higher than a predetermined threshold may be selected.

前記第1の側面において,さらに,分光器を備え,前記参照光を遮蔽した状態で,前記光学窓からの反射特性を評価し,前記波長フィルタ選択手段は,前記分光器により評価される反射特性に基づき,最適な波長フィルタの選択を行うように構成してもよい。   In the first aspect, the optical filter further includes a spectroscope, the reflection characteristic from the optical window is evaluated in a state where the reference light is shielded, and the wavelength filter selection unit is configured to reflect the reflection characteristic evaluated by the spectroscope. Based on the above, the optimum wavelength filter may be selected.

さらに,前記において,前記分光器における反射特性の評価を制御PCに入力し,このPCにより,前記反射特性の評価データに基づき,前記波長フィルタ選択手段に最適な波長選択フィルタを選択させるように構成してもよい。   Furthermore, in the above, the reflection characteristic evaluation in the spectroscope is input to the control PC, and the PC is configured to cause the wavelength filter selection means to select the optimum wavelength selection filter based on the reflection characteristic evaluation data. May be.

また,前記第1の側面において,前記複数の波長フィルタは,それぞれ中心波長の異なる波長カットフィルタであって,前記波長フィルタ選択手段により選択された波長カットフィルタにより波長成分の除去された光を前記ハーミラーに入力するように構成してもよい。   In the first aspect, each of the plurality of wavelength filters is a wavelength cut filter having a different center wavelength, and the light from which the wavelength component has been removed by the wavelength cut filter selected by the wavelength filter selection unit is the wavelength filter. You may comprise so that it may input into a Harmirror.

さらにまた,前記第1の側面において,前記照明装置は,それぞれ中心波長の異なる発光を出力する複数の発光ダイオードを有し,前記波長フィルタ選択手段は,前記少複数の発光ダイオードの少なくとも一つの発光ダイオードを選択駆動して,前記選択駆動される発行ダイオードからの対応する一の波長光を選択出力するように構成してもよい。   Furthermore, in the first aspect, the illuminating device includes a plurality of light emitting diodes that output light having different central wavelengths, and the wavelength filter selecting means is configured to emit at least one light of the plurality of light emitting diodes. The diode may be selectively driven to selectively output the corresponding one wavelength light from the selectively driven emitting diode.

上記目的を達成する本発明の第2の側面は,光学薄膜が形成された光学窓で保護された計測対象の表面形状を計測する干渉計測方法であって,広帯域な波長分布特性を有する光を波長フィルタ選択手段に入力し,前記波長フィルタ選択手段により,少なくとも一つの波長光を選択出力し,前記選択された波長光を参照光と,前記計測対象向かう照射光とに分岐し,更に前記照射光による前記計測対象からの反射光と前記参照光による干渉光を生成し,前記波長フィルタ選択手段は,前記ハーフミラーからの干渉光における干渉縞のコントラストが所定閾値以上若しくは最大となる波長フィルタの組み合わせを選択することを特徴とする。   A second aspect of the present invention that achieves the above object is an interference measurement method for measuring the surface shape of a measurement object protected by an optical window in which an optical thin film is formed, and is a method for measuring light having a broadband wavelength distribution characteristic. Input to the wavelength filter selection means, the wavelength filter selection means to selectively output at least one wavelength light, the selected wavelength light is branched into reference light and irradiation light directed to the measurement object, and the irradiation The reflected light from the measurement target by the light and the interference light by the reference light are generated, and the wavelength filter selecting means is a wavelength filter for which the contrast of the interference fringes in the interference light from the half mirror is greater than or equal to a predetermined threshold. A combination is selected.

図1は,光学窓のついたパッケージで保護されたMEMS光学部品の断面を示す図である。FIG. 1 shows a cross section of a MEMS optical component protected by a package with an optical window. 図2Aは,ガラス越し計測を前提としない干渉光学系を示す図である。FIG. 2A is a diagram illustrating an interference optical system that does not assume measurement through glass. 図2Bは,参照ミラー側と計測対象側で光学距離が異なってしまうという問題を回避する構成を示す図である。FIG. 2B is a diagram illustrating a configuration that avoids the problem that the optical distance is different between the reference mirror side and the measurement target side. 図2Cは,可視光領域と,反射防止膜の波長域を示す図である。FIG. 2C is a diagram illustrating a visible light region and a wavelength region of an antireflection film. 図3Aは,光学窓越しによる干渉計測における問題点を説明する図(その1)である。FIG. 3A is a diagram (part 1) for explaining problems in interference measurement through an optical window. 図3Bは,図3Aの○で囲んだ部分の拡大図である。FIG. 3B is an enlarged view of a portion surrounded by a circle in FIG. 3A. 図4は,光学窓越しによる干渉計測における問題点を説明する図(その2)である。FIG. 4 is a diagram (part 2) for explaining problems in interference measurement through an optical window. 図5Aは,本発明の基本的概念構成を示す図である。FIG. 5A is a diagram showing a basic conceptual configuration of the present invention. 図5Bは,波長と反射率分布の関係グラフにおいて,特定波長の選択を説明する図である。FIG. 5B is a diagram for explaining the selection of a specific wavelength in the relationship graph between the wavelength and the reflectance distribution. 図5Cは,波長と反射率分布の関係グラフにおいて,複数の波長域の選択を説明する図である。FIG. 5C is a diagram for explaining selection of a plurality of wavelength regions in a relationship graph of wavelength and reflectance distribution. 図5Dは,波長と反射率分布の関係グラフにおいて,不要反射の多い波長領域のカットを説明する図である。FIG. 5D is a diagram for explaining a cut in a wavelength region with many unnecessary reflections in the relationship graph between the wavelength and the reflectance distribution. 図6は,図5A〜5Dを用いて説明した本発明原理に従う,本発明の実施例の干渉計測装置を示す図である。FIG. 6 is a diagram showing an interference measuring apparatus according to an embodiment of the present invention in accordance with the principle of the present invention described with reference to FIGS. 図7は,挟帯域波長選択フィルタの選択方法の一例フローである。FIG. 7 is an example flow of a selection method of the narrowband wavelength selection filter. 図8は,2つの波長の干渉縞をそれぞれ独立して取得する場合の構成を示す図である。FIG. 8 is a diagram illustrating a configuration in a case where interference fringes of two wavelengths are acquired independently. 図9は,光路上に複数の波長カットフィルタを配置できるそれぞれフィルタを有する多連のフィルタチェンジャを示す図である。FIG. 9 is a diagram showing multiple filter changers each having a filter in which a plurality of wavelength cut filters can be arranged on the optical path. 図10は,照明光源としてLED(発光素子)を用いる例を説明する図である。FIG. 10 is a diagram illustrating an example in which an LED (light emitting element) is used as an illumination light source.

以下に,図面に従い,本発明の実施の形態例を説明する。なお,実施の形態例は,本発明の理解のためのものであり,本発明の技術的範囲はこれに限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. The embodiments are for understanding the present invention, and the technical scope of the present invention is not limited thereto.

図5Aは,本発明の基本的概念構成を示す図である。   FIG. 5A is a diagram showing a basic conceptual configuration of the present invention.

本発明では,図2Bに示した干渉計測装置における照明光Loの照明装置1と,ハーフミラー4との間に,中心波長の異なる複数の波長フィルタ25を切り替えることが可能な波長フィルタ選択手段(フィルタチェンジャー)23を備える。   In the present invention, a wavelength filter selection means (in which a plurality of wavelength filters 25 having different center wavelengths can be switched between the illumination device 1 of the illumination light Lo and the half mirror 4 in the interference measurement device shown in FIG. Filter changer) 23.

それら複数の波長フィルタ25のうち不要反射が少なく干渉縞コントラストが高くなる波長フィルタを自動的に選んで干渉計測を行う。これにより,先に述べた問題点を解決する。   Among the plurality of wavelength filters 25, a wavelength filter with less unnecessary reflection and high interference fringe contrast is automatically selected to perform interference measurement. This solves the problems described above.

例えば照明装置1から出射する広帯域な波長分布を持った照射光Loのうち図5Bに示す波長と反射率分布の関係グラフにおける可視光域II中の選択された特定の波長域A(好ましくは,反射率が最も低くなる波長領域)を取り出す波長フィルタ25を,波長フィルタ選択手段23により選択して干渉計測を行う。   For example, among the irradiation light Lo having a broad wavelength distribution emitted from the illumination device 1, a specific wavelength range A (preferably, selected from the visible light range II in the relationship graph between the wavelength and the reflectance distribution shown in FIG. 5B. The wavelength filter 25 for extracting the wavelength region in which the reflectance is lowest is selected by the wavelength filter selection means 23 to perform interference measurement.

これにより,図4b,図4cに示したように,コントラストが良好な干渉縞画像を得ることが可能となる。また単一波長の光を使った干渉ではなく,複数の波長域A,Bを選択使用して,干渉を行うような場合,図5Cに示すように,波長と反射率分布グラフにおいて,使用する複数の波長域A,Bにより平均的にコントラストが向上するような波長フィルタのペアを自動的に選ぶようにする。   As a result, as shown in FIGS. 4B and 4C, it is possible to obtain an interference fringe image with good contrast. Further, when interference is performed by selectively using a plurality of wavelength regions A and B instead of interference using light of a single wavelength, it is used in the wavelength and reflectance distribution graph as shown in FIG. 5C. A pair of wavelength filters whose average contrast is improved by a plurality of wavelength regions A and B is automatically selected.

図5Cの例は2波長A,Bの場合である。また例えば垂直走査干渉法のように,白色光源のような広帯域の波長域を持つ照明光を使用する場合,図5Dに示すように不要反射の多い波長領域X,Y,Zをカットするフィルタを使用することで干渉縞コントラストを改善することも可能となる。   The example of FIG. 5C is the case of two wavelengths A and B. Further, for example, when using illumination light having a wide wavelength range such as a white light source, such as vertical scanning interferometry, a filter that cuts off wavelength regions X, Y, and Z having a lot of unnecessary reflection as shown in FIG. 5D. By using it, the interference fringe contrast can be improved.

上記の様な本発明原理により,主に可視光を反射する特性を持った光学薄膜11a(図3B参照)が成膜された光学窓越しであっても,コントラストの高い干渉縞が取得可能となる。
[実施例]
図6は,上記図5A〜5Dを用いて説明した本発明原理に従う,本発明の実施例の干渉計測装置を示す図である。
According to the principle of the present invention as described above, interference fringes with high contrast can be obtained even through an optical window on which an optical thin film 11a (see FIG. 3B) that mainly reflects visible light is formed. Become.
[Example]
FIG. 6 is a diagram showing an interference measuring apparatus according to an embodiment of the present invention in accordance with the principle of the present invention described with reference to FIGS. 5A to 5D.

キセノン光源などの広帯域な波長分布を持つ照明装置1から出射した光をライトガイド2で,波長フィルタ選択手段(フィルタチェンジャ)23により選択された一のフィルタ25に導き,計測に使用する波長を選択する。   Light emitted from the illumination device 1 having a broad wavelength distribution such as a xenon light source is guided by the light guide 2 to one filter 25 selected by the wavelength filter selection means (filter changer) 23, and the wavelength used for measurement is selected. To do.

選択した波長光をハーフミラー4により計測対象10方向に導き,干渉対物レンズ9で計測対象10と参照ミラー8の干渉縞を発生させる。干渉対物レンズ9は計測対象10と参照ミラー8に計測光を集光させるための結像レンズ5と,計測光を計測対象10と参照ミラー8の方向に分割するためのハーフミラー6,参照ミラー8,光学窓11による光学距離の増加を補償するための光学距離補償板7,計測光を一時的に参照側光路で遮蔽する光路遮蔽板36から構成される。   The selected wavelength light is guided toward the measurement target 10 by the half mirror 4, and interference fringes between the measurement target 10 and the reference mirror 8 are generated by the interference objective lens 9. The interference objective lens 9 includes an imaging lens 5 for condensing measurement light on the measurement object 10 and the reference mirror 8, a half mirror 6 for dividing the measurement light in the direction of the measurement object 10 and the reference mirror 8, and a reference mirror. 8. An optical distance compensator 7 for compensating for an increase in optical distance due to the optical window 11, and an optical path shield 36 for temporarily shielding the measurement light by the reference side optical path.

計測対象10と参照ミラー8および光学窓11から反射した光は再びハーフミラー6で重なり干渉が生じる。結像レンズ15で結像させた干渉縞をCCDカメラ16で撮像しPC(パーソナルコンピュータ)17に記録する。PC17ではCCDカメラ16で撮像した干渉縞画像から干渉縞の解析を行い計測対象10の表面形状を算出する。   Light reflected from the measurement object 10, the reference mirror 8, and the optical window 11 is again overlapped by the half mirror 6 to cause interference. The interference fringes imaged by the imaging lens 15 are imaged by a CCD camera 16 and recorded on a PC (personal computer) 17. The PC 17 analyzes the interference fringe from the interference fringe image captured by the CCD camera 16 and calculates the surface shape of the measurement target 10.

干渉縞から高精度に高さを算出する方法として公知の技術である位相シフト法を行う場合,ピエゾステージ18で計測対象10を垂直方向に一定距離動かしつつ複数の干渉縞画像を取得し,その複数の干渉縞画像から計測対象10の表面形状を求める。   When performing the phase shift method, which is a known technique for calculating the height from the interference fringes with high accuracy, a plurality of interference fringe images are acquired while moving the measurement object 10 in the vertical direction by the piezo stage 18. The surface shape of the measurement object 10 is obtained from a plurality of interference fringe images.

計測視野や計測対象の姿勢は粗動ステージ20を用いて調整することができる。   The measurement visual field and the posture of the measurement target can be adjusted using the coarse movement stage 20.

フィルタチェンジャ23には,あらかじめ中心波長の異なる複数の挟帯域波長選択フィルタ25をセットしておく。   A plurality of narrowband wavelength selection filters 25 having different center wavelengths are set in the filter changer 23 in advance.

図7はかかる挟帯域波長選択フィルタ25の選択方法の一例フローである。最初に使用する波長選択フィルタ25を光路3上にセットする(ステップS1)。干渉縞画像を取得し(ステップS2),視野の所定領域あるいは全体における干渉縞コントラストの平均Eを算出する(ステップS3)。   FIG. 7 is an example flow of the selection method of the narrowband wavelength selection filter 25. The wavelength selection filter 25 to be used first is set on the optical path 3 (step S1). An interference fringe image is acquired (step S2), and an average E of interference fringe contrast in a predetermined region or the entire field of view is calculated (step S3).

干渉縞コントラストの空間平均Eがあらかじめ設定した閾値T以下の場合(ステップS4,NO),フィルタチェンジャ23にセットされている別の波長選択フィルタ25に変更して(ステップS6,NO,S7),初めと同様に干渉縞コントラスト平均Eを閾値Tと比較する。   When the spatial average E of the interference fringe contrast is less than or equal to the preset threshold T (step S4, NO), change to another wavelength selection filter 25 set in the filter changer 23 (steps S6, NO, S7), As in the beginning, the interference fringe contrast average E is compared with the threshold value T.

もし干渉縞コントラスト平均Eが閾値Tより大きい場合(ステップS4,YES)にはコントラストが干渉縞解析に十分であるとして取得した干渉画像から計測対象10の表面形状を算出する(ステップS5)。閾値Tとして例えば0.1を設定すれば計測可能な干渉縞が得られると考えられる。   If the interference fringe contrast average E is larger than the threshold T (step S4, YES), the surface shape of the measurement object 10 is calculated from the interference image acquired assuming that the contrast is sufficient for interference fringe analysis (step S5). If, for example, 0.1 is set as the threshold T, it is considered that a measurable interference fringe can be obtained.

全ての波長選択フィルタ25に対して閾値T以上のコントラストが得られない場合(ステップS6,YES)には,フィルタチェンジャー23にセットした波長選択フィルタ25では計測が不可能として,PC17のモニターから作業者にメッセージを送る。   If no contrast equal to or higher than the threshold value T is obtained for all the wavelength selection filters 25 (step S6, YES), the wavelength selection filter 25 set in the filter changer 23 cannot measure, and work from the monitor of the PC 17 Send a message to the person.

図7に示した波長選択の方法の他に,光路遮蔽板36で一時的に計測対象10と光学窓11からの反射光のみを,ハーフミラー12及び結像レンズ13で分光器14に集光し,光学窓11の分光特性を評価した結果から最良な波長選択フィルタ25の組み合わせを決定するようにしてもよい。   In addition to the wavelength selection method shown in FIG. 7, only the reflected light from the measurement object 10 and the optical window 11 is temporarily collected by the optical path shielding plate 36 and the spectroscope 14 is condensed by the half mirror 12 and the imaging lens 13. Then, the best combination of the wavelength selection filters 25 may be determined from the result of evaluating the spectral characteristics of the optical window 11.

また,その他の波長選択方法として,光学窓11からの反射特性がデータとしてあらかじめ分かっている場合には,PC17に特性データを入力し,そのデータを基に最適な波長選択フィルタを選択してもよい。   As another wavelength selection method, when the reflection characteristic from the optical window 11 is known in advance as data, the characteristic data is input to the PC 17 and the optimum wavelength selection filter is selected based on the data. Good.

図5Cに示したように複数波長の選択を行う場合には,図8,図9の構成の光学系を使用する。すなわち,2つの波長の干渉縞をそれぞれ独立して取得する場合は図8の構成が使用でき,ハーフミラー35を含む光学系により中心波長Aの波長選択フィルタ25で干渉縞を取得後,別の中心波長Bに変更して再度干渉縞を取得する。   When selecting a plurality of wavelengths as shown in FIG. 5C, the optical system having the configuration shown in FIGS. 8 and 9 is used. That is, when the interference fringes of two wavelengths are acquired independently, the configuration of FIG. 8 can be used. After the interference fringes are acquired by the wavelength selection filter 25 of the center wavelength A by the optical system including the half mirror 35, another configuration is obtained. The interference fringes are obtained again after changing to the center wavelength B.

2つの異なる波長が混じった光源が必要な場合は図8において,光源1の他に別の光源1−2,ライトガイド2−2,フィルタチェンジャ23−2,波長選択フィルタ23−2を用意し,ハーフミラー34,35を使用して複数波長が混じった計測光を作る。   When a light source in which two different wavelengths are mixed is necessary, in FIG. 8, in addition to the light source 1, another light source 1-2, a light guide 2-2, a filter changer 23-2, and a wavelength selection filter 23-2 are prepared. , Half-mirrors 34 and 35 are used to produce measurement light mixed with a plurality of wavelengths.

2以上の波長を使用する場合も上記2つの波長の場合と同様に光源,あるいは波長選択フィルタの変更回数を増やせばよい。   When two or more wavelengths are used, the number of changes of the light source or wavelength selection filter may be increased as in the case of the two wavelengths.

図5Dに示したように広帯域波長のうち複数の波長帯域X,Y,Zをカットしたい場合は一つの光源に対して同時に複数の波長をカットする必要がある。この場合は図9に示すように光路3上に複数の波長カットフィルタを配置できるそれぞれフィルタ27を有する多連のフィルタチェンジャ26を使用すればよい。図9は同時に3つの波長域をカットすることができる例である。   As shown in FIG. 5D, when it is desired to cut a plurality of wavelength bands X, Y, and Z among wideband wavelengths, it is necessary to simultaneously cut a plurality of wavelengths for one light source. In this case, as shown in FIG. 9, a multiple filter changer 26 having filters 27 each having a plurality of wavelength cut filters on the optical path 3 may be used. FIG. 9 shows an example in which three wavelength regions can be cut simultaneously.

PC17は計測対象の位置や姿勢を変えるための粗動ステージコントローラ21,高精度位相シフト法を行う際に使用するピエゾステージコントローラ19により,それぞれ粗銅ステージ20及びピエゾステージ18を制御する。さらに,必要な波長を選択するためのフィルタチェンジャコントローラ24,波長選択フィルタ25を切り替える場合に変化する光量を適切に保つための照明コントローラ22をそれぞれ制御しながら計測を行う。   The PC 17 controls the coarse copper stage 20 and the piezo stage 18 by a coarse movement stage controller 21 for changing the position and orientation of a measurement target and a piezo stage controller 19 used when performing a high-accuracy phase shift method. Further, measurement is performed while controlling the filter controller 24 for selecting a necessary wavelength and the illumination controller 22 for appropriately maintaining the amount of light that changes when the wavelength selection filter 25 is switched.

また,波長選択フィルタ25は可視光帯域のみでなく,例えば計測光に赤外や紫外領域の帯域の光を使用してもよい。   Further, the wavelength selection filter 25 may use not only the visible light band but also, for example, light in the infrared or ultraviolet band as measurement light.

ここで,上記説明では波長選択を行うために,照明光源として広帯域波長分布の照明装置1の光源と波長選択フィルタ25を使用する例を説明したが,図10に示すように,照明光源として中心波長の異なる発光素子としてLED28を複数個用意し,波長を切り替えたい場合には使用するLED28をLEDコントローラ29で発光させて切り替えるようにしてもよい。選択された波長のLEDの発光は,ステージコントローラ31によりハーフミラー4に合わせされる。   Here, in the above description, in order to perform wavelength selection, an example in which the light source of the illumination device 1 having a broadband wavelength distribution and the wavelength selection filter 25 are used as the illumination light source has been described. However, as shown in FIG. A plurality of LEDs 28 may be prepared as light emitting elements having different wavelengths, and when the wavelength is to be switched, the LED 28 to be used may be switched by causing the LED controller 29 to emit light. The light emission of the LED of the selected wavelength is adjusted to the half mirror 4 by the stage controller 31.

上記に説明したように,光学薄膜が成膜された光学窓越しの干渉計測を行う場合において,光学薄膜からの反射光が少ない波長を計測光として使用することにより,コントラストの高い干渉縞を取得することができ,その結果計測ノイズが減少した高精度な表面形状計測が可能となり,産業上寄与するところ大である。   As explained above, when performing interference measurement through an optical window on which an optical thin film is formed, interference fringes with high contrast can be obtained by using a wavelength with little reflected light from the optical thin film as measurement light. As a result, high-accuracy surface shape measurement with reduced measurement noise is possible, which greatly contributes to the industry.

Claims (13)

光学薄膜が形成された光学窓で保護された計測対象の表面形状を計測する干渉計測装置であって,
広帯域な波長分布特性を有する光を出力する照明装置と,
前記照明装置から出力される光を入力し,中心波長の異なる複数の波長フィルタを切り替え可能で,少なくとも一の波長光を選択出力する,波長フィルタ選択手段と,
前記波長フィルタ選択手段により選択された波長光を参照光と,前記計測対象向かう照射光とに分岐し,更に前記照射光による前記計測対象からの反射光と前記参照光による干渉光を生成出力するハーフミラーを有し,
前記波長フィルタ選択手段は,前記ハーフミラーからの干渉光における干渉縞のコントラストが所定閾値以上若しくは最大となる波長フィルタの組み合わせを選択する,
ように構成されたことを特徴とする干渉計測装置。
An interference measurement device for measuring the surface shape of a measurement object protected by an optical window in which an optical thin film is formed,
An illuminator that outputs light having a broadband wavelength distribution characteristic;
Wavelength filter selection means for inputting light output from the illumination device, switching a plurality of wavelength filters having different center wavelengths, and selectively outputting at least one wavelength light;
The wavelength light selected by the wavelength filter selection unit is branched into reference light and irradiation light directed to the measurement target, and further generates and outputs reflected light from the measurement target by the irradiation light and interference light by the reference light. Have a half mirror,
The wavelength filter selection means selects a combination of wavelength filters that make the contrast of interference fringes in the interference light from the half mirror equal to or greater than a predetermined threshold value;
An interference measuring apparatus configured as described above.
請求項1において,
前記波長フィルタ選択手段は,複数の波長光を選択出力し,
前記複数の波長光における干渉光の干渉縞の平均的コントラストが所定閾値以上若しくは最大となる波長フィルタの組み合わせを選択する,ことを特徴とする干渉計測装置。
In claim 1,
The wavelength filter selection means selectively outputs a plurality of wavelength lights,
An interference measuring apparatus, wherein a combination of wavelength filters that makes an average contrast of interference fringes of interference light in the plurality of wavelength lights equal to or greater than a predetermined threshold value or maximum is selected.
請求項1において,
前記波長フィルタ選択手段は,現在選択中の波長フィルタで取得した干渉縞コントラストを空間的に平均した値が所定の閾値以下である場合,別の波長フィルタを選択し,干渉縞コントラストが所定の閾値以上となる波長フィルタの組み合わせを選択することを特徴とする干渉計測装置。
In claim 1,
The wavelength filter selection means selects another wavelength filter when the spatial average value of the interference fringe contrast acquired by the currently selected wavelength filter is equal to or less than a predetermined threshold, and the interference fringe contrast is a predetermined threshold. An interference measuring apparatus characterized by selecting a combination of wavelength filters as described above.
請求項1において,
さらに,分光器を備え,前記参照光を遮蔽した状態で,前記光学窓からの反射特性を評価し,前記波長フィルタ選択手段は,前記分光器により評価される反射特性に基づき,最適な波長フィルタの選択を行うことを特徴とする干渉計測装置。
In claim 1,
Further, a spectroscope is provided, the reflection characteristic from the optical window is evaluated in a state where the reference light is shielded, and the wavelength filter selection means is configured to optimize the wavelength filter based on the reflection characteristic evaluated by the spectroscope. An interference measurement apparatus that performs selection.
請求項4において,
前記分光器における反射特性の評価を制御PCに入力し,
該PCにより,前記反射特性の評価データに基づき,前記波長フィルタ選択手段に最適な波長選択フィルタを選択させることを特徴とする干渉計測装置。
In claim 4,
Input the evaluation of reflection characteristics in the spectrometer into the control PC,
An interference measuring apparatus characterized in that the wavelength filter selection means selects the optimum wavelength selection filter based on the reflection characteristic evaluation data by the PC.
請求項1において,
前記複数の波長フィルタは,それぞれ中心波長の異なる波長カットフィルタであって,
前記波長フィルタ選択手段により選択された波長カットフィルタにより波長成分の除去された光を前記ハーミラーに入力することを特徴とする干渉計測装置。
In claim 1,
The plurality of wavelength filters are wavelength cut filters each having a different center wavelength,
An interference measurement apparatus, wherein light from which a wavelength component has been removed by a wavelength cut filter selected by the wavelength filter selection means is input to the her mirror.
請求項1において,
前記照明装置は,それぞれ中心波長の異なる発光を出力する複数の発光ダイオードとを有し,
前記波長フィルタ選択手段は,前記少複数の発光ダイオードの少なくとも一つの発光ダイオードを選択駆動して,前記選択駆動される発行ダイオードからの対応する一の波長光を選択出力することを特徴とする干渉計測装置。
In claim 1,
The lighting device includes a plurality of light emitting diodes that output light having different center wavelengths,
The wavelength filter selecting means selectively drives at least one light emitting diode of the plurality of light emitting diodes, and selectively outputs a corresponding one wavelength light from the selectively driven emitting diode. Measuring device.
光学薄膜が形成された光学窓で保護された計測対象の表面形状を計測する干渉計測方法であって,
広帯域な波長分布特性を有する光を波長フィルタ選択手段に入力し,
前記し波長フィルタ選択手段により,少なくとも一の波長光を選択出力し,
前記選択された波長光を参照光と,前記計測対象向かう照射光とに分岐し,
更に前記照射光による前記計測対象からの反射光と前記参照光による干渉光を生成し,
前記波長フィルタ選択手段は,前記ハーフミラーからの干渉光における干渉縞のコントラストが所定閾値以上若しくは最大となる波長フィルタの組み合わせを選択する,
ことを特徴とする干渉計測方法。
An interference measurement method for measuring a surface shape of a measurement object protected by an optical window in which an optical thin film is formed,
Input light having broadband wavelength distribution characteristics to the wavelength filter selection means,
The wavelength filter selecting means selectively outputs at least one wavelength light,
Branching the selected wavelength light into reference light and irradiation light directed to the measurement object;
Furthermore, the reflected light from the measurement object by the irradiation light and the interference light by the reference light are generated,
The wavelength filter selection means selects a combination of wavelength filters that make the contrast of interference fringes in the interference light from the half mirror equal to or greater than a predetermined threshold value;
An interference measurement method characterized by the above.
請求項8において,
前記波長フィルタ選択手段により,複数の波長光を選択出力し,
前記複数の波長光における干渉光の干渉縞の平均的コントラストが所定閾値以上若しくは最大となる波長フィルタの組み合わせを選択する,
ことを特徴とする干渉計測方法。
In claim 8,
The wavelength filter selection means selectively outputs a plurality of wavelength lights,
Selecting a combination of wavelength filters in which the average contrast of the interference fringes of the interference light in the plurality of wavelength lights is greater than or equal to a predetermined threshold, or
An interference measurement method characterized by the above.
請求項8において,
前記波長フィルタ選択手段により,現在選択中の波長フィルタで取得した干渉縞コントラストを空間的に平均した値が所定の閾値以下である場合,別の波長フィルタを選択し,干渉縞コントラストが所定の閾値以上となる波長フィルタの組み合わせを選択することを特徴とする干渉計測方法。
In claim 8,
When the spatial average value of the interference fringe contrast acquired by the wavelength filter currently selected by the wavelength filter selection means is equal to or smaller than a predetermined threshold, another wavelength filter is selected and the interference fringe contrast is a predetermined threshold. An interference measurement method comprising selecting a combination of wavelength filters as described above.
光学薄膜が形成された光学窓で保護された光学部品の表面形状を計測する工程を有してなり、該光学部品を製造する方法であって,該表面形状を計測する工程は,
広帯域な波長分布特性を有する光を波長フィルタ選択手段に入力し,
前記し波長フィルタ選択手段により,少なくとも一の波長光を選択出力し,
前記選択された波長光を参照光と,前記光学部品に向かう照射光とに分岐し,
更に前記照射光による前記光学部品からの反射光と前記参照光による干渉光を生成し,
前記波長フィルタ選択手段は,前記ハーフミラーからの干渉光における干渉縞のコントラストが所定閾値以上若しくは最大となる波長フィルタの組み合わせを選択する,
ことを特徴とする光学部品の製造方法。
A method of measuring a surface shape of an optical component protected by an optical window on which an optical thin film is formed, and a method of manufacturing the optical component, the step of measuring the surface shape comprising:
Input light having broadband wavelength distribution characteristics to the wavelength filter selection means,
The wavelength filter selecting means selectively outputs at least one wavelength light,
Branching the selected wavelength light into reference light and irradiation light directed to the optical component;
Furthermore, the reflected light from the optical component by the irradiation light and the interference light by the reference light are generated,
The wavelength filter selection means selects a combination of wavelength filters that make the contrast of interference fringes in the interference light from the half mirror equal to or greater than a predetermined threshold value;
An optical component manufacturing method characterized by the above.
請求項11において,
前記波長フィルタ選択手段により,複数の波長光を選択出力し,
前記複数の波長光における干渉光の干渉縞の平均的コントラストが所定閾値以上若しくは最大となる波長フィルタの組み合わせを選択する,
ことを特徴とする光学部品の製造方法。
In claim 11,
The wavelength filter selection means selectively outputs a plurality of wavelength lights,
Selecting a combination of wavelength filters in which the average contrast of the interference fringes of the interference light in the plurality of wavelength lights is greater than or equal to a predetermined threshold,
An optical component manufacturing method characterized by the above.
請求項11において,
前記波長フィルタ選択手段により,現在選択中の波長フィルタで取得した干渉縞コントラストを空間的に平均した値が所定の閾値以下である場合,別の波長フィルタを選択し,干渉縞コントラストが所定の閾値以上となる波長フィルタの組み合わせを選択することを特徴とする光学部品の製造方法。
In claim 11,
When the spatial average value of the interference fringe contrast acquired by the wavelength filter currently selected by the wavelength filter selection means is equal to or smaller than a predetermined threshold, another wavelength filter is selected and the interference fringe contrast is a predetermined threshold. A method of manufacturing an optical component, wherein a combination of wavelength filters as described above is selected.
JP2008506076A 2006-03-17 2006-03-17 Interferometric measuring method and interferometric measuring apparatus using the same Expired - Fee Related JP4680296B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/305341 WO2007108060A1 (en) 2006-03-17 2006-03-17 Interference measurement method and interference measurement instrument employing it

Publications (2)

Publication Number Publication Date
JPWO2007108060A1 JPWO2007108060A1 (en) 2009-07-30
JP4680296B2 true JP4680296B2 (en) 2011-05-11

Family

ID=38522101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008506076A Expired - Fee Related JP4680296B2 (en) 2006-03-17 2006-03-17 Interferometric measuring method and interferometric measuring apparatus using the same

Country Status (2)

Country Link
JP (1) JP4680296B2 (en)
WO (1) WO2007108060A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256282A (en) * 2009-04-28 2010-11-11 Sokkia Topcon Co Ltd Two-dimensional measuring machine
US10054777B2 (en) * 2014-11-11 2018-08-21 California Institute Of Technology Common-mode digital holographic microscope
JP7027878B2 (en) * 2017-12-27 2022-03-02 コニカミノルタ株式会社 Image forming device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183457A (en) * 1997-09-12 1999-03-26 Yazaki Corp Spectral interference microscope and surface shape measuring method using it
JP2000249661A (en) * 1999-03-01 2000-09-14 Topcon Corp Optical measuring apparatus
JP2003232749A (en) * 2002-02-06 2003-08-22 Hamamatsu Photonics Kk Failure analyzer for semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183457A (en) * 1997-09-12 1999-03-26 Yazaki Corp Spectral interference microscope and surface shape measuring method using it
JP2000249661A (en) * 1999-03-01 2000-09-14 Topcon Corp Optical measuring apparatus
JP2003232749A (en) * 2002-02-06 2003-08-22 Hamamatsu Photonics Kk Failure analyzer for semiconductor device

Also Published As

Publication number Publication date
WO2007108060A1 (en) 2007-09-27
JPWO2007108060A1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
US8577212B2 (en) Handheld dental camera and method for carrying out optical 3D measurement
JP7023819B2 (en) Systems and methods with improved focus tracking using light source placement
AU2018201428B2 (en) Systems And Methods For Improved Focus Tracking Using A Hybrid Mode Light Source
KR102456213B1 (en) Systems and Methods for Focus Optimization for Imaging-Based Overlay Metrology
US6882433B2 (en) Interferometer system of compact configuration
WO2016001841A1 (en) Chromatic confocal system
JP6946390B2 (en) Systems and methods with improved focus tracking using blocking structures
JP2004101530A (en) Confocal displacement sensor
JP4090860B2 (en) 3D shape measuring device
JP4680296B2 (en) Interferometric measuring method and interferometric measuring apparatus using the same
TW201923305A (en) Assembly for detecting the surface profile of an object surface by means of interferometric distance measurement
JP2021113832A (en) Surface shape measurement method
JP4761817B2 (en) Interferometer, Fourier spectrometer
US11099068B2 (en) Optical instrumentation including a spatially variable filter
US20170314914A1 (en) Optical profilometer
EP3353489B1 (en) Method and apparatus for measuring the height of a surface
JP6722450B2 (en) Confocal displacement meter
US20180252518A1 (en) Optical profilometer
US20230408695A1 (en) Device for determining a distance, surface thickness and optical properties of an object and related method
TWI638147B (en) Optical element for spatial beam shaping
JP4634884B2 (en) Surface texture measuring device
KR20210056901A (en) Film thickness measuring apparatus and film thickness measuring method
JP5385206B2 (en) Photometric device
Oechsner et al. Laser Sources for Metrology and Machine Vision: Laser diode based light sources are widely used for high precision measurement and inspection systems
JP2016065835A (en) Measurement device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees