JP4677603B2 - Screw shaft diameter measuring device - Google Patents

Screw shaft diameter measuring device Download PDF

Info

Publication number
JP4677603B2
JP4677603B2 JP2005246237A JP2005246237A JP4677603B2 JP 4677603 B2 JP4677603 B2 JP 4677603B2 JP 2005246237 A JP2005246237 A JP 2005246237A JP 2005246237 A JP2005246237 A JP 2005246237A JP 4677603 B2 JP4677603 B2 JP 4677603B2
Authority
JP
Japan
Prior art keywords
screw
light
shaft diameter
screw shaft
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005246237A
Other languages
Japanese (ja)
Other versions
JP2007057489A (en
Inventor
正俊 安田
時彦 反
民一郎 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yutaka Co Ltd
Original Assignee
Yutaka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yutaka Co Ltd filed Critical Yutaka Co Ltd
Priority to JP2005246237A priority Critical patent/JP4677603B2/en
Publication of JP2007057489A publication Critical patent/JP2007057489A/en
Application granted granted Critical
Publication of JP4677603B2 publication Critical patent/JP4677603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

この発明は、ねじの軸径を光学系の検出手段により高精度で連続して速く測定できるねじ軸径測定装置に関する。   The present invention relates to a screw shaft diameter measuring apparatus capable of continuously measuring a screw shaft diameter with high accuracy by means of an optical system.

ねじの長さ、形状、ねじの有無等を測定する手段として、ノギスあるいはマイクロメータのような接触式の測定手段により手作業で寸法を測定する方法は、多数のねじを測定するには多くの人手と時間が掛るため、高精度で連続して速く測定する手段として、光学系の検出手段が種々提案されている。特許文献1の「ねじ山の検出装置」は、移送手段で送られているねじのねじ山に光源から光を照射し、ねじ山の表面の反射光を受光体で受光し、ねじ山が正常かどうかを検出している。この装置では光源のビームはねじの軸線に対して30度傾斜してねじの表面に細い線状のビームを照射し、その反射光を受光するとねじ山は正常、受光しなければねじ山が不良と判別する。   As a means of measuring the length, shape, presence or absence of screws, etc., the method of measuring dimensions manually by contact-type measuring means such as calipers or micrometers is often used to measure a large number of screws. Since it takes time and manpower, various detection means for optical systems have been proposed as means for performing high-speed measurement continuously with high accuracy. Patent Document 1 “Screw Thread Detection Device” irradiates light from a light source onto a thread of a screw sent by a transfer means, and receives light reflected from the surface of the thread with a photoreceptor, so that the thread is normal. Whether it is detected. In this device, the light source beam is inclined 30 degrees with respect to the screw axis, and the surface of the screw is irradiated with a thin linear beam. When the reflected light is received, the screw thread is normal. Is determined.

特許文献2の「ねじ検査装置」では、移送手段で送られているねじの首下長さ、ねじの頭径、ねじ部の有無をそれぞれの検査ステージで測定し、ねじの良否を判別するようにしている。ねじの首下長さ、ねじの頭径は投光手段からの光を受光する複数のダイオードから成る固体式撮像手段により測定される。ねじ部の有無は、ねじ部にレーザ光を照射し、ねじ部によって生じる回折レーザ光を受信する受光素子により、仮想スクリーン上で斜線状回折パターンを検出すればねじ部有り、横線状回折パターンが生じると受光素子は信号を出力しないことによりねじ部無しと判定する。   In the “screw inspection apparatus” of Patent Document 2, the length under the neck of the screw, the head diameter of the screw, and the presence / absence of the screw portion are measured at each inspection stage to determine whether the screw is good or bad. I have to. The under-head length of the screw and the head diameter of the screw are measured by a solid-state image pickup means comprising a plurality of diodes that receive light from the light projecting means. The presence or absence of the threaded portion is determined by detecting the oblique diffraction pattern on the virtual screen with a light receiving element that irradiates the threaded portion with laser light and receiving the diffracted laser light generated by the threaded portion. When this occurs, the light receiving element determines that there is no thread by not outputting a signal.

上記特許文献1、2以外にもねじの検査装置について種々の提案がされているが、殆どがねじ山の長さや、ねじ山の形状の良否についての検査装置である。しかし、ねじの良否を判断する際にねじ軸径が正確な寸法に製作されているかは、検査の重要な項目の1つであるにも拘らず、上記特許文献1、2等の従来の検査装置ではねじ軸径を測定することができない。ねじ軸径を測定する方法とは全く異なる技術であるが、線条体の径を測定する技術に関連する技術として、特許文献3の「レーザ線径測定装置」が知られている。   In addition to the above-mentioned Patent Documents 1 and 2, various proposals have been made regarding screw inspection devices, but most of them are inspection devices for the length of the thread and the quality of the thread. However, whether or not the screw shaft diameter is manufactured to an accurate dimension when judging the quality of the screw is one of the important items in the inspection, the conventional inspections in the above-mentioned Patent Documents 1 and 2 etc. The device cannot measure the screw shaft diameter. Although this technique is completely different from the method of measuring the screw shaft diameter, a “laser wire diameter measuring device” of Patent Document 3 is known as a technique related to the technique of measuring the diameter of the filament.

この測定装置は、レーザ発光部からのレーザビームをミラー、レンズにより平行ビームとして発光部から出射させ、集光レンズで集光して受光素子で受光し、2つのレンズ間に置かれた測定物である鋼線条片により遮られたレーザ光の強弱の変化を受光素子で出力電圧の変化として出力し、計測部により感知するというものである。測定物は平行な同一径の線条片であるから、平行ビームを線条片の長さ方向の一箇所で線条片と直交する方向に照射することにより線径を測ることができる。   This measuring apparatus emits a laser beam from a laser light emitting part as a parallel beam by a mirror and a lens, condenses it by a condensing lens, receives it by a light receiving element, and places a measuring object placed between the two lenses. The change in the intensity of the laser beam blocked by the steel wire strip is output as a change in the output voltage by the light receiving element and sensed by the measuring unit. Since the object to be measured is a parallel strip of the same diameter, the wire diameter can be measured by irradiating a parallel beam in one direction in the length direction of the strip in a direction perpendicular to the strip.

この装置では、線条片の径を全周で測るため、線条片の両端を回転プレートに固定し、ハンドルで回転プレートと共に線条片を回転させ、平行ビームを線条片の全周に照射するようにしている。しかし、ねじのように長さ方向の位置で山、谷を有する対象物に平行ビームを照射しても、その長さ方向の位置によって測定値が大きく変動し、かつ長さ方向に沿って径を測定するには時間がかかり、従ってねじのような対象物の径を測定する手段としては適さない。   In this device, in order to measure the diameter of the wire strip on the entire circumference, both ends of the wire strip are fixed to the rotating plate, the wire strip is rotated together with the rotating plate by the handle, and the parallel beam is applied to the entire circumference of the wire strip. I try to irradiate. However, even if a parallel beam is irradiated to an object having peaks and valleys at a position in the length direction such as a screw, the measured value greatly varies depending on the position in the length direction, and the diameter along the length direction varies. It takes a long time to measure, and therefore is not suitable as a means for measuring the diameter of an object such as a screw.

一方、ねじの検査において、ねじの軸径を正確に測定する必要がある場合、現状では光源からの照明光でねじの軸心と直交する方向にねじを照射し、CCDカメラのような撮像手段でねじの画像情報を取り込み、画像処理プログラムを内蔵する画像処理装置でねじピッチの先のエッジを両側方で検出し、そのエッジ信号から演算によりねじ軸径を算出してねじ軸径を測定する手段が採用されている。しかし、このような測定手段は撮像手段への画像光はねじの背後の照射光(バックライト)がねじ軸心と直交方向から照射されるため、バックライトのねじへの散乱光が画像光に干渉して鮮明な画像光が得られない場合があり、特にねじ径がM2、M3級の小さいねじではその影響が大きくなり、照射光の照射方向をそのままでは高精度で小さいねじのねじ軸径を測定するのに適さないという問題がある。
特開昭55−70702号公報 特開昭57−192813号公報 特開平11−166815号公報
On the other hand, when it is necessary to accurately measure the screw shaft diameter in screw inspection, at present, the illumination light from the light source irradiates the screw in a direction perpendicular to the screw axis, and an imaging means such as a CCD camera. The image information of the screw is taken in, the edge of the screw pitch is detected on both sides by the image processing device with built-in image processing program, and the screw shaft diameter is calculated from the edge signal to calculate the screw shaft diameter. Means are adopted. However, in such a measuring unit, since the image light to the imaging unit is irradiated with the irradiation light (backlight) behind the screw from the direction orthogonal to the screw axis, the scattered light to the screw of the backlight is converted into the image light. In some cases, clear image light may not be obtained due to interference, especially when the screw diameter is small in the M2 or M3 class, and the effect becomes large. There is a problem that it is not suitable for measuring.
JP-A-55-70702 Japanese Patent Laid-Open No. 57-192813 JP-A-11-166815

この発明は、上記の問題に留意して、検査対象のねじの外径を測定する手段として、測定を連続的に高精度で確実に行なうことができ、かつ操作が簡単で、コストが安いねじ軸径測定装置を提供することを課題とする。
又、画像光によりねじ軸径の測定を連続的に正確、確実に行なうことができるねじ軸径測定装置を提供することをもう1つの課題とする。
In consideration of the above-mentioned problems, the present invention is a means for measuring the outer diameter of a screw to be inspected, a screw that can be measured continuously and accurately with high accuracy, is easy to operate, and is inexpensive. It is an object to provide a shaft diameter measuring device.
Another object of the present invention is to provide a screw shaft diameter measuring device capable of continuously and accurately measuring the screw shaft diameter with image light.

この発明は、上記の課題を解決する手段として、外周の切欠きに検査対象のねじを頭部を支えて吊り下げ、垂直な軸を支点に回転駆動されて前記ねじを回転方向に搬送する検査テーブルを設け、さらに、検査対象のねじに対しねじ径より広幅の平行ビームとしてレーザ光を射出するレーザ照射部と、レーザ照射部からの平行ビームを受光する受光素子を有する受光部とをねじを挟んで対向配置した光学手段を傾斜及び昇降可能に設け、その光学手段を傾斜させることによりねじへの平行ビームの照射方向を所定角度以上に傾斜させ、この状態で光学手段をねじの長さ方向に昇降させることにより平行ビームの通過領域をねじの所定長さ範囲について受光部により検出し、この検出信号に基づいてねじ軸径を演算する演算手段を設けたねじ軸径測定装置としたのである。 As a means for solving the above-mentioned problems, the present invention provides an inspection in which a screw to be inspected is suspended from a notch on the outer periphery with the head supported, and the screw is driven to rotate around a vertical axis to convey the screw in the rotation direction. A table is provided, and a laser irradiation unit for emitting laser light as a parallel beam wider than the screw diameter with respect to the screw to be inspected, and a light receiving unit having a light receiving element for receiving the parallel beam from the laser irradiation unit are screwed. The optical means arranged opposite to each other are provided so as to be able to tilt and ascend and descend, and by tilting the optical means, the irradiation direction of the parallel beam to the screw is tilted to a predetermined angle or more, and in this state, the optical means is moved in the length direction of the screw. the passage area of the parallel beam by elevating detected by the light receiving unit for a predetermined length range of the screw, the screw shaft diameter having a calculating means for calculating the screw shaft diameter based on the detection signal It was a constant device.

上記の構成としたこの発明のねじ軸径測定装置によれば、照射部と受光部による光学手段をねじ軸に対し所定の傾斜状に設定し、かつこの光学手段を昇降させることによりねじ軸径を簡単に、短時間に素速く正確、確実に測定することができる。光学手段のレーザは少なくともねじ軸径より広い所定幅の平行ビームとしてねじ軸に照射される。所定の傾斜角はねじ軸の種類によって異なるが、それぞれのねじ軸径を測定するのに適合する角度に設定される。ねじ軸径の測定は、所定の傾斜状態でレーザ光の平行ビームを照射し、平行ビームの通過領域の透過光とねじで遮光された遮光部両端との境界を表わす検出信号が平行ビームの昇降に伴ってねじの最外径を連ねた信号となるようにレーザ光の平行ビームをねじに対し傾斜状に照射して行なわれる。 According to the screw shaft diameter measuring apparatus of the present invention configured as described above, the optical means by the irradiating unit and the light receiving unit is set in a predetermined inclination with respect to the screw shaft, and the screw shaft diameter is raised and lowered by moving the optical means up and down. Can be measured easily, quickly, accurately and reliably. The laser of the optical means is irradiated onto the screw shaft as a parallel beam having a predetermined width wider than at least the screw shaft diameter. The predetermined inclination angle differs depending on the type of the screw shaft, but is set to an angle suitable for measuring each screw shaft diameter. The screw shaft diameter is measured by irradiating a parallel beam of laser light in a predetermined tilt state, and the detection signal indicating the boundary between the transmitted light in the passage region of the parallel beam and both ends of the light shielding portion shielded by the screw Accordingly, a parallel beam of laser light is applied to the screw in an inclined manner so as to obtain a signal in which the outermost diameter of the screw is connected.

なお、レーザ光の平行ビームは直線性が高く、m単位の距離に照射部と受光部を設置した場合に平行ビームの広がりは無視できる程の直線性を有するため、透過光と遮光部両端の境界は、極めて高精度でその境界域を表わす。従って、大きいねじは勿論、小さい径のねじ、例えばM2、M3程度のものでも、μmオーダの測定誤差範囲内で測定が可能である。   The parallel beam of laser light has high linearity, and when the irradiation unit and the light receiving unit are installed at a distance of m units, the spread of the parallel beam is negligible. The boundary represents the boundary area with extremely high accuracy. Therefore, it is possible to measure not only large screws but also small diameter screws such as M2 and M3 within a measurement error range of the order of μm.

この場合、上記境界線がねじのねじ軸径を表わすが、この境界線は光学手段を全体に昇降することによって得られ、又上記傾斜角度が所定以下であればその境界線はジクザグの折線状となりねじ軸径を測定することができない。ねじ山の谷の影響で照射光がねじ軸径内を通過するからである。従って、この影響を回避するため傾斜角度はねじ山の谷の影響を受けない角度以上に設定する必要がある。このように設定して照射されたレーザ光の平行ビームは、ねじ軸径外を通過するビームと遮光された領域では光強度が大きく異なる。 In this case, represents a screw shaft diameter of the boundary line screw, line of this border is obtained by lifting the entire optical means, and the boundary line if the inclination angle is given below di Kuzagu The screw shaft diameter cannot be measured. This is because the irradiation light passes through the screw shaft diameter due to the influence of the thread valley. Therefore, in order to avoid this influence, it is necessary to set the inclination angle to an angle that is not affected by the thread valley. The parallel beam of the laser beam irradiated with the setting as described above has a light intensity greatly different between the beam passing outside the screw shaft diameter and the shielded region.

受光部は、上記レーザ光の平行ビームの透過光領域と遮光領域で受光量が異なり、このような受光信号を電気信号に変換して演算手段へ送り、遮光領域の幅からねじ軸径が演算により算出される。このねじ軸径の演算では、設計値を基準値として予め記憶部に記憶しておき、基準値と上記演算によって算出されたねじ軸径の測定値を比較し、所定の誤差範囲内であればねじ軸径の製作は正常として処理し、その旨の信号を出力すると共に測定値を表示するのが好ましい。   The light receiving unit has different light receiving amounts in the light transmission region and the light shielding region of the parallel beam of the laser beam. The light receiving signal is converted into an electric signal and sent to the calculation means, and the screw shaft diameter is calculated from the width of the light shielding region. Is calculated by In the calculation of the screw shaft diameter, the design value is stored in advance in the storage unit as a reference value, the measured value of the screw shaft diameter calculated by the above calculation is compared, and if it is within a predetermined error range It is preferable to process the production of the screw shaft diameter as normal, output a signal to that effect, and display the measured value.

第二の発明は、上記もう1つの課題を解決する手段として、外周の切欠きに検査対象のねじを頭部を支えて吊り下げ、垂直な軸を支点に回転駆動されて前記ねじを回転方向に搬送する検査テーブルを設け、さらに、検査対象のねじ全長を照射する可視光ビームの照射部11’と、照射されたねじの画像光を受光する撮像手段12’とをねじを挟んで対向配置した画像検出手段を傾斜可能に設け、画像検出手段を傾斜させることによりねじへの照射光の照射方向を、画像光中のねじによる遮光部とねじ最外径の非遮光部の境界線が直線に近くなる角度に傾斜させ、上記画像光と透過光の境界線の所定範囲長さに亘る領域を画像処理により検出し、その検出データからねじ軸径を演算して画像処理によりねじ軸径を算出するねじ軸径演算手段を設けたねじ軸径測定装置としたのである。 According to a second aspect of the present invention, as a means for solving the above-mentioned another problem, a screw to be inspected is suspended from a notch on the outer periphery while supporting the head, and the screw is rotated about a vertical axis to rotate the screw. In addition, a visible light beam irradiating unit 11 ′ for irradiating the entire length of the screw to be inspected and an imaging means 12 ′ for receiving the image light of the irradiated screw are arranged opposite to each other with a screw interposed therebetween. The image detection means is provided so that it can be tilted, and by tilting the image detection means, the irradiation direction of the irradiation light to the screw is linear, and the boundary line between the light shielding portion by the screw in the image light and the non-light shielding portion having the outermost diameter of the screw is straight The region over the predetermined range length of the boundary line between the image light and the transmitted light is detected by image processing, the screw shaft diameter is calculated from the detected data, and the screw shaft diameter is calculated by image processing. Provide screw shaft diameter calculation means to calculate It was a screw shaft diameter measurement device.

この第二の発明のねじ軸径測定装置によれば、可視光(白色光)ビームを照射してねじの画像光を撮像手段で撮像し、その画像信号を画像処理してねじ軸の両端エッジの境界線を検出し、両端エッジの境界線の検出信号からねじ軸径を演算するプログラムにより算出してねじ軸径を得る。この画像光を撮像する場合、可視光ビームは所定角度以上の傾斜状にねじに対し照射され、このため画像光はねじ全体の画像を含むと同時にねじ最外径の通過領域の透過光と遮光部両端との境界の状態も含む。 According to the screw shaft diameter measuring apparatus of the second invention, a visible light (white light) beam is irradiated, the image light of the screw is picked up by the image pickup means, the image signal is image-processed, and both edges of the screw shaft are processed. of detecting the boundary line to obtain the screw shaft diameter is calculated by the program for calculating the screw shaft diameter from the detection signal of the boundary line of the end edges. When this image light is picked up, the visible light beam is applied to the screw at an inclination of a predetermined angle or more, so that the image light includes an image of the entire screw and at the same time, the transmitted light from the passing region of the outermost diameter of the screw and the light shielding. Including the state of boundaries with both ends.

上記境界状態は、照射光が傾斜状であるためねじ軸の両端エッジであるねじ最外径を連ねたねじ軸径を表わす境界線を形成し、この境界線の画像光の検出信号からねじ軸径を算出する。このように画像処理によりねじ軸径を算出する方式であっても、ねじ最外径に対応する境界線からねじ軸径を算出するから、照射光をねじに対し直交する方向から照射し、ねじの全画像データからねじ最外径のエッジを検出して算出するよりもプログラムは簡易となり、従って処理速度が速くなる。 In the boundary state, since the irradiation light is inclined, a boundary line representing the screw shaft diameter connecting the outermost diameters of the screws, which are both ends of the screw shaft, is formed, and the screw shaft is detected from the detection signal of the image light of the boundary line. Calculate the diameter. Even if the screw shaft diameter is calculated by image processing in this way, the screw shaft diameter is calculated from the boundary line corresponding to the outermost diameter of the screw. Therefore, the program is simpler than detecting and calculating the edge of the outermost diameter of the screw from all the image data, and thus the processing speed is increased.

上記第一の発明のねじ軸径測定装置は、レーザ照射部からレーザ光の平行ビームを所定の傾斜状態でねじに対し照射し、受光部で受光した信号を電気信号に変換し、その信号に基づいてねじ軸径を演算により算出するようにしたから、小径のねじに対してもねじ軸径を高精度で得られ、かつ簡単な操作で迅速に、正確、確実に、しかも安価に測定装置を得ることができる。   The screw shaft diameter measuring apparatus according to the first aspect of the invention irradiates a screw with a parallel beam of laser light from a laser irradiation unit in a predetermined inclination state, converts a signal received by the light receiving unit into an electric signal, and converts the signal into an electric signal. Since the screw shaft diameter is calculated based on the calculation, the screw shaft diameter can be obtained with high accuracy even for small-diameter screws, and the measuring device can be obtained quickly, accurately, reliably and inexpensively with simple operation. Can be obtained.

第二の発明のねじ軸径測定装置は、ねじを照射した可視光ビームによる画像光を撮像手段で撮像し、その画像光からねじ軸外径と遮光部との境界線を検出してねじ軸外径を得るようにしたから、画像処理の技術を簡略化することによってねじ軸径を算出でき、迅速に正確、かつ確実にねじ軸径を得ることができる。   A screw shaft diameter measuring apparatus according to a second aspect of the present invention is to image image light by a visible light beam irradiated on a screw with an image pickup means, detect a boundary line between the screw shaft outer diameter and a light shielding portion from the image light, and Since the outer diameter is obtained, the screw shaft diameter can be calculated by simplifying the image processing technique, and the screw shaft diameter can be obtained quickly and accurately.

以下、この発明の実施の形態について図面を参照して説明する。図1は第1実施形態のねじ検査装置の(a)全体概略構成の平面図、(b)(a)図の矢視Ib−Ibから見た部分側面図である。この実施形態のねじ検査装置Aは、検査台1上に立設された支柱1R上に回転自在に駆動(モータは図示省略)される検査テーブル2を備え、この検査テーブル2の外周に所定角度ピッチで複数箇所形成した切欠き3に検査対象のねじボルトTを所定位置でテーブルの半径方向に供給して嵌合させるねじ供給手段4が設けられている。4aは切欠き3にねじボルトを嵌合するための案内手段である。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1A is a plan view of an overall schematic configuration of a screw inspection apparatus according to a first embodiment, and FIG. 1B is a partial side view of the screw inspection apparatus viewed from an arrow Ib-Ib in FIGS. The screw inspection apparatus A of this embodiment includes an inspection table 2 that is rotatably driven (a motor is not shown) on a support column 1 R that is erected on an inspection table 1, and has a predetermined outer periphery of the inspection table 2. screw feed means 4 for the inspected threaded bolt T B in a plurality of locations forming the notch 3 in angular pitch fitted to supply the radial direction of the table at a predetermined position is provided. 4a is a guide means for fitting a screw bolt into the notch 3.

切欠き3は半円状又は半円部分を含む長穴状に形成され、この切欠き3に嵌合されたねじボルトTは、検査テーブル2の外周とわずかな隙間を置いて固定された保持板5の内周面に沿って案内され、検査テーブル2の図中((a)図参照)の矢印方向への回転により送られて、保持板5の始端寄りの位置に設けたねじ軸径測定装置10によりねじ軸径が測定される。検査テーブル2は、例えばステッピングモータを用いて所定角度ピッチ毎回転されて停止するように間欠駆動され、所定ピッチ分移動するとねじボルトの供給とねじ軸径測定装置10によるねじ軸径の測定が並行して行なわれる。 Notch 3 is formed in a long hole shape, including semicircular or semi-circular portion, mated threaded bolt T B to the cutout 3, which is fixed at a slight clearance and the outer circumference of the examination table 2 A screw shaft that is guided along the inner peripheral surface of the holding plate 5 and is sent by the rotation of the inspection table 2 in the direction of the arrow in the drawing (see FIG. (A)), and is provided near the starting end of the holding plate 5. The diameter of the screw shaft is measured by the diameter measuring device 10. The inspection table 2 is intermittently driven using a stepping motor, for example, so as to be rotated and stopped at a predetermined angular pitch. When the inspection table 2 is moved by a predetermined pitch, the supply of the screw bolt and the measurement of the screw shaft diameter by the screw shaft diameter measuring device 10 are performed in parallel. It is done.

ねじ軸径測定装置10は、レーザ光を平行ビームとして出射するレーザ照射部11と、その平行ビームPを受光する受光部12とを検査テーブル2上のねじボルトTを挟んで支持手段として設けた支持アーム13の両端に対向配置して備えている。支持アーム13は側面視コ字状に形成され、支持アーム13の基部13aは支持アーム13の略中間位置に一端が連結され、他端は長孔13bの範囲で昇降動可能に昇降板14にピン15を介して接続されている。ピン15には締結ナット16が設けられ、この締結ナット16を回転させてピン15を締付けることにより支持アーム13を所定角度の傾斜状に固定し、必要に応じて締結ナット16を緩めて傾斜角度を調整できるようにしている。 A screw shaft diameter measuring device 10 includes a laser irradiation section 11 for emitting a laser beam as a parallel beam, as sandwiched therebetween support means a threaded bolt T B on examination table 2 and a light receiving portion 12 for receiving the parallel beam P B The support arm 13 is provided opposite to both ends. The support arm 13 is formed in a U-shape when viewed from the side, and one end of the base portion 13a of the support arm 13 is connected to a substantially middle position of the support arm 13, and the other end is connected to the lift plate 14 so as to be movable up and down within the long hole 13b. It is connected via a pin 15. The pin 15 is provided with a fastening nut 16. By rotating the fastening nut 16 and tightening the pin 15, the support arm 13 is fixed at a predetermined inclination, and if necessary, the fastening nut 16 is loosened and the inclination angle is increased. Can be adjusted.

昇降板14は、ガイド部材17内にスライド自在に設けられ、図示しないラックピニオン機構を昇降板に接続し、モータによりピニオンを回転駆動して昇降自在とされている。ラックピニオン以外にも、液圧シリンダ内のピストンに連結されたピストンロッドの突出端に昇降板14を接続し、液圧により昇降板14を昇降させるようにしてもよく、昇降板14を昇降駆動できれば他の種々の昇降手段を用いることができる。又、支持アーム13の基部13aの昇降板14に対する傾斜角度を調整自在に締結する締結手段として、上記手動の締結ナット16に代えて、電動モータをピン15の端に連結し、自動締結できるようにしてもよい。   The elevating plate 14 is slidably provided in the guide member 17, and a rack and pinion mechanism (not shown) is connected to the elevating plate, and the pinion is rotationally driven by a motor so as to be raised and lowered. In addition to the rack and pinion, the elevating plate 14 may be connected to the protruding end of the piston rod connected to the piston in the hydraulic cylinder so that the elevating plate 14 can be raised and lowered by the hydraulic pressure. If possible, various other lifting means can be used. Further, as a fastening means for fastening the inclination angle of the base portion 13a of the support arm 13 with respect to the lifting plate 14 so as to be adjustable, an electric motor is connected to the end of the pin 15 in place of the manual fastening nut 16 so that automatic fastening can be performed. It may be.

ねじ供給手段4は、平行に配置された一対のレールを備え、レール間の隙間がねじボルトTBのねじ部N(図4の(b)、(c)図参照)の直径DNよりもやや広く、かつねじボルトTBの頭部Hよりも狭く設けられているため、レールにはねじボルトTBの頭部Hが引っかかり、レール間にねじ部Nが垂れ下がり、この状態で多数のねじボルトTBが順次検査テーブルの周縁へと送り込まれる。4aはガイド部である。又、保持板5は検査テーブル2の外周の略1/4円弧状に沿って設けられており、図示していないが、ねじ検査装置の他の項目、例えば、ねじ長さ、ねじ頭部等について個別にそれぞれ検査する手段がこの保持板5の下に順番に設けられている。 Screw feed means 4 is provided with a pair of rails arranged in parallel, the gap between the rails threaded bolt T B of the threaded portion N (in FIG. 4 (b), (c) see figure) than the diameter D N of rather broadly, and because it is provided narrower than the head portion H of the threaded bolt T B, catching the head H of the threaded bolt T B is the rail, the screw portion N sag between the rails, a number of screws in this state bolt T B is fed to the periphery of the sequential examination table. 4a is a guide part. The holding plate 5 is provided along a substantially ¼ arc of the outer periphery of the inspection table 2 and is not shown, but other items of the screw inspection device, such as screw length, screw head, etc. Means for individually inspecting are provided under the holding plate 5 in order.

図2にねじ軸径測定装置10の光学部材の概略構成の(a)平面図、(b)斜視図を示す。レーザ照射部11は、半導体レーザを用いたレーザ光発生部11a、そのレーザ光を反射する反射ミラー11b、反射されたレーザ光を平行ビームに変換するプリズム11cとから成る。11dは透過窓である。図示の例の半導体レーザは、波長650nmの可視光のレーザ光を連続光(cw)として発生する。受光部12は、透過窓12cを透過した平行ビームを集光する集光レンズ12a、その集光された光を受光して電気信号に変換する面状のマトリックス状の光電変換素子12bとから成る。Laは電源ライン、Lbは光電変換信号及び電源を含む出力ラインである。   2A is a plan view of the schematic configuration of the optical member of the screw shaft diameter measuring apparatus 10, and FIG. 2B is a perspective view thereof. The laser irradiation unit 11 includes a laser beam generation unit 11a using a semiconductor laser, a reflection mirror 11b that reflects the laser beam, and a prism 11c that converts the reflected laser beam into a parallel beam. Reference numeral 11d denotes a transmission window. The semiconductor laser in the illustrated example generates visible laser light having a wavelength of 650 nm as continuous light (cw). The light receiving unit 12 includes a condensing lens 12a that condenses the parallel beam transmitted through the transmission window 12c, and a planar matrix photoelectric conversion element 12b that receives the collected light and converts it into an electric signal. . La is a power supply line, and Lb is an output line including a photoelectric conversion signal and a power supply.

図3にねじ軸径測定装置10の光学部材のレーザ照射部11、受光部12による信号の処理回路である演算手段20のブロック図を示す。受光部12で受光された信号は、光電変換素子により電気信号に変換され、この電気信号は信号検出部21で二値化信号に変換されて平行ビームの変化の状態が検出され、この検出信号を演算部(マイクロコンピュータ、CPU)22へ送り、演算部22での演算によりねじ軸径が算出され、表示部23に数値が表示される。又、入力部EXからの操作信号に基づいて光学部材(11、12)を昇降させ、又検査対象のねじボルトTBを装着した検査テーブル2を所定ピッチずつ移動させるため、駆動部24へ制御信号を送り、昇降板14のガイド部材17に連結されたラックピニオン機構の駆動モータ17M、テーブル2のモータをそれぞれ駆動する。 FIG. 3 shows a block diagram of the computing means 20 which is a signal processing circuit by the laser irradiation unit 11 and the light receiving unit 12 of the optical member of the screw shaft diameter measuring apparatus 10. The signal received by the light receiving unit 12 is converted into an electric signal by the photoelectric conversion element, and the electric signal is converted into a binarized signal by the signal detecting unit 21 to detect the change state of the parallel beam. To the calculation unit (microcomputer, CPU) 22, the screw shaft diameter is calculated by calculation in the calculation unit 22, and a numerical value is displayed on the display unit 23. Also, by elevating the optical member (11, 12) on the basis of the operation signal from an input unit E X, also the examination table 2 fitted with a threaded bolt T B to be inspected to move by a predetermined pitch, to the driving unit 24 A control signal is sent to drive the drive motor 17M of the rack and pinion mechanism connected to the guide member 17 of the elevating plate 14 and the motor of the table 2.

上記の構成とした実施形態のねじ検査装置Aのねじ軸径測定装置10によれば、次のように検査対象の大径から2〜3mm程の小径までのねじボルトTBのねじ軸径を高精度で正確、確実に、かつ迅速、容易に測定することができる。ねじボルトTBが検査テーブル2に供給され、テーブル2が所定ピッチ分回転してねじ軸径測定装置10の位置へ進むとねじ軸径の測定が行なわれる。この測定では、レーザ照射部11からレーザ光の平行ビームPを出射し、ねじボルトTを横切るように当てその平行ビームPを受光部12で受光する。平行ビームPは、幅が少なくとも検査対象のねじボルトTの径より広く、厚みはmm単位であり、検査光として照射されるため、ねじボルトTに損傷を与える程の強力なエネルギレベルの光ではない。図示の例では、平行ビームPは(図2の(a)図)例えば幅Bが10mm、又は30mmのものが用いられている。 According to the screw shaft diameter measuring device 10 of the screw inspection apparatus A of the embodiment has a configuration described above, the screw shaft diameter of the screw bolt T B from the large diameter to be inspected as follows: to a small diameter of about 2~3mm Highly accurate, accurate, reliable, quick and easy measurement. Threaded bolt T B is supplied to the examination table 2, table 2 proceeds to the position of the screw shaft diameter measuring device 10 is rotated a predetermined pitch measurement of the screw shaft diameter is performed. In this measurement, a collimated beam P B of the laser beam emitted from the laser irradiation unit 11, for receiving against the parallel beam P B across the threaded bolt T B by the light receiving portion 12. Parallel beam P B is wider than the diameter of at least inspected threaded bolt T B, the thickness is in mm, to be irradiated as the inspection light, strong energy level of about damaging the threaded bolt T B Is not the light. In the illustrated example, the parallel beam P B (FIG. 2A), for example, having a width B of 10 mm or 30 mm is used.

上記平行ビームPをねじボルトTに照射する際に、予め支持アーム13は、図4の(b)図に示すように、ねじボルトTの水平支持面に対して少なくとも45°〜60°の所定角度に傾斜した方向となるように設定される。又、支持アーム13は上記所定の傾斜状態でねじボルトTの長さ方向に沿って上下に昇降され、従って平行ビームPはねじボルトTの下端から略中間長さ位置まで少しずつ照射位置が移動する。このような昇降動作中に連続して平行ビームPは照射され、それぞれの位置での光信号が受光部12で受光され、ねじボルトTの直径を測定する信号として電気信号に変換される。 When irradiating the collimated beam P B into threaded bolt T B, previously supporting arm 13, as shown in (b) FIG. 4, at least 45 ° to the horizontal support surface of the threaded bolt T B to 60 The direction is set to be inclined at a predetermined angle of °. The support arm 13 is vertically moved along the length of the threaded bolt T B at the predetermined inclined state, thus parallel beam P B irradiation gradually from the lower end of the threaded bolt T B until a substantially intermediate length position The position moves. Such parallel beam P B continuously during the vertical movement is irradiated, the optical signal at each position is received by the light receiving unit 12 and converted into an electric signal as a signal for measuring the diameter of the threaded bolt T B .

上記平行ビームPをねじボルトTに照射すると、ねじボルトTの直径部に当るレーザ光は遮光され(遮光部PBO)、遮光されない部分のレーザ光はそのまま通過して受光部12で受光される。この場合、平行ビームPは所定の傾斜状にねじボルトTに照射されるため、ねじ山の谷の斜面が形成する凹部をレーザ光が通過することはなくなり(遮光され)、ねじ山の頂部より外側を通るレーザ光のみが通過する。これは、ねじ山の斜面の傾斜がねじの種類によって異なるが、ねじの種類が異なっても平行ビームの照射角度が45°〜60°程度であれば殆ど遮光され、ねじ山頂部より外側しかレーザ光が通過できなくなるからである。 When irradiating the collimated beam P B into threaded bolt T B, the laser beam striking the diameter of the screw bolt T B is shielded (shielding portion P BO), the laser beam of light is shielded not part pass intact to the light receiving portion 12 Received light. In this case, parallel beam P B is to be irradiated on the threaded bolt T B to a predetermined inclined, passing through a recess slope of the valley of the thread to form the laser beam is no longer (protected from light), the thread Only laser light that passes outside from the top passes. This is because the inclination of the slope of the screw thread differs depending on the type of screw, but even if the type of screw is different, if the irradiation angle of the parallel beam is about 45 ° to 60 °, the light is almost shielded, and the laser is only outside the top of the screw thread. This is because light cannot pass through.

ちなみに、平行ビームPのねじボルトTに対する照射角度を45°以下とし水平方向に近づけると、ねじ山の谷の斜面による凹部をレーザ光が通過し、遮光される幅がねじボルトTの長さ方向の位置により全て異なり直径を表わす信号を検出する処理が難しくなる。又、照射角度によっては上記凹部がレーザ光の回折格子となり、弱い回折光が遮光領域へ屈折して進み、受光部12の受光素子が受光するため、益々ねじボルトの山の軸径を表わす信号を検出する処理が難しくなる。このため、平行ビームPは上記所定以上の傾斜状態に設定することとしたのである。 Incidentally, the closer the irradiation angle in the horizontal direction and 45 ° or less with respect to the screw bolt T B parallel beam P B, the recess by the slope of the valley of the thread passes through the laser beam, the width being blocked is threaded bolt T B It becomes difficult to detect a signal representing a diameter that varies depending on the position in the length direction. Depending on the irradiation angle, the concave portion becomes a diffraction grating for laser light, and weak diffracted light is refracted and proceeds to the light shielding region, so that the light receiving element of the light receiving portion 12 receives light. The process of detecting is difficult. For this reason, the parallel beam P B is set to an inclined state that is equal to or greater than the predetermined value.

上記のように、ねじ山の頂部の外側を通過するレーザ光を受光部12で受光し、かつ平行ビームPをねじボルトTの長さ方向に沿って昇降させると、各高さ位置ごとのねじ軸径を表わすレーザ光のみが受光部12で受光され、従って各高さ位置ごとのねじ軸径を表わす信号は、図4の(c)に示すようにねじボルトTの外側LDL、LDRを連ねた直線として表わす位置信号となる。このような位置信号は、高さ位置ごとの受光信号の受光領域での光量(光強度)を電気信号に変換し、演算手段20の信号検出部21で検出して得られる。そして、演算部22における位置信号の差を算出する演算によって図4の(c)図に示す直径Dが得られることとなる。なお、図4の(c)図は、ねじボルトTを平行ビームPと同じく傾斜方向から目視した状態を示し、図中のLDL、LDRの値、即ち直径Dが計算によって得られる。 As described above, receives the laser beam that passes outside of the top portion of the thread in the light receiving section 12, and the parallel beam P B elevating along the length of the threaded bolt T B, each height position only the laser light representing the screw shaft diameter is received by the light receiving portion 12, so that the signal representing the screw shaft diameter of each height position, the outer L DL of threaded bolt T B as shown in (c) of FIG. 4 , LDR is a position signal represented as a straight line connecting LDR. Such a position signal is obtained by converting the amount of light (light intensity) in the light receiving region of the light receiving signal for each height position into an electric signal and detecting it by the signal detection unit 21 of the computing means 20. Then, so that the diameter D N shown in (c) diagram of Figure 4 by a calculation for calculating a difference between the position signal in the arithmetic unit 22 is obtained. Incidentally, obtained (c) figure 4 shows a state in which visual observation also from the inclined direction the screw bolt T B parallel beam P B, L DL in the drawing, the value of L DR, namely the diameter D N is the calculated It is done.

又、上記測定されたねじボルトTの直径Dは、ねじボルトTBの製作が正確であれば設計値の値に一致するはずである。しかし、実際にはねじ軸の成形には製作誤差が通例含まれるから、測定された直径DNの値を演算部22内の比較部で設計値を基準値として比較し、所定の誤差内であればねじボルトTBの製作は正常として取り扱うものとする。但し、所定の誤差は、各高さ位置での直径の値が基準値の数%(大又は小)以内であればよい。なお、この実施形態ではレーザ照射部11の光源に小型で安価な半導体レーザを用いたが、例えばHe−Neレーザ、YAGレーザその他の形式のレーザ光を用いてもよい。 Further, the diameter D N of the measured threaded bolt T B should fabrication of the threaded bolt T B is equal to the value of the design value if accurate. However, since actually the fabrication error in the molding of the screw shaft is contained usually the value of the measured diameter D N compared as a reference value design value comparison unit in the arithmetic unit 22, within a predetermined error production of Arebaneji bolt T B shall be treated as normal. However, the predetermined error may be such that the value of the diameter at each height position is within a few percent (large or small) of the reference value. In this embodiment, a small and inexpensive semiconductor laser is used as the light source of the laser irradiation unit 11. However, for example, a He-Ne laser, a YAG laser, or other types of laser light may be used.

なお、上記実施形態ではレーザ光の平行ビームPの傾斜角度の設定は、ねじ軸径を測定し得る所定角度以上としたが、この平行ビームの設定角度をねじ軸径を測定する少し手前で、ねじ山が判断できる程度に設定するとねじピッチの違いが判断できる。ねじ山が判断できる程度とは受光部12からねじボルトTを見たとき、左右の側辺が前述した垂直な直線状となる少し手前の傾斜角度では、その方向で見えるそれぞれのねじ山から少しねじの谷に入り、その斜面による凹状部に対応する測定値が得られる。 The setting of the inclination angle of the parallel beam P B of the laser beam in the above embodiment, although the predetermined angle or more that can measure the screw shaft diameter, the setting angle of the collimated beam slightly before measuring the screw shaft diameter If the screw thread is set to such an extent that it can be determined, the difference in screw pitch can be determined. When viewed threaded bolt T B from the light receiving unit 12 and the extent to which the thread can be determined, in a little inclination angle of the front left and right sides becomes vertical linearly as described above, from the respective thread visible in that direction The measured value corresponding to the concave part due to the inclined surface is obtained by entering the valley of the screw a little.

従って、1つのねじ山を最大径とし、かつそのねじ山を中心としてその軸径よりねじ軸の長さ方向の前後に小径部となる位置で、最大径となる位置と、隣接する最大径となる位置との長さ方向の位置の差を算出するように演算手段20に演算プログラムを設けておけば、上記最大径の位置の差によって測定対象のねじピッチを測定することもできる。そして、このねじピッチの測定データを各ねじ毎に比較することにより各ねじ毎のねじピッチの違いが判断でき、例えばタッピングねじと通常のマニファイねじのピッチの違いを判断できることとなる。即ち、このような機能を備えることによりねじ種類の異なるねじが混入していないかの異品混入検査も可能である。   Accordingly, a position where the maximum diameter is set at the maximum diameter at one screw thread and a position where the diameter is smaller in the longitudinal direction of the screw shaft than the shaft diameter around the screw thread, and the adjacent maximum diameter If a calculation program is provided in the calculation means 20 so as to calculate the position difference in the length direction with respect to the position, the screw pitch of the measurement object can be measured based on the position difference of the maximum diameter. Then, by comparing the measurement data of the screw pitch for each screw, the difference in the screw pitch for each screw can be determined. For example, the difference in the pitch between the tapping screw and the normal manifold screw can be determined. That is, by providing such a function, it is possible to inspect for mixing of different products as to whether screws of different screw types are mixed.

図5に第2実施形態のねじ軸径測定装置10’の(a)部分斜視図、(b)概略系統図を示す。この第2実施形態では、前記第1実施形態とは異なり一般の可視光を光源としてねじを照射し、その画像光を撮像手段12’によって受光し、その画像光を処理する画像処理装置22’によってねじ軸径を測定するねじ軸径測定装置10’としている。但し、照射部11’からの光は第1実施形態と同様に所定の傾斜状に設定するものとする。この場合、照射部11’からの光はレーザ光の平行ビームではなく、ねじのねじ部を含む径又は幅の光束から成る一般の可視光ビーム(白色光)である。光源には、白色光ランプ、Xeランプ、LED発光素子等が用いられる。又、受光部は、例えばCCDカメラのような撮像手段12’を用いる。   FIG. 5 shows (a) a partial perspective view and (b) a schematic system diagram of a screw shaft diameter measuring device 10 ′ according to the second embodiment. In the second embodiment, unlike the first embodiment, a general visible light is used as a light source to irradiate a screw, the image light is received by the imaging means 12 ′, and the image processing apparatus 22 ′ that processes the image light. Thus, the screw shaft diameter measuring device 10 ′ for measuring the screw shaft diameter is obtained. However, the light from the irradiation unit 11 ′ is set to have a predetermined inclination as in the first embodiment. In this case, the light from the irradiation unit 11 ′ is not a parallel beam of laser light, but a general visible light beam (white light) composed of a light beam having a diameter or width including the screw portion of the screw. A white light lamp, an Xe lamp, an LED light emitting element, or the like is used as the light source. The light receiving unit uses an imaging means 12 'such as a CCD camera.

撮像手段12’で撮像された画像信号は、信号検出部21’へ送られ、ここで2値化信号に変換されて、小型コンピュータ(パソコン)による画像処理装置22’へ送られる。23’は表示部、Exは入力手段である。この画像処理装置22’では送り込まれた画像信号にはねじによる遮光部と透過光との陰影による境界線の信号が含まれ、ねじの長さ方向の所定範囲長さに亘ってその境界線の信号を他の画像光の信号から取り出す画像処理が行われる。そして、得られたねじの最外径の両端位置の境界線の信号からねじ軸径を算出するプログラムによりねじ軸径が演算により算出される。なお、照射部11’、撮像手段12’は、適宜位置に傾斜状に固定して設けられており(但し、傾斜角度は調整可能に設けられている)、昇降手段は設けられていない。 The image signal picked up by the image pickup means 12 ′ is sent to the signal detection unit 21 ′, where it is converted into a binary signal and sent to the image processing device 22 ′ by a small computer (personal computer). Reference numeral 23 'denotes a display unit, and Ex denotes an input means. This is the image processing apparatus 22 ', the fed image signal contains signal border by shading the light shielding portion by the screw and transmitted light, of the boundary line over a predetermined range longitudinal length of the screw Image processing for extracting a signal from another image light signal is performed. Then, the screw shaft diameter is calculated by a program that calculates the screw shaft diameter from the signals of the boundary lines at both end positions of the outermost diameter of the obtained screw. The irradiating unit 11 ′ and the imaging unit 12 ′ are provided at appropriate positions in an inclined manner (however, the inclination angle is provided so as to be adjustable), and no elevating unit is provided.

上記構成のねじ軸径測定装置10’によれば、ねじの画像信号からねじ軸径を表わすねじ最外径の境界部の信号を検出することにより、ねじ全体の画像信号のうちのエッジ信号からねじ軸径を画像処理によって得るのではなく、直接的にねじ軸径を表わす信号からねじ軸径が算出される。このため、画像処理プログラムは一般の画像処理プログラムより簡易で、かつ高精度でねじ軸径を検出できることとなる。従って、一般の画像処理によるねじ軸径の測定より直接的にねじ軸径が算出されるため、測定を迅速かつ高精度で行うことができる。なお、この場合もねじ径の設計値を基準値とし、その基準値と比較して測定値が所定誤差範囲内であるかについて判定し、製品の測定値と共に製品の良否の判定を表示部23’に表示する。
According to the screw shaft diameter measuring apparatus 10 ′ having the above-described configuration, by detecting a signal at the boundary portion of the outermost diameter of the screw representing the screw shaft diameter from the image signal of the screw, the edge signal in the image signal of the entire screw is detected. Rather than obtaining the screw shaft diameter by image processing, the screw shaft diameter is calculated directly from a signal representing the screw shaft diameter. For this reason, the image processing program can detect the screw shaft diameter more easily and with higher accuracy than a general image processing program. Therefore, since the screw shaft diameter is directly calculated from the measurement of the screw shaft diameter by general image processing, the measurement can be performed quickly and with high accuracy. In this case as well, the design value of the screw diameter is used as a reference value, and it is compared with the reference value to determine whether or not the measured value is within a predetermined error range. Display in '.

この発明のねじ軸径測定装置は、光学系を傾斜状としてねじ軸径を直接、迅速に測定するものであり、ねじ検査装置の重要な検査項目の測定手段として利用される。   The screw shaft diameter measuring apparatus according to the present invention measures the screw shaft diameter directly and quickly with the optical system inclined, and is used as a measuring means for important inspection items of the screw inspection apparatus.

第1実施形態のねじ検査装置の(a)全体概略構成の平面図、(b)(a)図の矢視Ib−Ibからの部分側面図(A) Top view of whole schematic structure of screw inspection apparatus of 1st Embodiment, (b) Partial side view from arrow Ib-Ib of (a) figure ねじ軸径測定装置の概略構成の(a)平面図、(b)斜視図(A) Top view of schematic structure of screw shaft diameter measuring device, (b) Perspective view 同上装置の光学手段の信号処理回路のブロック図Block diagram of the signal processing circuit of the optical means of the same apparatus ねじ軸径測定装置による測定作用の(a)ねじボルト斜め下方から見た説明図、(b)ねじボルト側面からの測定状態図、(c)平行ビームの進行方向から目視したねじボルトの斜視図(A) Explanatory view of measuring action by screw shaft diameter measuring device as viewed from obliquely below screw bolt, (b) Measurement state view from side of screw bolt, (c) Perspective view of screw bolt viewed from parallel beam traveling direction 第2実施形態のねじ軸径測定装置の概略構成の(a)ブロック図、(b)ねじボルト斜め下方から見た説明図(A) Block diagram of schematic configuration of screw shaft diameter measuring device of second embodiment, (b) Explanatory drawing viewed from diagonally below screw bolt

符号の説明Explanation of symbols

1 検査台
2 検査テーブル
3 切欠き
4 ねじ供給手段
5 保持板
10、10’ ねじ軸径測定装置
11 レーザ照射部
12 受光部
13 支持アーム
14 昇降板
17 ガイド部材
20 演算手段
21 信号検出部
22 演算部
A ねじ検査装置
ねじボルト
平行ビーム
DESCRIPTION OF SYMBOLS 1 Inspection table 2 Inspection table 3 Notch 4 Screw supply means 5 Holding plate 10, 10 'Screw shaft diameter measuring device 11 Laser irradiation part 12 Light receiving part 13 Support arm 14 Lifting plate 17 Guide member 20 Calculation means 21 Signal detection part 22 Calculation Part A Screw inspection device T B Screw bolt P B Parallel beam

Claims (3)

外周の切欠き(3)に検査対象のねじを頭部を支えて吊り下げ、垂直な軸を支点に回転駆動されて前記ねじを回転方向に搬送する検査テーブル(2)を設け、さらに、検査対象のねじに対しねじ径より広幅の平行ビームとしてレーザ光を射出するレーザ照射部(11)と、そのレーザ照射部(11)からの平行ビーム(P を受光する受光素子を有する受光部(12)とをねじを挟んで対向配置した光学手段を傾斜及び昇降可能に設け、その光学手段を傾斜させることによりねじへの平行ビーム(P の照射方向を、その平行ビーム(P )の通過領域の透過光と遮光部両端との境界を表す検出信号が平行ビーム(P )の昇降に伴ってねじの最外径を連ねたねじ軸径を表す信号となる角度に傾斜させ、この状態で光学手段をねじの長さ方向に昇降させることにより平行ビーム(P の通過領域をねじの所定長さ範囲について受光部(12)により検出し、この検出信号に基づいてねじ軸径を演算する演算手段(20)を設けたねじ軸径測定装置。 An inspection table (2) is provided in which the screw to be inspected is suspended from the outer notch (3) while supporting the head, and is rotated about a vertical axis to convey the screw in the rotation direction. laser irradiation unit for emitting a laser beam to subject the screw as parallel beam wider than the screw diameter (11) and the light receiving portion having a receiving element for receiving the parallel beam (P B) from the laser emitter (11) (12) and the provided facing the optical means tiltably and lifting disposed across the screw, the irradiation direction of the collimated beam to the screw by tilting the optical means (P B), the parallel beam (P B The detection signal representing the boundary between the transmitted light in the passage region and the both ends of the light-shielding part is inclined to an angle that becomes a signal representing the screw shaft diameter connecting the outermost diameters of the screws as the parallel beam (P B ) moves up and down. , screw optical means in this state Arithmetic means for receiving part for a predetermined length range of the screw passage area of the parallel beam by elevating the length (P B) is detected by (12), calculates the screw shaft diameter based on the detection signal (20 ) Screw shaft diameter measuring device. 前記光学手段を支持アーム(13)に設け、その支持アーム(13)を傾斜及び昇降可能に設けたことを特徴とする請求項に記載のねじ軸径測定装置。 The screw shaft diameter measuring device according to claim 1 , wherein the optical means is provided on a support arm (13) , and the support arm (13) is provided so as to be inclined and liftable. 外周の切欠き(3)に検査対象のねじを頭部を支えて吊り下げ、垂直な軸を支点に回転駆動されて前記ねじを回転方向に搬送する検査テーブル(2)を設け、さらに、検査対象のねじ全長を照射する可視光ビームの照射部(11’)と、照射されたねじの画像光を受光する撮像手段(12’)とをねじを挟んで対向配置した画像検出手段を傾斜可能に設け、前記画像検出手段を傾斜させることによりねじへの照射光の照射方向を、画像光中のねじによる遮光部とねじ最外径の通過領域の透過光との境界線が直線に近くなる角度に傾斜させ、上記画像光の遮光部と透過光との境界線の所定範囲長さに亘る領域を画像処理により検出し、その検出データからねじ軸径を演算して画像処理によりねじ軸径を算出するねじ軸径演算手段を設けたねじ軸径測定装置。 An inspection table (2) is provided in which the screw to be inspected is suspended from the outer notch (3) while supporting the head, and is rotated about a vertical axis to convey the screw in the rotation direction. An image detecting means in which a visible light beam irradiating portion (11 ′) for irradiating the entire length of the target screw and an imaging means (12 ′) for receiving image light of the irradiated screw are arranged to face each other with the screw interposed therebetween. capable provided, the irradiation direction of the irradiation light to the screw by tilting the image detection means, the boundary line between the transmitted light passing areas of the light shielding portion and the screw outermost diameter by screws in the image light is close to a straight line consisting angle is inclined, the upper Symbol regions over a predetermined range the length of the boundary line between the transmitted light shielding portion of the image light is detected by image processing, a screw by image processing by calculating the screw shaft diameter from the detected data Screw shaft with screw shaft diameter calculation means to calculate shaft diameter Measuring device.
JP2005246237A 2005-08-26 2005-08-26 Screw shaft diameter measuring device Active JP4677603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246237A JP4677603B2 (en) 2005-08-26 2005-08-26 Screw shaft diameter measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246237A JP4677603B2 (en) 2005-08-26 2005-08-26 Screw shaft diameter measuring device

Publications (2)

Publication Number Publication Date
JP2007057489A JP2007057489A (en) 2007-03-08
JP4677603B2 true JP4677603B2 (en) 2011-04-27

Family

ID=37921106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246237A Active JP4677603B2 (en) 2005-08-26 2005-08-26 Screw shaft diameter measuring device

Country Status (1)

Country Link
JP (1) JP4677603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406533A (en) * 2014-11-28 2015-03-11 沈阳飞机工业(集团)有限公司 Laser diameter measuring instrument calibrating method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5033672B2 (en) * 2008-02-18 2012-09-26 貴雄 根本 Male screw measuring device and judging device
JP5017628B2 (en) * 2008-09-30 2012-09-05 株式会社ユタカ Side inspection device
JP5308498B2 (en) * 2011-11-10 2013-10-09 落合 行雄 Screw dimension measuring device
JP5567061B2 (en) * 2012-04-27 2014-08-06 古河電気工業株式会社 Crimp shape information acquisition method and crimp shape information acquisition apparatus
JP6707057B2 (en) * 2017-04-28 2020-06-10 新日本非破壊検査株式会社 Deformed bar surface inspection device and surface inspection method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253902A (en) * 1984-05-31 1985-12-14 Meidensha Electric Mfg Co Ltd Position detector for columnar body
JPS63191007A (en) * 1987-02-02 1988-08-08 Nippon Steel Corp Method of screw inspection and measurement
JPH0434304A (en) * 1990-05-31 1992-02-05 Mitsubishi Nuclear Fuel Co Ltd Method and apparatus for measuring outer diameter of object to be measured
JPH06147834A (en) * 1992-11-02 1994-05-27 Mitsubishi Heavy Ind Ltd Thread discriminating system
JPH06186026A (en) * 1990-03-16 1994-07-08 Res Eng & Mfg Inc Method and apparatus for measuring body such as screw part and raw material thereof
JPH08159747A (en) * 1994-12-09 1996-06-21 Sankoole Kk Screw checking device
JPH11248426A (en) * 1998-03-04 1999-09-17 Nittetsu Hokkaido Seigyo System Kk Method and apparatus for measuring dimensions of deformed round bar
JP2004144517A (en) * 2002-10-22 2004-05-20 Tokai Rubber Ind Ltd Inspection method for roll body
JP2005214751A (en) * 2004-01-28 2005-08-11 Tsunehiro Yoshida Inspection device of screw

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60253902A (en) * 1984-05-31 1985-12-14 Meidensha Electric Mfg Co Ltd Position detector for columnar body
JPS63191007A (en) * 1987-02-02 1988-08-08 Nippon Steel Corp Method of screw inspection and measurement
JPH06186026A (en) * 1990-03-16 1994-07-08 Res Eng & Mfg Inc Method and apparatus for measuring body such as screw part and raw material thereof
JPH0434304A (en) * 1990-05-31 1992-02-05 Mitsubishi Nuclear Fuel Co Ltd Method and apparatus for measuring outer diameter of object to be measured
JPH06147834A (en) * 1992-11-02 1994-05-27 Mitsubishi Heavy Ind Ltd Thread discriminating system
JPH08159747A (en) * 1994-12-09 1996-06-21 Sankoole Kk Screw checking device
JPH11248426A (en) * 1998-03-04 1999-09-17 Nittetsu Hokkaido Seigyo System Kk Method and apparatus for measuring dimensions of deformed round bar
JP2004144517A (en) * 2002-10-22 2004-05-20 Tokai Rubber Ind Ltd Inspection method for roll body
JP2005214751A (en) * 2004-01-28 2005-08-11 Tsunehiro Yoshida Inspection device of screw

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406533A (en) * 2014-11-28 2015-03-11 沈阳飞机工业(集团)有限公司 Laser diameter measuring instrument calibrating method

Also Published As

Publication number Publication date
JP2007057489A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
US11199395B2 (en) Profile inspection system for threaded and axial components
JP5408915B2 (en) Edge sensor and defect inspection device
JP4677603B2 (en) Screw shaft diameter measuring device
KR101578496B1 (en) Method for determining the tilt of an image sensor
US20110141272A1 (en) Apparatus and method for inspecting an object surface defect
JP5488953B2 (en) Method and apparatus for inspection of uneven surface
US20090303468A1 (en) Undulation Inspection Device, Undulation Inspecting Method, Control Program for Undulation Inspection Device, and Recording Medium
JP3269288B2 (en) Optical inspection method and optical inspection device
JP6119926B1 (en) Metal body shape inspection apparatus and metal body shape inspection method
US20070115464A1 (en) System and method for inspection of films
US20120044346A1 (en) Apparatus and method for inspecting internal defect of substrate
JP2012078144A (en) Surface defect inspection device for transparent body sheet-like material
KR20050035243A (en) Optical measuring method and device therefor
KR102409084B1 (en) Cylindrical surface inspection apparatus and cylindrical surface inspection method
JP7063839B2 (en) Inspection method and inspection system
JP2010256151A (en) Shape measuring method
US8547547B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
JP6321709B2 (en) Surface wrinkle inspection method
JP2012068211A (en) Distortion inspection device for sheet member and distortion inspection method for sheet member
JP5367292B2 (en) Surface inspection apparatus and surface inspection method
JP2009222614A (en) Surface inspection apparatus
JP2008203168A (en) Visual inspection method for belt
JP2021067588A (en) Surface inspection device for object to be inspected and surface inspection method for object to be inspected
JP2019066219A (en) Visual inspection device and visual inspection method
JP2006003168A (en) Measurement method for surface shape and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4677603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250