JP4678751B2 - Solidification method of grinding or polishing waste - Google Patents

Solidification method of grinding or polishing waste Download PDF

Info

Publication number
JP4678751B2
JP4678751B2 JP2004051561A JP2004051561A JP4678751B2 JP 4678751 B2 JP4678751 B2 JP 4678751B2 JP 2004051561 A JP2004051561 A JP 2004051561A JP 2004051561 A JP2004051561 A JP 2004051561A JP 4678751 B2 JP4678751 B2 JP 4678751B2
Authority
JP
Japan
Prior art keywords
cylinder
grinding
piston
polishing
hydraulic cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004051561A
Other languages
Japanese (ja)
Other versions
JP2005238288A (en
Inventor
茂樹 三和
董 岩波
孝一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2004051561A priority Critical patent/JP4678751B2/en
Publication of JP2005238288A publication Critical patent/JP2005238288A/en
Application granted granted Critical
Publication of JP4678751B2 publication Critical patent/JP4678751B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/32Presses specially adapted for particular purposes for consolidating scrap metal or for compacting used cars
    • B30B9/327Presses specially adapted for particular purposes for consolidating scrap metal or for compacting used cars for briquetting scrap metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B9/00Presses specially adapted for particular purposes
    • B30B9/02Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material
    • B30B9/04Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material using press rams
    • B30B9/06Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material using press rams co-operating with permeable casings or strainers
    • B30B9/067Presses specially adapted for particular purposes for squeezing-out liquid from liquid-containing material, e.g. juice from fruits, oil from oil-containing material using press rams co-operating with permeable casings or strainers with a retractable abutment member closing one end of the press chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Sludge (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

この発明は転がり軸受の内外輪や転動体、切削工具等の水性又は油性クーラントを用いた研削又は研磨屑、さらにはアルミ鋳物等のエンジンのホーニング、クランクシャフト等の研磨で生じる微少な切削又は研磨屑等の固形化方法及び固形化されたブリケット並びに固形化装置に関する。   This invention relates to grinding or polishing debris using aqueous or oil-based coolant such as inner and outer rings and rolling elements of rolling bearings, cutting tools, etc., as well as fine cutting or polishing caused by honing of engines such as aluminum castings and polishing of crankshafts, etc. The present invention relates to a method for solidifying scraps, a solidified briquette, and a solidifying device.

軸受鋼、高速度工具鋼の研削や研磨においては荒研削で平均粒径100μm程度、中仕上げ研削で平均粒径50μm程度、仕上げ研削で25μm程度、さらに研磨仕上げでは1〜5μmの粒径の研削屑や研磨屑(以下研削屑等という)が発生する。また、エンジンのシリンダ内径のホーニングやクランクシャフトの超仕上げ(フィルムラップ仕上)等でも数μmの研磨屑が発生する。これらの研削又は研磨工程の多くは水性又は油性クーラントを供給しながら行われ、研削屑等はクーラントと共にスラッジとして排出される。特許文献1においては、研削油を含有するステンレス鋼板研削屑を静置分離法あるいは遠心分離法等で大半の油分を除去し、油分約30%のスラッジをシリンダ内に挿入してピストンで圧搾し、シリンダとピストンの隙間等から油分を排出させ、見掛け比重3〜4の鋼塊とし、さらに、仮焼して油分を無くし、固形化している。   For grinding and polishing of bearing steel and high-speed tool steel, rough grinding provides an average particle size of approximately 100 μm, intermediate finish grinding provides an average particle size of approximately 50 μm, finish grinding provides a particle size of approximately 25 μm, and polishing finish provides a particle size of 1 to 5 μm. Waste and polishing waste (hereinafter referred to as grinding waste etc.) are generated. Also, honing of the cylinder bore of the engine and superfinishing of the crankshaft (film wrap finishing), etc., generate polishing dust of several μm. Many of these grinding or polishing processes are performed while supplying an aqueous or oily coolant, and grinding scraps are discharged as sludge together with the coolant. In patent document 1, most of the oil is removed from the stainless steel plate grinding scraps containing grinding oil by static separation or centrifugal separation, etc., and about 30% oil sludge is inserted into the cylinder and compressed with a piston. The oil is discharged from the gap between the cylinder and the piston to form a steel ingot having an apparent specific gravity of 3 to 4, and further calcined to eliminate the oil and solidify.

しかし、このものでは圧搾力(圧縮力)が50MPa程度であり、圧搾した後の固形化物は、必ずしも強度の強いものではなく、落下により破損する等が予想される。本発明者等の研究によれば、水性クーラント等の使用では比較的容易に固形化が可能であるが、油性の場合は水性に比べ粘度が高く、研削屑がクーラントと一緒にシリンダ隙間から排出されてしまい、必ずしも十分な固形化ができていなかったものと考える。   However, in this product, the squeezing force (compression force) is about 50 MPa, and the solidified product after squeezing is not necessarily strong, and is expected to be damaged by dropping. According to the study by the present inventors, solidification is possible with the use of water-based coolant, etc., but in the case of oil-based, the viscosity is higher than that of water, and grinding waste is discharged from the cylinder gap together with the coolant. It is thought that it was not necessarily solidified enough.

また、特許文献2のものは圧力と圧縮速度とを制御できるようにして、油性クーラント含有の研削スラッジを濾過した濃縮スラッジを予備プレスした後、シリンダ内に投入された研削屑等を圧縮ピストンで所定の圧力で一定時間保持したり、段階的に位置と圧力を変化させた例が開示されている。また、このものでは、φ80mm程度の研削屑等の圧縮力を40〜400MPaに段階的に上げたり、押圧速度を約4〜7cm/secの速度で作動させた例が開示されている。また、特許文献3では、一次プレスで予備圧搾し、二次プレスで固形化する例が記載されている。   Further, in Patent Document 2, the pressure and compression speed can be controlled, and after pre-pressing the concentrated sludge obtained by filtering the oil-containing coolant-containing grinding sludge, the grinding debris and the like put into the cylinder is compressed with a compression piston. An example in which a predetermined pressure is maintained for a certain time or the position and pressure are changed in stages is disclosed. Further, this example discloses an example in which the compressive force of grinding scraps of about φ80 mm is increased stepwise to 40 to 400 MPa or the pressing speed is operated at a speed of about 4 to 7 cm / sec. Moreover, in patent document 3, the example of pre-pressing with a primary press and solidifying with a secondary press is described.

一方、スラッジのプレス前の濃縮スラッジを得る手段としては、前述した種々の方式の他、ろ剤として珪藻土を用いフィルターの外面に珪藻土のプリコート層を形成させた濾過方法がある。さらに、本出願人の一人が出願した特許文献4のものでは、珪藻土に代えパルプから製造されるセルロース繊維を用いて濾過させている。かかる珪藻土、セルロース繊維を含有する研削屑については固形化されずそのまま産業廃棄物として廃棄されている。また、シリンダの組み合わせで、例えば特許文献5においては、一般にプレス装置等に多用されるキッカーシリンダ方式と呼ばれるものが使用されている。このものはサブ油圧シリンダで高速送りをして、サイクルタイムを早くしている。
特公昭52−35003号公報 特開2001−315000号公報 特開2001−300786号公報 特開2001−062215号公報 特開平9−256078号公報、図18
On the other hand, as means for obtaining concentrated sludge before sludge pressing, there are a filtration method in which diatomaceous earth is used as a filter medium and a diatomaceous earth precoat layer is formed on the outer surface of the filter in addition to the various methods described above. Furthermore, in the thing of the patent document 4 which one of the present applicants applied, it is made to filter using the cellulose fiber manufactured from a pulp instead of diatomaceous earth. Grinding scraps containing diatomaceous earth and cellulose fibers are not solidified and are discarded as industrial waste. Further, as a combination of cylinders, for example, in Patent Document 5, a so-called kicker cylinder system generally used in a press device or the like is used. This one uses a sub-hydraulic cylinder to feed at a high speed to shorten the cycle time.
Japanese Patent Publication No. 52-35003 JP 2001-315000 A Japanese Patent Laid-Open No. 2001-300786 JP 2001-062215 A Japanese Patent Laid-Open No. 9-256078, FIG.

しかしながら、特許文献2のものでは、油性クーラントの粘性のため、固形化にあたって圧縮ピストンを制御するために、圧力を次第に上昇させたり、保持したり、微妙な制御を必要とし、電動モータとボールねじを用いた精度の高い制御が必要であるという問題があった。また、油性クーラントは粘度の低いものでも5cSt、高いもので46cStであり、このような粘度のものを常温で圧縮しても固形化が困難であり、固形化の効率を高くするためには、加熱手段を設けて粘性を水性クーラント並に引き下げる必要もあった。また、具体的な研削屑等の粒径についての記載はないが、軸受等の研削・研磨での粒径は平均で数十μm〜100μmであるが、ホーニング・超仕上げのような粒径が数μmと小さいものについてまでは記載されていない。   However, in Patent Document 2, because of the viscosity of the oil-based coolant, in order to control the compression piston during solidification, the pressure is gradually increased, held, and delicate control is required. The electric motor and the ball screw There was a problem that high-precision control using was necessary. In addition, the oil-based coolant is 5 cSt even if the viscosity is low, and 46 cSt if it is high, and it is difficult to solidify even if it is compressed at room temperature, and in order to increase the efficiency of solidification, It was also necessary to provide a heating means to lower the viscosity to the level of an aqueous coolant. Moreover, although there is no description about the particle size of concrete grinding scrap etc., the particle size by grinding / polishing of bearings and the like is an average of several tens μm to 100 μm. It is not described up to a few μm.

また、特許文献3のものでは、一次プレスと二次プレスが別のシリンダであり、予備圧搾したものを二次プレスに送る時はまだ固形化されておらず、研削屑は二次プレスに送られた時にはバラバラとなる。このため、含有クーラント量は調整できるが、空気が多く介在し、また、研削屑同士の結びつきが弱く容易に移動、変形するので、研削屑の固形化が妨げられるという問題があった。また、特許文献4に記載のような、セルロース繊維含有の研削屑の固形化については具体的な例がない。また、水性クーラントの場合であっても、クランクシャフトの超仕上げ等で発生する1〜5μmの研削屑等の場合には油性クーラントの場合と同様に固形化ができなかった。また、特許文献5のようなキッカーシリンダ方式ではかかる微妙な制御を必要とする微少研削屑又は研磨屑の固形化は困難であった。   Further, in Patent Document 3, the primary press and the secondary press are separate cylinders, and when the pre-pressed product is sent to the secondary press, it is not yet solidified, and the grinding waste is sent to the secondary press. When it is done, it falls apart. For this reason, although the amount of contained coolant can be adjusted, there is a problem that solidification of the grinding waste is hindered because a large amount of air is present and the connection between the grinding wastes is weak and easily moves and deforms. Moreover, there is no specific example about solidification of the grinding waste containing a cellulose fiber like the patent document 4. FIG. Further, even in the case of aqueous coolant, solidification could not be achieved in the case of 1-5 μm grinding scraps generated by superfinishing of the crankshaft as in the case of oil-based coolant. Further, in the kicker cylinder method as in Patent Document 5, it is difficult to solidify minute grinding scraps or polishing scraps that require such delicate control.

そこで、本発明者等は、特願2003−343941号(未公開、特願2003−119548号の優先権主張出願)において、水性又は油性クーラント含有率が10%以上60%以下の切削又は研磨屑を、シリンダ内に投入し、シリンダ内径と微少隙間をもって摺動可能にされたピストンのシリンダ密閉時及び密閉後の送り速度を1mm/sec以上5mm/sec以下として、シリンダ内の空気及び記研削又は研磨屑の含有クーラントを少なくとも前記微少隙間より排出し、研削又は研磨屑を固形化する研削又は研磨屑の固形化方法を提供した。また、水性クーラントでは問題ないが、油性クーラントの場合は、研削又は研磨屑の平均粒径が5μm以下では、さらに、セルロース繊維等のバインダを必要とした。そこで、切削又は研磨屑の水性又は油性クーラント含有率が10%以上30%以下、かつ、研削又は研磨屑の平均粒径が1μm以上5μm以下であって、例えば特許文献4に記載のセルロース繊維を含むようにした研削又は研磨屑の固形化方法を提供した。しかし、セルロース繊維はリサイクルの中では不純物であり、コストもかかるという問題があった。   Therefore, the inventors of the present invention disclosed in Japanese Patent Application No. 2003-343941 (unpublished, priority application of Japanese Patent Application No. 2003-119548) cutting or polishing scraps having an aqueous or oily coolant content of 10% or more and 60% or less. In the cylinder, and the feed speed at the time of sealing and after sealing of the piston made slidable with a small clearance from the cylinder inner diameter is set to 1 mm / sec or more and 5 mm / sec or less. The present invention provides a grinding or polishing solidification method in which abrasive scrap containing coolant is discharged from at least the minute gap to solidify grinding or polishing waste. In addition, although there is no problem with the aqueous coolant, in the case of the oil-based coolant, a binder such as cellulose fiber is further required when the average particle size of the grinding or polishing scrap is 5 μm or less. Therefore, the aqueous or oily coolant content of cutting or polishing scrap is 10% or more and 30% or less, and the average particle size of grinding or polishing scrap is 1 μm or more and 5 μm or less. For example, the cellulose fiber described in Patent Document 4 is used. A method for solidifying grinding or polishing waste is provided. However, the cellulose fiber is an impurity in recycling, and there is a problem that it is expensive.

本発明の課題は上記問題点に鑑みて、微妙な制御が不要で、一般的な油圧駆動でも制御可能な研削又は研磨屑の固形化方法を提供することである。また、セルロース等のバインダを用いないでホーニング・超仕上げのような粒径が数μmといった水性又は油性クーラント含有研削又は研磨屑の固形化方法を提供することである。
In view of the above problems, an object of the present invention is to provide a method for solidifying grinding or polishing waste that does not require delicate control and can be controlled even by general hydraulic drive. Another object of the present invention is to provide an aqueous or oil-based coolant-containing grinding or polishing waste solidification method in which the particle size is several μm, such as honing and superfinishing, without using a binder such as cellulose.

本発明者等は、種々の実験を繰り返した。その結果、含有クーラントを絞り出した状態から固形化を開始するときの圧力変化について考察したところ、固形化寸前の所定のクーラント含有量になるまでは、できる限り低圧で送り、研削屑等がある程度固まり、所定のクーラント含有量に達した後、その後加圧力を固形化に必要な圧力まで上げることにより固形化が可能なことがわかった。そして、その圧力範囲(研削屑等での)は引用文献2のような40〜400MPaの約10倍の範囲を大きく超え、20〜30倍程度のレンジが必要であることがわかった。かかる広いレンジの圧力制御には、サーボモータ等で可能であるが、高価であり、また、研削屑等を扱う環境の悪いところでは使用が困難である。一方、このレンジは一本の油圧シリンダを制御するだけでは、制御範囲も小さく、応用性に欠ける。   The inventors repeated various experiments. As a result, when considering the change in pressure when solidification is started from the state where the contained coolant is squeezed out, it is fed at a low pressure as much as possible until it reaches the predetermined coolant content immediately before solidification, and the grinding scraps are solidified to some extent. After reaching a predetermined coolant content, it was found that solidification is possible by raising the applied pressure to a pressure necessary for solidification. And it turned out that the pressure range (in grinding scrap etc.) greatly exceeds the range of about 10 times of 40-400 MPa like the cited reference 2, and the range of about 20-30 times is required. Such a wide range of pressure control is possible with a servo motor or the like, but it is expensive and difficult to use in a poor environment for handling grinding scraps. On the other hand, this range has a small control range only by controlling one hydraulic cylinder, and lacks applicability.

そこで、本発明においては、水性又は油性クーラント含有の切削又は研磨屑を、シリンダに設けられた投入穴より、前記シリンダ内に投入し、前記投入穴を塞ぐ抑え蓋と、前記シリンダ内径と微少隙間をもって摺動可能にされたピストンとで、前記シリンダを密閉し、さらに、前記ピストンを前記シリンダに押し込むことにより前記シリンダ内の空気及び前記研削又は研磨屑の含有クーラントを少なくとも前記微少隙間より排出し、外径がφ50〜φ80、厚みが前記外径の0.7倍以上0.9倍以下の短円筒状の前記研削又は研磨屑を固形化する研削又は研磨屑の固形化方法であって、前記ピストンはメイン油圧シリンダと、前記ピストンを前記シリンダに押し込むための油圧シリンダの断面積が前記メイン油圧シリンダより小くされたサブ油圧シリンダが取り付けられ、前記サブ油圧シリンダのみの押し込み力により前記シリンダ内の前記研削又は研磨屑のクーラント含有量を減量する第一工程と、少なくとも前記メイン油圧シリンダの押し込み力により前記シリンダ内の前記研削又は研磨屑を固形化する第二工程と、からなり、前記第一工程は、前記シリンダの密閉時からの前記ピストンの送り速度を1mm/sec以上5mm/sec以下とし、かつ、前記ピストンの推力を14.7〜49kN(1.5〜5トン)の低い推力で前記シリンダ内の前記研削又は研磨屑のクーラント含有量を減量した後、さらに、前記第二工程で前記ピストンの推力を882〜1176kN(90〜120トン)とし、前記シリンダ内の前記研削又は研磨屑を固形化する研削又は研磨屑の固形化方法を提供することにより上記課題を解決した。
Therefore, in the present invention, cutting or polishing waste containing aqueous or oil-based coolant is introduced into the cylinder from the introduction hole provided in the cylinder, the holding lid that closes the introduction hole, the cylinder inner diameter and the minute gap The cylinder is sealed with a piston made slidable with the air, and further, the air in the cylinder and the coolant containing grinding or polishing waste are discharged from at least the minute gap by pushing the piston into the cylinder. In addition, the outer diameter is φ50 to φ80, the thickness is 0.7 times or more and 0.9 times or less the outer diameter of the short cylindrical shape of the grinding or polishing scraps solidifying method, The piston has a main hydraulic cylinder and a sub-section in which a cross-sectional area of the hydraulic cylinder for pushing the piston into the cylinder is smaller than that of the main hydraulic cylinder. A first step in which a hydraulic cylinder is attached, and the coolant content of the grinding or polishing debris in the cylinder is reduced by the pushing force of only the sub hydraulic cylinder; and at least the pushing force of the main hydraulic cylinder A second step of solidifying grinding or polishing scraps , wherein the first step sets a feed rate of the piston from 1 mm / sec to 5 mm / sec from the time of sealing the cylinder, and After reducing the coolant content of the grinding or polishing waste in the cylinder with a low thrust of 14.7 to 49 kN (1.5 to 5 tons), the thrust of the piston is further reduced to 882 in the second step. and ~1176kN (90~120 tons), the grinding or solidification of grinding or polishing debris solidifying abrasive debris in the cylinder It has solved the above problems by providing a law.

即ち、ここで、本発明においては、研削屑等を圧縮するピストンをメイン油圧シリンダとメイン油圧シリンダより小さなサブ油圧シリンダとを組み合わせて駆動することにより、加圧レンジ(範囲)を大きくとるようにした。さらに、低圧制御が可能なサブ油圧シリンダのみの押し込み力によりシリンダ内の研削又は研磨屑のクーラント含有量を減量させ、これを第一工程とした。所定の圧力に達した時点で、固形化が可能なクーラント含有量、さらには構造が安定したある程度の固まりになるので、メイン油圧シリンダの押し込み力によりシリンダ内の前記研削又は研磨屑を固形化することができる。これを第二工程とした。固形化にあたって、メイン油圧シリンダで押し込むが、サブ油圧シリンダの押し込み力を加えてもよい。これにより、研削屑等の加圧制御範囲を大きくでき、研削屑等のクーラント含有量の減量と、固形化を効率良く行うことができる。その結果、微妙な制御が不要で、一般的な油圧駆動でも制御可能な研削又は研磨屑の固形化方法となった。また、固形化された研削屑等(以下ブリケットという)はブリケットの外径が50mm未満ではピストンとシリンダ間の外径隙間が少なくなるので油性クーラントの排出効率が悪く、80mm超では、面圧が不足し固形化できない。なお、従来60mm程度までだったが本発明により充分な面圧が確保でき80mmの固形化が可能である。また、長さが外径の0.7倍未満では、ブリケットとして取扱いにくい。また、0.9倍超では圧縮が困難となる一方、壊れ易くなるのでブリケットの長さは外径の0.7倍以上0.9倍以下のものが好ましい。そこで、前記研削又は研削屑の固形化後の外径がφ50〜φ80、厚みが前記外径の0.7倍以上0.9倍以下の短円筒状とした。また、前記サブ油圧シリンダの前記ピストンを前記シリンダの押し込むための推力を14.7〜49kN(1.5〜5トン)、前記メインシリンダの前記ピストンを前記シリンダに押し込むための推力を882〜1176kN(90〜120トン)とした。これによれば、取扱が容易で、搬送や輸送中に破壊することが少ないブリケットを提供できるものとなった。また、特許文献2ではブリケットの外径φ80mm程度で面圧で360〜400MPaであり、推力換算によれば、約1764〜1960kN(180〜200トン)の出力となる。これに対して、本発明によれば、押し力は1176kN(120トン)と、より少ない推力で所望のブリケットが得られる。水性又は油性クーラント含有の研削屑の固形化が容易となる。一方、平均粒度が数μmの場合においては、本発明者等の実験では単にピストン速度を遅くしてもバインダとしてのセルロースを必要とした。しかし、本発明者等は本発明のクーラント含有量を減量する第一工程において、14.7〜49kN(1.5〜5トン)の低い推力条件に加え、さらに、ピストンの速度を1mm/sec以上5mm/sec以下の低速とすることにより、バインダーなしでも固形化が可能であることを知得した。圧縮速度が速いと、研削屑等が固まる前に、クーラントは研削屑と分離せずに一緒になって排出されてしまう。また、シリンダ内には空気も含まれており、その量、位置も不均一であり、また、空気は圧縮され研削屑等の隙間やシリンダとピストンとの隙間から漏れ出る際に急激に膨張し、クーラントさらには研削屑を噴出させたり、又は一緒に噴出してしまうと考えられる。このピストン速度は、特許文献2に記載された数cm/secのほぼ1/10と非常に低速にされており、研削屑等のクーラントや空気との噴出が小さくなる。この場合、1mm/sec未満では時間がかかりすぎ、5mm/sec以上では研削屑等がクーラントや空気と一緒に噴出して固形化が困難となる。より好ましくは2mm/sec以上3mm/sec以下の範囲がクーラント含有率や空気の量等の条件が変化しても安定する。なお、シリンダ内をピストンが密閉する瞬間の速度が大きくても空気の噴出が激しくなるので、ピストンのシリンダ密閉時から速度を制限することが重要である。また、ピストンの密閉前速度、戻り速度は特に制限はない。早送りで送り、密閉前に減速してシリンダ密閉時に所定の速度にすればよい。これにより、セルロース等のバインダを用いないで平均粒径が1μm以上5μm以下の水性又は油性クーラント含有研削又は研磨屑の固形化できる。
That is, here, in the present invention, the pressure range (range) is increased by driving a piston that compresses grinding waste or the like in combination with a main hydraulic cylinder and a sub hydraulic cylinder smaller than the main hydraulic cylinder. did. Furthermore, the coolant content of the grinding or polishing waste in the cylinder was reduced by the pushing force of only the sub hydraulic cylinder capable of low pressure control, and this was set as the first step. When the pressure reaches a predetermined pressure, the content of the coolant that can be solidified and the structure becomes solid to a certain extent, so the grinding or polishing waste in the cylinder is solidified by the pushing force of the main hydraulic cylinder. be able to. This was the second step. In solidification, the main hydraulic cylinder is pushed in, but the pushing force of the sub hydraulic cylinder may be applied. Thereby, the pressurization control range, such as grinding waste, can be enlarged, and reduction of coolant content, such as grinding waste, and solidification can be performed efficiently. As a result, it has become a solidification method for grinding or polishing scraps that does not require delicate control and can be controlled even by general hydraulic drive. Further, solidified grinding scraps (hereinafter referred to as briquettes) have a poor outer diameter clearance between the piston and the cylinder when the outer diameter of the briquette is less than 50 mm, so that the discharge efficiency of the oil-based coolant is poor, and the surface pressure exceeds 80 mm. Insufficient solidification. In addition, although it was about 60 mm conventionally, sufficient surface pressure can be ensured by this invention and solidification of 80 mm is possible. Moreover, if the length is less than 0.7 times the outer diameter, it is difficult to handle as a briquette. On the other hand, if it exceeds 0.9 times, compression becomes difficult, but breakage easily occurs. Therefore, the briquette length is preferably 0.7 times or more and 0.9 times or less of the outer diameter. Therefore, a short cylindrical shape having an outer diameter of φ50 to φ80 and a thickness of 0.7 times or more and 0.9 times or less of the outer diameter after the grinding or solidification of the grinding scraps is formed. The thrust for pushing the piston of the sub hydraulic cylinder into the cylinder is 14.7 to 49 kN (1.5 to 5 tons), and the thrust for pushing the piston of the main cylinder into the cylinder is 882 to 1176 kN. (90 to 120 tons). This makes it possible to provide briquettes that are easy to handle and are less likely to break during transportation and transportation. Further, in Patent Document 2, the briquette has an outer diameter of about 80 mm and a surface pressure of 360 to 400 MPa. According to thrust conversion, the output is about 1764 to 1960 kN (180 to 200 tons). On the other hand, according to the present invention, the pushing force is 1176 kN (120 tons), and a desired briquette can be obtained with a smaller thrust. Solidification of grinding waste containing water-based or oil-based coolant is facilitated. On the other hand, in the case where the average particle size is several μm, in the experiments by the present inventors, cellulose as a binder is required even if the piston speed is simply decreased. However, in the first step of reducing the coolant content of the present invention, the present inventors added a low thrust condition of 14.7 to 49 kN (1.5 to 5 tons), and further increased the piston speed to 1 mm / sec. It was found that solidification is possible without a binder by setting the speed to 5 mm / sec or less. When the compression speed is high, the coolant is discharged together with the grinding scraps without being separated before the grinding scraps are hardened. In addition, air is contained in the cylinder, and the amount and position of the cylinder are uneven, and the air is compressed and expands rapidly when leaking from gaps such as grinding dust and the gap between the cylinder and piston. It is considered that coolant and grinding scraps are ejected or ejected together. The piston speed is very low, approximately 1/10 of several cm / sec described in Patent Document 2, and the jet of coolant such as grinding scraps and air becomes small. In this case, if it is less than 1 mm / sec, it takes too much time, and if it is 5 mm / sec or more, grinding scraps and the like are ejected together with the coolant and air and solidification becomes difficult. More preferably, the range of 2 mm / sec or more and 3 mm / sec or less is stable even if the conditions such as the coolant content and the amount of air change. In addition, even if the speed at the moment when the piston is sealed in the cylinder is large, the ejection of air becomes intense. Therefore, it is important to limit the speed from when the piston is sealed. Further, the speed before the piston is sealed and the return speed are not particularly limited. What is necessary is just to feed at a rapid feed, decelerate before sealing, and make it a predetermined speed at the time of cylinder sealing. Thereby, it is possible to solidify aqueous or oil-based coolant-containing grinding or polishing scraps having an average particle diameter of 1 μm to 5 μm without using a binder such as cellulose.

特許文献3においては、前述したように、一次プレス後であっても、空気が多く介在し、また、研削屑同士の結びつきが弱く容易に移動、変形するので、二次プレスでの研削屑の固形化が妨げられる。これに対して、本発明の場合は特許文献3の一次プレスと二次プレスに相当する第一工程と第二工程を一のシリンダ内で連続して行うので、空気の介在が少なく、また、ある程度研削屑同士がくっついているので容易に固形化できると考える。   In Patent Document 3, as described above, even after the primary press, a large amount of air is present, and since the connection between the grinding debris is weak and easily moved and deformed, the grinding debris in the secondary press is reduced. Solidification is prevented. On the other hand, in the case of the present invention, since the first step and the second step corresponding to the primary press and the secondary press in Patent Document 3 are continuously performed in one cylinder, there is little air interposition, I think that it can be easily solidified because grinding scraps are stuck to some extent.

なお、圧縮する前の水性又は油性クーラントの含有率が10%以下では研削屑等が互いに固着できず固形化できないばかりかピストンのバウンドやかじりを生じる。また、60%超では研削屑がクーラント内に分散してしまい固形化できないので、クーラント含有率を10%以上60%以下、より好ましくは50%前後がよい。なお、第一工程でのピストン速度は水性クーラント含有の平均粒径100μm程度の研削屑等で5〜15mm/sec程度で固形化ができる。   If the content of the aqueous or oil-based coolant before compression is 10% or less, the grinding scraps cannot be fixed to each other and cannot be solidified, and piston bounce or galling occurs. Further, if it exceeds 60%, grinding scraps are dispersed in the coolant and cannot be solidified, so the coolant content is preferably 10% or more and 60% or less, more preferably around 50%. The piston speed in the first step can be solidified at about 5 to 15 mm / sec with grinding scraps containing an aqueous coolant and having an average particle size of about 100 μm.

さらに、請求項2に記載の発明においては、前記第一工程の前記サブ油圧シリンダの送り速度を1mm/sec以上5mm/sec以下とすることにより、前記研削屑又は研磨屑の平均粒径が1μm以上5μm以下において、平均粒度が数μmのクーラント含有研削屑等の固形化を可能とした。
Furthermore, in the invention according to claim 2, by setting the feed speed of the sub hydraulic cylinder in the first step to 1 mm / sec or more and 5 mm / sec or less, the average particle diameter of the grinding scraps or polishing scraps is 1 μm. Above 5 μm, it is possible to solidify coolant-containing grinding scraps having an average particle size of several μm.

また、固形化前の含有クーラントは、クーラント含有率が10%以上30%以下とするとよい。そこで、請求項3に記載の発明においては、 前記第一工程後、前記第二工程前の切削又は研磨屑の水性又は油性クーラント含有率が10%以上30%以下とした研削又は研磨屑の固形化方法とした。油性クーラントの含有率が10%以下では研削屑等が互いに固着できず固形化できないばかりかピストンのバウンドやかじりを生じる。30%超では微少研削屑がクーラント内に分散してしまい固形化できないので、クーラント含有率を10%以上30%以下とした。より好ましくは10%以上25%以下とするのが安定して固形化できる。   Moreover, it is good for the content coolant before solidification to make a coolant content rate 10% or more and 30% or less. Therefore, in the invention according to claim 3, the solid of grinding or polishing scraps in which the aqueous or oily coolant content of the cutting or polishing scraps before the second step is 10% or more and 30% or less after the first step. It was made into the conversion method. When the content of the oil-based coolant is 10% or less, the grinding scraps cannot be fixed to each other and cannot be solidified, and piston bounce or galling occurs. If it exceeds 30%, fine grinding scraps are dispersed in the coolant and cannot be solidified, so the coolant content is set to 10% or more and 30% or less. More preferably, it is 10% or more and 25% or less so that solidification can be achieved stably.

実験によれば、第一工程のピストンの推力は19.6〜49kN(2〜5トン)、固形化時の第二工程での推力は980kN(100トン)程度であった。推力で20〜50倍程度を必要とする。一本の油圧シリンダで圧力制御すると、例えば第一工程の圧力を7MPaとすると、第二工程では、140〜350MPaとなり、とうてい実現できない。一方、油圧装置では、14MPa〜35MPa程度の圧力が用いられ、二圧制御では、高圧と、低圧では2〜3倍程度の設定がされる。また、油圧力を高くすると装置全体の寿命、強度等に影響を与えるので14MPa〜21MPaが好ましい。また、シリンダ径は小さい方がよい。そこで、請求項4に記載の発明においては、前記メイン油圧シリンダが前記ピストンを前記シリンダの押し込むための断面積が前記サブ油圧シリンダが前記ピストンを前記シリンダの押し込むための断面積の10〜15倍が好ましい。例えば、第二工程の設定油圧力が第一工程の設定油圧力の2倍の場合は、20倍〜30倍の推力となる。また、設定圧力を低くでき、推力比を大きくすることもできる。   According to the experiment, the thrust of the piston in the first step was 19.6 to 49 kN (2 to 5 tons), and the thrust in the second step during solidification was about 980 kN (100 tons). About 20 to 50 times as much thrust is required. If the pressure is controlled by a single hydraulic cylinder, for example, if the pressure in the first step is 7 MPa, the pressure in the second step is 140 to 350 MPa, which cannot be realized. On the other hand, in the hydraulic device, a pressure of about 14 MPa to 35 MPa is used, and in the two-pressure control, a high pressure and a low pressure of about 2-3 times are set. Moreover, since it will affect the lifetime, intensity | strength, etc. of the whole apparatus when oil pressure is made high, 14 MPa-21 MPa are preferable. The cylinder diameter should be small. Therefore, in the invention according to claim 4, the cross-sectional area for the main hydraulic cylinder to push the piston into the cylinder is 10 to 15 times the cross-sectional area for the sub-hydraulic cylinder to push the piston into the cylinder. Is preferred. For example, when the set oil pressure in the second process is twice the set oil pressure in the first process, the thrust is 20 to 30 times. Also, the set pressure can be lowered and the thrust ratio can be increased.

メイン油圧シリンダとサブ油圧シリンダは1本ずつでも良いが、バランスからみて、1本のメイン油圧シリンダを中心にして2本のサブ油圧シリンダを均等に配置するのが好ましい。そこで、請求項5の発明においては、前記メイン油圧シリンダは1本であり、前記サブ油圧シリンダは2本で一組とするようにした。この構造は前述した特許文献5に示すようなキッカーシリンダ方式に類似するが、特許文献5のものはサブ油圧シリンダで高速送りをして、サイクルタイムを早くするものである。これに対して、本発明では、戻し時には同様な働きをするが、サブ油圧シリンダでの押し時には低速・低圧で速度及び圧力制御され、低圧で研削屑等に含有されたクーラントを絞り出し、クーラント含有量を固形化に適した含有量に減量するように作用させる点で大きく異なる。これによりクーラント減量と固形化を安定してできるものとなった。   One main hydraulic cylinder and one sub hydraulic cylinder may be provided, but it is preferable that two sub hydraulic cylinders are equally arranged around one main hydraulic cylinder from the viewpoint of balance. Therefore, in the invention of claim 5, the number of the main hydraulic cylinder is one, and the number of the sub hydraulic cylinders is two. This structure is similar to the kicker cylinder system as shown in Patent Document 5 described above, but the one in Patent Document 5 uses a sub-hydraulic cylinder to feed at a high speed to increase the cycle time. On the other hand, in the present invention, the same function is performed at the time of return, but at the time of pushing by the sub hydraulic cylinder, the speed and pressure are controlled at low speed and low pressure, and the coolant contained in the grinding waste is squeezed out at low pressure to contain the coolant. It differs greatly in that it acts to reduce the amount to a content suitable for solidification. As a result, the coolant can be reduced and solidified stably.

かかる、固形化方法は、前述した油圧プレス装置に類似した構成により、得られる。具体的には、水性又は油性クーラント含有の切削又は研磨屑を、シリンダ内に投入し、シリンダ内径と微少隙間をもって摺動可能にされたピストンをシリンダに押し込むことによりシリンダ内の空気及び研削又は研磨屑の含有クーラントを少なくとも微少隙間より排出し、研削又は研磨屑を固形化する研削又は研磨屑の固形化装置であって、ピストンはメイン油圧シリンダと、ピストンをシリンダに押し込むための油圧シリンダの断面積がメイン油圧シリンダより小くされたサブ油圧シリンダが取り付けられ、サブ油圧シリンダがピストンをシリンダに押し込み、シリンダの研削又は研磨屑のクーラント含有量を減量するための供給圧力を制御する圧力制御弁と、シリンダ内の研削又は研磨屑のクーラント含有量を減量するためにサブ油圧シリンダの速度を制御する速度制御弁と、サブ油圧シリンダの供給圧力があらかじめ定められた所定の圧力に達したときに、メイン油圧シリンダがシリンダ内の研削又は研磨屑を固形化するためにピストンをシリンダの押し込めるようにメイン油圧シリンダに油圧を供給するようにされた切換弁と、を含み、メイン油圧シリンダ及びサブ油圧シリンダを介してピストンをシリンダに出入り可能に駆動するようにされた油圧装置と、を有する固形化装置とした。
Such a solidification method can be obtained by a configuration similar to the hydraulic press device described above. Specifically, the cutting or polishing debris of the water or oil-based coolant-containing, were charged into a cylinder, a cylinder inner diameter and air及of with a minute gap inside by Ri cylinder pushing the pistons slidably in the cylinder also discharged from minute gaps and reduce the content coolant fine grinding or polishing debris, a solidification apparatus of the grinding or polishing debris solidifying grinding or polishing debris, the piston pushes the main hydraulic cylinder, the piston in the cylinder sectional area of the hydraulic cylinder small rot sub hydraulic cylinder mounting et be from the main hydraulic cylinder for, push sub hydraulic cylinder piston cylinder, to lose weight the coolant content of grinding or polishing debris in the cylinder sub hydraulic in order to lose weight and pressure control valve for controlling the supply pressure, coolant content of grinding or polishing debris in the cylinder for A speed control valve for controlling the speed of the cylinder, when the supply pressure of the sub-hydraulic cylinder reaches a predetermined pressure to a predetermined, the piston to the main hydraulic cylinder solidifying grinding or polishing debris in the cylinder see containing and a switching valve which is adapted to supply the hydraulic pressure to the main hydraulic cylinder as Oshikomeru of cylinders, which is the piston through the main hydraulic cylinder及beauty sub hydraulic cylinder and out drivable cylinder hydraulic And a solidification device having a device.

サブ油圧シリンダに圧油を供給し、サブ油圧シリンダにより低推力、低速度でクーラントの絞り出しを行い固形化に適したクーラント含有量となる。さらに、所定圧力である程度固め構造を安定させる。所定圧力に達したことを確認して、切替弁によりメイン油圧シリンダに油圧を供給し、ピストンに高い推力を与え一気に固形化する。   Pressure oil is supplied to the sub hydraulic cylinder, and the coolant is squeezed out with low thrust and low speed by the sub hydraulic cylinder to obtain a coolant content suitable for solidification. Furthermore, the structure is stabilized to some extent at a predetermined pressure to stabilize the structure. After confirming that the predetermined pressure has been reached, the switching valve supplies the hydraulic pressure to the main hydraulic cylinder, applies high thrust to the piston, and solidifies at once.

た、速度制御弁はサブ油圧シリンダ速度を1mm/sec以上5mm/sec以下に制御可能な速度制御弁とするのがよい。また、メイン油圧シリンダがピストンをシリンダに押し込むための断面積をサブ油圧シリンダがピストンをシリンダに押し込むための断面積の10〜15倍とした。さらに、メイン油圧シリンダは1本であり、サブ油圧シリンダは2本で一組とした。また、研削又は研削屑の固形化後の外径がφ50〜φ80、厚みが外径の0.7倍以上0.9倍以下の短円筒状であり、サブ油圧シリンダのピストンをシリンダに押し込むための最大推力が147〜490kN(1.5〜5トン)、メインシリンダのピストンを前記シリンダに押し込むための最大推力が882〜1176kN(90〜120トン)とした研削又は研磨屑の固形化装置とした。
Also, the speed control valve is preferably set to the sub-hydraulic cylinder speed controllable below 1 mm / sec or more 5 mm / sec the speed control valve. Also, it was 10 to 15 times the cross-sectional area for the cross sectional area for the main hydraulic cylinder pushes the piston in the cylinder is sub-hydraulic cylinder pushes the piston in the cylinder. Furthermore, the main hydraulic cylinder Ri one der, sub hydraulic cylinders was set at two. The outer diameter after solidification of grinding or grinding debris Fai50~fai80, thickness Ri short cylindrical der of 0.7 times to 0.9 times the outer diameter, push the sub-hydraulic cylinder piston in a cylinder Grinding or polishing waste solidifying device having a maximum thrust of 147 to 490 kN (1.5 to 5 tons) and a maximum thrust for pushing the piston of the main cylinder into the cylinder of 882 to 1176 kN (90 to 120 tons) It was.

以上述べたように、本発明によれば、サブ油圧シリンダでクーラント含有量を減量する第一工程と、メイン油圧シリンダで固形化するという第二工程とを一のシリンダ内で連続して行い研削屑等の加圧制御範囲を大きくし、減量と、固形化を効率良く行うので、微妙な制御が不要で、一般的な油圧駆動でも制御可能な研削又は研磨屑の固形化方法及び装置を提供するものとなった。また、研削屑又は研磨屑の固形化後の外径をφ50〜φ80、厚みが外径の0.7倍以上0.9倍以下とし、クーラント含有量の減量(第一工程)での最大推力を14.7〜49kN(1.5〜5トン)、固形化時(第二工程)での最大推力を882〜1176kN(90〜120トン)とし、ブリケットを破損しにくく、また搬送を容易としたので、溶解炉等に投入が容易でリサイクルに適したブリケットを提供できるものとなった。さらに、従来より少ない推力で所望のブリケットが得られるので、装置、機械強度も小さくてよく、また、機械寿命も長くできるものとなった。
As described above, according to the present invention, the first step of reducing the coolant content in the sub hydraulic cylinder and the second step of solidifying in the main hydraulic cylinder are continuously performed in one cylinder for grinding. We provide a solidification method and device for grinding or polishing waste that can be controlled even by general hydraulic drive, because the pressure control range for waste, etc. is increased, and weight reduction and solidification are performed efficiently. It became something to do . Further, the outer diameter after grinding or grinding scrap is solidified is φ50 to φ80, the thickness is 0.7 times or more and 0.9 times or less of the outer diameter, and the maximum thrust in reducing the coolant content (first step) 14.7 to 49kN (1.5 to 5 tons), the maximum thrust at the time of solidification (second step) is 882 to 1176kN (90 to 120 tons), making briquettes difficult to break and easy to carry As a result, briquettes suitable for recycling that can be easily put into a melting furnace or the like can be provided. Furthermore, since a desired briquette can be obtained with less thrust than in the past, the apparatus and mechanical strength may be small, and the mechanical life can be extended.

また、第一工程でのサブ油圧シリンダの速度を1mm/sec以上5mm/sec以下とし、セルロース等のバインダを用いないで平均粒径が1μm以上5μm以下の固形化を可能としたので、ホーニング・超仕上げのような粒径が数μmといった水性又は油性クーラント含有研削又は研磨屑の固形化が可能となった(請求項2)。さらに、第一工程でのクーラント含有率を10%以上30%以下とし、安定した固形化を可能としたので、管理がし易く、連続運転も可能になった(請求項3)。さらに、メイン油圧シリンダの断面積をサブ油圧シリンダの断面積の10〜15倍とし、油圧の設定圧力を低くし、メイン油圧シリンダとサブ油圧シリンダの推力比を大きくしたので、一般的な比較的小型の油圧装置の使用圧力(14〜21MPa)・使用流量(数十Lit/min)の範囲でよく、コストが少なく、メンテナンスの容易なものとなった(請求項4)。また、メイン油圧シリンダを1本、サブ油圧シリンダを2本としたので、バランスもよく、製作も容易であり、また一般的なキッカーシリンダタイプのものを使用でき、設計・製作も容易である(請求項5)。 In addition, the speed of the sub hydraulic cylinder in the first step is 1 mm / sec or more and 5 mm / sec or less, and solidification with an average particle diameter of 1 μm or more and 5 μm or less is possible without using a binder such as cellulose. Aqueous or oily coolant-containing grinding with a particle size of several μm, such as superfinishing, or solidification of polishing scraps is possible (Claim 2) . Furthermore, since the coolant content in the first step is 10% or more and 30% or less and stable solidification is possible, management is easy and continuous operation is also possible (Claim 3). Furthermore, the cross-sectional area of the main hydraulic cylinder is 10 to 15 times the cross-sectional area of the sub-hydraulic cylinder, the hydraulic pressure setting is lowered, and the thrust ratio between the main hydraulic cylinder and the sub-hydraulic cylinder is increased. The working pressure (14 to 21 MPa) and working flow rate (several tens of liters / min) of a small hydraulic device may suffice, the cost is low, and maintenance is easy ( claim 4) . In addition, since there are one main hydraulic cylinder and two sub hydraulic cylinders, the balance is good and manufacturing is easy, and a general kicker cylinder type can be used, and design and manufacture are also easy ( Claim 5 ).

このように、本発明の研削又は研磨屑の固形化方法により、前述した水性又は油性クーラント含有研削又は研磨屑の固形化方法を実施することができ、数μm〜数百μ mの水性又は油性クーラント含有研削又は研磨屑の固形化を可能とし、リサイクルを達成し、環境を保全するものとなった。
Thus, more solid method of grinding or polishing debris of the invention, the solidification method of aqueous or oil-based coolant containing grinding or polishing debris described above can be carried out, aqueous several μm~ several hundred mu m or Oil-based coolant-containing grinding or polishing waste can be solidified, achieving recycling and preserving the environment.

本発明の実施の形態について図を参照して説明する。図1乃至図6は本発明の実施の形態を示すシリンダ及びピストンの模式図及び動作説明図、図7は本発明に用いる油圧装置の油圧回路図である。図1に示すように、内径2がφ70mmの両端が開放されたシリンダ1が設けられている。シリンダ1の一方側にはその先端部13の外径12がシリンダの内径2と片側0.1mm(径で0.2mm)の隙間を持って嵌合できるようにされた蓋11が図示しない本体に固定されている。蓋11の先端部13の縁部15にはシリンダ内径と形成される隙間14と連通する排出孔が設けられている(図1、2)。シリンダ1は蓋方向に2本のスライド油圧シリンダ53により、一定距離前後移動可能にされ、先端部13とシリンダ1とが一定距離をもって離隔できるようにされている。シリンダ1の他方側4の上部には外部より研削又は研磨屑(以下、研削屑等という)30が投入される投入穴5が設けられている。シリンダ1の投入穴5の上部には、予備投入穴6が設けられ、予備投入穴には図示しないホッパー等から所定量の予備圧縮又は予備脱液され油性クーラント含有率が10〜60%の研削又は研磨屑30が送り込まれる(矢印34)。予備投入穴6の上部には充填油圧シリンダ54が設けられ予備投入穴の研削又は研磨屑30を投入穴からシリンダ1の内部へ送るようにされている。充填油圧シリンダ54の先端には研削屑等の押し込み機能及び投入穴5の蓋の役割を果たす抑え蓋8が取り付けられている。シリンダ1の他方の開口部4aからピストン21がシリンダ1内で移動可能にされ、ピストン外径22とシリンダ内径2との隙間24が0.1mm(片側)にされている。かかる装置は一般的な例の一つであり、本発明の要旨を逸脱しない範囲で種々の形態が可能であることはいうまでもない。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 to FIG. 6 are schematic views and operation explanatory views of a cylinder and a piston showing an embodiment of the present invention, and FIG. 7 is a hydraulic circuit diagram of a hydraulic apparatus used in the present invention. As shown in FIG. 1, a cylinder 1 having an inner diameter 2 of φ70 mm and open at both ends is provided. On the one side of the cylinder 1 is a main body (not shown) having a lid 11 which can be fitted with an outer diameter 12 of its tip 13 having a clearance of 0.1 mm (0.2 mm in diameter) on one side with the inner diameter 2 of the cylinder. It is fixed to. The edge 15 of the tip 13 of the lid 11 is provided with a discharge hole communicating with the inner diameter of the cylinder and the gap 14 formed (FIGS. 1 and 2). The cylinder 1 can be moved back and forth by a certain distance by two slide hydraulic cylinders 53 in the lid direction so that the tip 13 and the cylinder 1 can be separated from each other by a certain distance. In the upper part of the other side 4 of the cylinder 1, a charging hole 5 into which grinding or polishing waste (hereinafter referred to as grinding waste or the like) 30 is supplied from the outside is provided. A preliminary charging hole 6 is provided above the charging hole 5 of the cylinder 1, and a predetermined amount of preliminary compression or preliminary liquid removal from a hopper or the like (not shown) is performed in the preliminary charging hole, so that the oil-based coolant content is 10 to 60%. Alternatively, polishing scraps 30 are fed (arrow 34). A filling hydraulic cylinder 54 is provided above the preliminary charging hole 6 so that grinding or polishing waste 30 of the preliminary charging hole is sent from the charging hole to the inside of the cylinder 1. At the front end of the filling hydraulic cylinder 54, a restraining lid 8 that functions as a push-in function for grinding dust and the like and a lid for the charging hole 5 is attached. The piston 21 is movable in the cylinder 1 from the other opening 4a of the cylinder 1, and the gap 24 between the piston outer diameter 22 and the cylinder inner diameter 2 is 0.1 mm (one side). Such a device is one of general examples, and it goes without saying that various forms are possible without departing from the gist of the present invention.

本発明においては、特にピストン21は台座7に取り付けられ台座には1本のメイン油圧シリンダ51のロッド51aと、2本のサブ油圧シリンダ52のロッド52aが取り付けられている。図7に示す油圧装置50により、メイン及びサブ油圧シリンダを作動させて、ピストン21を駆動するようにされている。メイン油圧シリンダ51は内径φ250mm、ロッド径φ200mm、ピストン21を押し込むための断面積(キャップ側断面積)490.8cm2である。また、サブ油圧シリンダ52は内径φ50mm、ロッド径φ25mmであり、ピストン21を押し込むための断面積(キャップ側断面積)19.6cm2×2本あり、メイン油圧シリンダのキャップ側断面積がサブ油圧シリンダのキャップ側断面積の約12.5倍とされている。 In the present invention, in particular, the piston 21 is attached to the base 7, and the rod 51 a of one main hydraulic cylinder 51 and the rods 52 a of two sub hydraulic cylinders 52 are attached to the base. The piston 21 is driven by operating the main and sub hydraulic cylinders by a hydraulic device 50 shown in FIG. The main hydraulic cylinder 51 has an inner diameter φ250 mm, a rod diameter φ200 mm, and a cross-sectional area (cap side cross-sectional area) for pushing the piston 21 of 490.8 cm 2 . The sub-hydraulic cylinder 52 has an inner diameter of 50 mm and a rod diameter of 25 mm, has a cross-sectional area for pushing the piston 21 (cap-side cross-sectional area) of 19.6 cm 2 × 2, and the cap-side cross-sectional area of the main hydraulic cylinder is sub-hydraulic. The cross-sectional area of the cylinder cap is about 12.5 times.

本発明の実施の形態においては、図7の油圧回路図に示すような油圧装置50を用いる。図7に示すように、油圧タンク55の油圧作動油を吸入し高圧を吐出可能にされ、最大吐出圧力7MPa、流量20Lit/minの可変ポンプ56と、最大吐出圧力21MPa、流量14Lit/minのピストンポンプ57とが設けられている。可変ポンプ56の吐出ライン56aは電磁切換弁58、流量調整弁59を介してスライド油圧シリンダ53に、電磁切換弁60、パイロットチェックバルブ61、流量調整弁61を介して充填油圧シリンダ54にそれぞれ接続されている。   In the embodiment of the present invention, a hydraulic device 50 as shown in the hydraulic circuit diagram of FIG. 7 is used. As shown in FIG. 7, the hydraulic fluid in the hydraulic tank 55 is sucked and high pressure can be discharged, the variable discharge pump 56 having a maximum discharge pressure of 7 MPa and a flow rate of 20 Lit / min, and a piston having a maximum discharge pressure of 21 MPa and a flow rate of 14 Lit / min. A pump 57 is provided. The discharge line 56a of the variable pump 56 is connected to the slide hydraulic cylinder 53 via an electromagnetic switching valve 58 and a flow rate adjusting valve 59, and to the filling hydraulic cylinder 54 via an electromagnetic switching valve 60, a pilot check valve 61, and a flow rate adjusting valve 61, respectively. Has been.

電磁切換弁58のSOL2をONすれば、スライド油圧シリンダ53のロッドが縮みシリンダ1を蓋11方向に移動(前進)し、SOL3をONすれば、スライド油圧シリンダのロッドが延びシリンダ1を蓋11から遠ざける(後退)させる。電磁切換弁60のSOL4をONすれば、充填油圧シリンダ54のロッドが縮み充填油圧シリンダが上昇し、SOL5をONすれば、ロッドが延び研削又は研磨屑を送り込み、さらに投入穴5を抑え蓋8により塞ぎ、ピストン21のシリンダへの挿入時に研削屑等が戻らないようにされている。   When SOL2 of the electromagnetic switching valve 58 is turned on, the rod of the slide hydraulic cylinder 53 contracts and moves (forwards) the cylinder 1 toward the lid 11, and when SOL3 is turned on, the rod of the slide hydraulic cylinder extends and the cylinder 1 is covered with the lid 11. Move away (retreat). When SOL4 of the electromagnetic switching valve 60 is turned ON, the rod of the filling hydraulic cylinder 54 is contracted and the filling hydraulic cylinder is raised, and when SOL5 is turned ON, the rod extends and feeds grinding or polishing scraps, further suppresses the introduction hole 5 and the lid 8 So that the grinding dust or the like does not return when the piston 21 is inserted into the cylinder.

ピストンポンプ57の吐出ライン57aには、吐出圧力を0.7〜21MPaまで電気信号で調整可能にされた電磁比例リリーフ弁63が取り付けられ、また、電気信号で通過流量を調整可能にされた電磁比例流量調整弁64が取り付けられ、ピストンポンプからの吐出圧力及び流量を調整できるようにされている。電磁比例流量調整弁64の吐出側ライン64aは、減圧弁65、電磁切換弁66を介してサブ油圧シリンダ52に接続されている。キャップ側52cに圧力スイッチ68、パイロットチェックバルブ67が設けられている。さらに、電磁比例流量調整弁64の吐出側ライン64aは、電磁切換弁69を介してメイン油圧シリンダ51のキャップ側51cに接続されている。メイン油圧シリンダ51のキャップ側には、圧力スイッチ70、圧抜き用圧力制御弁71、プレフィル弁72が接続されている。プレフィル弁72は油圧作動油をサージタンク55aからメイン油圧シリンダ51へ吸入できるようにされている。プレフィル弁72を開放するためのパイロットライン72aはサブ油圧シリンダ52のロッド側ライン52rに接続されている。   An electromagnetic proportional relief valve 63 whose discharge pressure can be adjusted from 0.7 to 21 MPa by an electric signal is attached to the discharge line 57a of the piston pump 57, and the passage flow rate can be adjusted by an electric signal. A proportional flow rate adjustment valve 64 is attached so that the discharge pressure and flow rate from the piston pump can be adjusted. The discharge-side line 64 a of the electromagnetic proportional flow rate adjustment valve 64 is connected to the sub hydraulic cylinder 52 via a pressure reducing valve 65 and an electromagnetic switching valve 66. A pressure switch 68 and a pilot check valve 67 are provided on the cap side 52c. Further, the discharge side line 64 a of the electromagnetic proportional flow rate adjustment valve 64 is connected to the cap side 51 c of the main hydraulic cylinder 51 via the electromagnetic switching valve 69. A pressure switch 70, a pressure relief pressure control valve 71, and a prefill valve 72 are connected to the cap side of the main hydraulic cylinder 51. The prefill valve 72 is configured so that hydraulic hydraulic oil can be sucked into the main hydraulic cylinder 51 from the surge tank 55a. A pilot line 72 a for opening the prefill valve 72 is connected to the rod side line 52 r of the sub hydraulic cylinder 52.

また、可変ポンプ吐出ライン56aとピストンポンプ吐出ライン57aを電磁切換弁73を介して接続されている。サブ油圧シリンダ52のキャップ側の圧力スイッチ68の設定圧は少なくとも7〜14MPaに調整可能にされており、所定圧力になると電磁切換弁69のSOL8がONとなり、メイン油圧シリンダ52のヘッド側に油圧が供給できるようにされている。また、メイン油圧シリンダ52のキャップ側の圧力スイッチ70の設定圧は少なくとも14〜21MPaに調整可能にされており、所定圧力になると固形化が完了した旨の完了信号が出力できるようにされている。電磁切換弁66のSOL6をONとするとサブ油圧シリンダ52のロッドが伸び、ピストン21を前進させる。このときプレフィル弁72を通って、サージタンク55aから作動油がメイン油圧シリンダ51に自吸される。電磁切換弁66のSOL7をONでサブ油圧シリンダ52のロッドが縮み、ピストン21を後退させる。このときプレフィル弁72がパイロットライン72aの圧力により開き、サージタンク55aへメイン油圧シリンダの作動油を排出する。電磁切換弁69のSOL8をONとするとメイン油圧シリンダ51に高圧油が供給される。   Further, the variable pump discharge line 56 a and the piston pump discharge line 57 a are connected via an electromagnetic switching valve 73. The set pressure of the pressure switch 68 on the cap side of the sub hydraulic cylinder 52 can be adjusted to at least 7 to 14 MPa. When a predetermined pressure is reached, the SOL8 of the electromagnetic switching valve 69 is turned ON, and the hydraulic pressure is applied to the head side of the main hydraulic cylinder 52. Can be supplied. The set pressure of the pressure switch 70 on the cap side of the main hydraulic cylinder 52 can be adjusted to at least 14 to 21 MPa, and when the pressure reaches a predetermined pressure, a completion signal indicating that solidification has been completed can be output. . When SOL6 of the electromagnetic switching valve 66 is turned ON, the rod of the sub hydraulic cylinder 52 is extended and the piston 21 is advanced. At this time, the hydraulic oil is self-primed from the surge tank 55a into the main hydraulic cylinder 51 through the prefill valve 72. When SOL7 of the electromagnetic switching valve 66 is turned ON, the rod of the sub hydraulic cylinder 52 is contracted, and the piston 21 is retracted. At this time, the prefill valve 72 is opened by the pressure of the pilot line 72a, and the hydraulic oil of the main hydraulic cylinder is discharged to the surge tank 55a. When SOL8 of the electromagnetic switching valve 69 is turned ON, high pressure oil is supplied to the main hydraulic cylinder 51.

なお、減圧弁65は14MPaに設定され、サブ油圧シリンダに14MPaを超える過大な圧力をかけないようにしたものである。また、低圧側を21MPa仕様の可変ポンプとし、最大使用圧力を7MPaに抑え、高圧側を35MPa仕様の固定ピストンポンプとし、最大使用圧力を21MPaに抑えることによりポンプ寿命を確保したりしている。また、サブ油圧シリンダ52の飛び出しを防止するため、電磁比例流量調整弁64をメータインとする等している。しかし、このような減圧弁、ポンプの選定や図示したチェックバルブ、絞り、その他については、一般的な油圧回路で使用される技術や、本発明そのものとは直接には関係ない技術であるので説明を省略する。また、図7に示す油圧回路は一例を示すもので、本発明の要旨を逸脱しない範囲で種々の油圧回路が適用できることはいうまでもない。   The pressure reducing valve 65 is set to 14 MPa so that an excessive pressure exceeding 14 MPa is not applied to the sub hydraulic cylinder. Further, the pump life is ensured by using a variable pressure pump of 21 MPa specification on the low pressure side, a maximum operating pressure of 7 MPa, a fixed piston pump of 35 MPa specification on the high pressure side, and a maximum operating pressure of 21 MPa. Further, in order to prevent the sub hydraulic cylinder 52 from popping out, the electromagnetic proportional flow rate adjustment valve 64 is metered in. However, since the selection of the pressure reducing valve, the pump, the illustrated check valve, the throttle, and the like are technologies that are used in general hydraulic circuits or technologies that are not directly related to the present invention itself, they will be described. Is omitted. Moreover, the hydraulic circuit shown in FIG. 7 shows an example, and it goes without saying that various hydraulic circuits can be applied without departing from the gist of the present invention.

かかる本発明の作動は次のようなものである。図7の油圧回路を併用して図1乃至図6を参照して説明する。図1に示すように、シリンダ1は原位置では蓋11とは反対側端に位置し、ピストン21は投入穴5の一部を塞ぐ位置にされている。充填油圧シリンダ54のロッド先端8は上端にあり、予備投入穴6には所定量の研削又は研磨屑30が投入され一部がシリンダ1内に落下している。なお、投入穴5をピストン21で塞ぐ等の種々の形態があるのはいうまでもない。図1に示す状態でピストン21は原位置のまま、電磁切換弁58のSOL2をONとして、スライド油圧シリンダ53を前進(ロッドを引き込む)させ、図2に示すように、シリンダ1を蓋11方向に移動し、蓋11側に当接固定する(矢印35)。このとき、投入穴5からさらに予備投入穴6から研削屑等30がシリンダ1内に落下する。さらに、電磁切換弁60のSOL5をONし、図3に示すように、充填油圧シリンダ54を下降させ、抑え蓋8により研削屑等30をシリンダ1内に押し込む(矢印36)。所定位置で電磁切換弁60を中立にし、パイロットチェックバルブ61により位置保持させる。   The operation of the present invention is as follows. A description will be given with reference to FIGS. 1 to 6 together with the hydraulic circuit of FIG. As shown in FIG. 1, the cylinder 1 is positioned at the opposite end to the lid 11 in the original position, and the piston 21 is positioned to close a part of the insertion hole 5. The rod tip 8 of the filling hydraulic cylinder 54 is at the upper end, and a predetermined amount of grinding or polishing waste 30 is introduced into the preliminary charging hole 6, and a part thereof falls into the cylinder 1. Needless to say, there are various forms such as closing the insertion hole 5 with the piston 21. In the state shown in FIG. 1, with the piston 21 remaining in its original position, the SOL2 of the electromagnetic switching valve 58 is turned ON to advance the slide hydraulic cylinder 53 (with the rod retracted), and as shown in FIG. To the lid 11 side (arrow 35). At this time, grinding scraps and the like 30 fall into the cylinder 1 from the charging hole 5 and from the preliminary charging hole 6. Further, SOL5 of the electromagnetic switching valve 60 is turned ON, and as shown in FIG. 3, the filling hydraulic cylinder 54 is lowered, and the grinding waste 30 or the like is pushed into the cylinder 1 by the holding lid 8 (arrow 36). The electromagnetic switching valve 60 is neutralized at a predetermined position, and the pilot check valve 61 holds the position.

次に、電磁切換弁66のSOL6をONしサブ油圧シリンダ52に圧油を供給し、ロッドを伸ばし、図4に示すように、ピストン21を蓋11側に移動させ(矢印37)、研削屑等30をシリンダ1の蓋11側へ押し込みながら、研削屑等30を圧縮し、クーラントと空気をシリンダ1と蓋11の先端部13の隙間15、シリンダ1とピストン21との隙間24から排出(矢印31)する。このとき、メイン油圧シリンダ51にはサージタンク55aからプレフィル弁を通して作動油が供給されるが、推力は生じない。また、電磁比例流量調整弁64により、サブ油圧シリンダ、即ちピストン21の移動速度が1〜15mm/secとなるように設定されている。また、電磁比例リリーフ弁63の設定圧力を14MPaであり、圧力スイッチ68の設定圧力を電磁比例リリーフ弁63の設定圧力より低い13MPaである。この場合のピストン21の出力は約49.9kN(≒5.1トン)である。なお、実際にはメイン油圧シリンダの抵抗等が減算される。また、サブ油圧シリンダ移動中のキャップ側52c圧力は6MPa程度、出力にして約22.5kN(≒2.3トン)から徐々に圧力スイッチ68の設定圧力に上がる。これにより、低速度、低出力で研削屑等のクーラントを絞り出し、研削屑等のクーラント含有量を好ましくは10〜30%より好ましくは15〜20%と減量するとともに、研削屑等どうしを密着させある程度固めるようにする。   Next, SOL6 of the electromagnetic switching valve 66 is turned on to supply pressure oil to the sub hydraulic cylinder 52, the rod is extended, and the piston 21 is moved to the lid 11 side (arrow 37) as shown in FIG. Etc. 30 is pushed toward the lid 11 side of the cylinder 1 and the grinding waste 30 is compressed, and the coolant and air are discharged from the gap 15 between the cylinder 1 and the tip 13 of the lid 11 and the gap 24 between the cylinder 1 and the piston 21 ( Arrow 31). At this time, hydraulic oil is supplied to the main hydraulic cylinder 51 from the surge tank 55a through the prefill valve, but no thrust is generated. Further, the electromagnetic proportional flow rate adjusting valve 64 is set so that the moving speed of the sub hydraulic cylinder, that is, the piston 21 is 1 to 15 mm / sec. The set pressure of the electromagnetic proportional relief valve 63 is 14 MPa, and the set pressure of the pressure switch 68 is 13 MPa lower than the set pressure of the electromagnetic proportional relief valve 63. In this case, the output of the piston 21 is about 49.9 kN (≈5.1 tons). In practice, the resistance of the main hydraulic cylinder is subtracted. Further, the pressure on the cap side 52c during the movement of the sub hydraulic cylinder is about 6 MPa, and the output gradually increases from about 22.5 kN (≈2.3 tons) to the set pressure of the pressure switch 68. As a result, coolant such as grinding scraps is squeezed out at low speed and low output, and the coolant content such as grinding scraps is preferably reduced to 10 to 30%, more preferably 15 to 20%, and the grinding scraps are brought into close contact with each other. Try to harden to some extent.

サブ油圧シリンダ52への供給圧力が圧力スイッチ68の設定圧力を超えると、第二工程である固形化が開始される。電磁切換弁66は中立に戻るとともに、圧抜き用圧力制御弁71のSOL9、電磁切換弁69のSOL8をONし、また、電磁比例流量調整弁64を最大にし、電磁比例リリーフ弁63の設定圧力を21MPaとして、ピストンポンプ57の全ての高圧油をメイン油圧シリンダ51のキャップ側に供給し、図5に示すように、一気に研削屑を固形化する。ピストン21の最大出力は約1010kN(≒103トン)である。これにより、第一工程により、固形化に好ましい研削屑等のクーラント含有量とある程度の密着された研削屑等が短円筒状に確実に固形化される。このとき、電磁切換弁73のSOL1をONし、可変ピストン56の圧油を合流させて固形化時間を短縮することもできる。   When the supply pressure to the sub hydraulic cylinder 52 exceeds the set pressure of the pressure switch 68, solidification as the second step is started. The electromagnetic switching valve 66 returns to neutral, and the SOL9 of the pressure release pressure control valve 71 and the SOL8 of the electromagnetic switching valve 69 are turned ON, the electromagnetic proportional flow rate adjustment valve 64 is maximized, and the set pressure of the electromagnetic proportional relief valve 63 is set. Is 21 MPa, and all the high-pressure oil of the piston pump 57 is supplied to the cap side of the main hydraulic cylinder 51, and as shown in FIG. The maximum output of the piston 21 is about 1010 kN (≈103 tons). Thereby, coolant content, such as a grinding scrap preferable for solidification, and a certain amount of closely contacted grinding scrap are solidified in a short cylindrical shape by the first step. At this time, the SOL1 of the electromagnetic switching valve 73 is turned ON, and the pressure oil of the variable piston 56 can be merged to shorten the solidification time.

固形化を完了すると、電磁比例リリーフ弁63の設定圧力より低い20MPaに設定された圧力スイッチ70が働き、電磁切換弁69はスプリングリターンし、圧抜き弁のSOL29がOFFとなり、圧抜きが行われる。圧抜き後に、図6に示すように、固形化を完了したピストン21の位置をそのままとして、電磁切換弁58のSOL3をONし、スライド油圧シリンダ53を後退させ、シリンダ1を蓋11から離隔し原位置に復帰させる(矢印39)と固形化したブリケット32はピストン21の先端23に押され蓋とシリンダとの間から下方に落下する(矢印40)。次に、電磁切換弁66のSOL7をONし、サブ油圧シリンダ52のロッド側に圧油を供給し後退させ、ピストン21を蓋11と反対方向に移動させ(矢印41)る。このとき、パイロットライン72aからの圧油により、プレフィル弁が開きメイン油圧シリンダ51の作動油がサージタンク55aに戻される。続いて、電磁切換弁60のSOL4をONし、充填油圧シリンダ54上昇させ、抑え蓋8を原位置に戻す(矢印42)。この動作を繰り返すことにより研削又は研磨屑30を固形化し、ブリケット32として形成する。   When solidification is completed, the pressure switch 70 set to 20 MPa lower than the set pressure of the electromagnetic proportional relief valve 63 is activated, the electromagnetic switching valve 69 is spring-returned, the pressure release valve SOL29 is turned OFF, and pressure release is performed. . After the pressure release, as shown in FIG. 6, the position of the piston 21 that has been solidified is left as it is, the SOL3 of the electromagnetic switching valve 58 is turned on, the slide hydraulic cylinder 53 is retracted, and the cylinder 1 is separated from the lid 11. When returned to the original position (arrow 39), the solidified briquette 32 is pushed by the tip 23 of the piston 21 and falls downward between the lid and the cylinder (arrow 40). Next, SOL7 of the electromagnetic switching valve 66 is turned on, pressure oil is supplied to the rod side of the sub hydraulic cylinder 52 and moved backward, and the piston 21 is moved in the direction opposite to the lid 11 (arrow 41). At this time, the prefill valve is opened by the pressure oil from the pilot line 72a, and the hydraulic oil in the main hydraulic cylinder 51 is returned to the surge tank 55a. Subsequently, SOL4 of the electromagnetic switching valve 60 is turned on, the filling hydraulic cylinder 54 is raised, and the restraining lid 8 is returned to the original position (arrow 42). By repeating this operation, the grinding or polishing waste 30 is solidified and formed as a briquette 32.

かかる本発明装置にて、圧力設定等は同一条件で、第一工程の送り速度を変化させて種々のクーラント含有研削又は研磨屑の固形化を実験した。まず、平均粒子径が100μmの水性クーラント含有研磨粉の固形化を行った。その結果、第一工程の送り速度が最大14.4mm/minまでの範囲で固形化が可能であった。   In such an apparatus of the present invention, various coolant-containing grindings or solidification of polishing scraps were experimented by changing the feed rate in the first step under the same pressure setting and the like. First, the aqueous coolant-containing polishing powder having an average particle size of 100 μm was solidified. As a result, solidification was possible when the feed rate in the first step was a maximum of 14.4 mm / min.

また、粘度46cSt(40℃)の油性クーラントを含有する平均粒径25〜100μmの研削又は研磨屑について10℃〜20℃程度の環境で実験を行った。その結果、第一次工程での圧縮速度2〜3mm/secのものが最も固形化状況がよかった。また、圧縮速度を10mm/secのものでは、流出が激しく固形化できなかった。水性クーラントに比べ油性クーラントの場合に第一工程での送り速度を小さくすることが好ましい。   Moreover, it experimented in the environment of about 10 degreeC-20 degreeC about the grinding | polishing or grinding | polishing waste with an average particle diameter of 25-100 micrometers containing an oily coolant with a viscosity of 46 cSt (40 degreeC). As a result, the solidification state was the best when the compression speed in the first step was 2 to 3 mm / sec. Further, when the compression speed was 10 mm / sec, the outflow was so strong that solidification could not be achieved. In the case of an oil-based coolant, it is preferable to reduce the feed rate in the first step as compared with an aqueous coolant.

さらに、高速度工具鋼のホーニング研磨で発生した粘度46cSt(40℃)の油性クーラントを含有する平均粒径1〜5μmの研削又は研磨屑を同条件で実験した。その結果、セルロース等のバインダーを使用しない状態で、第一次工程での圧縮速度1〜5mm/secの範囲で固形化が可能であった。特に、2〜3mm/secのものが最も固形化状況がよかった。また、 水性クーラントを含有する粒径1〜5μmの研削又は研磨屑の場合も同様に固形化が可能であった。なお、水性クーラントの場合も油性クーラントの場合も研削屑等の平均粒径が1〜5μmの場合は、第一次工程での圧縮速度はほぼ同様の2〜3mm/secの場合が最も最も固形化状況がよかった。なお、シリンダ内へ投入する前の研削又は研磨屑の粒子の大きさやクーラント含有率により固形化条件が大きく影響を受ける。一方、供給される研削屑等の粒度、含有率等は、研削加工の種類や大きさ、研削開始時、終了時、あるいは、固形化開始時、終了時等種々の条件で変化する。そこで、投入前に撹拌機で撹拌し、できる限り均一化するのがよい。   Further, grinding or polishing scraps having an average particle diameter of 1 to 5 μm containing an oil-based coolant having a viscosity of 46 cSt (40 ° C.) generated by honing polishing of high-speed tool steel were tested under the same conditions. As a result, solidification was possible in a range of 1 to 5 mm / sec in the compression rate in the first step without using a binder such as cellulose. In particular, the solidification state was the best in the case of 2-3 mm / sec. Also, solidification was possible in the case of grinding or polishing scraps having a particle diameter of 1 to 5 μm containing an aqueous coolant. In the case of water-based coolant and oil-based coolant, when the average particle size of grinding scraps is 1 to 5 μm, the compression rate in the primary process is the most solid in the case of approximately 2 to 3 mm / sec. The conversion situation was good. The solidification conditions are greatly affected by the size of the grinding or polishing scrap particles before being introduced into the cylinder and the coolant content. On the other hand, the particle size, content, and the like of the supplied grinding scraps vary depending on various conditions such as the type and size of the grinding process, at the start and end of grinding, or at the start and end of solidification. Therefore, it is preferable to stir with a stirrer before the addition and make it as uniform as possible.

以上のように本発明の研削又は研磨屑の固形化方法及び装置によれば、平均粒径1〜150μmの水性又は油性クーラント含有の研削屑等の固形化をセルロース等のバインダーを使用せず、また、確実に固形化することができる。従って、サーボモータ等の高価な機器を使用せず、制御も簡単なものでよく、容易に水性又は油性クーラント含有研削又は研磨屑の固形化が可能となった。また、常温でも容易に固形化できるので、加熱装置等の付帯設備も不要であり、エネルギーロスも少ないものとなった。また、固形化した略短円筒状の研削屑又は研磨屑は溶鉱炉にいれても珪藻土のようなノロの発生がなく、溶鉱炉での熔解管理が容易となり、リサイクルに適したものとなった。特に、今までは、産業廃棄物として廃棄されていたホーニングやクランクシャフトの研磨屑等の平均粒径が1μm以上5μm以下の非常に細かい屑を研削屑又は研磨屑ブリケットとして提供するので、新たなリサイクル資源を提供するものとなった。さらに、セルロース等の必要なく資源の無駄もない。   As described above, according to the solidification method and apparatus for grinding or polishing waste of the present invention, solidification of grinding waste containing an aqueous or oily coolant having an average particle diameter of 1 to 150 μm is not used, and a binder such as cellulose is not used. Moreover, it can solidify reliably. Therefore, expensive equipment such as a servo motor is not used and control is simple, and aqueous or oil-based coolant-containing grinding or polishing waste can be easily solidified. Moreover, since it can be easily solidified even at room temperature, ancillary equipment such as a heating device is unnecessary, and energy loss is small. In addition, the solid, substantially cylindrical grinding scraps or polishing scraps were not generated like diatomaceous earth even if they were put in the blast furnace, making melting management in the blast furnace easy and suitable for recycling. In particular, since honing and crankshaft polishing scraps that have been discarded as industrial waste until now, very fine scraps with an average particle size of 1 μm or more and 5 μm or less are provided as grinding scraps or abrasive scrap briquettes. Recycled resources were provided. Furthermore, there is no need for cellulose or the like and no waste of resources.

本発明の実施の形態を示す模式図であり、原位置の状態を示す模式図である。It is a schematic diagram which shows embodiment of this invention, and is a schematic diagram which shows the state of an original position. 本発明の実施の形態を示す模式図であり、シリンダセット工程を示す模式図である。It is a schematic diagram which shows embodiment of this invention, and is a schematic diagram which shows a cylinder setting process. 本発明の実施の形態を示す模式図であり、研削又は研磨屑投入工程を示す模式図である。It is a schematic diagram which shows embodiment of this invention, and is a schematic diagram which shows a grinding or grinding | polishing waste throwing process. 本発明の実施の形態を示す模式図であり、サブ油圧シリンダのみの押し込み力で研削又は研磨屑の含有水性又は油性クーラントの含有量を減量する第一工程を示す模式図である。It is a schematic diagram which shows embodiment of this invention, and is a schematic diagram which shows the 1st process of reducing the content of the aqueous | water-based or oil-based coolant of grinding or polishing waste with the pushing force of only a sub hydraulic cylinder. 本発明の実施の形態を示す模式図であり、研削又は研磨屑を固形化する第二工程を示す模式図である。It is a schematic diagram which shows embodiment of this invention, and is a schematic diagram which shows the 2nd process of solidifying grinding or polishing waste. 本発明の実施の形態を示す模式図であり、ブリケット排出工程を示す模式図である。It is a schematic diagram which shows embodiment of this invention, and is a schematic diagram which shows a briquette discharge | emission process. 本発明の実施の形態を示す油圧装置の油圧回路図である。1 is a hydraulic circuit diagram of a hydraulic apparatus showing an embodiment of the present invention.

符号の説明Explanation of symbols

1 シリンダ
2 シリンダ内径
5 投入穴
8 抑え蓋
14、24 微少隙間
21 ピストン
30 水性又は油性クーラント含有の切削又は研磨屑
32 研削又は研磨屑ブリケット
50 油圧装置
51 メイン油圧シリンダ
52 サブ油圧シリンダ
1 Cylinder 2 Cylinder inner diameter
5 Input hole
8 Suppression lids 14 and 24 Small gap 21 Piston 30 Cutting or polishing waste containing water-based or oil-based coolant 32 Grinding or polishing waste briquette 50 Hydraulic device 51 Main hydraulic cylinder
52 Sub hydraulic cylinder

Claims (5)

水性又は油性クーラント含有の切削又は研磨屑を、シリンダに設けられた投入穴より、前記シリンダ内に投入し、前記投入穴を塞ぐ抑え蓋と、前記シリンダ内径と微少隙間をもって摺動可能にされたピストンと、で前記シリンダを密閉し、さらに、前記ピストンを前記シリンダに押し込むことにより前記シリンダ内の空気及び前記研削又は研磨屑の含有クーラントを少なくとも前記微少隙間より排出し、外径がφ50〜φ80、厚みが前記外径の0.7倍以上0.9倍以下の短円筒状の前記研削又は研磨屑を固形化する研削又は研磨屑の固形化方法であって、前記ピストンはメイン油圧シリンダと、前記ピストンを前記シリンダに押し込むための油圧シリンダの断面積が前記メイン油圧シリンダより小くされたサブ油圧シリンダが取り付けられ、前記サブ油圧シリンダのみの押し込み力により前記シリンダ内の前記研削又は研磨屑のクーラント含有量を減量する第一工程と、少なくとも前記メイン油圧シリンダの押し込み力により前記シリンダ内の前記研削又は研磨屑を固形化する第二工程と、からなり、前記第一工程は、前記シリンダの密閉時からの前記ピストンの送り速度を1mm/sec以上5mm/sec以下とし、かつ、前記ピストンの推力を14.7〜49kN(1.5〜5トン)の低い推力で前記シリンダ内の前記研削又は研磨屑のクーラント含有量を減量した後、さらに、前記第二工程で前記ピストンの推力を882〜1176kN(90〜120トン)とし、前記シリンダ内の前記研削又は研磨屑を固形化することを特徴とする研削又は研磨屑の固形化方法。 Cutting or polishing waste containing water-based or oil-based coolant is introduced into the cylinder from the insertion hole provided in the cylinder, and the holding lid that closes the insertion hole and the cylinder inner diameter and a small gap are made slidable. The cylinder is sealed with a piston , and further, the piston and the piston are pushed into the cylinder, whereby the air in the cylinder and the coolant containing grinding or polishing waste are discharged from at least the minute gap, and the outer diameter is φ50 to φ80. A method of solidifying grinding or polishing debris having a short cylindrical shape with a thickness of 0.7 to 0.9 times the outer diameter , wherein the piston is a main hydraulic cylinder. A sub-hydraulic cylinder in which a cross-sectional area of the hydraulic cylinder for pushing the piston into the cylinder is made smaller than that of the main hydraulic cylinder is attached. A first step of reducing the coolant content of the grinding or polishing debris in the cylinder by the pushing force of only the sub hydraulic cylinder, and at least the grinding or polishing debris in the cylinder by the pushing force of the main hydraulic cylinder And the second step of solidifying , wherein the first step sets the feed rate of the piston from 1 mm / sec to 5 mm / sec from when the cylinder is sealed, and the thrust of the piston is 14.7. After reducing the coolant content of the grinding or polishing debris in the cylinder with a low thrust of ~ 49 kN (1.5 to 5 tons), the piston thrust is further reduced to 882 to 1176 kN (90 ~ 120 tons), and solidifying the grinding or polishing waste in the cylinder. 前記研削屑又は研磨屑の平均粒径が1μm以上5μm以下であることを特徴とする請求項1に記載の研削又は研磨屑の固形化方法。 2. The method for solidifying grinding or polishing waste according to claim 1, wherein an average particle size of the grinding waste or polishing waste is 1 μm or more and 5 μm or less. 前記第一工程後、前記第二工程前の切削又は研磨屑の水性又は油性クーラント含有率が10%以上30%以下とされていることを特徴とする請求項1又は2に記載の研削又は研磨屑の固形化方法。 The grinding or polishing according to claim 1 or 2, wherein an aqueous or oil-based coolant content of the cutting or polishing scrap before the second step after the first step is 10% or more and 30% or less. Solidification method of waste. 前記メイン油圧シリンダが前記ピストンを前記シリンダの押し込むための断面積が前記サブ油圧シリンダが前記ピストンを前記シリンダの押し込むための断面積の10〜15倍とされていることを特徴とする請求項1乃至3のいずれか一に記載の研削又は研磨屑の固形化方法。 2. The cross sectional area for the main hydraulic cylinder to push the piston into the cylinder is 10 to 15 times the cross sectional area for the sub hydraulic cylinder to push the piston into the cylinder. The grinding or the solidification method of grinding | polishing waste as described in any one of thru | or 3. 前記メイン油圧シリンダは1本であり、前記サブ油圧シリンダは2本で一組とされていることを特徴とする請求項1乃至4のいずれか一に記載の研削又は研磨屑の固形化方法。 5. The grinding or polishing waste solidification method according to claim 1, wherein the number of the main hydraulic cylinder is one and the number of the sub hydraulic cylinders is two.
JP2004051561A 2004-02-26 2004-02-26 Solidification method of grinding or polishing waste Expired - Fee Related JP4678751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051561A JP4678751B2 (en) 2004-02-26 2004-02-26 Solidification method of grinding or polishing waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004051561A JP4678751B2 (en) 2004-02-26 2004-02-26 Solidification method of grinding or polishing waste

Publications (2)

Publication Number Publication Date
JP2005238288A JP2005238288A (en) 2005-09-08
JP4678751B2 true JP4678751B2 (en) 2011-04-27

Family

ID=35020570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051561A Expired - Fee Related JP4678751B2 (en) 2004-02-26 2004-02-26 Solidification method of grinding or polishing waste

Country Status (1)

Country Link
JP (1) JP4678751B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157041A (en) * 2015-09-01 2015-12-16 浙江富春江环保热电股份有限公司 Feed air-drying sludge charging delivery device and charging delivery control method thereof
CN109020147A (en) * 2018-09-05 2018-12-18 彭渤 A kind of makeup of hydraulic engineering mud loss of weight block is set
US11458701B2 (en) * 2013-10-13 2022-10-04 Anaergia B.V. Device and method for pressing organic material out of waste

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20055384A (en) * 2005-07-04 2007-01-05 Preseco Dewatering Oy Method of pressing, press, press, and press fluid
JPWO2007049393A1 (en) * 2005-10-28 2009-04-30 コマツ産機株式会社 Fume processing method and processing apparatus
DE102007040924A1 (en) * 2007-08-30 2009-03-05 Lanxess Deutschland Gmbh Method for controlling a separation of a mixture
JP5078552B2 (en) * 2007-10-29 2012-11-21 清之 細田 System with multiple drive cylinders
CN102389654B (en) * 2011-11-21 2014-12-17 福州赛孚玛尼环保科技有限公司 Compaction tool for filter core of oil filter
CN105196335B (en) * 2015-09-01 2017-03-08 浙江富春江环保热电股份有限公司 Material toggling wind dried sludge into boiler conveying equipment and its enter stove conveyance control method
CN105688487B (en) * 2016-04-22 2017-11-24 上海市机械施工集团有限公司 A kind of high pressure device for separating mud and water and mud-water separation method
KR102018047B1 (en) * 2017-10-23 2019-09-04 서원정 Solidification System Of Fine Particle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300783A (en) * 2000-04-14 2001-10-30 Mori Tekko Kk Abrasive sludge briquette manufacturing apparatus
JP2001315000A (en) * 2000-04-28 2001-11-13 Ntn Corp Solidified material production device for grinding sludge
JP2002184617A (en) * 2000-12-13 2002-06-28 Fdk Corp Method of manufacturing oxide magnetic material
JP2003311488A (en) * 2002-04-19 2003-11-05 San-Ai Engineering Co Ltd Compression method utilizing automatic compressor and automatic compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235003B2 (en) * 1972-04-05 1977-09-07
JPH09253785A (en) * 1996-03-25 1997-09-30 Nisshin Steel Co Ltd Device and method for compacting metal chips

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001300783A (en) * 2000-04-14 2001-10-30 Mori Tekko Kk Abrasive sludge briquette manufacturing apparatus
JP2001315000A (en) * 2000-04-28 2001-11-13 Ntn Corp Solidified material production device for grinding sludge
JP2002184617A (en) * 2000-12-13 2002-06-28 Fdk Corp Method of manufacturing oxide magnetic material
JP2003311488A (en) * 2002-04-19 2003-11-05 San-Ai Engineering Co Ltd Compression method utilizing automatic compressor and automatic compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11458701B2 (en) * 2013-10-13 2022-10-04 Anaergia B.V. Device and method for pressing organic material out of waste
CN105157041A (en) * 2015-09-01 2015-12-16 浙江富春江环保热电股份有限公司 Feed air-drying sludge charging delivery device and charging delivery control method thereof
CN105157041B (en) * 2015-09-01 2017-08-11 浙江富春江环保热电股份有限公司 Feeding wind device for conveying dried sludge into boiler conveying device and its enter stove conveyance control method
CN109020147A (en) * 2018-09-05 2018-12-18 彭渤 A kind of makeup of hydraulic engineering mud loss of weight block is set

Also Published As

Publication number Publication date
JP2005238288A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP4678751B2 (en) Solidification method of grinding or polishing waste
KR101632746B1 (en) Method and device for controlling the synchronization of cylinder/piston units and for reducing pressure peaks during forming and/or fineblanking on a fineblanking or stamping press
JP3881646B2 (en) Grinding or polishing solidification method and grinding or polishing solidification device
JP2007029857A (en) Solid-liquid separation method and apparatus for slurry material
CN105935766A (en) Powder molding apparatus and manufacture of rare earth sintered magnet using the apparatus
EP1273393B1 (en) Grinding sludge compacting machine
DE60114917T2 (en) Processing and reuse of grinding sludge in briquette form
JP2007029855A (en) Solid-liquid separation apparatus for slurry-like material
JP5057658B2 (en) Solid-liquid separation method and apparatus for slurry-like body
EP1380406A1 (en) Compressor
JP2005014072A (en) Apparatus for manufacturing grinding sludge briquette
JP3907917B2 (en) Solidified product manufacturing equipment for grinding sludge
CN103347622A (en) Indirect extrusion press and method for indirect extrusion
JP2007029854A (en) Solid-liquid separation method and apparatus for slurry material
JPH05212435A (en) Extrusion press and its method
WO2015177285A1 (en) Bar press with hydraulic drive
JP2003010899A (en) Grinding sludge briquette manufacturing apparatus
DE102019107325A1 (en) Melting unit for a molding machine and molding machine with such
JP2002137095A (en) Production device for solidified grinding sludge
JP5178256B2 (en) Solidified product manufacturing apparatus and method for grinding sludge
JP2001300784A (en) Solidified abrasive sludge manufacturing apparatus
JP2007029856A (en) Solid-liquid separator for slurry state matter
JP2003071594A (en) Production device for solidified product of cutting sludge
JP2003181690A (en) Manufacturing device for solidified sludge
SK146695A3 (en) Process for feeding material to be pressed to a filter press

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090514

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100804

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

R150 Certificate of patent or registration of utility model

Ref document number: 4678751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees