JP2015135251A - Solution analyzer - Google Patents

Solution analyzer Download PDF

Info

Publication number
JP2015135251A
JP2015135251A JP2014006016A JP2014006016A JP2015135251A JP 2015135251 A JP2015135251 A JP 2015135251A JP 2014006016 A JP2014006016 A JP 2014006016A JP 2014006016 A JP2014006016 A JP 2014006016A JP 2015135251 A JP2015135251 A JP 2015135251A
Authority
JP
Japan
Prior art keywords
sample
temperature
heat exchanger
optical system
measurement optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014006016A
Other languages
Japanese (ja)
Inventor
祥樹 長谷川
Yoshiki Hasegawa
祥樹 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014006016A priority Critical patent/JP2015135251A/en
Publication of JP2015135251A publication Critical patent/JP2015135251A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a solution analyzer capable of maintaining a sample temperature constant even when a sample flow rate is large, thereby making appropriate analysis of a sample to be measured possible.SOLUTION: In optically analyzing a sample flowing in a flow cell 2, a heat exchanger 1 for exchanging a heat of the sample is maintained at a constant temperature by a heat exchanger Peltier element 9 which is a heat exchanger temperature adjustment mechanism, and a measurement optical system 3 including the flow cell 2 is maintained at a constant temperature by a measurement optical system Peltier element 14 which is a measurement optical system temperature adjustment mechanism, so that, even when a sample flow rate is large, a sample temperature can be maintained constant, whereby appropriate analysis of the sample to be measured is made possible. Furthermore, due to that the heat exchanger 1 and the measurement optical system 3 are thermally separated, the measurement optical system 3 is made less susceptible to temperature fluctuations in the heat exchanger 1 when the sample flow rate is large.

Description

本発明は、フローセルに流れる試料(溶液)を光学的に分析する溶液分析計に関し、例えば蛍光分光法を用いて試料の分析を行う溶液分析計に好適なものである。   The present invention relates to a solution analyzer that optically analyzes a sample (solution) flowing in a flow cell, and is suitable for a solution analyzer that analyzes a sample using, for example, fluorescence spectroscopy.

蛍光分光法による試料の分析では、試料をフローセルに導入し、予め設定された特定波長の光を励起光として照射し、励起された試料の蛍光を蛍光検出器で測定することで、試料中の測定対象成分の濃度を測定する。このとき、測定対象となる試料や成分の中には、蛍光強度の温度依存性の大きいものがあり、環境温度によって試料の温度が変動すると蛍光検出器などの測定光学系で検出される蛍光の強度が変動してしまい、適正な分析ができない。そのため、例えば下記特許文献1及び特許文献2では、フローセルに流入する前に熱交換器で試料の熱交換を行うと共に、フローセルを含む測定光学系と熱交換器を共通する温調機構で一定の温度に調整する。具体的には、測定光学系と熱交換器を熱的に接触させ、それらを一つの温調機構で一定温度に調整する。また、下記特許文献2では、更に蛍光検出器も同じ温調機構で一定の温度に調整するようにしている。   In analysis of a sample by fluorescence spectroscopy, the sample is introduced into a flow cell, irradiated with light of a specific wavelength set in advance as excitation light, and the fluorescence of the excited sample is measured with a fluorescence detector. Measure the concentration of the component to be measured. At this time, some samples and components to be measured have large temperature dependence of fluorescence intensity. When the temperature of the sample fluctuates due to environmental temperature, the fluorescence detected by the measurement optical system such as a fluorescence detector Intensity fluctuates and proper analysis is not possible. Therefore, for example, in Patent Document 1 and Patent Document 2 below, heat exchange of the sample is performed with a heat exchanger before flowing into the flow cell, and a constant temperature control mechanism including the measurement optical system including the flow cell and the heat exchanger is used. Adjust to temperature. Specifically, the measurement optical system and the heat exchanger are brought into thermal contact with each other, and they are adjusted to a constant temperature by one temperature control mechanism. In Patent Document 2 below, the fluorescence detector is also adjusted to a constant temperature by the same temperature control mechanism.

特開2000−346805号公報JP 2000-346805 A 特開2008−256530号公報JP 2008-256530 A

試料の流量が小さい場合には、前記特許文献1や特許文献2のように、測定光学系と熱交換器を熱的に接触させて同時に温度調節しても試料の温度を一定に保持することができる。しかしながら、プロセス分析計などでは、試料の流量を小さくすることが困難であり、或いは洗浄水を通水するために或る程度の管径と流量を確保しなければならない。一般的に、熱交換器における試料の流量が大きいほど熱交換量が大きくなり、交換熱によって熱交換器の温度が変動する。このとき、熱交換器と測定光学系が熱的に接触していると、熱交換器の温度変動が測定光学系に伝導して測定光学系の温度が変動することから、試料の温度を高精度に一定にすることができなくなってしまう。そして、試料の温度が変動すると、適正な分析ができなくなってしまう。   When the flow rate of the sample is small, the temperature of the sample can be kept constant even if the measurement optical system and the heat exchanger are brought into thermal contact with each other and the temperature is adjusted at the same time as in Patent Document 1 and Patent Document 2 described above. Can do. However, in a process analyzer or the like, it is difficult to reduce the flow rate of the sample, or a certain degree of tube diameter and flow rate must be ensured in order to pass cleaning water. Generally, the amount of heat exchange increases as the flow rate of the sample in the heat exchanger increases, and the temperature of the heat exchanger varies due to the exchange heat. At this time, if the heat exchanger and the measurement optical system are in thermal contact, the temperature fluctuation of the heat exchanger is conducted to the measurement optical system and the temperature of the measurement optical system fluctuates. The accuracy cannot be made constant. When the temperature of the sample fluctuates, proper analysis cannot be performed.

本発明はこれらの諸問題を解決すべくなされたものであり、試料の流量が大きい場合であっても試料の温度を一定にすることができ、もって測定対象試料の適正な分析を可能とする溶液分析計を提供することを目的とするものである。   The present invention has been made to solve these various problems, and even when the flow rate of the sample is large, the temperature of the sample can be kept constant, thereby enabling appropriate analysis of the sample to be measured. The object is to provide a solution analyzer.

以上の課題を解決するため、本発明のある態様に係る溶液分析計は、フローセルに流れる試料を光学的に分析する溶液分析計であって、前記試料の熱交換を行う熱交換器と、前記熱交換器の温度を一定にする熱交換器用温調機構と、前記フローセルを含む測定光学系と、前記測定光学系の温度を一定にする測定光学系用温調機構と、を備えることを特徴とするものである。   In order to solve the above problems, a solution analyzer according to an aspect of the present invention is a solution analyzer that optically analyzes a sample flowing in a flow cell, the heat exchanger performing heat exchange of the sample, A temperature adjustment mechanism for a heat exchanger that makes the temperature of the heat exchanger constant, a measurement optical system that includes the flow cell, and a temperature adjustment mechanism for the measurement optical system that makes the temperature of the measurement optical system constant It is what.

なお、温調とは、温度調節を意味する。
また、この溶液分析計において、前記熱交換器と前記測定光学系とが熱的に分離されていることが望ましい。
また、この溶液分析計において、前記熱交換器用温調機構及び前記測定光学系用温調機構がペルチェ素子であることが望ましい。
In addition, temperature control means temperature control.
In this solution analyzer, it is desirable that the heat exchanger and the measurement optical system are thermally separated.
In this solution analyzer, it is preferable that the temperature adjustment mechanism for the heat exchanger and the temperature adjustment mechanism for the measurement optical system are Peltier elements.

而して、本発明の溶液分析計によれば、試料の熱交換を行う熱交換器は熱交換器用温調機構によって一定温度とされ、フローセルを含む測定光学系は測定光学系用温調機構によって一定温度とされるので、試料の流量が大きい場合であっても試料の温度を一定にすることができ、もって測定対象試料の適正な分析が可能となる。
また、熱交換器と測定光学系とを熱的に分離することにより、試料の流量が大きい場合に熱交換器の温度変動の影響を測定光学系が受けにくくなり、試料の温度をより一層一定にすることができ、もって測定対象試料の適正な分析が可能となる。
Thus, according to the solution analyzer of the present invention, the heat exchanger for exchanging the heat of the sample is kept at a constant temperature by the temperature adjustment mechanism for the heat exchanger, and the measurement optical system including the flow cell is the temperature adjustment mechanism for the measurement optical system. Therefore, even if the flow rate of the sample is large, the temperature of the sample can be kept constant, and thus the sample to be measured can be appropriately analyzed.
In addition, by thermally separating the heat exchanger and the measurement optical system, the measurement optical system is less susceptible to the effects of temperature fluctuations of the heat exchanger when the flow rate of the sample is large, and the sample temperature is made more constant. Therefore, it is possible to appropriately analyze the sample to be measured.

また、熱交換器用温調機構及び測定光学系用温調機構にペルチェ素子を用いることで、構成を容易にすることができる。   Moreover, a structure can be made easy by using a Peltier element for the temperature control mechanism for heat exchangers, and the temperature control mechanism for measurement optical systems.

本発明の溶液分析計の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the solution analyzer of this invention. 図1の溶液分析計において試料の流量が小さい場合の試料温度の説明図である。It is explanatory drawing of sample temperature in case the flow volume of a sample is small in the solution analyzer of FIG. 図1の溶液分析計において試料の流量が大きい場合の試料温度の説明図である。It is explanatory drawing of sample temperature when the flow volume of a sample is large in the solution analyzer of FIG.

図1は、本発明の溶液分析計の一実施形態を示す概略構成図である。本実施形態の溶液分析計は、試料の温度を一定にするための熱交換器1と、フローセル2を含む測定光学系3とを熱的に分離した状態で、具体的には非接触状態で備え、それらは断熱材4によって覆われ、且つ夫々断熱材4の内壁に接合されている。この断熱材4の外側から試料を導入し、断熱材4の外側に試料を送出する流路5は、熱交換器1から測定光学系3内のフローセル2を通過するように一連に形成されている。   FIG. 1 is a schematic configuration diagram showing an embodiment of a solution analyzer of the present invention. The solution analyzer of this embodiment is in a state in which the heat exchanger 1 for keeping the temperature of the sample constant and the measurement optical system 3 including the flow cell 2 are thermally separated, specifically in a non-contact state. Provided, they are covered with a heat insulating material 4 and are respectively joined to the inner wall of the heat insulating material 4. A flow path 5 for introducing a sample from the outside of the heat insulating material 4 and sending the sample to the outside of the heat insulating material 4 is formed in series so as to pass from the heat exchanger 1 to the flow cell 2 in the measurement optical system 3. Yes.

この流路5は、熱交換器1の図示上方から熱交換器1の内部に接続され、熱交換器1の内部で蛇行するように通過して当該熱交換器1の図示下方から突出する。そして、測定光学系3の図示下方から内部に接続され、フローセル2を通過して測定光学系3の図示上方から突出する。試料は、溶液分析計の内部で、この順序に流れる。なお、熱交換器1から測定光学系3までの間の流路5は保温チューブ19によって覆われており、内部を通過する試料と断熱材4の内部空間空気との間で生じる熱交換を最小限にしている。流路5の材質としては、試料のコンタミネーション(汚染)を防止する観点からPTFE(ポリテトラフルオロエチレン)などを用いることが考えられる。   The flow path 5 is connected to the inside of the heat exchanger 1 from the upper side of the heat exchanger 1 in the figure, passes through the inside of the heat exchanger 1 so as to meander, and protrudes from the lower side of the heat exchanger 1 in the figure. The measurement optical system 3 is connected to the inside from the lower side of the drawing, passes through the flow cell 2 and protrudes from the upper side of the measurement optical system 3 in the drawing. Samples flow in this order within the solution analyzer. The flow path 5 between the heat exchanger 1 and the measurement optical system 3 is covered with a heat insulating tube 19 to minimize heat exchange that occurs between the sample passing through the interior and the internal space air of the heat insulating material 4. It is limited. As a material of the flow path 5, it is conceivable to use PTFE (polytetrafluoroethylene) or the like from the viewpoint of preventing sample contamination.

測定光学系3では、フローセル2を保持するフローセルホルダ6、フローセルホルダ6に保持されているフローセル6に特定波長の励起光を照射する光源7、フローセル6内の試料から生じる蛍光を検出する蛍光検出器8を備えている。なお、図1では、理解を容易にするために図示を省略しているが、光源7や蛍光検出器8は、周知のように、集光ミラーやスリット、解析格子などを備えて構成されている。また、図1では、光源7と蛍光検出器8とが直線上に配置されているが、実際には光源7と蛍光検出器8とは互いに直線上から90°ずれた位置に配置されている。   In the measurement optical system 3, a flow cell holder 6 that holds the flow cell 2, a light source 7 that irradiates the flow cell 6 that is held by the flow cell holder 6 with excitation light of a specific wavelength, and fluorescence detection that detects fluorescence generated from the sample in the flow cell 6. A vessel 8 is provided. Although illustration is omitted in FIG. 1 for easy understanding, the light source 7 and the fluorescence detector 8 are configured to include a condensing mirror, a slit, an analysis grid, and the like, as is well known. Yes. In FIG. 1, the light source 7 and the fluorescence detector 8 are arranged on a straight line. However, the light source 7 and the fluorescence detector 8 are actually arranged at positions shifted from each other by 90 °. .

前記熱交換器1の材質としては、例えば熱伝導性のよいアルミニウムブロックを用いることが考えられる。この熱交換器1には、熱交換器用温調機構としての熱交換器用ペルチェ素子9が接合され、その熱交換器用ペルチェ素子9は熱交換器1が接合されている断熱材4の壁部に埋設されている。ペルチェ素子は、周知のように、印加する電流の向きに応じて、例えば本実施形態では熱交換器1が接合されている面を加熱したり冷却したりすることが可能な半導体素子で、熱電素子とも呼ばれる。そして、断熱材4の外壁面に露出している熱交換器用ペルチェ素子9の外側面には熱交換器用放熱フィン10が接合され、この熱交換器用放熱フィン10に対向して熱交換器用放熱ファン11が配置されている。   As a material of the heat exchanger 1, it is conceivable to use, for example, an aluminum block having good thermal conductivity. The heat exchanger 1 is joined with a Peltier element 9 for heat exchanger as a temperature control mechanism for the heat exchanger, and the Peltier element 9 for heat exchanger is attached to the wall portion of the heat insulating material 4 to which the heat exchanger 1 is joined. Buried. As is well known, the Peltier element is a semiconductor element that can heat or cool the surface to which the heat exchanger 1 is bonded in accordance with the direction of the applied current, for example, in this embodiment. Also called an element. A heat exchanger radiating fin 10 is joined to the outer surface of the heat exchanger Peltier element 9 exposed on the outer wall surface of the heat insulating material 4, and the heat exchanger radiating fan 10 is opposed to the heat exchanger radiating fin 10. 11 is arranged.

熱交換器1には、熱交換器1自体の温度を検出するための熱交換器用温度センサ12が取付けられており、その出力は熱交換器用制御回路13に入力される。この熱交換器用温度センサ12としては、白金抵抗体、熱電対、サーミスタなどを用いることが考えられる。熱交換器用制御回路13では、熱交換器用温度センサ12で検出された熱交換器1の温度に基づいて、熱交換器用ペルチェ素子9への印加電流を制御すると共に、熱交換器用放熱ファン11の運転状態を制御し、熱交換器1の温度が予め設定された一定温度に保持されるようにする。その結果、流路5の熱交換器1からの出口で試料の温度を予め設定された一定温度又は一定温度領域に調節することが可能となる。   A heat exchanger temperature sensor 12 for detecting the temperature of the heat exchanger 1 itself is attached to the heat exchanger 1, and its output is input to the heat exchanger control circuit 13. As this heat exchanger temperature sensor 12, it is conceivable to use a platinum resistor, a thermocouple, a thermistor, or the like. The heat exchanger control circuit 13 controls the current applied to the Peltier element 9 for the heat exchanger based on the temperature of the heat exchanger 1 detected by the temperature sensor 12 for the heat exchanger, and the heat radiating fan 11 for the heat exchanger. The operating state is controlled so that the temperature of the heat exchanger 1 is maintained at a preset constant temperature. As a result, the temperature of the sample can be adjusted to a preset constant temperature or a constant temperature region at the outlet from the heat exchanger 1 in the flow path 5.

本実施形態では、前記測定光学系3にも測定光学系用温調機構としての測定光学系用ペルチェ素子14が接合され、その測定光学系ペルチェ素子14は測定光学系3が接合されている断熱材4の壁部に埋設されている。この測定光学系用ペルチェ素子14は、測定光学系3の構成部材の何れかに接合されていればよく、本実施形態ではフローセルホルダ6に接合されている。このフローセルホルダ6の材質としては、例えば熱伝導性のよいアルミニウムブロックを用いることが考えられる。また、フローセルホルダ6に保持されるフローセル2の材質としては、光透過性に優れ且つ熱伝導性のよい石英などを用いることが考えられる。   In the present embodiment, a measurement optical system Peltier element 14 as a temperature adjustment mechanism for the measurement optical system is joined to the measurement optical system 3, and the measurement optical system Peltier element 14 is a heat insulation to which the measurement optical system 3 is joined. It is embedded in the wall portion of the material 4. The measurement optical system Peltier element 14 only needs to be bonded to any of the constituent members of the measurement optical system 3, and is bonded to the flow cell holder 6 in this embodiment. As a material of the flow cell holder 6, for example, it is conceivable to use an aluminum block having good thermal conductivity. Further, as the material of the flow cell 2 held by the flow cell holder 6, it is conceivable to use quartz or the like that has excellent light transmission and good thermal conductivity.

断熱材4の外壁面に露出している測定光学系用ペルチェ素子14の外側面には測定光学系用放熱フィン15が接合され、この測定光学用放熱フィン15に対向して測定光学用放熱ファン16が配置されている。また、フローセルホルダ6には、フローセルホルダ6自体の温度を検出するための測定光学系用温度センサ17が取付けられており、その出力は測定光学系用制御回路18に入力される。この測定光学系用温度センサ17としては、前記熱交換器用温度センサ12と同様に、白金抵抗体、熱電対、サーミスタなどを用いることが考えられる。測定光学系用制御回路18では、測定光学系用温度センサ17で検出されたフローセルホルダ6の温度に基づいて、測定光学系用ペルチェ素子14への印加電流を制御すると共に、測定光学系用放熱ファン16の運転状態を制御し、フローセルホルダ6の温度が予め設定された一定温度に保持されるようにする。その結果、フローセル2内における試料測定位置で試料の温度を予め設定された一定温度又は一定温度領域に調節することができる。   A measurement optical system radiation fin 15 is joined to the outer surface of the measurement optical system Peltier element 14 exposed on the outer wall surface of the heat insulating material 4, and the measurement optical radiation fan 15 faces the measurement optical radiation fin 15. 16 is arranged. The flow cell holder 6 is provided with a measurement optical system temperature sensor 17 for detecting the temperature of the flow cell holder 6 itself, and its output is input to the measurement optical system control circuit 18. As the measurement optical system temperature sensor 17, a platinum resistor, a thermocouple, a thermistor, or the like may be used in the same manner as the heat exchanger temperature sensor 12. The measurement optical system control circuit 18 controls the current applied to the measurement optical system Peltier element 14 based on the temperature of the flow cell holder 6 detected by the measurement optical system temperature sensor 17 and also dissipates the measurement optical system heat. The operating state of the fan 16 is controlled so that the temperature of the flow cell holder 6 is maintained at a predetermined constant temperature. As a result, the temperature of the sample can be adjusted to a preset constant temperature or a constant temperature region at the sample measurement position in the flow cell 2.

このように予め設定された一定温度又は一定温度領域に調節されてフローセル2の試料測定位置に到達した試料には、光源7から特定波長の励起光が照射され、その蛍光が蛍光検出器12で検出される。試料の温度は一定温度又は一定温度領域であるので、蛍光検出器12で検出される蛍光強度は、試料の成分濃度を正確に反映し、検出された蛍光強度から試料の成分濃度を適正に検出することが可能となる。   The sample that has been adjusted to a preset constant temperature or a constant temperature region and has reached the sample measurement position of the flow cell 2 in this manner is irradiated with excitation light of a specific wavelength from the light source 7, and the fluorescence is detected by the fluorescence detector 12. Detected. Since the temperature of the sample is a constant temperature or a constant temperature region, the fluorescence intensity detected by the fluorescence detector 12 accurately reflects the component concentration of the sample, and the component concentration of the sample is properly detected from the detected fluorescence intensity. It becomes possible to do.

図2は、図1の溶液分析計において試料の流量が小さい場合の試料温度の説明図、図3は、図1の溶液分析計において試料の流量が大きい場合の試料温度の説明図である。共に、横軸には試料の流れ方向位置を、縦軸には温度をとり、測定位置における試料の設定温度の許容範囲を網掛けで表している。また、高温試料の温度変化を実線で、低温試料の温度変化を破線で示している。図2に示すように、試料の流量が小さい場合には熱交換器1の出口に到達するまでの間に試料の温度が許容範囲内に収まっており、勿論、測定位置でも許容範囲内に収まっている。一方、図3に示すように、試料の流量が大きい場合には熱交換器1の出口に到達するまでの間に試料の温度が許容範囲内に収まっていない。しかしながら、本実施形態では、測定光学系3を測定光学系用ペルチェ素子14で温度調節しているため、フローセルホルダ6に流入してからも試料の温度が変化し、測定位置では試料の温度が許容範囲内に収まっている。このことから、本実施形態の溶液分析計では、試料の成分濃度を適正に検出することができ、再現性の高い分析結果を得ることができる。   FIG. 2 is an explanatory diagram of sample temperature when the sample flow rate is small in the solution analyzer of FIG. 1, and FIG. 3 is an explanatory diagram of sample temperature when the sample flow rate is large in the solution analyzer of FIG. In both cases, the horizontal axis indicates the sample flow direction position, the vertical axis indicates the temperature, and the allowable range of the set temperature of the sample at the measurement position is shaded. Further, the temperature change of the high temperature sample is indicated by a solid line, and the temperature change of the low temperature sample is indicated by a broken line. As shown in FIG. 2, when the flow rate of the sample is small, the temperature of the sample is within the allowable range before reaching the outlet of the heat exchanger 1, and, of course, also within the allowable range at the measurement position. ing. On the other hand, as shown in FIG. 3, when the flow rate of the sample is large, the temperature of the sample is not within the allowable range until it reaches the outlet of the heat exchanger 1. However, in this embodiment, since the temperature of the measurement optical system 3 is adjusted by the measurement optical system Peltier element 14, the temperature of the sample changes even after flowing into the flow cell holder 6, and the temperature of the sample at the measurement position is It is within the allowable range. From this, in the solution analyzer of this embodiment, the component concentration of a sample can be detected appropriately and an analysis result with high reproducibility can be obtained.

このように本実施形態の溶液分析計では、試料の熱交換を行う熱交換器1は熱交換器用温調機構である熱交換器用ペルチェ素子9によって一定温度とされ、フローセル2を含む測定光学系3は測定光学系用温調機構である測定光学系用ペルチェ素子14によって一定温度とされるので、試料の流量が大きい場合であっても試料の温度を一定にすることができ、もって測定対象試料の適正な分析が可能となる。   As described above, in the solution analyzer of this embodiment, the heat exchanger 1 that performs heat exchange of the sample is set to a constant temperature by the Peltier element 9 for heat exchanger that is a temperature control mechanism for the heat exchanger, and includes a measurement optical system including the flow cell 2. 3 is set to a constant temperature by the measurement optical system Peltier element 14 which is a temperature control mechanism for the measurement optical system, so that the temperature of the sample can be made constant even when the flow rate of the sample is large, and the object to be measured Proper analysis of the sample becomes possible.

また、熱交換器1と測定光学系3とを熱的に分離することにより、試料の流量が大きい場合に熱交換器1の温度変動の影響を測定光学系3が受けにくくなり、試料の温度をより一層一定にすることができ、もって測定対象試料の適正な分析が可能となる。
また、熱交換器用温調機構及び測定光学系用温調機構にペルチェ素子を用いることで、ヒーターや冷凍サイクルを使用する場合に比べて、構成を容易にすることができる。
Further, by thermally separating the heat exchanger 1 and the measurement optical system 3, the measurement optical system 3 becomes less susceptible to the influence of temperature fluctuations of the heat exchanger 1 when the flow rate of the sample is large. Can be made even more constant, so that it is possible to appropriately analyze the sample to be measured.
Further, by using Peltier elements for the heat exchanger temperature control mechanism and the measurement optical system temperature control mechanism, the configuration can be made easier as compared with the case of using a heater or a refrigeration cycle.

1 熱交換器
2 フローセル
3 測定光学系
4 断熱材
5 流路
6 フローセルホルダ
7 光源
8 蛍光検出器
9 熱交換器用ペルチェ素子(熱交換器用温調機構)
10 熱交換器用放熱フィン
11 熱交換器用放熱ファン
12 熱交換器用温度センサ
13 熱交換器用制御回路
14 測定光学系用ペルチェ素子(測定光学系用温調機構)
15 測定光学系用放熱フィン
16 測定光学系用放熱ファン
17 測定光学系用温度センサ
18 測定光学系用制御回路
19 保温チューブ
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Flow cell 3 Measurement optical system 4 Heat insulating material 5 Flow path 6 Flow cell holder 7 Light source 8 Fluorescence detector 9 Peltier device for heat exchanger (Temperature control mechanism for heat exchanger)
DESCRIPTION OF SYMBOLS 10 Heat dissipation fin for heat exchanger 11 Heat dissipation fan for heat exchanger 12 Temperature sensor for heat exchanger 13 Control circuit for heat exchanger 14 Peltier element for measurement optical system (temperature control mechanism for measurement optical system)
15 Radiation fin for measurement optical system 16 Radiation fan for measurement optical system 17 Temperature sensor for measurement optical system 18 Control circuit for measurement optical system 19 Insulation tube

Claims (3)

フローセルに流れる試料を光学的に分析する溶液分析計であって、
前記試料の熱交換を行う熱交換器と、
前記熱交換器の温度を一定にする熱交換器用温調機構と、
前記フローセルを含む測定光学系と、
前記測定光学系の温度を一定にする測定光学系用温調機構と、
を備えることを特徴とする溶液分析計。
A solution analyzer for optically analyzing a sample flowing in a flow cell,
A heat exchanger for heat exchange of the sample;
A temperature adjustment mechanism for a heat exchanger that makes the temperature of the heat exchanger constant;
A measurement optical system including the flow cell;
A temperature control mechanism for the measurement optical system that makes the temperature of the measurement optical system constant;
A solution analyzer comprising:
前記熱交換器と前記測定光学系とが熱的に分離されていることを特徴とする請求項1に記載の溶液分析計。   The solution analyzer according to claim 1, wherein the heat exchanger and the measurement optical system are thermally separated. 前記熱交換器用温調機構及び前記測定光学系用温調機構がペルチェ素子であることを特徴とする請求項1又は2に記載の溶液分析計。   The solution analyzer according to claim 1 or 2, wherein the temperature adjustment mechanism for the heat exchanger and the temperature adjustment mechanism for the measurement optical system are Peltier elements.
JP2014006016A 2014-01-16 2014-01-16 Solution analyzer Pending JP2015135251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014006016A JP2015135251A (en) 2014-01-16 2014-01-16 Solution analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014006016A JP2015135251A (en) 2014-01-16 2014-01-16 Solution analyzer

Publications (1)

Publication Number Publication Date
JP2015135251A true JP2015135251A (en) 2015-07-27

Family

ID=53767177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014006016A Pending JP2015135251A (en) 2014-01-16 2014-01-16 Solution analyzer

Country Status (1)

Country Link
JP (1) JP2015135251A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190048808A (en) * 2017-10-31 2019-05-09 한국생산기술연구원 Outdoor multi-pass cell for TDLAS with temperature control unit
KR20190048817A (en) * 2017-10-31 2019-05-09 한국생산기술연구원 Precision Measurement System with Prism Reflector for Precursor Materials of Fine Particle
US11293907B2 (en) 2017-02-20 2022-04-05 Shimadzu Corporation Electric conductivity detector and ion chromatograph
US11366058B2 (en) 2017-10-31 2022-06-21 Korea Institute Of Industrial Technology Outdoor multi-pass cell for TDLAS

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293907B2 (en) 2017-02-20 2022-04-05 Shimadzu Corporation Electric conductivity detector and ion chromatograph
KR20190048808A (en) * 2017-10-31 2019-05-09 한국생산기술연구원 Outdoor multi-pass cell for TDLAS with temperature control unit
KR20190048817A (en) * 2017-10-31 2019-05-09 한국생산기술연구원 Precision Measurement System with Prism Reflector for Precursor Materials of Fine Particle
KR102024097B1 (en) * 2017-10-31 2019-09-23 한국생산기술연구원 Outdoor multi-pass cell for TDLAS with temperature control unit
KR102024101B1 (en) * 2017-10-31 2019-09-23 한국생산기술연구원 Precision Measurement System with Prism Reflector for Precursor Materials of Fine Particle
US11366058B2 (en) 2017-10-31 2022-06-21 Korea Institute Of Industrial Technology Outdoor multi-pass cell for TDLAS

Similar Documents

Publication Publication Date Title
US20140063496A1 (en) Spectrophotometer
EP3011310B1 (en) System for analyzing mercury
ES2916999T3 (en) System and method for self-distillation of liquids under strictly defined conditions regardless of composition
JP6273027B2 (en) Apparatus for measuring the concentration of at least one gas in a sample gas stream using infrared absorption spectroscopy
US8481944B2 (en) IR spectrometer with non-contact temperature measurement
US20190242818A1 (en) Absorbance meter and semiconductor manufacturing device using absorbance meter
JP2015135251A (en) Solution analyzer
US20140036954A1 (en) Method and device for dissolved gas analysis
JP5741770B2 (en) Spectrometer
JP2008256530A (en) Fluorescence detector and liquid chromatography equipped with same
RU2593445C1 (en) Device for determining spectral emissivity of heat-shielding materials at high temperatures
Zhou et al. Constructing the Phase Diagram of an Aqueous Solution of Poly (N‐isopropyl acrylamide) by Controlled Microevaporation in a Nanoliter Microchamber
WO2013140917A1 (en) Liquid chromatographic analysis device and temperature control method for same
JP2023056000A (en) Spectroscopic detector
KR102007507B1 (en) Ir spectrometry cell with temperature control means
JP5358466B2 (en) Liquid chromatograph
JP7162206B2 (en) X-ray analysis cell and X-ray analysis device
JP6556338B2 (en) Gas sensor and thermostat
JP2020505596A5 (en)
JP2011169636A (en) Gas concentration calculation device and gas concentration measurement module
US10837877B2 (en) Sampling system with in-line temperature measurement and contol
JP2014048119A5 (en)
Kuriyama et al. Non-intrusive measurement of microscale temperature distribution by spontaneous Raman imaging
Glaser High Radiation‐Flux, Absolute, Water‐Flow Calorimeter
JP2016008908A (en) Component extracting and separating device, and component extracting and separating method, using supercritical fluid