JP4677251B2 - Flow cell, flow cell manufacturing method, and fluid concentration measuring apparatus - Google Patents

Flow cell, flow cell manufacturing method, and fluid concentration measuring apparatus Download PDF

Info

Publication number
JP4677251B2
JP4677251B2 JP2005051280A JP2005051280A JP4677251B2 JP 4677251 B2 JP4677251 B2 JP 4677251B2 JP 2005051280 A JP2005051280 A JP 2005051280A JP 2005051280 A JP2005051280 A JP 2005051280A JP 4677251 B2 JP4677251 B2 JP 4677251B2
Authority
JP
Japan
Prior art keywords
tube
light
light projecting
flow cell
receiving member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005051280A
Other languages
Japanese (ja)
Other versions
JP2006234663A (en
Inventor
章史 三又
哲 平木
博 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd filed Critical Kurashiki Spinning Co Ltd
Priority to JP2005051280A priority Critical patent/JP4677251B2/en
Publication of JP2006234663A publication Critical patent/JP2006234663A/en
Application granted granted Critical
Publication of JP4677251B2 publication Critical patent/JP4677251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば半導体や液晶表示装置等の製造工程に使用される流体における被測定物の測定用として配管に取り付けられるフローセル、該フローセルの製造方法、及び上記フローセルを備えた流体濃度測定装置に関する。   The present invention relates to, for example, a flow cell attached to a pipe for measuring an object to be measured in a fluid used in a manufacturing process of a semiconductor or a liquid crystal display device, a method for manufacturing the flow cell, and a fluid concentration measuring apparatus including the flow cell. .

一般に、半導体や液晶表示装置等の製造工程において、使用する流体つまりプロセス用薬剤水溶液に含まれる薬剤の濃度を正確、簡単かつ迅速に測定することは、これら製造分野において広く要請されている課題である。   In general, in the manufacturing process of semiconductors, liquid crystal display devices, etc., it is a widely requested issue in these manufacturing fields to accurately, easily and quickly measure the concentration of the chemical contained in the fluid used, that is, the aqueous chemical solution for processing. is there.

半導体の分野におけるシリコンウエハ洗浄工程やフォトエッチング工程あるいは液晶表示装置の製造工程等で使用されている酸、例えばフッ酸、硝酸、酢酸、リン酸、塩酸、硫酸等の混合物等の処理液に関しては、製品の歩留の向上、安全性や作業効率等の観点から、これら処理液中の酸の濃度管理が不可欠であり、そのための濃度分析とこの濃度分析に基づいて所定の濃度となるように酸を自動的に供給する自動化が要請されている。   Regarding processing solutions such as acids, such as hydrofluoric acid, nitric acid, acetic acid, phosphoric acid, hydrochloric acid, and sulfuric acid, which are used in silicon wafer cleaning processes, photoetching processes, and liquid crystal display manufacturing processes in the semiconductor field From the standpoints of improving product yield, safety, and work efficiency, it is essential to control the concentration of acid in these processing solutions, and to achieve a predetermined concentration based on this concentration analysis and concentration analysis. There is a demand for automation to automatically supply acid.

上記処理液のような流体に含まれる被測定物の濃度を測定する方法の一つとして、配管を流れる流体に光を照射しその透過光強度を測定する方法がある(例えば、特許文献1参照。)。上記透過光強度を測定するためにフローセルが配管に設けられる。ここでフローセルとは、試料液体へ光線を照射するために用いる光透過性材料にて形成された流路部分である。
フローセルは、流体の流れ方向に直交し光が流体を透過するように設けられる光の通路を備えるが、該光通路長の変動を低減することが流体を透過する透過光の強度を高精度に測定するための要件の一つである。通常、上記光通路長は、配管の内径よりも小さく、従来のフローセルでは、配管を偏平な形に絞り込む、あるいは小径の管を途中に介在させる等の構成を採ることで、必要な光通路長を得ている。しかしながら、このようなフローセルでは、配管を流れる流体にとってフローセルが抵抗となることから、流体の圧力損失を大きくしてしまうという問題がある。
As one of methods for measuring the concentration of an object to be measured contained in a fluid such as the treatment liquid, there is a method of irradiating a fluid flowing through a pipe with light and measuring the transmitted light intensity (see, for example, Patent Document 1). .) In order to measure the transmitted light intensity, a flow cell is provided in the pipe. Here, the flow cell is a channel portion formed of a light transmissive material used for irradiating a sample liquid with light.
The flow cell is provided with a light path provided so that light passes through the fluid perpendicular to the fluid flow direction, and reducing the fluctuation of the light path length increases the intensity of transmitted light that passes through the fluid with high accuracy. It is one of the requirements for measuring. Usually, the optical path length is smaller than the inner diameter of the pipe, and in the conventional flow cell, the required optical path length can be obtained by narrowing the pipe to a flat shape or interposing a small diameter pipe in the middle. Have gained. However, in such a flow cell, there is a problem in that the pressure loss of the fluid is increased because the flow cell becomes a resistance to the fluid flowing through the pipe.

このような圧力損失の問題を解決すべく、光透過部の周囲に、管の流路断面積にほぼ等しい断面積を有する流体通路を設けたフローセルも提案されている(例えば特許文献2参照)。上述のように、測定精度において光通路長が重要な要件の一つであるが、配管内の流体の温度等の影響により光通路長は変化し易い。よって、上記特許文献2に開示されるフローセルにおいも、光透過部は石英のような熱膨張率の低い材料にて形成し、光通路長が変動しないようにしている。
特開平6−265471号公報 特開平7−12713号公報
In order to solve such a problem of pressure loss, a flow cell is also proposed in which a fluid passage having a cross-sectional area substantially equal to the flow passage cross-sectional area of the pipe is provided around the light transmission portion (see, for example, Patent Document 2). . As described above, the optical path length is one of the important requirements in the measurement accuracy, but the optical path length is likely to change due to the influence of the temperature of the fluid in the pipe. Therefore, also in the flow cell disclosed in Patent Document 2, the light transmission part is formed of a material having a low coefficient of thermal expansion such as quartz so that the optical path length does not fluctuate.
JP-A-6-265471 JP 7-12713 A

しかしながら、上記特許文献2に開示されるフローセルであっても、図11に示すように、フローセルの光透過部12は管内に配置されており、圧力損失の問題を低減したとしても、管内、つまり流体に接触する形態にて異物を配置するという問題が存在する。即ち、流体が例えば上述のようなシリコンウエハ洗浄工程等に使用される処理液であるとき、洗浄工程では有機物や金属等の混入は絶対に避けねばならず、測定用とは言え配管内に処理液以外の異物が存在することは好ましくない。又、上述したフッ酸等の酸に耐え得る材料としては、フッ素樹脂、石英、サファイヤがあるが、例えば石英は、フッ酸に浸食されることから、上述のような石英を使った光透過部12を有するフローセルは使用できない。又、サファイヤではアルミが溶出することから、測定された流体は廃棄しなければならない。このように、配管内に光透過部を設ける構成では、適用流体が限定されたり、流体を循環して使用できない等の問題を生じる。
さらに又、配管形状とは異なる形状を有するフローセルを設けた場合には、配管から流体を排出した後においてもフローセル部分に液溜まりが生じたり、上述のように圧力損失の発生や、流速の変化等も発生し、フローセルを設けたシステム全体へ悪影響を招くことも懸念される。
However, even in the flow cell disclosed in the above-mentioned Patent Document 2, as shown in FIG. 11, the light transmission part 12 of the flow cell is arranged in the pipe, and even if the problem of pressure loss is reduced, There is a problem of placing foreign matter in a form that contacts the fluid. That is, when the fluid is a processing solution used in, for example, the silicon wafer cleaning process as described above, it is absolutely necessary to avoid mixing organic substances and metals in the cleaning process. It is not preferable that foreign substances other than liquid exist. In addition, the above-mentioned materials that can withstand acid such as hydrofluoric acid include fluororesin, quartz, and sapphire. For example, quartz is eroded by hydrofluoric acid. A flow cell having 12 cannot be used. Moreover, since aluminum elutes in sapphire, the measured fluid must be discarded. As described above, in the configuration in which the light transmitting portion is provided in the pipe, there are problems that the applicable fluid is limited and that the fluid cannot be used after being circulated.
In addition, when a flow cell having a shape different from the piping shape is provided, even after the fluid is discharged from the piping, a liquid pool is generated in the flow cell portion. Etc. may occur, and there is a concern that the entire system provided with the flow cell may be adversely affected.

さらに又、上述したような問題点を解決するため、予め投光部及び受光部を設置した部分に配管をセットするように構成することで、配管自体には何ら細工を施さずに測定を可能とした測定器も存在する。しかしながら、このような構成では、管壁と、投光部及び受光部とが密着しないことから、投光部から配管に照射される光、並びに、配管及び流体を通過して受光部に入射する光の強度自体が変動してしまうことが懸念される。又、上述したように、配管内の流体の温度や圧力等の作用により、配管自体が伸縮することから、上述の、管壁と、投光部及び受光部との密着不良に起因して、上記光通路長が変動することも懸念される。したがって、このような測定器では、満足な測定値精度が得られないと考えられる。   Furthermore, in order to solve the above-mentioned problems, it is possible to perform measurement without any work on the piping itself by configuring the piping to be set in the part where the light projecting unit and the light receiving unit are installed in advance. There is also a measuring instrument. However, in such a configuration, the tube wall, the light projecting unit, and the light receiving unit are not in close contact with each other. Therefore, the light irradiated from the light projecting unit to the pipe and the pipe and the fluid are incident on the light receiving unit. There is a concern that the intensity of light itself may fluctuate. Also, as described above, because the pipe itself expands and contracts due to the action of the temperature and pressure of the fluid in the pipe, due to the poor adhesion between the pipe wall, the light projecting part and the light receiving part, There is also a concern that the optical path length fluctuates. Therefore, it is considered that such a measuring device cannot obtain satisfactory measurement value accuracy.

本発明は、上述したような問題点を解決するためになされたもので、従来に比べて高精度にて流体内の被測定物の測定が行える、フローセル、フローセルの製造方法、及び流体濃度測定装置を提供することを目的とする。   The present invention has been made to solve the above-described problems. A flow cell, a flow cell manufacturing method, and a fluid concentration measurement capable of measuring an object to be measured in a fluid with higher accuracy than conventional methods. An object is to provide an apparatus.

上記目的を達成するため、本発明は以下のように構成する。
即ち、本発明の第1態様におけるフローセルは、可塑性で透光性の材料からなり被測定物の流体が流れる管と、
上記管に交差する方向から上記管を挟み、かつ上記管に密着して上記管と一体的に形成され、上記流体の物性測定用の測定光を通過させる一対の投受光用部材と、
上記投受光用部材に取り付けられ、上記一対の投受光用部材間の部材間距離を上記管の変形に関係なく常に一定に保持する保持部材と、
を備え、
上記投受光用部材は上記管に融着して固定される、
ことを特徴とする。
また、本発明の他の態様におけるフローセルは、可塑性で透光性の材料からなり被測定物の流体が流れる管と、
上記管に交差する方向から上記管を挟み、かつ上記管に密着して上記管と一体的に形成され、上記流体の物性測定用の測定光を通過させる一対の投受光用部材と、
上記投受光用部材に取り付けられ、上記一対の投受光用部材間の部材間距離を上記管の変形に関係なく常に一定に保持する保持部材と、を備え、
上記投受光用部材は、レンズ形状又は板形状にてなり互いに平行に対向して配置され、フッ素樹脂からなる、ことを特徴とする。
In order to achieve the above object, the present invention is configured as follows.
That is, the flow cell according to the first aspect of the present invention includes a tube made of a plastic and translucent material and through which a fluid of an object to be measured flows.
A pair of light projecting and receiving members sandwiching the tube from the direction intersecting the tube and being formed in close contact with the tube and integrally formed with the tube, and passing measurement light for measuring the physical properties of the fluid;
A holding member that is attached to the light projecting / receiving member, and that keeps the distance between the pair of light projecting / receiving members constant at all times regardless of the deformation of the tube;
With
The light projecting / receiving member is fused and fixed to the tube;
It is characterized by that.
Further, the flow cell according to another aspect of the present invention includes a tube made of a plastic and translucent material through which a fluid of an object to be measured flows,
A pair of light projecting and receiving members sandwiching the tube from the direction intersecting the tube and being formed in close contact with the tube and integrally formed with the tube, and passing measurement light for measuring the physical properties of the fluid;
A holding member that is attached to the light projecting / receiving member, and that keeps the distance between the pair of light projecting / receiving members constant at all times regardless of the deformation of the tube,
The light projecting and receiving members are formed in a lens shape or a plate shape, are arranged to face each other in parallel, and are made of a fluororesin.

又、上記管外面と上記投受光用部材との間に介在し、上記管外面と上記投受光用部材との密着性を向上させかつ上記管に上記投受光用部材を固定させる密着向上剤をさらに有してもよい。   An adhesion improver interposed between the outer surface of the tube and the light projecting / receiving member to improve the adhesion between the outer surface of the tube and the light projecting / receiving member and to fix the light emitting / receiving member to the tube; Furthermore, you may have.

又、上記投受光用部材は、可視領域、赤外領域、及び紫外領域の少なくとも一つの領域の上記測定光を通過させるものでもよい。又、上記管は、フッ素樹脂にて形成されてもよい。又、上記投受光用部材は、レンズ形状又は板形状にてなり互いに平行に対向して配置することができ、さらに石英、サファイヤ、ホウ素及び珪素を含むガラス材、又はフッ化カルシウムにて形成することができる。又、上記投受光用部材は、フッ素樹脂から形成することができる。   The light projecting / receiving member may pass the measurement light in at least one of a visible region, an infrared region, and an ultraviolet region. The tube may be made of a fluororesin. In addition, the light projecting / receiving member may have a lens shape or a plate shape, and may be disposed to face each other in parallel, and is further formed of a glass material containing quartz, sapphire, boron and silicon, or calcium fluoride. be able to. The light projecting / receiving member can be made of a fluororesin.

さらに本発明の第2態様における濃度測定装置は、上述の第1態様のフローセルと、
上記フローセルに備わる管、及び上記管を流れる流体を透過し上記フローセルに備わる上記投受光用部材の内の受光用部材を透過した測定光を受光する受光部と、
上記受光部と電気的に接続され、受光部にて検出した上記測定光の強度に基づいて上記被測定物の濃度を求める濃度測定部と、
を備えたことを特徴とする。
Furthermore, the concentration measuring apparatus according to the second aspect of the present invention includes the flow cell according to the first aspect described above,
A tube provided in the flow cell, and a light receiving unit that receives measurement light that has passed through the fluid flowing through the tube and has passed through a light receiving member of the light projecting and receiving member provided in the flow cell;
A concentration measuring unit that is electrically connected to the light receiving unit and obtains the concentration of the object to be measured based on the intensity of the measurement light detected by the light receiving unit;
It is provided with.

さらに本発明の第3態様における、フローセルの製造方法は、可塑性で透光性の材料からなり被測定物の流体が流れる管内に、該管に設けられる一対の投受光用部材間の部材間距離を規定するための距離規定用芯材を挿入し、
上記管を軟化させると伴に、上記管の外側から上記距離規定用芯材に対向して上記管に交差する方向に沿って上記投受光用部材で上記管を挟み、かつ上記投受光用部材を上記管に押圧して上記投受光用部材を上記管に密着させかつ脱泡状態にて融着させて上記管と一体的に形成し、
上記形成後、上記部材間距離を上記管の変形に関係なく常に一定に保持するための保持部材を上記投受光用部材に取り付ける、
ことを特徴とする。
また、本発明の他の態様における、フローセルの製造方法は、可塑性で透光性の材料からなり被測定物の流体が流れる管内に、該管に設けられる一対の投受光用部材間の部材間距離を規定するための距離規定用芯材を挿入し、
上記管を軟化させると伴に、上記管の外側から上記距離規定用芯材に対向して上記管に交差する方向に沿って上記投受光用部材で上記管を挟み、かつ上記投受光用部材を上記管に押圧して上記投受光用部材を上記管に密着させて上記管と一体的に形成し、
上記形成後、上記部材間距離を上記管の変形に関係なく常に一定に保持するための保持部材を上記投受光用部材に取り付け、
上記投受光用部材は、レンズ形状又は板形状にてなり互いに平行に対向して配置され、フッ素樹脂からなる、ことを特徴とする。
Furthermore, the flow cell manufacturing method according to the third aspect of the present invention includes a distance between members between a pair of light projecting and receiving members provided in a pipe made of a plastic and translucent material and in which a fluid of an object to be measured flows. Insert the distance regulating core material to regulate
As the tube is softened, the light projecting / receiving member is sandwiched between the light projecting / receiving member along the direction crossing the tube from the outside of the tube so as to face the distance regulating core member. Is formed integrally with the tube by pressing the tube against the tube so that the light projecting / receiving member is brought into close contact with the tube and fused in a defoamed state,
After the formation, a holding member for always holding the distance between the members constant regardless of the deformation of the tube is attached to the light projecting and receiving member.
It is characterized by that.
According to another aspect of the present invention, there is provided a flow cell manufacturing method comprising: a member between a pair of light projecting and receiving members provided in a pipe made of a plastic and translucent material and in which a fluid of an object to be measured flows. Insert a distance regulating core to regulate the distance,
As the tube is softened, the light projecting / receiving member is sandwiched between the light projecting / receiving member along the direction crossing the tube from the outside of the tube so as to face the distance regulating core member. Pressing the tube against the tube so that the light projecting / receiving member is brought into close contact with the tube and formed integrally with the tube,
After the formation, a holding member for always holding the distance between the members constant regardless of the deformation of the tube is attached to the light projecting / receiving member,
The light projecting / receiving member is formed in a lens shape or a plate shape, arranged in parallel with each other, and made of a fluororesin.

本発明の第1態様のフローセル、第2態様の濃度測定装置、及び第3態様における上記フローセルの製造方法によれば、投受光用部材及び保持部材を備え、投受光用部材は管と一体的に形成され、かつ保持部材にて投受光用部材を支持したことから、流体の温度や圧力により管が変形した場合でも、投受光用部材間の部材間距離は常時一定に保持することができる。したがって、従来に比べて高精度にて流体内の対象物の濃度測定が可能となる。又、管内部には測定用の構成部分が存在しないことから、圧力損失の発生や、流速の変化等も発生しない。よって、フローセルを設けたシステム全体へ悪影響を及ぼすこともない。さらに又、管内部に測定用構成部分が存在しないことから、上記測定用構成部分が流体へ溶出するという問題も発生しない。よって、適用可能な流体が限定されることもない。   According to the flow cell of the first aspect of the present invention, the concentration measuring device of the second aspect, and the flow cell manufacturing method of the third aspect, the light projecting / receiving member and the holding member are provided, and the light projecting / receiving member is integrated with the tube. Since the light projecting / receiving member is supported by the holding member, the distance between the light projecting / receiving members can be kept constant even when the tube is deformed by the temperature or pressure of the fluid. . Therefore, it is possible to measure the concentration of the object in the fluid with higher accuracy than in the past. In addition, since there is no measurement component inside the tube, no pressure loss or change in flow velocity occurs. Therefore, the entire system provided with the flow cell is not adversely affected. Furthermore, since there is no measurement component inside the tube, the problem of the measurement component eluting into the fluid does not occur. Therefore, the applicable fluid is not limited.

投受光用部材と管とを一体的に形成する方法としては、密着向上剤を使用するのが簡便である。又、融着することで、より強固に両者を合体させることができ、又、測定光に対する影響を低減することができる。   As a method for integrally forming the light projecting / receiving member and the tube, it is simple to use an adhesion improver. Moreover, by fusing, both can be united more firmly and the influence with respect to measurement light can be reduced.

本発明の実施形態である、フローセル、該フローセルの製造方法、及び上記フローセルを備えた流体濃度測定装置について、図を参照しながら以下に説明する。尚、各図において、同じ構成部分については同じ符号を付している。
尚、流体内の被測定物として、本実施形態では、シリコンウエハ洗浄工程やフォトエッチング工程あるいは液晶表示装置の製造工程等で使用されている酸、例えばフッ酸、硝酸、酢酸、リン酸、塩酸、硫酸等の混合物等の処理液中の酸を例に採る。又、上記フローセルを利用して上記酸の濃度測定を行う場合を例に採る。よって、本実施形態においてフローセルは、流体濃度測定用フローセルである。
但し、流体及び被測定物は、上記処理液及び酸に限定されるものではなく、又、上記被測定物における測定項目も「濃度」に限定するものではない。よって、フローセルも、配管を流れる流体に含まれる被測定物を、透過光の強度に基づいて測定するために使用可能なものである。
A flow cell, a method for producing the flow cell, and a fluid concentration measuring apparatus including the flow cell, which are embodiments of the present invention, will be described below with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected about the same component.
In this embodiment, as an object to be measured in the fluid, an acid used in a silicon wafer cleaning process, a photo etching process, a liquid crystal display manufacturing process, or the like, such as hydrofluoric acid, nitric acid, acetic acid, phosphoric acid, hydrochloric acid. An acid in a processing solution such as a mixture of sulfuric acid is taken as an example. The case where the acid concentration is measured using the flow cell is taken as an example. Therefore, in the present embodiment, the flow cell is a fluid concentration measurement flow cell.
However, the fluid and the object to be measured are not limited to the treatment liquid and the acid, and the measurement item in the object to be measured is not limited to “concentration”. Therefore, the flow cell can also be used to measure the object to be measured contained in the fluid flowing through the pipe based on the intensity of transmitted light.

まず、上記流体濃度測定用フローセルについて説明する。
図1及び図2に示すように、本実施形態の流体濃度測定用フローセル120は、基本的構成として、管110と、投受光用部材121と、保持部材122とを備え、図5に示す上記実施形態の流体濃度測定装置101におけるフローセル部分を構成する。尚、上述したようにフローセルとは、試料液体へ光線を照射するために用いる光透過性材料にて形成された流路部分である。
First, the fluid concentration measurement flow cell will be described.
As shown in FIGS. 1 and 2, the fluid concentration measurement flow cell 120 of the present embodiment includes a tube 110, a light projecting / receiving member 121, and a holding member 122 as a basic configuration. The flow cell part in the fluid concentration measuring apparatus 101 of the embodiment is configured. As described above, the flow cell is a channel portion formed of a light transmissive material used for irradiating a sample liquid with light.

上記管110は、後述する流体濃度測定装置101において、被測定物を含む流体115が流れる配管114と同一の管であり、被測定物を含む流体の種類、使用条件等に応じて、種々の材質及び寸法にてなるものを適宜選択することができる。本実施形態では、管110は、可塑性で透光性の材質からなり、一例として、フッ素樹脂にてなり、1/4〜1インチ程度の直径を有する。尚、フッ素樹脂材としては、例えばパーフルオロ樹脂(PFA)、ポリ4フッ化エチレン(PTFE)、又はフッ化エチレンプロピレン(FEP)等が好ましい。   The pipe 110 is the same pipe as the pipe 114 through which the fluid 115 containing the object to be measured flows in the fluid concentration measuring apparatus 101 to be described later, and there are various pipes depending on the type of the fluid containing the object to be measured, the use conditions, and the like. What consists of a material and a dimension can be selected suitably. In the present embodiment, the tube 110 is made of a plastic and translucent material. For example, the tube 110 is made of a fluororesin and has a diameter of about 1/4 to 1 inch. As the fluororesin material, for example, perfluoro resin (PFA), polytetrafluoroethylene (PTFE), or fluorinated ethylene propylene (FEP) is preferable.

上記投受光用部材121は、透光性の材料にてなる一対の投光用部材121−1及び受光用部材121−2からなり、管110の外側から管110に交差する交差方向129に沿って管110を挟み、かつ管110に密着して管110と一体的に形成される部材である。このように設置される投受光用部材121は、管110内の流体における被測定物の物性を測定するための測定光133を通過させる。本実施形態では、上記交差方向129は、管110の軸方向111に対して、測定光133の光軸133aが直交する方向であり、図2に示すように、投光用部材121−1と受光用部材121−2とは、管110の軸方向111において同位置で互いに対向しかつ平行に配置される。しかしながら、交差方向129は、上記直交方向に限定するものではなく、投光用部材121−1と受光用部材121−2とが管110の軸方向111において互いにずれて配置され、測定光133の光軸133aと軸方向111とが90度以外の角度で交差するように構成されてもよい。   The light projecting / receiving member 121 includes a pair of light projecting members 121-1 and a light receiving member 121-2 made of a translucent material, and extends along an intersecting direction 129 intersecting the tube 110 from the outside of the tube 110. This is a member that is formed integrally with the tube 110 with the tube 110 interposed therebetween and in close contact with the tube 110. The light projecting / receiving member 121 installed in this way allows measurement light 133 for measuring the physical properties of the object to be measured in the fluid in the tube 110 to pass therethrough. In the present embodiment, the intersecting direction 129 is a direction in which the optical axis 133a of the measurement light 133 is orthogonal to the axial direction 111 of the tube 110, and as shown in FIG. The light receiving member 121-2 is disposed opposite and parallel to each other at the same position in the axial direction 111 of the tube 110. However, the intersecting direction 129 is not limited to the orthogonal direction, and the light projecting member 121-1 and the light receiving member 121-2 are arranged so as to be shifted from each other in the axial direction 111 of the tube 110. The optical axis 133a and the axial direction 111 may be configured to intersect at an angle other than 90 degrees.

又、従来のフローセルの場合と同様に、当該流体濃度測定用フローセル120においても、投受光用部材121間の距離、つまり投光用部材121−1と受光用部材121−2との間の部材間距離126は、変動しないことが測定精度上、非常に重要である。そこで本実施形態では、部材間距離126を不変に維持するため、管110への投受光用部材121の取り付け方法を工夫するとともに、保持部材122を設けている。これらについては、追って詳しく説明する。   As in the case of the conventional flow cell, also in the flow cell 120 for measuring the fluid concentration, the distance between the light projecting / receiving members 121, that is, the member between the light projecting member 121-1 and the light receiving member 121-2. It is very important for measurement accuracy that the distance 126 does not vary. Therefore, in this embodiment, in order to keep the inter-member distance 126 unchanged, the method for attaching the light projecting / receiving member 121 to the tube 110 is devised and the holding member 122 is provided. These will be described in detail later.

測定光133は、可視領域、赤外領域、及び紫外領域の少なくとも一つの領域における光であり、測定光133の種類に応じて、投受光用部材121の材質が選択される。本実施形態では、投受光用部材121は、石英、サファイヤ、例えばBK7と呼ばれホウ素と珪素とを含む光学ガラス材、フッ化カルシウム、又はフッ素樹脂等の材質からなる。尚、フッ素樹脂材としては、例えばパーフルオロ樹脂(PFA)、ポリ4フッ化エチレン(PTFE)、又はフッ化エチレンプロピレン(FEP)等が好ましい。   The measurement light 133 is light in at least one of the visible region, the infrared region, and the ultraviolet region, and the material of the light projecting / receiving member 121 is selected according to the type of the measurement light 133. In the present embodiment, the light projecting / receiving member 121 is made of a material such as quartz, sapphire, for example, BK7, an optical glass material containing boron and silicon, calcium fluoride, or a fluororesin. As the fluororesin material, for example, perfluoro resin (PFA), polytetrafluoroethylene (PTFE), or fluorinated ethylene propylene (FEP) is preferable.

上述の各材料において、投受光用部材121用として、最も汎用的にはBK7が用いられる。BK7は可視領域及び近赤外領域の光を透過する。一方、可視領域より短波長側の紫外領域、及び近赤外領域より長波長側の中赤外領域の光を扱う場合には、BK7以外の光学部材を使う必要がある。紫外領域までも測定できる材料して石英がある。石英は、紫外領域、可視領域、及び近赤外領域の光を透過することができる。尚、フッ酸に対して溶解する短所がある。フッ酸に対して耐久性がある材料としてサファイアがある。サファイアは、紫外領域、可視領域、及び近赤外領域の光を透過することができる。フッ化カルシウムは、紫外領域、可視領域、近赤外領域、及び中赤外領域まで、広範囲の光を透過することができるが、水に対して溶解する特性があり、湿度が多い環境下では好ましくない。又、フッ素樹脂材は、光透過性が上述の各材料に比べて劣る。   In each of the above materials, BK7 is most commonly used for the light projecting / receiving member 121. BK7 transmits light in the visible region and near infrared region. On the other hand, when handling light in the ultraviolet region shorter than the visible region and in the middle infrared region longer than the near infrared region, it is necessary to use an optical member other than BK7. Quartz is a material that can be measured even in the ultraviolet region. Quartz can transmit light in the ultraviolet region, visible region, and near infrared region. There is a disadvantage that it dissolves in hydrofluoric acid. Sapphire is a material that is durable against hydrofluoric acid. Sapphire can transmit light in the ultraviolet region, the visible region, and the near infrared region. Calcium fluoride can transmit a wide range of light from the ultraviolet region, visible region, near infrared region, and mid-infrared region, but has the property of dissolving in water, and in a humid environment It is not preferable. In addition, the fluororesin material is inferior in light transmittance to the above-mentioned materials.

尚、後述するように、管110に投受光用部材121を密着させる方法の一つとして、融着させる方法がある。この場合、両者の性状が同一又は近似する方が良好な融合性を得られることから、管110が例えばフッ素樹脂からなるときには、投受光用部材121もフッ素樹脂からなるのが好ましい。   As will be described later, as one method for bringing the light projecting / receiving member 121 into close contact with the tube 110, there is a method of fusing. In this case, when the properties of both are the same or close, it is possible to obtain better fusion properties. Therefore, when the tube 110 is made of, for example, a fluororesin, the light projecting / receiving member 121 is also preferably made of a fluororesin.

又、投受光用部材121は、板状や、図4に示すようにレンズ状の形状を採ることができる。板形状は、衝撃等の外乱による部材間距離126への影響が少ないことから好ましい。尚、図4では凸レンズを図示しているが、凹レンズを用いることもできる。又、本実施形態では、投光用部材121−1及び受光用部材121−2は、共に板状の部材で同形状のものを用いているが、両者で異ならせることもできる。   Further, the light projecting / receiving member 121 can take a plate shape or a lens shape as shown in FIG. The plate shape is preferable because the influence on the inter-member distance 126 due to a disturbance such as an impact is small. Although FIG. 4 shows a convex lens, a concave lens can be used. In the present embodiment, the light projecting member 121-1 and the light receiving member 121-2 are both plate-like members having the same shape, but may be different from each other.

又、投受光用部材121の大きさは、測定光133を透過させるという投受光用部材121の機能から、最低限、測定光133の通過に必要な寸法を確保すればよく、該寸法は、例えば約5mmである。よって、投受光用部材121は、約5mm角以上、あるいは直径約5mm以上で、管110の直径にほぼ相当するまでの大きさを有する。又、投受光用部材121が板形状であるとき、その厚みは、管110の外径と肉厚により、管110を投受光用部材121にて挟持したときの圧力が変わるため、それに耐えうる厚さにする必要がある。但し、厚さを増すほど減光量が増すため、適宜な厚みが選択される。尚、本実施形態では、例えば2〜5mmである。   In addition, the size of the light projecting / receiving member 121 may be at least a dimension necessary for the measurement light 133 to pass from the function of the light projecting / receiving member 121 that transmits the measurement light 133. For example, about 5 mm. Therefore, the light projecting / receiving member 121 is about 5 mm square or more, or about 5 mm in diameter, and has a size that substantially corresponds to the diameter of the tube 110. Further, when the light projecting / receiving member 121 has a plate shape, the thickness of the light projecting / receiving member 121 can withstand it because the pressure when the tube 110 is clamped by the light projecting / receiving member 121 varies depending on the outer diameter and thickness of the tube 110. It needs to be thick. However, since the amount of light reduction increases as the thickness increases, an appropriate thickness is selected. In this embodiment, it is 2-5 mm, for example.

投受光用部材121を管110へ密着させて管110と一体的に形成させる方法として、図1に示すように密着向上剤123を用いる方法と、図3に示すように投受光用部材121と管110とを融着させ融着部分124を形成する方法とがある。上記密着向上剤123は、管110の外面110aと、投受光用部材121との間に介在し、管外面110aと投受光用部材121との密着性を向上させかつ管110に投受光用部材121を固定させる物質である。一例として、エポキシ系、シリコン系、及びシアノアクリレート系等の接着剤が使用可能である。尚、図1及び図3において、密着向上剤123及び融着部分124は、明瞭化のため実際より誇張して図示している。   As a method for bringing the light projecting / receiving member 121 into close contact with the tube 110 and forming it integrally with the tube 110, a method using an adhesion improver 123 as shown in FIG. 1, and a light projecting / receiving member 121 as shown in FIG. There is a method of forming the fused portion 124 by fusing the tube 110. The adhesion improver 123 is interposed between the outer surface 110a of the tube 110 and the light projecting / receiving member 121 to improve the adhesion between the tube outer surface 110a and the light projecting / receiving member 121 and to the tube 110. 121 is a substance for fixing 121. As an example, adhesives such as epoxy, silicon, and cyanoacrylate can be used. In FIG. 1 and FIG. 3, the adhesion improving agent 123 and the fused portion 124 are exaggerated from the actual situation for the sake of clarity.

又、上述のように投受光用部材121を測定光133が透過することから、密着向上剤123及び融着部分124に気泡が混在すると光の屈折や散乱等が生じ測定精度を劣化させる。よって、いずれの方法においても脱泡することが肝要となる。例えば、撹拌脱泡装置を用いて脱泡を行うことができ、撹拌脱泡装置としては例えば日本国特許第2711964号、3213735号に開示されるような、例えば遠心力作用を利用して脱泡を行う装置が使用可能である。
尚、投受光用部材121を管110と一体的に形成させるための具体的方法については後述する。
Further, as described above, since the measurement light 133 is transmitted through the light projecting / receiving member 121, if bubbles are mixed in the adhesion improving agent 123 and the fused portion 124, light is refracted and scattered, and the measurement accuracy is deteriorated. Therefore, it is important to defoam any method. For example, defoaming can be performed using a stirring defoaming device, and examples of the stirring defoaming device include defoaming using, for example, centrifugal force action as disclosed in Japanese Patent Nos. 2711964 and 3213735. A device that performs the operation can be used.
A specific method for forming the light projecting / receiving member 121 integrally with the tube 110 will be described later.

上記保持部材122は、投受光用部材121に取り付けられ、一対の投受光用部材121間の部材間距離126を管110の変形に関係なく常に一定に保持する部材である。尚、本実施形態では、部材間距離126の基準位置を、対向する各投受光用部材121の対向面としているが、これに限定するものではなく、投受光用部材121における任意の位置を基準に採ることができる。
上述したように、フローセルにおいて、部材間距離126が変動しないことは、測定精度上、非常に重要である。一方、管110は、内部を流れる流体の温度や圧力等の影響により変形する。したがって、たとえ、上述のように投受光用部材121が管110と一体的に形成されたとしても、投受光用部材121を支持する部材が存在しなければ、管110の上記変形に伴い、部材間距離126も変動してしまう。そこで、管110の変形に関係なく部材間距離126を常に一定に維持する保持部材122が投受光用部材121に取り付けられる。
The holding member 122 is a member that is attached to the light projecting / receiving member 121 and that constantly holds the inter-member distance 126 between the pair of light projecting / receiving members 121 regardless of the deformation of the tube 110. In the present embodiment, the reference position of the inter-member distance 126 is the facing surface of each of the light projecting / receiving members 121 facing each other, but is not limited to this, and an arbitrary position in the light projecting / receiving member 121 is used as a reference. Can be taken.
As described above, in the flow cell, it is very important in terms of measurement accuracy that the inter-member distance 126 does not vary. On the other hand, the tube 110 is deformed by the influence of the temperature, pressure, etc. of the fluid flowing inside. Therefore, even if the light projecting / receiving member 121 is formed integrally with the tube 110 as described above, if there is no member that supports the light projecting / receiving member 121, the member is accompanied by the deformation of the tube 110. The distance 126 also varies. Therefore, the holding member 122 that always maintains the inter-member distance 126 constant regardless of the deformation of the tube 110 is attached to the light projecting / receiving member 121.

保持部材122は、図1に示すようにコ字状の断面にてなり管110に沿って延在する部材であり、取付部材1221と、連結部材1222とを有し、取付部材1221と連結部材1222とが一体的に成形されて保持部材122を構成する。このような保持部材122は、上述のように部材間距離126を管110の変形に関係なく常に一定に保持する機能を果たすため、剛性を有する部材であって、例えばアルミニウムやステンレス等の金属材等から作製される。   As shown in FIG. 1, the holding member 122 is a member having a U-shaped cross section and extending along the tube 110, and includes an attachment member 1221 and a connection member 1222, and the attachment member 1221 and the connection member 1222 and the holding member 122 are integrally formed. Such a holding member 122 has a function of holding the inter-member distance 126 constant at all times regardless of the deformation of the tube 110 as described above, and is therefore a rigid member, such as a metal material such as aluminum or stainless steel. Etc.

取付部材1221は、管110を挟むように互いに対向しかつ平行に配置された、一対の平板形状にてなる部材であり、互いの対向面1221aにはそれぞれ投受光用部材121が固定される。尚、該固定は、取付部材1221に対して投受光用部材121が容易に移動しない程度の押圧力にて取付部材1221で投受光用部材121を挟持する方法で行う。さらに、投受光用部材121において測定光133が通過しない部分に接着剤を塗布して取付部材1221に固定してもよい。又、固定に当たり、取付部材1221と投受光用部材121との摩擦力を増し投受光用部材121のずれを防ぐために、例えば取付部材1221に溝等を形成するのが好ましい。
各取付部材1221には、投受光用部材121に対応する部分に、取付部材1221をその厚み方向に貫通し測定光133の光軸133aを通過させるための貫通穴1223が形成されている。貫通穴1223の断面形状は、特定されるものではなく、例えば円形で、その直径が最低5mm程度にてなる円形形状とすることができる。勿論、貫通穴1223の大きさは、投受光用部材121よりも小さい。
The attachment member 1221 is a pair of flat plate-like members that are opposed to and parallel to each other so as to sandwich the tube 110, and the light projecting / receiving member 121 is fixed to each of the opposing surfaces 1221a. The fixing is performed by a method in which the light projecting / receiving member 121 is held by the mounting member 1221 with a pressing force that does not easily move the light projecting / receiving member 121 with respect to the mounting member 1221. Further, an adhesive may be applied to a portion of the light projecting / receiving member 121 where the measurement light 133 does not pass and fixed to the mounting member 1221. In order to increase the frictional force between the mounting member 1221 and the light projecting / receiving member 121 and to prevent the light projecting / receiving member 121 from shifting, for example, a groove or the like is preferably formed in the mounting member 1221.
Each attachment member 1221 is formed with a through hole 1223 at a portion corresponding to the light projecting / receiving member 121 to pass through the attachment member 1221 in the thickness direction and pass the optical axis 133 a of the measurement light 133. The cross-sectional shape of the through hole 1223 is not specified, and may be, for example, a circular shape having a diameter of about 5 mm at a minimum. Of course, the size of the through hole 1223 is smaller than that of the light projecting / receiving member 121.

又、投受光用部材121がレンズ形状であるとき、取付部材1221の対向面1221aには、レンズ表面の形状に応じた凹凸が形成されていてもよい。例えば、投受光用部材121が図4に示すような凸レンズであるとき、対向面1221aには、レンズ表面の形状に応じた凹部が形成されていてもよい。   Further, when the light projecting / receiving member 121 has a lens shape, the opposing surface 1221a of the mounting member 1221 may be provided with unevenness according to the shape of the lens surface. For example, when the light projecting / receiving member 121 is a convex lens as shown in FIG. 4, a concave portion corresponding to the shape of the lens surface may be formed on the opposing surface 1221a.

連結部材1222は、取付部材1221の対向面1221aを対向させかつ平行に配置するように各取付部材1221を連結する部材であり、部材間距離126を規定し、かつ規定した部材間距離126の変動を禁止する部材である。管110の径寸法によるが、部材間距離126は、本実施形態では約2〜20mmである。尚、本実施形態では、図1に示すように、取付部材1221と連結部材1222とは一体的に成形されていることから、保持部材122では部材間距離126を変更することはできない。しかしながら、例えば、連結部材1222を伸縮可能な構造としたり、取付部材1221の対向面1221a間の距離を変更可能なように一方の取付部材1221を連結部材1222に対して移動可能な構造としたりすることで、部材間距離126を可変とした構造を有する保持部材122とすることもできる。但し、部材間距離126を可変とした構造を有する場合でも、一旦規定した部材間距離126は、管110の変形に応じて変動することはない。   The connecting member 1222 is a member that connects the mounting members 1221 such that the facing surfaces 1221a of the mounting member 1221 are opposed to each other and arranged in parallel. The connecting member 1222 defines the inter-member distance 126 and the variation of the defined inter-member distance 126. It is a member that prohibits Depending on the diameter of the tube 110, the inter-member distance 126 is about 2 to 20 mm in this embodiment. In the present embodiment, as shown in FIG. 1, the attachment member 1221 and the connecting member 1222 are integrally formed, and therefore the inter-member distance 126 cannot be changed by the holding member 122. However, for example, the connecting member 1222 has a structure that can be expanded and contracted, or one attachment member 1221 has a structure that can move relative to the connecting member 1222 so that the distance between the opposing surfaces 1221a of the attachment member 1221 can be changed. Thus, the holding member 122 having a structure in which the inter-member distance 126 is variable can be obtained. However, even when the member-to-member distance 126 is variable, the once-defined member distance 126 does not vary with the deformation of the tube 110.

以上説明した構成により、流体濃度測定用フローセル120が形成される。   With the configuration described above, the fluid concentration measurement flow cell 120 is formed.

以下に、投受光用部材121を管110と一体的に形成させる、本実施形態での方法について図6から図10を参照して説明する。尚、ここでは、板状の投受光用部材121を例に採るが、どのような形状の投受光用部材121についても適用可能である。   Hereinafter, a method according to this embodiment in which the light projecting / receiving member 121 is formed integrally with the tube 110 will be described with reference to FIGS. Here, the plate-shaped light projecting / receiving member 121 is taken as an example, but any shape of the light projecting / receiving member 121 can be applied.

図6のステップS1では、当該流体濃度測定用フローセル120を構成する管110を用意し、当該管110内へ、図7に示すように距離規定用芯材190を挿入する。該距離規定用芯材190は、上述したように管110に対して対向して配置される一対の投受光用部材121の部材間距離126を規定するための部材であり、又、以下に説明するように投受光用部材121を管110に押圧するときの台座となる部材である。このような距離規定用芯材190は、部材間距離126に対応した大きさ、及び一対の投受光用部材121を対向させて平行に配置させる形状、即ち、角材であって、互いに平行にて対向する2つの平面190a,190bを有し、アルミニウムやステンレス等の金属材や、ガラス等にてなる。対向する2つの平面190a,190b間の距離は、部材間距離126−αの寸法にてなる。ここでαは、密着向上剤123を介在させるときには、管110の管厚と密着向上剤123の厚みとの加算値を2倍した値となる。又、以下に説明するように、効果的な管110の加熱が可能なように、距離規定用芯材190は、管110の軸方向111に沿って貫通穴190cを有する、例えば図示するような筒状の角材であってもよい。   In step S1 of FIG. 6, a pipe 110 constituting the fluid concentration measurement flow cell 120 is prepared, and a distance regulating core 190 is inserted into the pipe 110 as shown in FIG. The distance-defining core member 190 is a member for defining the inter-member distance 126 of the pair of light projecting / receiving members 121 arranged to face the tube 110 as described above, and will be described below. In this way, it is a member that serves as a base when the light projecting / receiving member 121 is pressed against the tube 110. The distance regulating core 190 is a size corresponding to the inter-member distance 126 and a shape in which the pair of light projecting / receiving members 121 are arranged in parallel to face each other, that is, a square member, and are parallel to each other. It has two opposing flat surfaces 190a and 190b, and is made of a metal material such as aluminum or stainless steel, glass or the like. The distance between the two opposing flat surfaces 190a and 190b is the dimension of the inter-member distance 126-α. Here, α is a value obtained by doubling the added value of the tube thickness of the tube 110 and the thickness of the adhesion improving agent 123 when the adhesion improving agent 123 is interposed. Further, as will be described below, the distance regulating core member 190 has a through hole 190c along the axial direction 111 of the tube 110 so that the tube 110 can be effectively heated. A cylindrical square may be used.

尚、投受光用部材121がレンズ形状である場合、距離規定用芯材190の上記平面190a,190bには、レンズ表面の形状に応じた凹凸が形成されていてもよい。例えば、投受光用部材121が図4に示すような凸レンズであるとき、平面190a,190bには、レンズ表面の形状に応じた凹部が形成されていてもよい。   When the light projecting / receiving member 121 has a lens shape, the flat surfaces 190a and 190b of the distance defining core member 190 may be provided with irregularities according to the shape of the lens surface. For example, when the light projecting / receiving member 121 is a convex lens as shown in FIG. 4, concave portions corresponding to the shape of the lens surface may be formed on the flat surfaces 190 a and 190 b.

ステップS2では、例えば管110内へ約200〜360℃の熱風を吹き込み、管110を軟化させる。又、該軟化動作と並行して、各投受光用部材121における管110の外面110aとの接触面121aに、若しくは該接触面121aが押圧される管110の外面110aに、若しくはそれらの両方に、上記密着向上剤123を塗布する。該塗布後、上記軟化動作を継続しながら、図8に示すように、距離規定用芯材190の上記平面190a,190bに対向するように接触面121aを配置し、各投受光用部材121にて管110を挟む。このとき、上述したように、接触面121aと管外面110aとの間に気泡を封止しないようにする。挟持後、プレス機にて、平面190a,190bに直交する押圧方向191に沿って各投受光用部材121を管110の外面110aに押圧する。本実施形態では、一例として、押圧力0.1〜1MPa程度で、2〜5分程度にて、押圧動作を行う。尚、本実施形態では、押圧方向191は、上述の交差方向129に平行な方向となる。   In step S <b> 2, for example, hot air of about 200 to 360 ° C. is blown into the tube 110 to soften the tube 110. In parallel with the softening operation, each projecting / receiving member 121 has a contact surface 121a with the outer surface 110a of the tube 110, or an outer surface 110a of the tube 110 with which the contact surface 121a is pressed, or both. The adhesion improver 123 is applied. After the application, while continuing the softening operation, as shown in FIG. 8, a contact surface 121a is disposed so as to face the flat surfaces 190a and 190b of the distance regulating core member 190, and the light projecting and receiving members 121 are arranged. And sandwich the tube 110. At this time, as described above, bubbles are not sealed between the contact surface 121a and the tube outer surface 110a. After the clamping, each light projecting / receiving member 121 is pressed against the outer surface 110a of the tube 110 along a pressing direction 191 orthogonal to the planes 190a and 190b by a press machine. In the present embodiment, as an example, the pressing operation is performed at a pressing force of about 0.1 to 1 MPa in about 2 to 5 minutes. In the present embodiment, the pressing direction 191 is a direction parallel to the crossing direction 129 described above.

該押圧動作により、各投受光用部材121の接触面121aと管110の外面110aとが密着しかつ各投受光用部材121が管110と一体的に形成される。
密着向上剤123を用いて上記一体的形成を行う場合、以下に説明する融着の場合に比べて簡便に行うことができる。
By the pressing operation, the contact surface 121a of each light projecting / receiving member 121 and the outer surface 110a of the tube 110 are brought into close contact with each other, and each light projecting / receiving member 121 is formed integrally with the tube 110.
When the integral formation is performed using the adhesion improver 123, it can be performed more easily than the fusion described below.

一方、投受光用部材121を管110に融着させる場合、管110のみを溶融させる、若しくは投受光用部材121のみを溶融させる、若しくは管110及び投受光用部材121の両方を溶融させる、の3つの形態が考えられる。いずれの形態を採るかによって、管軟化温度及び押圧力は変動するが、一般的に、密着向上剤123を使用する上述の場合に比べて融着させる場合には管軟化温度及び押圧力は大きくなる。例えば管110のみを溶融させて投受光用部材121を管110に融着させる場合、管110の軟化は、例えば管110内へ約200〜360℃の熱風を吹き込むことでなされ、各投受光用部材121の管110への押圧動作は、押圧力0.1〜1MPa程度で、2〜5分程度にて行う。
尚、融着にて上記一体的形成を行う場合においても、融着部分124に気泡が封止されないようにする必要がある。
On the other hand, when the light projecting / receiving member 121 is fused to the tube 110, only the tube 110 is melted, only the light projecting / receiving member 121 is melted, or both the tube 110 and the light projecting / receiving member 121 are melted. Three forms are possible. Although the tube softening temperature and the pressing force vary depending on which form is adopted, in general, the tube softening temperature and the pressing force are larger in the case of fusing than the above-described case using the adhesion improver 123. Become. For example, when only the tube 110 is melted and the light projecting / receiving member 121 is fused to the tube 110, the tube 110 is softened by blowing hot air of about 200 to 360 ° C. into the tube 110. The pressing operation of the member 121 to the tube 110 is performed at a pressing force of about 0.1 to 1 MPa in about 2 to 5 minutes.
Even in the case where the integral formation is performed by fusion, it is necessary to prevent bubbles from being sealed in the fusion portion 124.

このように融着にて上記一体的形成を行う場合、上述の、密着向上剤123を用いる場合に比べて投受光用部材121と管110とを、より一体的に形成することができる。又、接合部分では投受光用部材121及び管110以外の物質を含まないことから、当該接合部分を通過する測定光133への影響を考慮する必要もない。よって、密着向上剤123を用いる場合に比べて、測定精度をより向上させることができる。   Thus, when performing the above-mentioned integral formation by fusion, the light projecting / receiving member 121 and the tube 110 can be more integrally formed as compared with the case of using the adhesion improving agent 123 described above. In addition, since the junction portion does not include substances other than the light projecting / receiving member 121 and the tube 110, it is not necessary to consider the influence on the measurement light 133 passing through the junction portion. Therefore, the measurement accuracy can be further improved as compared with the case where the adhesion improving agent 123 is used.

上記一体的形成後、ステップS3では、上記軟化動作を停止し、図9に示すように、管110内から距離規定用芯材190を取り出す。   After the integral formation, in step S3, the softening operation is stopped, and the distance defining core 190 is taken out from the tube 110 as shown in FIG.

次のステップ4では、図10に示すように、管110と一体的に形成された一対の投受光用部材121における部材間距離126を固定するため、上記保持部材122を投受光用部材121に取り付ける。尚、本実施形態では、上述のように、管110内から距離規定用芯材190を取り出した後、ステップS4を実行しているが、ステップS3では上記軟化動作の停止のみを行い、距離規定用芯材190の取り出しを行うことなくステップS4に移行してもよい。そして、ステップS4の終了後、管110内から距離規定用芯材190を取り出してもよい。
以上説明した製造方法により、流体濃度測定用フローセル120が形成される。
In the next step 4, as shown in FIG. 10, the holding member 122 is fixed to the light projecting / receiving member 121 in order to fix the inter-member distance 126 in the pair of light projecting / receiving light members 121 formed integrally with the tube 110. Install. In the present embodiment, as described above, step S4 is executed after the distance-defining core 190 is taken out from the tube 110. However, in step S3, only the softening operation is stopped to determine the distance. You may transfer to step S4, without taking out the core material 190. FIG. And after completion | finish of step S4, you may take out the core material 190 for distance regulation from the inside of the pipe | tube 110. FIG.
The fluid concentration measurement flow cell 120 is formed by the manufacturing method described above.

上述した構成にてなる流体濃度測定用フローセル120では、特に、(1)被測定物を含む流体が流れる配管と同一の管110を用いる点、(2)該管110の外面110aに対して測定用部材を取り付けた構成であり管110の内側である流路部分には何ら測定用部材を設けていない点、(3)投受光用部材121を管110と一体的に形成した点、及び(4)管110と一体的に形成された投受光用部材121に対して部材間距離126の変動を禁止する保持部材を取り付けた点の特徴的な構成を有する。このような流体濃度測定用フローセル120によれば、特に上記(3)及び(4)の構成により、流体の温度や圧力等により管110が変形した場合でも、部材間距離126が変動することはなくなる。したがって、流体濃度測定用フローセル120は、従来に比べて高精度にて流体内の被測定物の濃度測定が可能なように寄与する。   In the fluid concentration measurement flow cell 120 configured as described above, in particular, (1) the same pipe 110 as the pipe through which the fluid containing the object to be measured flows is used, and (2) the measurement is performed on the outer surface 110a of the pipe 110. A member to which a measuring member is attached and no measurement member is provided in the flow path portion inside the tube 110, (3) a point where the light projecting / receiving member 121 is formed integrally with the tube 110, and ( 4) It has a characteristic configuration in that a holding member for prohibiting the fluctuation of the inter-member distance 126 is attached to the light projecting / receiving member 121 formed integrally with the tube 110. According to such a fluid concentration measurement flow cell 120, the inter-member distance 126 varies even when the tube 110 is deformed due to the temperature, pressure, etc. of the fluid, particularly by the configurations of (3) and (4) above. Disappear. Therefore, the flow cell 120 for measuring the fluid concentration contributes so that the concentration of the object to be measured in the fluid can be measured with higher accuracy than in the past.

又、上記(1)及び(2)の構成により、本実施形態の流体濃度測定用フローセル120を設置したシステムにおいても、流体濃度測定用フローセル120部分にて、流体の圧力損失が発生することはなく、又、液溜まりが生じる箇所も存在しないことになる。したがって、例えばフローセル部分における流体の圧力損失が当該システムの全体に悪影響を与えることはない。又、フローセルの一部の構成部分が流体内へ溶出することはなく、流体濃度測定用フローセル120によれば、適用可能な流体が限定されることもない。又、液溜まりが生じないことから、例えば配管洗浄動作等も容易に行うことができる。   In addition, with the above-described configurations (1) and (2), even in a system in which the fluid concentration measurement flow cell 120 of this embodiment is installed, fluid pressure loss occurs in the fluid concentration measurement flow cell 120 portion. In addition, there are no places where liquid pools occur. Thus, for example, fluid pressure loss in the flow cell portion does not adversely affect the entire system. Further, a part of the flow cell does not elute into the fluid, and according to the fluid concentration measurement flow cell 120, the applicable fluid is not limited. In addition, since no liquid pool occurs, for example, a pipe cleaning operation can be easily performed.

上述のように構成される流体濃度測定用フローセル120を備えて、流体内の被測定物の濃度を測定する流体濃度測定装置を構成することができる。図5に示す流体濃度測定装置101は、配管114と、上述の流体濃度測定用フローセル120と、該流体濃度測定用フローセル120を有する検出部130と、処理部140と、濃度測定部150と、制御部160とを備える。制御部160は、検出部130、及び濃度測定部150等の動作を制御する。尚、上述の流体濃度測定用フローセル120を備えた流体濃度測定装置の基本的構成としては、配管114と、流体濃度測定用フローセル120と、濃度測定部150と、上記検出部130に備わり下記の受光部132とを備えればよい。   The fluid concentration measuring flow cell 120 configured as described above can be provided to constitute a fluid concentration measuring device that measures the concentration of the object to be measured in the fluid. A fluid concentration measurement apparatus 101 shown in FIG. 5 includes a pipe 114, the above-described fluid concentration measurement flow cell 120, a detection unit 130 including the fluid concentration measurement flow cell 120, a processing unit 140, a concentration measurement unit 150, And a control unit 160. The control unit 160 controls operations of the detection unit 130, the concentration measurement unit 150, and the like. The basic structure of the fluid concentration measuring apparatus including the fluid concentration measuring flow cell 120 described above is provided in the pipe 114, the fluid concentration measuring flow cell 120, the concentration measuring unit 150, and the detecting unit 130 as described below. What is necessary is just to provide the light-receiving part 132. FIG.

配管114は、流体濃度測定用フローセル120に備わる管110と同一の材質、形状、及びサイズにてなる配管であり、本実施形態では、処理部140から送出され、流体濃度測定用フローセル120を通過した流体115が再び処理部140に戻るように循環系を構成している。該循環系には、流体115を循環させるためのポンプが備わる。勿論、このような循環系を構成せず、非循環系の一部に流体濃度測定用フローセル120を設置することもできる。   The pipe 114 is a pipe made of the same material, shape, and size as the pipe 110 provided in the fluid concentration measurement flow cell 120. In this embodiment, the pipe 114 is sent from the processing unit 140 and passes through the fluid concentration measurement flow cell 120. The circulating system is configured so that the fluid 115 returned to the processing unit 140 again. The circulation system is provided with a pump for circulating the fluid 115. Of course, the fluid concentration measurement flow cell 120 may be installed in a part of the non-circulation system without forming such a circulation system.

検出部130は、上述の流体濃度測定用フローセル120と、投光部131と、受光部132とを有する。
投光部131は、流体濃度測定用フローセル120における投光用部材121−1に対応して配置され、例えばタングステン・ハロゲンランプからなる光源から測定光133を発する。尚、投光部131は、上記光源にて発生した測定光133が流体濃度測定用フローセル120に備わる貫通穴1223を通過可能とするための適宜な投光側光学系を有する。
The detection unit 130 includes the fluid concentration measurement flow cell 120 described above, a light projecting unit 131, and a light receiving unit 132.
The light projecting unit 131 is disposed corresponding to the light projecting member 121-1 in the fluid concentration measurement flow cell 120, and emits measurement light 133 from a light source composed of, for example, a tungsten / halogen lamp. The light projecting unit 131 has an appropriate light projecting side optical system for allowing the measurement light 133 generated by the light source to pass through the through hole 1223 provided in the fluid concentration measurement flow cell 120.

受光部132は、流体濃度測定用フローセル120における受光用部材121−2に対応して配置され、投光部131から発射され、貫通穴1223、投光用部材121−1、管110、流体115、受光用部材121−2、及び貫通穴1223を通過した測定光133を受光する。尚、受光部132には、受光素子と、該受光素子に上記測定光133を集光させるための適宜な受光側光学系とが備わる。又、受光部132は、濃度測定部150と電気的に接続され、受光した測定光133の強度に応じた電気信号を濃度測定部150へ送出する。   The light receiving unit 132 is disposed corresponding to the light receiving member 121-2 in the flow cell 120 for measuring the fluid concentration, and is emitted from the light projecting unit 131. The through hole 1223, the light projecting member 121-1, the tube 110, and the fluid 115 are disposed. The measurement light 133 that has passed through the light receiving member 121-2 and the through hole 1223 is received. The light receiving unit 132 includes a light receiving element and an appropriate light receiving side optical system for condensing the measurement light 133 on the light receiving element. The light receiving unit 132 is electrically connected to the concentration measuring unit 150, and sends an electric signal corresponding to the intensity of the received measurement light 133 to the concentration measuring unit 150.

処理部140は、被測定物に対応して設置される部分であり、例えば半導体ウエハの洗浄液の濃度測定を行う場合には、半導体ウエハの洗浄工程部である。   The processing unit 140 is a part installed corresponding to the object to be measured. For example, when measuring the concentration of the cleaning liquid of the semiconductor wafer, the processing unit 140 is a semiconductor wafer cleaning process unit.

濃度測定部150は、受光部132から供給される電気信号に基づいて、配管114内を流れる流体115における被測定物の濃度を求める。濃度決定方法は、例えば、上記電気信号と濃度との既知の関係を利用する方法等、公知の種々の方法を採ることができる。   The concentration measuring unit 150 obtains the concentration of the object to be measured in the fluid 115 flowing in the pipe 114 based on the electrical signal supplied from the light receiving unit 132. As the concentration determination method, for example, various known methods such as a method using a known relationship between the electric signal and the concentration can be adopted.

本発明は、例えば半導体や液晶表示装置等の製造工程に使用される流体の濃度測定用として配管に取り付けられる流体濃度測定用フローセル、及び上記フローセルを備えた流体濃度測定装置に適用可能である。   The present invention is applicable to, for example, a fluid concentration measurement flow cell attached to a pipe for measuring the concentration of a fluid used in a manufacturing process of a semiconductor, a liquid crystal display device, and the like, and a fluid concentration measurement apparatus including the flow cell.

本発明の実施形態における流体濃度測定用フローセルの構成を示す正面図であって、投受光用部材と管との間に密着向上剤を介在させた場合の図である。It is a front view which shows the structure of the flow cell for fluid concentration measurement in embodiment of this invention, Comprising: It is a figure at the time of interposing an adhesion improving agent between the member for light projection / reception and a pipe | tube. 図1に示す流体濃度測定用フローセルの上面図である。It is a top view of the flow cell for fluid concentration measurement shown in FIG. 本発明の実施形態における流体濃度測定用フローセルの構成を示す正面図であって、投受光用部材と管とを融着させた場合の図である。It is a front view which shows the structure of the flow cell for fluid concentration measurement in embodiment of this invention, Comprising: It is a figure at the time of fuse | melting the light-receiving / light-receiving member and a pipe | tube. 本発明の実施形態における流体濃度測定用フローセルの構成を示す正面図であって、投受光用部材としてレンズを用いた場合の図である。It is a front view which shows the structure of the flow cell for fluid concentration measurement in embodiment of this invention, Comprising: It is a figure at the time of using a lens as a member for light projection / reception. 図1、図3、及び図4に示す流体濃度測定用フローセルのいずれかを備えた流体濃度測定装置の構成を示す図である。FIG. 5 is a diagram illustrating a configuration of a fluid concentration measuring apparatus including any one of the fluid concentration measuring flow cells illustrated in FIGS. 1, 3, and 4. 図1、図3、及び図4に示す流体濃度測定用フローセルにおいて、投受光用部材を管に密着させ一体的に形成する方法を説明するためのフローチャートである。5 is a flowchart for explaining a method of integrally forming a light projecting / receiving member in close contact with a pipe in the fluid concentration measurement flow cell shown in FIGS. 1, 3, and 4. 図6に示すフローチャートにおける工程を説明するための斜視図である。It is a perspective view for demonstrating the process in the flowchart shown in FIG. 図6に示すフローチャートにおける工程を説明するための斜視図である。It is a perspective view for demonstrating the process in the flowchart shown in FIG. 図6に示すフローチャートにおける工程を説明するための斜視図である。It is a perspective view for demonstrating the process in the flowchart shown in FIG. 図6に示すフローチャートにおける工程を説明するための斜視図である。It is a perspective view for demonstrating the process in the flowchart shown in FIG. 従来のフローセルの構成を示す図である。It is a figure which shows the structure of the conventional flow cell.

符号の説明Explanation of symbols

101…流体濃度測定装置、110…管、115…流体、
120…流体濃度測定用フローセル、121…投受光用部材、
121−2…受光用部材、122…保持部材、123…密着向上剤、
126…部材間距離、129…交差方向、132…受光部、133…測定光、
150…濃度測定部、190…距離規定用芯材。
101 ... Fluid concentration measuring device, 110 ... Tube, 115 ... Fluid,
120 ... Flow cell for measuring fluid concentration, 121 ... Projecting / receiving member,
121-2: light receiving member, 122 ... holding member, 123 ... adhesion improver,
126 ... Distance between members, 129 ... Crossing direction, 132 ... Light receiving part, 133 ... Measuring light,
150 ... concentration measuring unit, 190 ... core for distance regulation.

Claims (11)

可塑性で透光性の材料からなり被測定物の流体(115)が流れる管(110)と、
上記管に交差する方向(129)から上記管を挟み、かつ上記管に密着して上記管と一体的に形成され、上記流体の物性測定用の測定光(133)を通過させる一対の投受光用部材(121)と、
上記投受光用部材に取り付けられ、上記一対の投受光用部材間の部材間距離(126)を上記管の変形に関係なく常に一定に保持する保持部材(122)と、
を備え、
上記投受光用部材は上記管に融着して固定される、
ことを特徴とするフローセル。
A pipe (110) made of a plastic and translucent material and through which the fluid (115) of the object to be measured flows;
A pair of light projecting and receiving light that sandwiches the tube from the direction (129) intersecting the tube and is in close contact with the tube and is integrally formed with the tube and allows the measurement light (133) for measuring the physical properties of the fluid to pass therethrough. Member (121);
A holding member (122) that is attached to the light projecting / receiving member and that holds the inter-member distance (126) between the pair of light projecting / receiving members constant at all times regardless of the deformation of the tube;
With
The light projecting / receiving member is fused and fixed to the tube;
A flow cell characterized by that.
可塑性で透光性の材料からなり被測定物の流体(115)が流れる管(110)と、
上記管に交差する方向(129)から上記管を挟み、かつ上記管に密着して上記管と一体的に形成され、上記流体の物性測定用の測定光(133)を通過させる一対の投受光用部材(121)と、
上記投受光用部材に取り付けられ、上記一対の投受光用部材間の部材間距離(126)を上記管の変形に関係なく常に一定に保持する保持部材(122)と、
を備え、
上記投受光用部材は、レンズ形状又は板形状にてなり互いに平行に対向して配置され、フッ素樹脂からなる、
ことを特徴とするフローセル。
A pipe (110) made of a plastic and translucent material and through which the fluid (115) of the object to be measured flows;
A pair of light projecting and receiving light that sandwiches the tube from the direction (129) intersecting the tube and is in close contact with the tube and is integrally formed with the tube and allows the measurement light (133) for measuring the physical properties of the fluid to pass therethrough. Member (121);
A holding member (122) that is attached to the light projecting / receiving member and that holds the inter-member distance (126) between the pair of light projecting / receiving members constant at all times regardless of the deformation of the tube;
With
The light projecting / receiving member is formed in a lens shape or a plate shape and is arranged to face each other in parallel, and is made of a fluororesin.
A flow cell characterized by that.
上記投受光用部材は、可視領域、赤外領域、及び紫外領域の少なくとも一つの領域の上記測定光を通過させる、請求項1記載のフローセル。 The flow cell according to claim 1, wherein the light projecting and receiving member allows the measurement light in at least one of a visible region, an infrared region, and an ultraviolet region to pass therethrough . 上記管は、フッ素樹脂にてなる、請求項1又は3記載のフローセル。 The flow cell according to claim 1 or 3, wherein the tube is made of a fluororesin . 上記投受光用部材は、レンズ形状又は板形状にてなり互いに平行に対向して配置される、請求項1、3、4のいずれかに記載のフローセル。 The emitting and receiving member is made by the lens shape or a plate shape are arranged in parallel to face each other, the flow cell according to any one of claims 1, 3 and 4. 上記管外面と上記投受光用部材との間に介在し、上記管外面と上記投受光用部材との密着性を向上させかつ上記管に上記投受光用部材を固定させる密着向上剤(123)をさらに有する、請求項2記載のフローセル。 An adhesion improver (123) interposed between the outer surface of the tube and the light projecting / receiving member to improve the adhesion between the outer surface of the tube and the light projecting / receiving member and to fix the light emitting / receiving member to the tube. The flow cell according to claim 2, further comprising: 上記投受光用部材は、可視領域、赤外領域、及び紫外領域の少なくとも一つの領域の上記測定光を通過させる、請求項2又は6に記載のフローセル。 The flow cell according to claim 2, wherein the light projecting / receiving member transmits the measurement light in at least one of a visible region, an infrared region, and an ultraviolet region . 上記管は、フッ素樹脂にてなる、請求項2、6、7のいずれかに記載のフローセル。 Said tube is made at fluorocarbon resin, the flow cell according to any of claims 2,6,7. 請求項1から8のいずれかに記載のフローセル(120)と、A flow cell (120) according to any of the preceding claims;
上記フローセルに備わる管(110)、及び上記管を流れる流体(115)を透過し上記フローセルに備わる上記投受光用部材の内の受光用部材(121−2)を透過した測定光(133)を受光する受光部(132)と、  The measurement light (133) transmitted through the pipe (110) provided in the flow cell and the light receiving member (121-2) among the light projecting and receiving members provided in the flow cell through the fluid (115) flowing through the pipe. A light receiving unit (132) for receiving light;
上記受光部と電気的に接続され、受光部にて検出した上記測定光の強度に基づいて上記被測定物の濃度を求める濃度測定部(150)と、  A concentration measuring unit (150) that is electrically connected to the light receiving unit and obtains the concentration of the object to be measured based on the intensity of the measurement light detected by the light receiving unit;
を備えたことを特徴とする流体濃度測定装置。  A fluid concentration measuring device comprising:
可塑性で透光性の材料からなり被測定物の流体(115)が流れる管(110)内に、該管に設けられる一対の投受光用部材(121)間の部材間距離(126)を規定するための距離規定用芯材(190)を挿入し、The distance (126) between the pair of light projecting / receiving members (121) provided in the pipe is defined in the pipe (110) made of a plastic and translucent material and through which the fluid (115) of the object to be measured flows. Insert the distance regulating core (190),
上記管を軟化させると伴に、上記管の外側から上記距離規定用芯材に対向して上記管に交差する方向(129)に沿って上記投受光用部材で上記管を挟み、かつ上記投受光用部材を上記管に押圧して上記投受光用部材を上記管に密着させかつ脱泡状態にて融着させて上記管と一体的に形成し、  As the tube is softened, the tube is sandwiched by the light projecting and receiving members along the direction (129) that faces the distance-defining core from the outside of the tube and intersects the tube. Pressing the light receiving member against the tube, bringing the light projecting and receiving member into close contact with the tube and fusing in a defoamed state, and integrally forming the tube,
上記形成後、上記部材間距離を上記管の変形に関係なく常に一定に保持するための保持部材(122)を上記投受光用部材に取り付ける、  After the formation, a holding member (122) for holding the distance between the members constant at all times regardless of the deformation of the tube is attached to the light projecting / receiving member.
ことを特徴とするフローセルの製造方法。  A manufacturing method of a flow cell characterized by the above.
可塑性で透光性の材料からなり被測定物の流体(115)が流れる管(110)内に、該管に設けられる一対の投受光用部材(121)間の部材間距離(126)を規定するための距離規定用芯材(190)を挿入し、The distance (126) between the pair of light projecting / receiving members (121) provided in the pipe is defined in the pipe (110) made of a plastic and translucent material and through which the fluid (115) of the object to be measured flows. Insert the distance regulating core (190),
上記管を軟化させると伴に、上記管の外側から上記距離規定用芯材に対向して上記管に交差する方向(129)に沿って上記投受光用部材で上記管を挟み、かつ上記投受光用部材を上記管に押圧して上記投受光用部材を上記管に密着させて上記管と一体的に形成し、  As the tube is softened, the tube is sandwiched by the light projecting and receiving members along the direction (129) that faces the distance-defining core from the outside of the tube and intersects the tube. The light receiving member is pressed against the tube, the light projecting / receiving member is brought into close contact with the tube, and formed integrally with the tube,
上記形成後、上記部材間距離を上記管の変形に関係なく常に一定に保持するための保持部材(122)を上記投受光用部材に取り付け、  After the formation, a holding member (122) for always holding the distance between the members constant regardless of the deformation of the tube is attached to the light projecting and receiving member.
上記投受光用部材は、レンズ形状又は板形状にてなり互いに平行に対向して配置され、フッ素樹脂からなる、  The light projecting / receiving member is in the shape of a lens or a plate and is disposed facing each other in parallel, and is made of a fluororesin.
ことを特徴とするフローセルの製造方法。  A manufacturing method of a flow cell characterized by the above.
JP2005051280A 2005-02-25 2005-02-25 Flow cell, flow cell manufacturing method, and fluid concentration measuring apparatus Active JP4677251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005051280A JP4677251B2 (en) 2005-02-25 2005-02-25 Flow cell, flow cell manufacturing method, and fluid concentration measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005051280A JP4677251B2 (en) 2005-02-25 2005-02-25 Flow cell, flow cell manufacturing method, and fluid concentration measuring apparatus

Publications (2)

Publication Number Publication Date
JP2006234663A JP2006234663A (en) 2006-09-07
JP4677251B2 true JP4677251B2 (en) 2011-04-27

Family

ID=37042468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005051280A Active JP4677251B2 (en) 2005-02-25 2005-02-25 Flow cell, flow cell manufacturing method, and fluid concentration measuring apparatus

Country Status (1)

Country Link
JP (1) JP4677251B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744955B1 (en) * 2016-11-28 2017-06-09 주식회사 프레시즘 Sensor module in apparatus for producing sterilized water using chlorine dioxide

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200944776A (en) 2008-03-04 2009-11-01 Kurashiki Boseki Kk Total reflection attenuation type far-ultraviolet spectroscopy and concentration measurement device using the spectroscopy
KR20130054240A (en) * 2010-03-04 2013-05-24 유니센서 에이/에스 Flexible sample container
US8907312B2 (en) 2010-08-20 2014-12-09 Bio-Rad Laboratories, Inc. Cytometry system with solid numerical-aperture-increasing lens
JP2013148521A (en) * 2012-01-20 2013-08-01 Sumitomo Electric Ind Ltd Sample measuring cell, physical property measurement device, and physical property measurement method
JP6264741B2 (en) * 2013-04-16 2018-01-24 横河電機株式会社 Spectroscopic analyzer
JP6249886B2 (en) * 2014-06-11 2017-12-20 株式会社堀場製作所 Optical measuring cell and optical analyzer
JP6443619B2 (en) * 2014-11-26 2018-12-26 横河電機株式会社 Sample measuring device
JP6503230B2 (en) 2015-05-29 2019-04-17 ニプロ株式会社 Transmitted light intensity measurement unit
JP2022017606A (en) * 2018-10-25 2022-01-26 株式会社 堀場アドバンスドテクノ Concentration sensor
CN113376125A (en) * 2021-06-16 2021-09-10 许闯 Car glass luminousness check out test set
JP7250978B1 (en) * 2022-04-19 2023-04-03 ニプロ株式会社 Fluid concentration measuring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372566U (en) * 1976-11-19 1978-06-17
JPS60176163U (en) * 1984-05-01 1985-11-21 株式会社島津製作所 Sheath flow cell device
JPH05196602A (en) * 1992-01-20 1993-08-06 Hitachi Ltd Capillary electrophoretic column
JPH0763681A (en) * 1993-08-27 1995-03-10 Calsonic Corp Degradation detection apparatus for oil
JPH09264845A (en) * 1996-03-28 1997-10-07 Tokimec Inc Absorptiometer
JP2003065952A (en) * 2001-08-24 2003-03-05 Kosu:Kk Dissolved-ozone concentration meter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372566U (en) * 1976-11-19 1978-06-17
JPS60176163U (en) * 1984-05-01 1985-11-21 株式会社島津製作所 Sheath flow cell device
JPH05196602A (en) * 1992-01-20 1993-08-06 Hitachi Ltd Capillary electrophoretic column
JPH0763681A (en) * 1993-08-27 1995-03-10 Calsonic Corp Degradation detection apparatus for oil
JPH09264845A (en) * 1996-03-28 1997-10-07 Tokimec Inc Absorptiometer
JP2003065952A (en) * 2001-08-24 2003-03-05 Kosu:Kk Dissolved-ozone concentration meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101744955B1 (en) * 2016-11-28 2017-06-09 주식회사 프레시즘 Sensor module in apparatus for producing sterilized water using chlorine dioxide

Also Published As

Publication number Publication date
JP2006234663A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4677251B2 (en) Flow cell, flow cell manufacturing method, and fluid concentration measuring apparatus
JP6961039B2 (en) Dispenser for analyzer
JP3301737B2 (en) Refractometer
JP5714977B2 (en) Optical measuring device
FI113566B (en) The refractometer
JP5915451B2 (en) Flow cell
JP2007192638A (en) Gas sensor
JP6666736B2 (en) Pressure detector
JP2012154712A (en) Flow sensor and resist application device using the same
JP7060409B2 (en) Manufacturing method of optical measuring cell, optical analyzer, and optical measuring cell
WO2009110270A1 (en) Microchip and method of manufacturing same
JP2012204813A (en) Bubble detection method, resist application method, and resist application device
WO2018037536A1 (en) Flow cell
JP2015135251A (en) Solution analyzer
CN112240803A (en) Temperature sensing device and temperature sensing system using same
JP2012202971A (en) Flow sensor and resist coating device using the same
CN208488186U (en) A kind of temperature sensing device based on photonic crystal fiber
JP5868626B2 (en) Optical measuring cell and optical analyzer
JP5199083B2 (en) Flow path sensor and tube fixture used therefor
US10989581B2 (en) Sensor for a thermal, flow measuring device having sensor element spacing protrusions
TWI729739B (en) Temperature detection device
JP2020118633A (en) Thermal type flowmeter
JP6578391B2 (en) Semiconductor manufacturing equipment component, semiconductor manufacturing equipment component temperature distribution measuring method, and semiconductor manufacturing equipment temperature distribution measuring device
JP4388844B2 (en) Hydrogen peroxide gas condensation detection device and hydrogen peroxide gas condensation management system
JP2022185657A (en) optical analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4677251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250