JP4634884B2 - Surface texture measuring device - Google Patents

Surface texture measuring device Download PDF

Info

Publication number
JP4634884B2
JP4634884B2 JP2005215416A JP2005215416A JP4634884B2 JP 4634884 B2 JP4634884 B2 JP 4634884B2 JP 2005215416 A JP2005215416 A JP 2005215416A JP 2005215416 A JP2005215416 A JP 2005215416A JP 4634884 B2 JP4634884 B2 JP 4634884B2
Authority
JP
Japan
Prior art keywords
light
wavelength
optical path
center wavelength
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005215416A
Other languages
Japanese (ja)
Other versions
JP2007033169A (en
Inventor
光司 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2005215416A priority Critical patent/JP4634884B2/en
Publication of JP2007033169A publication Critical patent/JP2007033169A/en
Application granted granted Critical
Publication of JP4634884B2 publication Critical patent/JP4634884B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、被測定物の表面性状を測定する表面性状測定装置に関する。     The present invention relates to a surface texture measuring apparatus for measuring the surface texture of a measurement object.

被測定物上に光源からの光を投影して測定光を得る一方、参照ミラーからの参照光を測定光と干渉させるとともに、被測定物を相対的に移動させ、干渉光の光強度の変化を画素毎に求めることにより、被測定物の表面性状を計測するようにした形状測定装置が、例えば特許文献1により知られている。このような装置では、被測定物を相対移動させるための駆動機構と、この駆動量を測定するための機構(エンコーダ等)が必須となり、システムの複雑化が避けられないという問題があった。
特開2001ー66122号公報
While projecting light from the light source onto the object to be measured to obtain measurement light, the reference light from the reference mirror interferes with the measurement light, and the object to be measured is moved relatively to change the light intensity of the interference light. For example, Patent Document 1 discloses a shape measuring apparatus that measures the surface properties of an object to be measured by obtaining the value for each pixel. In such an apparatus, a drive mechanism for relatively moving the object to be measured and a mechanism (encoder or the like) for measuring the drive amount are indispensable, and there is a problem that the system cannot be complicated.
JP 2001-66122 A

本発明は、機械的な駆動機構による被測定物の相対移動を必要とせず、これによりシステムを簡略化すると共に機械的な走査精度やスケール精度の影響を受けることが無い表面性状測定装置を提供することを目的とする。   The present invention provides a surface texture measuring apparatus that does not require relative movement of an object to be measured by a mechanical drive mechanism, thereby simplifying the system and not being affected by mechanical scanning accuracy or scale accuracy. The purpose is to do.

上記目的を達成するため、本発明に係る表面性状測定装置は、中心波長を中心とした一定の波長幅を有する入射光を出力しその中心波長が所定の可変波長範囲内において可変とされた波長可変光源と、測定対象物に向かう物体光と参照面に向かう参照光とに前記入射光を分離すると共に前記測定対象物及び前記参照面でそれぞれ反射した前記物体光及び前記参照光を合成して合成光とするビームスプリッタと、前記合成光を受光する撮像部と、前記物体光の光路又は前記参照光の光路のいずれか一方に挿入され前記中心波長が前記可変波長範囲内において変化した場合において前記物体光の光路又は前記参照光の光路の光路長に所定の測定レンジ以上の変化を与える光路長変更光学部材と、前記合成光を前記撮像部に導くようにされ前記中心波長の変化に拘わらず前記合成光の合焦位置が不変となるようにされた結像光学系と、前記波長可変光源を制御して前記中心波長を変化させる波長制御手段と、前記撮像部上の特定の受光位置における前記合成光の光強度が最大となったときにおける前記中心波長に基づき前記特定の受光位置に対応する前記測定対象物上の部位の高さを計測する計測部とを備えたことを特徴とする。   In order to achieve the above object, the surface texture measuring apparatus according to the present invention outputs incident light having a constant wavelength width centered on the center wavelength, and the center wavelength is variable within a predetermined variable wavelength range. The incident light is separated into a variable light source, object light directed to the measurement object, and reference light directed to the reference surface, and the object light and the reference light reflected by the measurement object and the reference surface are combined. In the case where the center wavelength changes within the variable wavelength range inserted into one of the optical path of the object light or the optical path of the reference light, and a beam splitter that is combined light, an imaging unit that receives the combined light An optical path length changing optical member that gives a change of an optical path length of the object light path or the optical path of the reference light beyond a predetermined measurement range; and the center that guides the combined light to the imaging unit. An imaging optical system in which the in-focus position of the combined light is invariable regardless of a change in length; a wavelength control unit that controls the variable wavelength light source to change the central wavelength; and an imaging unit A measurement unit that measures the height of the part on the measurement object corresponding to the specific light receiving position based on the center wavelength when the light intensity of the combined light at the specific light receiving position becomes maximum. It is characterized by that.

この発明によれば、機械的な駆動機構による被測定物の相対移動を必要とせず、これによりシステムを簡略化すると共に機械的な走査精度やスケール精度の影響を受けることが無い表面性状測定装置を提供することができる。   According to the present invention, a surface texture measuring device that does not require relative movement of the object to be measured by a mechanical drive mechanism, thereby simplifying the system and not being affected by mechanical scanning accuracy or scale accuracy. Can be provided.

次に、本発明の実施の形態を、図面を参照して詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

この実施の形態の表面性状測定装置1は、図1に示すように、波長可変光源11と、コリメータレンズ12と、ビームスプリッタ13と、平行平面板14と、参照ミラーRPと、結像光学系15と、CCD撮像素子16と、コンピュータ20と、波長制御部21とを備え、測定対象物Wの表面性状の干渉縞計測により測定するトワイマングリーン干渉計を構成している。   As shown in FIG. 1, the surface texture measuring apparatus 1 according to this embodiment includes a wavelength variable light source 11, a collimator lens 12, a beam splitter 13, a parallel plane plate 14, a reference mirror RP, and an imaging optical system. 15, a CCD image pickup device 16, a computer 20, and a wavelength control unit 21, and configures a Twiman Green interferometer that performs measurement by measuring interference fringes on the surface property of the measurement target W.

波長可変光源11は、図2に示すように、中心波長λcをピークとして一定の波長幅Δλのスペクトル分布を有する光を発する低コヒーレンス光源である。従って、この表面性状測定装置では、参照光路と物体光路との間の光路差を、一定距離lc=λc/Δλ以下とした場合にCCD撮像素子16により干渉縞が観察される。この波長可変光源11は、波長制御部21からの制御信号を受けて、中心波長λcを、λmin〜λmaxの範囲で変化させることができるように構成されている。なお、コンピュータ20は、CCD撮像素子16で得られた干渉縞信号を解析して測定対象物Wの形状を測定する他、波長制御部21などの制御を担当するものである。 As shown in FIG. 2, the wavelength tunable light source 11 is a low-coherence light source that emits light having a center wavelength λc as a peak and a spectral distribution with a constant wavelength width Δλ. Therefore, in this surface texture measuring apparatus, when the optical path difference between the reference optical path and the object optical path is set to a certain distance lc = λc 2 / Δλ or less, interference fringes are observed by the CCD imaging device 16. The wavelength tunable light source 11 is configured to change the center wavelength λc in the range of λmin to λmax in response to a control signal from the wavelength control unit 21. The computer 20 is in charge of controlling the wavelength control unit 21 and the like in addition to analyzing the interference fringe signal obtained by the CCD image pickup device 16 to measure the shape of the measurement object W.

コリメータレンズ12は、この波長可変光源11からの光を平行光束に変換するものである。ビームスプリッタ13は、この平行光束を参照ミラーRPに向かう参照光と、測定対象物Wに向かう物体光とに分割すると共に、参照ミラーRP及び測定対象物Wで反射した参照光及び物体光を合成する機能を有する。ビームスプリッタ13は、図1のようなハーフミラーでも、また、プリズム型のものでも構わない。平行平面板14は、例えばF2ガラスなど高分散材料から形成されており、その屈折率nが通過する光の波長により大きく異なる。中心波長λcがλmin〜λmaxの範囲で変化した場合、参照光の光路長を、表面性状測定装置1の測定レンジ以上に変化させるものである。図3は、中心波長λcの変化に対し、測定対象物W上のある一点からの光(測定光)と参照光とによる合成光の光強度の変化の様子の一例を示したものである。中心波長λcが変化し、参照光路と物体光路の光路長差が零となるような波長となった場合、干渉光の光強度が最大となるので、これにより、測定対象物W上のある一点の高さhを判定することができる。干渉縞は、この光路長差が零の位置から±lc=λc/Δλの範囲で観察することができる。 The collimator lens 12 converts the light from the wavelength variable light source 11 into a parallel light beam. The beam splitter 13 divides the parallel light beam into reference light directed to the reference mirror RP and object light directed to the measurement target W, and combines the reference light and the object light reflected by the reference mirror RP and the measurement target W. It has the function to do. The beam splitter 13 may be a half mirror as shown in FIG. 1 or a prism type. The plane parallel plate 14 is made of a highly dispersed material such as F2 glass, and its refractive index n varies greatly depending on the wavelength of light passing therethrough. When the center wavelength λc changes in the range of λmin to λmax, the optical path length of the reference light is changed beyond the measurement range of the surface property measuring apparatus 1. FIG. 3 shows an example of a change in the light intensity of the combined light due to the light (measurement light) from a certain point on the measurement object W and the reference light with respect to the change in the center wavelength λc. When the center wavelength λc changes and the optical path length difference between the reference optical path and the object optical path is zero, the light intensity of the interference light is maximized. The height h can be determined. The interference fringes can be observed in the range of ± lc = λc 2 / Δλ from the position where the optical path length difference is zero.

結像光学系15は、中心波長λcの変化によって結像位置に変化が生じないよう、色収差を除去された光学系が採用される。好適な例として、測定対象物Wの位置によってCCD撮像素子16上での干渉縞の結像状態、及び大きさが変わらないよう、図4に示すような両側テレセントリック光学系を採用することができる。   The imaging optical system 15 employs an optical system from which chromatic aberration is removed so that the imaging position does not change due to the change in the center wavelength λc. As a preferred example, a double-sided telecentric optical system as shown in FIG. 4 can be adopted so that the image formation state and size of the interference fringes on the CCD image sensor 16 do not change depending on the position of the measurement object W. .

この両側テレセントリック光学系は、第1結像レンズ151と、絞り152と、第2結像レンズ153とを備えている。絞り152は、第1結像レンズ151の像側焦点位置と一致し、かつ第2結像レンズ153の物側焦点位置と一致するように配置され、これにより両側テレセントリック光学系が形成される。さらに、第1結像レンズ151及び第2結像レンズ153は、絞り152に関し相似であり、また、第1結像レンズ151、第2結像レンズ153は、それぞれ前側焦点、後側焦点に対して色消しがされた構造となっている。従って、測定対象物W側から第1結像レンズ151に対し光軸Aに平行に入射した光は、絞り152の開孔を通って第2結像レンズ153に入射し、光軸Aに平行な光として第2結像レンズ153から射出されてCCD撮像素子16の撮像面に至る。   This double telecentric optical system includes a first imaging lens 151, a diaphragm 152, and a second imaging lens 153. The stop 152 is disposed so as to coincide with the image-side focal position of the first imaging lens 151 and coincide with the object-side focal position of the second imaging lens 153, thereby forming a bilateral telecentric optical system. Furthermore, the first imaging lens 151 and the second imaging lens 153 are similar with respect to the stop 152, and the first imaging lens 151 and the second imaging lens 153 are respectively for the front focus and the rear focus. The structure is achromatic. Accordingly, the light incident on the first imaging lens 151 in parallel to the optical axis A from the measurement object W side enters the second imaging lens 153 through the aperture of the diaphragm 152 and is parallel to the optical axis A. Light exits from the second imaging lens 153 and reaches the imaging surface of the CCD image sensor 16.

中心波長λcの大きさが、例えばλ1,λ2のように変化すると、第1結像レンズ151の物側焦点も図4に示すFλ1、Fλ2のように位置が変化し(測定対象物Wの基準位置からの距離がXλ1,Xλ2)、第2結像レンズ153の像側焦点もF”λ1、F”λ2のように変化する(CCD撮像素子16の撮像面からの距離がX”λ1,X”λ2)。第1結像レンズ151の主点の位置も変化し(絞り152からの距離f1λ1、f2λ2)、また第2結像レンズ153の主点の位置も変化する(絞り152からの距離f2λ1、f2λ2)。しかし、両側テレセントリック光学系が構成されるため、このような波長λcの変化による焦点位置の移動や測定対象物16の位置(高さ)に拘わらず、CCD撮像素子16には略同じ大きさの干渉縞画像が観察され得る。   When the size of the central wavelength λc changes, for example, as λ1 and λ2, the object-side focal point of the first imaging lens 151 also changes its position as Fλ1 and Fλ2 shown in FIG. The distance from the position is Xλ1, Xλ2), and the image-side focal point of the second imaging lens 153 is also changed to F ″ λ1, F ″ λ2 (the distance from the imaging surface of the CCD image sensor 16 is X ″ λ1, X "Λ2). The position of the principal point of the first imaging lens 151 also changes (distances f1λ1, f2λ2 from the diaphragm 152), and the position of the principal point of the second imaging lens 153 also changes (distances f2λ1, f2λ2 from the diaphragm 152). . However, since the both-side telecentric optical system is configured, the CCD image pickup device 16 has substantially the same size regardless of the movement of the focal position due to the change of the wavelength λc and the position (height) of the measurement object 16. An interference fringe image can be observed.

次に、このように構成された表面性状測定装置の作用を、図5を参照して説明する。波長可変光源から射出される光の中心波長λcが、λmin〜λmaxの範囲で徐々に大きくなるとき、参照光路の光路長は、平行平面板14の作用により徐々に短くなり、λmaxとなると、光路長は、λminの場合に比べ、2×t×(nmin−nmax)だけ短くなる。ただし、tは平行平面板14の厚さ、nmax、nminはそれぞれ中心波長λがλmax、λminの場合の平行平面板14の屈折率を示す。   Next, the operation of the thus-configured surface texture measuring device will be described with reference to FIG. When the center wavelength λc of the light emitted from the wavelength tunable light source gradually increases in the range of λmin to λmax, the optical path length of the reference optical path is gradually shortened by the action of the plane parallel plate 14, and when it becomes λmax, The length is shorter by 2 × t × (nmin−nmax) than in the case of λmin. Where t is the thickness of the plane parallel plate 14, and nmax and nmin are the refractive indices of the plane parallel plate 14 when the center wavelengths λ are λmax and λmin, respectively.

測定対象物W上の高さhの異なる点A(高さhA)、点B(高さhB<hA)では、図6及び図7に示すように、それぞれ異なる波長λA、λB(λB<λA)となった場合に、参照光の光路長が物体光の光路長と一致して、干渉信号の大きさが最大となる。干渉信号が最大値となった場合の中心波長λcの大きさを特定することにより、測定対象物W上の各点の高さを演算することができる。これにより、測定対象物Wの表面性状を測定することができる。   At points A (height hA) and B (height hB <hA) having different heights h on the measurement object W, different wavelengths λA and λB (λB <λA) are obtained as shown in FIGS. ), The optical path length of the reference light coincides with the optical path length of the object light, and the magnitude of the interference signal becomes maximum. By specifying the size of the center wavelength λc when the interference signal reaches the maximum value, the height of each point on the measurement object W can be calculated. Thereby, the surface property of the measuring object W can be measured.

以上、発明の実施の形態を説明したが、本発明はこれらに限定されるものではなく、発明の趣旨を逸脱しない範囲内において、種々の変更、追加等が可能である。例えば、上記実施の形態では、平行平面板14が参照光の光路に挿入されている例を説明したが、物体光の光路の方に挿入するようにしてもよい。また、参照光の光路、物体光の光路の両方に平行平面板を挿入し、その厚さ又は材質を異なるものとするのでもよく、要するに波長可変光源11の出射光の中心波長λcが変化した場合に参照光路と物体光路との間の光路長差を所定の測定レンジ以上に変化させることが可能なものであればよい。   Although the embodiments of the invention have been described above, the present invention is not limited to these embodiments, and various modifications and additions can be made without departing from the spirit of the invention. For example, in the above-described embodiment, an example in which the plane-parallel plate 14 is inserted in the optical path of the reference light has been described, but it may be inserted in the optical path of the object light. Further, a plane parallel plate may be inserted in both the optical path of the reference light and the optical path of the object light, and the thickness or material thereof may be different. In short, the center wavelength λc of the emitted light from the wavelength tunable light source 11 has changed. In this case, it is only necessary that the optical path length difference between the reference optical path and the object optical path can be changed over a predetermined measurement range.

本発明の実施の形態の表面性状測定装置1の全体構成を示す。The whole structure of the surface property measuring apparatus 1 of embodiment of this invention is shown. 波長可変光源11から出射される光のスペクトル分布の一例を示す。An example of the spectral distribution of the light emitted from the wavelength variable light source 11 is shown. 波長可変光源11の出射光の中心波長λcを変化させた場合において、測定対象物W上のある一点からの光(測定光)と参照光とによる合成光の光強度の変化の様子の一例を示したものである。An example of the change in the light intensity of the combined light due to the light (measurement light) from a certain point on the measurement object W and the reference light when the center wavelength λc of the light emitted from the wavelength tunable light source 11 is changed. It is shown. 結像光学系15の具体的構成を示す。A specific configuration of the imaging optical system 15 is shown. 本実施の形態の表面性状測定装置1の作用を示す。The effect | action of the surface texture measuring apparatus 1 of this Embodiment is shown. 本実施の形態の表面性状測定装置1の作用を示す。The effect | action of the surface texture measuring apparatus 1 of this Embodiment is shown. 本実施の形態の表面性状測定装置1の作用を示す。The effect | action of the surface texture measuring apparatus 1 of this Embodiment is shown.

符号の説明Explanation of symbols

11・・・波長可変光源、 12・・・コリメータレンズ、 13・・・ビームスプリッタ、 14・・・平行平面板、 RP・・・参照ミラー、 15・・・結像光学系、 16・・・CCD撮像素子、 20・・・コンピュータ、 21・・・波長制御部21、 151、153・・・結像レンズ、 152・・・絞り。   DESCRIPTION OF SYMBOLS 11 ... Variable wavelength light source, 12 ... Collimator lens, 13 ... Beam splitter, 14 ... Parallel plane plate, RP ... Reference mirror, 15 ... Imaging optical system, 16 ... CCD image sensor, 20... Computer, 21... Wavelength control unit 21, 151, 153.

Claims (4)

中心波長を中心とした一定の波長幅を有する入射光を出力しその中心波長が所定の可変波長範囲内において可変とされた波長可変光源と、
測定対象物に向かう物体光と参照面に向かう参照光とに前記入射光を分離すると共に前記測定対象物及び前記参照面でそれぞれ反射した前記物体光及び前記参照光を合成して合成光とするビームスプリッタと、
前記合成光による干渉縞画像を撮像する撮像部と、
前記物体光の光路又は前記参照光の光路のいずれか一方に挿入され前記中心波長が前記可変波長範囲内において変化した場合において前記物体光の光路又は前記参照光の光路の光路長に所定の測定レンジ以上の変化を与える光路長変更光学部材と、
前記合成光を前記撮像部に導くようにされ前記中心波長の変化に拘わらず前記合成光の合焦位置が不変となるようにされた結像光学系と、
前記波長可変光源を制御して前記中心波長を変化させる波長制御手段と、
前記撮像部上の特定の受光位置における前記合成光の光強度が最大となったときにおける前記中心波長に基づき前記特定の受光位置に対応する前記測定対象物上の部位の高さを計測する計測部と
を備えたことを特徴とする表面性状測定装置。
A wavelength tunable light source that outputs incident light having a constant wavelength width centered on the center wavelength and whose center wavelength is variable within a predetermined variable wavelength range;
The incident light is separated into object light directed to the measurement object and reference light directed to the reference surface, and the object light and the reference light reflected by the measurement object and the reference surface, respectively, are combined to obtain a combined light. A beam splitter,
An imaging unit for imaging an interference fringe image by the combined light;
When the central wavelength is inserted in either the optical path of the object light or the reference light and changes in the variable wavelength range, a predetermined measurement is performed on the optical path length of the optical path of the object light or the optical path of the reference light. An optical path length changing optical member that gives a change over the range;
An imaging optical system configured to guide the combined light to the imaging unit and to make the in-focus position of the combined light unchanged regardless of the change in the center wavelength;
Wavelength control means for controlling the wavelength tunable light source to change the center wavelength;
Measurement for measuring the height of the part on the measurement object corresponding to the specific light receiving position based on the center wavelength when the light intensity of the combined light at the specific light receiving position on the imaging unit becomes maximum And a surface texture measuring device.
前記結像光学系は、両側テレセントリック光学系である請求項1記載の表面性状測定装置。   The surface texture measuring apparatus according to claim 1, wherein the imaging optical system is a double-sided telecentric optical system. 前記光路長変更光学部材は、平行平面板である請求項1記載の表面性状測定装置。   The surface texture measuring apparatus according to claim 1, wherein the optical path length changing optical member is a plane parallel plate. 前記波長可変光源は、中心波長をピークとして所定のスペクトル広がりを有する光を射出するものである請求項1記載の表面性状測定装置。   2. The surface property measuring apparatus according to claim 1, wherein the wavelength tunable light source emits light having a predetermined spectral spread with a center wavelength as a peak.
JP2005215416A 2005-07-26 2005-07-26 Surface texture measuring device Expired - Fee Related JP4634884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005215416A JP4634884B2 (en) 2005-07-26 2005-07-26 Surface texture measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005215416A JP4634884B2 (en) 2005-07-26 2005-07-26 Surface texture measuring device

Publications (2)

Publication Number Publication Date
JP2007033169A JP2007033169A (en) 2007-02-08
JP4634884B2 true JP4634884B2 (en) 2011-02-16

Family

ID=37792623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005215416A Expired - Fee Related JP4634884B2 (en) 2005-07-26 2005-07-26 Surface texture measuring device

Country Status (1)

Country Link
JP (1) JP4634884B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7405586B2 (en) * 2019-12-05 2023-12-26 ファナック株式会社 Tapered surface shape and surface quality inspection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183457A (en) * 1997-09-12 1999-03-26 Yazaki Corp Spectral interference microscope and surface shape measuring method using it
JPH11237209A (en) * 1998-02-23 1999-08-31 Agency Of Ind Science & Technol High sensitivity space-positioning method
JP2000337836A (en) * 1999-05-31 2000-12-08 Fuji Photo Optical Co Ltd Shape measuring method with multi-wavelength interference fringe
JP2002508838A (en) * 1997-05-26 2002-03-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Interferometer
JP2005189069A (en) * 2003-12-25 2005-07-14 Sony Corp Method and apparatus for measuring surface shape

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002508838A (en) * 1997-05-26 2002-03-19 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Interferometer
JPH1183457A (en) * 1997-09-12 1999-03-26 Yazaki Corp Spectral interference microscope and surface shape measuring method using it
JPH11237209A (en) * 1998-02-23 1999-08-31 Agency Of Ind Science & Technol High sensitivity space-positioning method
JP2000337836A (en) * 1999-05-31 2000-12-08 Fuji Photo Optical Co Ltd Shape measuring method with multi-wavelength interference fringe
JP2005189069A (en) * 2003-12-25 2005-07-14 Sony Corp Method and apparatus for measuring surface shape

Also Published As

Publication number Publication date
JP2007033169A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP6044315B2 (en) Displacement measuring method and displacement measuring apparatus
JP6157240B2 (en) Refractive index measuring method, refractive index measuring apparatus, and optical element manufacturing method
US6992779B2 (en) Interferometer apparatus for both low and high coherence measurement and method thereof
US8520218B2 (en) Measuring method of refractive index and measuring apparatus of refractive index
JP7044272B2 (en) Lens refractive index measuring device and its measuring method
TWI670465B (en) Confocal measurement device
WO2013084557A1 (en) Shape-measuring device
JP2016024009A (en) Thickness measurement device and thickness measurement method
GB2497792A (en) Metrological apparatus comprising a confocal sensor
JP2019525194A (en) Chromatic confocal sensor
JP2020535433A (en) Non-contact methods and devices for measuring the distance to a surface or the distance between two surfaces
KR101794641B1 (en) A slope spectrum system for measuring height of object by using wavelength division
JP2018520337A (en) Method for determining spatially resolved height information of a sample using a wide field microscope and a wide field microscope
JP2008039750A (en) Device for height measuring
JP2008215833A (en) Apparatus and method for measuring optical characteristics
JP4634884B2 (en) Surface texture measuring device
JP2009180554A (en) Interferometer, measuring method, and manufacturing method of optical element
JP2006343121A (en) Light beam measuring device
JP2007093288A (en) Light measuring instrument and light measuring method
JP2005221451A (en) Laser displacement gauge
US11965729B2 (en) Confocal sensor
JP5233643B2 (en) Shape measuring device
JP5699221B2 (en) Interferometer with virtual reference plane
JP5868227B2 (en) Refractive index measuring method and refractive index measuring apparatus
JP2010210352A (en) Mirau type interferometer apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101119

R150 Certificate of patent or registration of utility model

Ref document number: 4634884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees