JP2016008908A - Component extracting and separating device, and component extracting and separating method, using supercritical fluid - Google Patents

Component extracting and separating device, and component extracting and separating method, using supercritical fluid Download PDF

Info

Publication number
JP2016008908A
JP2016008908A JP2014130383A JP2014130383A JP2016008908A JP 2016008908 A JP2016008908 A JP 2016008908A JP 2014130383 A JP2014130383 A JP 2014130383A JP 2014130383 A JP2014130383 A JP 2014130383A JP 2016008908 A JP2016008908 A JP 2016008908A
Authority
JP
Japan
Prior art keywords
mobile phase
column
pressure
temperature
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014130383A
Other languages
Japanese (ja)
Other versions
JP6269345B2 (en
Inventor
舟田 康裕
Yasuhiro Funada
康裕 舟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2014130383A priority Critical patent/JP6269345B2/en
Publication of JP2016008908A publication Critical patent/JP2016008908A/en
Application granted granted Critical
Publication of JP6269345B2 publication Critical patent/JP6269345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a component extracting and separating device and a component extracting and separating method, both using supercritical fluid, that make available spectra reduced in baseline fluctuations attributable to pressure fluctuations.SOLUTION: A component extracting and separating device comprises a channel 111 that passes a mobile phase and a sample to a column 11; a regulator 14 that adjusts pressure applied on the mobile phase in the channel 111 to a pressure surpassing a critical pressure, which turns the mobile phase in the column 11 into a supercritical state; a column oven 12 for heating the column 11 to a temperature surpassing a critical temperature; a cooler 130 that cools the mobile phase having passed the column 11; and a detector 13 that detects components of the sample in the mobile phase cooled by the cooler 130.

Description

本発明は、超臨界流体を利用して試料から目的成分を抽出する成分抽出分離装置及び成分抽出分離方法に関する。また、超臨界流体を用いたクロマトグラフに関する。   The present invention relates to a component extraction / separation apparatus and a component extraction / separation method for extracting a target component from a sample using a supercritical fluid. The present invention also relates to a chromatograph using a supercritical fluid.

超臨界流体クロマトグラフ(Supercritical Fluid Chromatograph; SFC)は、臨界点(臨界温度、臨界圧力)を超える温度及び圧力を有する流体(超臨界流体)を移動相としたクロマトグラフであり、温度及び圧力を調整することによって移動相の溶出力を制御することができるという特徴を有している。特に、超臨界流体の移動相として二酸化炭素を用いた超臨界流体クロマトグラフは、流体の粘性が低いため、移動相の流速を高めて短時間で分析することができる分析装置としてよく使用されている(特許文献1参照)。   Supercritical Fluid Chromatograph (SFC) is a chromatograph using a fluid (supercritical fluid) having a temperature and pressure exceeding a critical point (critical temperature, critical pressure) as a mobile phase. It has the characteristic that the melt | dissolution power of a mobile phase can be controlled by adjusting. In particular, a supercritical fluid chromatograph using carbon dioxide as the mobile phase of the supercritical fluid is often used as an analyzer that can analyze in a short time by increasing the flow rate of the mobile phase because the viscosity of the fluid is low. (See Patent Document 1).

図4は、このような従来の超臨界流体クロマトグラフの概略構成図であり、超臨界流体クロマトグラフ40は、カラム41、カラムオーブン42、検出器43、背圧レギュレータ44、送液ポンプ45a、45b、移動相源46、オートサンプラ47、複数の回収容器48aを収容する回収部48を備える。移動相源46は、超臨界流体(例えば、臨界圧力が7.4MPa、臨界温度が31℃である二酸化炭素)を供給するボンベ46a及びメタノール等の溶媒を供給する溶媒容器46bで構成される。カラム41の一方の端には、送液ポンプ45a、45bに繋がる入力側流路411が設けられており、入力側流路411の途中にオートサンプラ47が設けられている。また、カラム41の他方の端には、検出器43へと繋がる出力側流路412が設けられており、その先には背圧レギュレータ44が設けられている。検出器43としては、PDA(Photo Diode Array)を用いた多波長検出器やUV検出器等が用いられる。   FIG. 4 is a schematic configuration diagram of such a conventional supercritical fluid chromatograph. The supercritical fluid chromatograph 40 includes a column 41, a column oven 42, a detector 43, a back pressure regulator 44, a liquid feed pump 45a, 45b, a mobile phase source 46, an autosampler 47, and a collection unit 48 that houses a plurality of collection containers 48a. The mobile phase source 46 includes a cylinder 46a that supplies a supercritical fluid (for example, carbon dioxide having a critical pressure of 7.4 MPa and a critical temperature of 31 ° C.) and a solvent container 46b that supplies a solvent such as methanol. At one end of the column 41, an input side channel 411 connected to the liquid feed pumps 45a and 45b is provided, and an autosampler 47 is provided in the middle of the input side channel 411. Further, an output side flow path 412 connected to the detector 43 is provided at the other end of the column 41, and a back pressure regulator 44 is provided at the end. As the detector 43, a multi-wavelength detector using a PDA (Photo Diode Array), a UV detector, or the like is used.

超臨界流体クロマトグラフ40は以下のように動作する。まず、背圧レギュレータ44は、送液ポンプ45a、45bと該背圧レギュレータ44の間の入力側流路411、カラム41及び出力側流路412内の移動相の圧力を、臨界圧力を超える圧力に調整する。使用する超臨界流体の種類によるが、一般的には、10MPa程度に加圧する。次に、送液ポンプ45a、45bは、移動相源46から移動相(超臨界流体及び溶媒)を入力側流路411を通してカラム41に流す。試料はオートサンプラ47で移動相に注入され、移動相により入力側流路411を流れてカラム41へと運ばれる。   The supercritical fluid chromatograph 40 operates as follows. First, the back pressure regulator 44 sets the pressure of the mobile phase in the input side channel 411, the column 41 and the output side channel 412 between the liquid feed pumps 45a and 45b and the back pressure regulator 44 to a pressure exceeding the critical pressure. Adjust to. Although it depends on the type of supercritical fluid used, in general, the pressure is increased to about 10 MPa. Next, the liquid feed pumps 45 a and 45 b flow the mobile phase (supercritical fluid and solvent) from the mobile phase source 46 to the column 41 through the input side channel 411. The sample is injected into the mobile phase by the autosampler 47, flows through the input side flow path 411 by the mobile phase, and is carried to the column 41.

カラム41は、カラムオーブン42内に配置されており、使用する移動相(超臨界流体)の臨界温度を超える温度(例えば、40℃)に調整されている。そのため、カラム41内を通過する移動相は、ここでは超臨界状態になる。入力側流路411からカラム41内に入った試料は、カラム41の固定相と相互作用して成分毎に分離され、出力側流路412から、順次、成分毎に異なる時間に出てくる。ここで、分離された成分が出てくる時間は、既知の成分を有する標準試料を測定することで、予め知ることができる。   The column 41 is disposed in the column oven 42 and is adjusted to a temperature (for example, 40 ° C.) exceeding the critical temperature of the mobile phase (supercritical fluid) to be used. Therefore, the mobile phase passing through the column 41 is in a supercritical state here. The sample that has entered the column 41 from the input side channel 411 interacts with the stationary phase of the column 41 and is separated for each component, and sequentially comes out from the output side channel 412 at different times for each component. Here, the time at which the separated components come out can be known in advance by measuring a standard sample having known components.

正確な検出のためには、カラム41から出てくる試料の成分の状態を変化させずに速やかに検出することが重要である。そのため、上述のように分離された試料の成分は、カラム41の出口の近くで、超臨界状態のまま検出器43により検出される。検出器43が検出した検出データは、図示しないコンピュータ等のデータ処理装置に送られる。データ処理装置は、検出データから成分毎のスペクトルを作成する。該スペクトルの形状から、分離された成分の定量を行うことができる。成分毎に分離された試料は、検出器43で検出された後、背圧レギュレータ44を経て、移動相と共に回収部48内に設置した回収容器48aに回収される。   For accurate detection, it is important to detect quickly without changing the state of the components of the sample coming out of the column 41. Therefore, the components of the sample separated as described above are detected by the detector 43 in the supercritical state near the outlet of the column 41. The detection data detected by the detector 43 is sent to a data processing device such as a computer (not shown). The data processing device creates a spectrum for each component from the detection data. The separated components can be quantified from the shape of the spectrum. After the sample separated for each component is detected by the detector 43, it passes through the back pressure regulator 44 and is collected in a collection container 48a installed in the collection unit 48 together with the mobile phase.

特開2010-243215号公報JP 2010-243215 A

超臨界流体クロマトグラフ40では、流路内を超臨界状態に維持するために、背圧レギュレータ44により流路内の圧力を一定に保つように制御している。しかし、実際には、流路内の圧力を一定に保つことは難しく、0.01MPa程度の脈動が生じてしまう。超臨界流体は、わずかな圧力の変化によって、その密度が大きく変化することが知られている(特許文献1参照)。この密度の変化は、検出器43で検出される成分のスペクトルにおいて、ベースラインが変動する原因となる。   In the supercritical fluid chromatograph 40, in order to maintain the inside of the flow path in a supercritical state, the back pressure regulator 44 controls the pressure in the flow path to be kept constant. However, in practice, it is difficult to keep the pressure in the flow path constant, and a pulsation of about 0.01 MPa occurs. It is known that the density of a supercritical fluid changes greatly with a slight change in pressure (see Patent Document 1). This change in density causes the baseline to fluctuate in the spectrum of the component detected by the detector 43.

本発明は上記の点に鑑みて成されたものであり、その目的とするところは、ベースラインの変動が小さいスペクトルを得ることが可能な、超臨界流体を利用した成分抽出分離装置及び成分抽出分離方法を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a component extraction / separation apparatus and component extraction using a supercritical fluid capable of obtaining a spectrum with a small baseline fluctuation. It is to provide a separation method.

上記課題を解決するために成された本発明に係る成分抽出分離装置は、
a) 移動相及び試料をカラムに通す流路と、
b) 前記流路内の前記移動相に加える圧力を、前記移動相が超臨界状態になる圧力である、臨界圧力を超える圧力に調整するレギュレータと、
c) 前記カラム内の前記移動相が前記超臨界状態になる温度である、臨界温度を超える温度に前記カラムを加熱するカラムオーブンと、
d) 前記カラムを通過した前記移動相を冷却する冷却部と、
e) 前記冷却部により冷却された前記移動相中の前記試料の成分を検出する検出器と、
を備えることを特徴とする。
The component extraction / separation apparatus according to the present invention, which has been made to solve the above problems,
a) a flow path for the mobile phase and sample through the column;
b) a regulator for adjusting the pressure applied to the mobile phase in the flow path to a pressure exceeding the critical pressure, which is a pressure at which the mobile phase becomes supercritical;
c) a column oven for heating the column to a temperature above the critical temperature, which is the temperature at which the mobile phase in the column is in the supercritical state;
d) a cooling unit for cooling the mobile phase that has passed through the column;
e) a detector for detecting a component of the sample in the mobile phase cooled by the cooling unit;
It is characterized by providing.

また、上記課題を解決するために成された本発明に係る成分抽出分離方法は、
a) 移動相及び試料をカラムに通す流路内の移動相に該移動相が超臨界状態になる圧力である、臨界圧力を超える圧力を加えるステップと、
b) 前記カラム内の前記移動相が前記超臨界状態になる温度である、臨界温度を超える温度に前記カラムを加熱するステップと、
c) 前記カラムを通過した前記移動相を冷却部により冷却した後に、前記試料の成分を検出するステップと、
を備えることを特徴とする。
In addition, the component extraction and separation method according to the present invention, which has been made to solve the above problems,
a) applying a pressure exceeding the critical pressure, which is a pressure at which the mobile phase becomes supercritical, to the mobile phase in the channel through which the mobile phase and the sample pass through the column;
b) heating the column to a temperature above the critical temperature, which is the temperature at which the mobile phase in the column is in the supercritical state;
c) detecting the component of the sample after cooling the mobile phase that has passed through the column by a cooling unit;
It is characterized by providing.

冷却部は、移動相が液体となる臨界温度以下まで移動相を冷却することができる。このような冷却部は、ペルチェ素子を用いたものであってもよいし、空冷装置や水冷装置であってもよい。また、検出器に取り付けられて検出器と一体となっていてもよい。   The cooling unit can cool the mobile phase to a temperature below the critical temperature at which the mobile phase becomes liquid. Such a cooling unit may use a Peltier element, or may be an air cooling device or a water cooling device. Moreover, it may be attached to the detector and integrated with the detector.

本発明者は、超臨界流体クロマトグラフの各部の条件を変化させつつ様々な実験を行った結果、検出器が検出する対象である、試料の成分を含む移動相を冷却するにつれて、圧力の変化に対するベースラインの変動が小さくなることを実験的に見出して、本発明を成すに至った。この結果は、試料の成分の状態を変化させずに速やかに検出することが正確な検出のために重要であるという従来の考えに反し、カラムから出てくる試料の成分の状態をむしろ変化させることにより、ベースラインの変動が小さい正確な検出が可能になるという驚くべきものであった。   As a result of conducting various experiments while changing the conditions of each part of the supercritical fluid chromatograph, the present inventor has found that the pressure changes as the mobile phase containing the sample components, which is the object to be detected by the detector, is cooled. It was experimentally found that the fluctuation of the baseline with respect to was reduced, and the present invention was achieved. This result is contrary to the conventional idea that rapid detection without changing the state of the sample components is important for accurate detection, but rather changes the state of the sample components coming out of the column. This is surprising because it enables accurate detection with small baseline fluctuations.

上記構成から成る本発明に係る成分抽出分離装置及び成分抽出分離方法によれば、カラムを通過した移動相を冷却部により冷却した後に、試料の成分を検出器が検出するため、超臨界状態にある移動相の圧力の脈動に起因するベースラインの変動が小さいスペクトルを得ることが可能になる。これにより、定量結果の信頼性が高く、且つ、繰り返し測定精度が高い測定結果を得ることができる。   According to the component extraction / separation apparatus and component extraction / separation method of the present invention having the above-described configuration, the detector detects the sample components after the mobile phase that has passed through the column is cooled by the cooling unit. It is possible to obtain a spectrum in which the fluctuation of the baseline due to the pressure pulsation of a certain mobile phase is small. Thereby, it is possible to obtain a measurement result with high reliability of the quantitative result and high repeatability.

本発明の一実施の形態である超臨界流体クロマトグラフの概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the supercritical fluid chromatograph which is one embodiment of this invention. 本発明の一実施の形態である検出器の概略構成図。The schematic block diagram of the detector which is one embodiment of this invention. 移動相の温度が(a)臨界温度(31℃)の場合、(b)35℃の場合、(c)40℃の場合について、圧力の変化に対する、スペクトルのベースラインにおける変動の程度を示す図。The figure which shows the extent of the fluctuation | variation in the baseline of a spectrum with respect to the change of a pressure about the case where the temperature of a mobile phase is (a) critical temperature (31 degreeC), (b) 35 degreeC, (c) 40 degreeC. . 従来の超臨界流体クロマトグラフの概略構成図。The schematic block diagram of the conventional supercritical fluid chromatograph.

図1は、本発明に係る成分抽出分離装置の一実施の形態である超臨界流体クロマトグラフの概略構成図であり、超臨界流体クロマトグラフ10は、カラム11、カラムオーブン12、検出器13、背圧レギュレータ14、送液ポンプ15a、15b、移動相源16、オートサンプラ17、複数の回収容器18aを収容する回収部18を備える。移動相源16は、超臨界流体を供給するボンベ16a及びメタノール等の溶媒を供給する溶媒容器16bで構成される。カラム11の一方の端には、送液ポンプ15a、15bに繋がる入力側流路111が設けられており、入力側流路111の途中にオートサンプラ17が設けられている。また、カラム11の他方の端には、検出器13へと繋がる出力側流路112が設けられており、その先には背圧レギュレータ14が設けられている。   FIG. 1 is a schematic configuration diagram of a supercritical fluid chromatograph which is an embodiment of a component extraction / separation apparatus according to the present invention. A supercritical fluid chromatograph 10 includes a column 11, a column oven 12, a detector 13, A back pressure regulator 14, liquid feed pumps 15 a and 15 b, a mobile phase source 16, an autosampler 17, and a recovery unit 18 that houses a plurality of recovery containers 18 a are provided. The mobile phase source 16 includes a cylinder 16a that supplies a supercritical fluid and a solvent container 16b that supplies a solvent such as methanol. At one end of the column 11, an input side flow path 111 connected to the liquid feed pumps 15 a and 15 b is provided, and an autosampler 17 is provided in the middle of the input side flow path 111. Further, an output-side flow path 112 connected to the detector 13 is provided at the other end of the column 11, and a back pressure regulator 14 is provided at the end.

超臨界流体クロマトグラフ10は、検出器13に冷却部130が取り付けられており、出力側流路112を流れる移動相を冷却する構成となっている点で、従来の超臨界流体クロマトグラフ40と異なる。本実施の形態では、二酸化炭素を超臨界流体として用い、UV検出器を検出器13として用いる。図2に示すように、検出器13は、フローセル131、断熱材132、レンズ133、温度計測部134を有する。検出器13は断熱材132により外部とは熱的に遮断されており、外部の温度変化の影響をほとんど受けない。本実施の形態では、冷却部130はペルチェ素子130a及び放熱フィン130bを有し、検出器13と一体となるように断熱材132に取り付けられている。レンズ133は、フローセル131に入射する光及びフローセル131から射出する光を通すためのレンズであり、フローセル131に隣接し、断熱材132に埋め込まれるように配置されている。温度計測部134には、白金抵抗体を有する熱電対を用いることができる。   The supercritical fluid chromatograph 10 has a cooling unit 130 attached to the detector 13 and is configured to cool the mobile phase flowing through the output side flow path 112. Different. In the present embodiment, carbon dioxide is used as the supercritical fluid, and a UV detector is used as the detector 13. As shown in FIG. 2, the detector 13 includes a flow cell 131, a heat insulating material 132, a lens 133, and a temperature measurement unit 134. The detector 13 is thermally shielded from the outside by the heat insulating material 132, and is hardly affected by external temperature changes. In the present embodiment, the cooling unit 130 has a Peltier element 130 a and a heat radiating fin 130 b and is attached to the heat insulating material 132 so as to be integrated with the detector 13. The lens 133 is a lens through which light incident on the flow cell 131 and light emitted from the flow cell 131 pass, and is disposed adjacent to the flow cell 131 and embedded in the heat insulating material 132. The temperature measuring unit 134 can be a thermocouple having a platinum resistor.

超臨界流体クロマトグラフ10は以下のように動作する。まず、背圧レギュレータ14は、送液ポンプ15a、15bと該背圧レギュレータ14の間の入力側流路111、カラム11及び出力側流路112内の移動相の圧力を、臨界圧力を超える圧力に調整する。本実施の形態では、移動相である二酸化炭素の臨界圧力(7.4MPa)を超える圧力である10MPa程度にする。次に、送液ポンプ15a、15bは、移動相源16から移動相(超臨界流体及び溶媒)を入力側流路111を通してカラム11に流す。試料はオートサンプラ17で移動相に注入され、移動相により入力側流路111を流れてカラム11へと運ばれる。   The supercritical fluid chromatograph 10 operates as follows. First, the back pressure regulator 14 sets the pressure of the mobile phase in the input side flow path 111, the column 11 and the output side flow path 112 between the liquid feed pumps 15a, 15b and the back pressure regulator 14 to a pressure exceeding the critical pressure. Adjust to. In the present embodiment, the pressure is about 10 MPa which is a pressure exceeding the critical pressure (7.4 MPa) of carbon dioxide which is a mobile phase. Next, the liquid feed pumps 15 a and 15 b flow the mobile phase (supercritical fluid and solvent) from the mobile phase source 16 to the column 11 through the input side flow path 111. The sample is injected into the mobile phase by the autosampler 17, flows through the input side flow path 111 by the mobile phase, and is carried to the column 11.

カラム11は、カラムオーブン12内に配置されており、移動相である二酸化炭素の臨界温度(31℃)を超える温度である40℃程度に調整されている。そのため、カラム11内を通過する移動相は、ここでは超臨界状態になる。入力側流路111からカラム11内に入った試料は、カラム11の固定相と相互作用して成分毎に分離され、出力側流路112から、順次、成分毎に異なる時間に出てくる。ここで、分離された成分が出てくる時間は、既知の成分を有する標準試料を測定することで、予め知ることができる。   The column 11 is disposed in a column oven 12 and is adjusted to about 40 ° C., which is a temperature exceeding the critical temperature (31 ° C.) of carbon dioxide as a mobile phase. Therefore, the mobile phase passing through the column 11 is in a supercritical state here. The sample that has entered the column 11 from the input side channel 111 interacts with the stationary phase of the column 11 and is separated for each component, and sequentially comes out from the output side channel 112 at different times for each component. Here, the time at which the separated components come out can be known in advance by measuring a standard sample having known components.

このようにして分離された試料の成分を含む移動相は、出力側流路112を通って検出器13内に入り、コイル状流路113を流れる。移動相はコイル状流路113を流れる間に冷却部130により冷却される。コイル状流路113の近くに設けた温度計測部134は、コイル状流路113を流れる移動相の温度を計測する。計測された温度は、検出器13の外部に設けられた温度制御回路135により検出され、温度制御回路135は、冷却部130のペルチェ素子130aに供給する電流量をフィードバック制御する。   The mobile phase containing the components of the sample thus separated enters the detector 13 through the output side channel 112 and flows through the coiled channel 113. The mobile phase is cooled by the cooling unit 130 while flowing through the coiled channel 113. A temperature measurement unit 134 provided near the coiled flow channel 113 measures the temperature of the mobile phase flowing through the coiled flow channel 113. The measured temperature is detected by a temperature control circuit 135 provided outside the detector 13, and the temperature control circuit 135 feedback-controls the amount of current supplied to the Peltier element 130 a of the cooling unit 130.

試料の成分を含む移動相は上述のように冷却された後、フローセル131を流れる。フローセル131では、レンズ133を介して、図示しない光源からの紫外光を、試料の成分を含む移動相に照射し、試料の成分が紫外光を吸収する吸光特性を測定する。吸光特性は物質によって異なるため、このような光学的検出により、フローセル内の試料の成分を特定することができる。   The mobile phase containing the sample components flows through the flow cell 131 after being cooled as described above. In the flow cell 131, ultraviolet light from a light source (not shown) is irradiated to a mobile phase including a sample component via a lens 133, and the light absorption characteristic that the sample component absorbs the ultraviolet light is measured. Since the light absorption characteristic varies depending on the substance, the component of the sample in the flow cell can be specified by such optical detection.

上述のフローセル131における試料の成分の検出データは、図示しないコンピュータ等のデータ処理装置に送られる。データ処理装置は、検出データから成分毎のスペクトルを作成する。該スペクトルの形状から、分離された成分の定量を行うことができる。成分毎に分離された試料は、検出器13のフローセル131で検出された後、背圧レギュレータ14を経て、移動相と共に回収部18内に設置した回収容器18aに回収される。   The sample component detection data in the flow cell 131 is sent to a data processing device such as a computer (not shown). The data processing device creates a spectrum for each component from the detection data. The separated components can be quantified from the shape of the spectrum. The sample separated for each component is detected by the flow cell 131 of the detector 13, and then collected through the back pressure regulator 14 in the collection container 18 a installed in the collection unit 18 together with the mobile phase.

(実施例)
上述の超臨界流体クロマトグラフ10を用いて、送液ポンプ15a、15bと該背圧レギュレータ14の間の入力側流路111、カラム11及び出力側流路112内の移動相の圧力を変化させた場合に、検出器13で検出される特定の試料成分のスペクトルについて、そのベースラインの位置を確認する実験を行った。移動相の温度を冷却部130により臨界温度(31℃)及び35℃にした場合、並びに冷却部130を作動させず、カラムオーブン12と同じ温度(40℃)にした場合について行った実験結果を図3(a)〜図3(c)に示す。図3(a)〜図3(c)において、横軸は移動相の圧力を、縦軸はベースラインの位置を示す。
(Example)
Using the supercritical fluid chromatograph 10 described above, the pressure of the mobile phase in the input side flow path 111, the column 11 and the output side flow path 112 between the liquid feed pumps 15a, 15b and the back pressure regulator 14 is changed. In this case, an experiment was conducted to confirm the position of the baseline of the spectrum of a specific sample component detected by the detector 13. Results of experiments conducted when the temperature of the mobile phase was set to the critical temperature (31 ° C.) and 35 ° C. by the cooling unit 130 and when the cooling unit 130 was not operated and the temperature was the same as the column oven 12 (40 ° C.). It shows to Fig.3 (a)-FIG.3 (c). 3A to 3C, the horizontal axis represents the mobile phase pressure, and the vertical axis represents the baseline position.

図3(a)〜図3(c)から、ベースラインの位置は、圧力に対して直線的に変化することが分かる。直線近似した傾きの大きさの絶対値は、試料の成分を含む移動相の温度を下げるにつれて小さくなった。この結果から、試料の成分を含む移動相を冷却するにつれて、圧力の変化に対するベースラインの変動が小さくなる傾向が見出された。これは、意図的に圧力を変化させた実験で得られた傾向であるが、0.01MPa程度の脈動に対しても当てはまる。   It can be seen from FIGS. 3A to 3C that the position of the baseline changes linearly with respect to the pressure. The absolute value of the slope of the linear approximation decreased with decreasing temperature of the mobile phase containing the sample components. From this result, it was found that as the mobile phase containing the components of the sample was cooled, the fluctuation of the baseline with respect to the change in pressure was reduced. This is a tendency obtained in an experiment in which the pressure is intentionally changed, but this is also true for a pulsation of about 0.01 MPa.

つまり、カラムを通過した移動相を冷却部により冷却した後に、試料の成分を検出器13が検出することにより、超臨界状態にある移動相の圧力の脈動に起因するベースラインの変動が小さいスペクトルを得ることが可能になる。これにより、定量結果の信頼性が高く、且つ、繰り返し測定精度が高い測定結果を得ることができる。   That is, after the mobile phase that has passed through the column is cooled by the cooling unit, the detector 13 detects the sample component, and thus the spectrum with a small baseline fluctuation due to the pressure pulsation of the mobile phase in the supercritical state is small. Can be obtained. Thereby, it is possible to obtain a measurement result with high reliability of the quantitative result and high repeatability.

また、図3(a)から分かるように、移動相が液体となる臨界温度(31℃)まで移動相を冷却してもなお、圧力の変化に対するベースラインの変動が小さくなった。これは、試料の成分の状態を変化させずに速やかに検出することが正確な検出のために重要であるという従来の考えに反するものであり、カラム11から出てくる試料の成分の状態をむしろ変化させることにより、ベースラインの変動が小さい正確な検出が可能になるという驚くべき結果であった。   Further, as can be seen from FIG. 3A, even when the mobile phase is cooled to the critical temperature (31 ° C.) at which the mobile phase becomes a liquid, the fluctuation of the baseline with respect to the change in pressure is reduced. This is contrary to the conventional idea that it is important for accurate detection to detect quickly without changing the state of the component of the sample, and the state of the component of the sample coming out of the column 11 is determined. Rather, it was a surprising result that changing it enabled accurate detection with little baseline variation.

なお、上記実施の形態は本発明の一例にすぎず、本発明の趣旨の範囲で適宜、変形、修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。上記実施の形態では、冷却部130としてペルチェ素子130aが検出器13と一体となるように取り付けられている例を示したが、本発明に係る成分抽出分離装置の構成はこれに限られない。カラム11と検出器13のフローセル131の間の出力側流路112を流れる試料の成分を含む移動相を冷却できる構成であれば良く、ペルチェ素子130aの代わりに、空冷装置や水冷装置など他の冷却装置を有していてもよい。また、冷却部130は、検出器13と分離したユニットであってもよい。   It should be noted that the above embodiment is merely an example of the present invention, and it is obvious that modifications, corrections, and additions may be made as appropriate within the scope of the present invention, and included in the claims of the present application. In the above embodiment, the example in which the Peltier element 130a is attached as the cooling unit 130 so as to be integrated with the detector 13 has been described, but the configuration of the component extraction / separation device according to the present invention is not limited thereto. Any structure that can cool the mobile phase containing the sample component flowing in the output-side flow path 112 between the column 11 and the flow cell 131 of the detector 13 may be used. Instead of the Peltier element 130a, other devices such as an air cooling device or a water cooling device may be used. You may have a cooling device. The cooling unit 130 may be a unit separated from the detector 13.

上記実施の形態では、超臨界流体として二酸化炭素を用いる例を示したが、他の公知の超臨界流体を用いてもよい。また、検出器13としてUV検出器を用いる例を示したが、液体クロマトグラフにおいて用いられる、PDA(Photo Diode Array)を用いた多波長検出器、旋光度検出器、円二色性検出器、蛍光検出器、屈折率検出器、及び蒸発光散乱検出器のいずれの光学的検出器を用いてもよい。   In the above embodiment, an example in which carbon dioxide is used as the supercritical fluid has been described, but other known supercritical fluids may be used. Moreover, although the example which uses a UV detector as the detector 13 was shown, the multiwavelength detector using a PDA (Photo Diode Array), an optical rotation detector, a circular dichroism detector used in a liquid chromatograph, Any one of a fluorescence detector, a refractive index detector, and an evaporative light scattering detector may be used.

10、40…超臨界流体クロマトグラフ
11、41…カラム
12、42…カラムオーブン
13、43…検出器
14、44…背圧レギュレータ
15a、15b、45a、45b…送液ポンプ
16、46…移動相源
16a、46a…ボンベ
16b、46b…溶媒容器
17、47…オートサンプラ
18、48…回収部
18a、48a…回収容器
111、411…入力側流路
112、412…出力側流路
113…コイル状流路
130…冷却部
130a…ペルチェ素子
130b…放熱フィン
131…フローセル
132…断熱材
133…レンズ
134…温度計測部
135…温度制御回路
DESCRIPTION OF SYMBOLS 10, 40 ... Supercritical fluid chromatograph 11, 41 ... Column 12, 42 ... Column oven 13, 43 ... Detector 14, 44 ... Back pressure regulator 15a, 15b, 45a, 45b ... Liquid feed pump 16, 46 ... Mobile phase Sources 16a, 46a ... cylinders 16b, 46b ... solvent containers 17, 47 ... autosamplers 18, 48 ... collection units 18a, 48a ... collection containers 111, 411 ... input side channels 112, 412 ... output side channels 113 ... coiled Flow path 130 ... Cooling unit 130a ... Peltier element 130b ... Radiating fin 131 ... Flow cell 132 ... Insulating material 133 ... Lens 134 ... Temperature measuring unit 135 ... Temperature control circuit

Claims (6)

a) 移動相及び試料をカラムに通す流路と、
b) 前記流路内の前記移動相に加える圧力を、前記移動相が超臨界状態になる圧力である、臨界圧力を超える圧力に調整するレギュレータと、
c) 前記カラム内の前記移動相が前記超臨界状態になる温度である、臨界温度を超える温度に前記カラムを加熱するカラムオーブンと、
d) 前記カラムを通過した前記移動相を冷却する冷却部と、
e) 前記冷却部により冷却された前記移動相中の前記試料の成分を検出する検出器と、
を備えることを特徴とする、成分抽出分離装置。
a) a flow path for the mobile phase and sample through the column;
b) a regulator for adjusting the pressure applied to the mobile phase in the flow path to a pressure exceeding the critical pressure, which is a pressure at which the mobile phase becomes supercritical;
c) a column oven for heating the column to a temperature above the critical temperature, which is the temperature at which the mobile phase in the column is in the supercritical state;
d) a cooling unit for cooling the mobile phase that has passed through the column;
e) a detector for detecting a component of the sample in the mobile phase cooled by the cooling unit;
A component extraction / separation apparatus comprising:
前記冷却部は、前記移動相が液体となる前記臨界温度以下まで前記移動相を冷却することを特徴とする、請求項1に記載の成分抽出分離装置。   The component extraction / separation apparatus according to claim 1, wherein the cooling unit cools the mobile phase to a temperature equal to or lower than the critical temperature at which the mobile phase becomes a liquid. 前記冷却部は、ペルチェ素子を用いたもの、空冷装置又は水冷装置であることを特徴とする、請求項1又は2に記載の成分抽出分離装置。   The component extraction / separation device according to claim 1, wherein the cooling unit is one using a Peltier element, an air cooling device, or a water cooling device. a) 移動相及び試料をカラムに通す流路内の移動相に該移動相が超臨界状態になる圧力である、臨界圧力を超える圧力を加えるステップと、
b) 前記カラム内の前記移動相が前記超臨界状態になる温度である、臨界温度を超える温度に前記カラムを加熱するステップと、
c) 前記カラムを通過した前記移動相を冷却部により冷却した後に、前記試料の成分を検出するステップと、
を備えることを特徴とする、成分抽出分離方法。
a) applying a pressure exceeding the critical pressure, which is a pressure at which the mobile phase becomes supercritical, to the mobile phase in the channel through which the mobile phase and the sample pass through the column;
b) heating the column to a temperature above the critical temperature, which is the temperature at which the mobile phase in the column is in the supercritical state;
c) detecting the component of the sample after cooling the mobile phase that has passed through the column by a cooling unit;
A component extraction / separation method comprising:
前記冷却部は、前記移動相が液体となる前記臨界温度以下まで前記移動相を冷却することを特徴とする、請求項4に記載の成分抽出分離方法。   The component extraction / separation method according to claim 4, wherein the cooling unit cools the mobile phase to a temperature equal to or lower than the critical temperature at which the mobile phase becomes a liquid. 前記冷却部は、ペルチェ素子を用いたもの、空冷装置又は水冷装置であることを特徴とする、請求項4又は5に記載の成分抽出分離方法。   The component extraction / separation method according to claim 4, wherein the cooling unit is a unit using a Peltier element, an air cooling device, or a water cooling device.
JP2014130383A 2014-06-25 2014-06-25 Component extraction separation apparatus and component extraction separation method using supercritical fluid Active JP6269345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014130383A JP6269345B2 (en) 2014-06-25 2014-06-25 Component extraction separation apparatus and component extraction separation method using supercritical fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014130383A JP6269345B2 (en) 2014-06-25 2014-06-25 Component extraction separation apparatus and component extraction separation method using supercritical fluid

Publications (2)

Publication Number Publication Date
JP2016008908A true JP2016008908A (en) 2016-01-18
JP6269345B2 JP6269345B2 (en) 2018-01-31

Family

ID=55226550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014130383A Active JP6269345B2 (en) 2014-06-25 2014-06-25 Component extraction separation apparatus and component extraction separation method using supercritical fluid

Country Status (1)

Country Link
JP (1) JP6269345B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022127927A1 (en) * 2020-12-19 2022-06-23 北京大学 Liquid-phase automated synthesizer
US11448625B2 (en) 2017-01-10 2022-09-20 Shimadzu Corporation Control device for chromatograph apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265164A (en) * 1987-04-22 1988-11-01 Japan Spectroscopic Co Chromatographic analysis method
JPH02190761A (en) * 1989-01-20 1990-07-26 Jeol Ltd Supercritical liquid chromatography device
JPH05223799A (en) * 1990-03-02 1993-08-31 Exxon Res & Eng Co Quantitative analysis method of saturated compound, olefin and aromatic hydrocarbon component
US5601707A (en) * 1990-07-13 1997-02-11 Isco, Inc. Apparatus and method for supercritical fluid extraction or supercritical fluid chromatography
JP2006234650A (en) * 2005-02-25 2006-09-07 Shimadzu Corp Degasifier
JP2010243215A (en) * 2009-04-01 2010-10-28 Jasco Corp Supercritical fluid chromatography apparatus and density adjusting method of the same
WO2014083639A1 (en) * 2012-11-28 2014-06-05 株式会社島津製作所 Supercritical fluid processing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265164A (en) * 1987-04-22 1988-11-01 Japan Spectroscopic Co Chromatographic analysis method
JPH02190761A (en) * 1989-01-20 1990-07-26 Jeol Ltd Supercritical liquid chromatography device
JPH05223799A (en) * 1990-03-02 1993-08-31 Exxon Res & Eng Co Quantitative analysis method of saturated compound, olefin and aromatic hydrocarbon component
US5601707A (en) * 1990-07-13 1997-02-11 Isco, Inc. Apparatus and method for supercritical fluid extraction or supercritical fluid chromatography
JP2006234650A (en) * 2005-02-25 2006-09-07 Shimadzu Corp Degasifier
JP2010243215A (en) * 2009-04-01 2010-10-28 Jasco Corp Supercritical fluid chromatography apparatus and density adjusting method of the same
WO2014083639A1 (en) * 2012-11-28 2014-06-05 株式会社島津製作所 Supercritical fluid processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11448625B2 (en) 2017-01-10 2022-09-20 Shimadzu Corporation Control device for chromatograph apparatus
WO2022127927A1 (en) * 2020-12-19 2022-06-23 北京大学 Liquid-phase automated synthesizer

Also Published As

Publication number Publication date
JP6269345B2 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP4569633B2 (en) Analysis method and apparatus by liquid chromatography
US20140063496A1 (en) Spectrophotometer
US7532313B2 (en) Fluorescence detector and liquid chromatograph having the fluorescence detector
JP6043715B2 (en) Compact HPLC system
US9880093B2 (en) Optical absorption monitor system
US8343258B2 (en) Apparatus and method for controlling constant mass flow to gas chromatography column
US11733159B2 (en) Analysis system and method employing thermal desorption and spectrometric analysis
JP6269345B2 (en) Component extraction separation apparatus and component extraction separation method using supercritical fluid
CN104204739A (en) Spectrometry device
US11351477B2 (en) Techniques for accelerating thermal equilibrium in a chromatographic column
JP6440706B2 (en) Liquid chromatography device for rapid measurement
JP5358466B2 (en) Liquid chromatograph
JP2015135251A (en) Solution analyzer
GB2495777A (en) Flow sensor stabilisation by adjusting temperature gradient
JP2019519782A (en) Method and system for reducing the effects of column bleed carryover
US20150076068A1 (en) Active inlet temperature control for adjustment of retention in a liquid chromatography system
JP6477891B2 (en) Detector for liquid chromatography
US20200158605A1 (en) System and method for monitoring phase-separation and mutual miscibility of fluid mixtures
JP2005338022A (en) Supercritical fluid hydrometry apparatus and supercritical fluid apparatus
CN113348345B (en) Spectrophotometer and liquid chromatograph
JP3236505U (en) General-purpose detection device for liquid chromatogly
KR100735113B1 (en) Control devices of temperature and pressure in moving phase of high temperature liquid chromatography
WO2016117001A1 (en) Separation detection unit, and liquid chromatograph provided with said separation detection unit
CN113939736A (en) Liquefied carbon dioxide supply device and supercritical fluid device
Miggiels et al. Automated online preconcentration of biomass-limited samples into a sub-microliter droplet using machine-vision-controlled evaporation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R151 Written notification of patent or utility model registration

Ref document number: 6269345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151