JP4676719B2 - Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same - Google Patents

Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same Download PDF

Info

Publication number
JP4676719B2
JP4676719B2 JP2004167510A JP2004167510A JP4676719B2 JP 4676719 B2 JP4676719 B2 JP 4676719B2 JP 2004167510 A JP2004167510 A JP 2004167510A JP 2004167510 A JP2004167510 A JP 2004167510A JP 4676719 B2 JP4676719 B2 JP 4676719B2
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
group
iodide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004167510A
Other languages
Japanese (ja)
Other versions
JP2005347176A (en
Inventor
祐介 綿貫
静顕 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomiyama Pure Chemical Industries Ltd
Original Assignee
Tomiyama Pure Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomiyama Pure Chemical Industries Ltd filed Critical Tomiyama Pure Chemical Industries Ltd
Priority to JP2004167510A priority Critical patent/JP4676719B2/en
Publication of JP2005347176A publication Critical patent/JP2005347176A/en
Application granted granted Critical
Publication of JP4676719B2 publication Critical patent/JP4676719B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、新規な色素増感型太陽電池用非水電解液及びそれを用いた色素増感型太陽電池に関するものである。   The present invention relates to a novel non-aqueous electrolyte for dye-sensitized solar cells and a dye-sensitized solar cell using the same.

太陽電池は、太陽光などの光の照射を受けて、そのエネルギーを直接電気エネルギーに変換することのできる電池であって、光起電力効果を利用した光電変換素子の一種である。太陽電池には、シリコン系太陽電池の他に、最近脚光を浴びている色素増感型太陽電池がある。   A solar battery is a battery that can receive light such as sunlight and directly convert the energy into electric energy, and is a type of photoelectric conversion element that uses the photovoltaic effect. In addition to silicon-based solar cells, solar cells include dye-sensitized solar cells that have recently attracted attention.

この色素増感型太陽電池は、金属酸化物系半導体を光電極とし、対向電極との間に酸化還元対を有する電解質を挟み込んで形成される。近年、特許文献1に開示されるように、金属酸化物半導体を多孔質化してその表面に色素を吸着させることでエネルギー変換効率が著しく高まったため、本格的な実用化に向けてさらなる検討が行われている。   This dye-sensitized solar cell is formed by using a metal oxide semiconductor as a photoelectrode and sandwiching an electrolyte having a redox pair with a counter electrode. In recent years, as disclosed in Patent Document 1, energy conversion efficiency has been remarkably increased by making a metal oxide semiconductor porous and adsorbing a dye on the surface thereof. It has been broken.

色素増感型太陽電池における検討課題の一つに、エネルギー変換効率の向上という問題がある。例えば、色素増感型太陽電池の変換効率は、通常3〜7%程度あり、特に優れたものでも10%程度である。ところが,シリコン型太陽電池のエネルギー変換効率は10〜20%を達成しており、特に優れたものでは20%を超えるものがある。   One of the issues to be investigated in dye-sensitized solar cells is the problem of improving energy conversion efficiency. For example, the conversion efficiency of a dye-sensitized solar cell is usually about 3 to 7%, and even a particularly excellent one is about 10%. However, the energy conversion efficiency of silicon solar cells has achieved 10 to 20%, and particularly excellent ones exceed 20%.

このため、色素増感型太陽電池においてもエネルギー変換効率を向上させることが提案されており、特許文献2や特許文献3に見られるように電解液についての研究がなされている。しかしながら、未だ充分な成果が得られていない。
特開2000−323189号公報 特開2002−343454号公報 特開2000−323189号公報
For this reason, it has been proposed to improve energy conversion efficiency even in a dye-sensitized solar cell, and studies on an electrolyte solution have been made as seen in Patent Document 2 and Patent Document 3. However, sufficient results have not been obtained yet.
JP 2000-323189 A JP 2002-343454 A JP 2000-323189 A

本発明の目的は、上記の従来の事情に鑑み、エネルギー変換効率に優れた色素増感型太陽電池用の新規な非水電解液及びそれを用いた色素増感型太陽電池を提供することにある。   An object of the present invention is to provide a novel non-aqueous electrolyte for a dye-sensitized solar cell excellent in energy conversion efficiency and a dye-sensitized solar cell using the same in view of the above-described conventional circumstances. is there.

本発明者は、鋭意研究の結果、色素増感型太陽電池用の電解液として、4級窒素原子をスピロ原子に持つ構造を有する特定の化合物を溶質とする非水電解液を使用することにより上記の課題を解決しうることを見出した。
かくして、本発明は、以下の要旨を有することを特徴とするものである。
As a result of diligent research, the inventor of the present invention uses a nonaqueous electrolytic solution containing a specific compound having a structure having a quaternary nitrogen atom as a spiro atom as a solute as an electrolytic solution for a dye-sensitized solar cell. It has been found that the above problems can be solved.
Thus, the present invention is characterized by having the following gist.

1.式(1)で表される4級窒素原子をスピロ原子に持つ構造を有する化合物(A)と、その対イオンであるよう素イオンとからなる質を含有することを特徴とする色素増感太陽電池用の非水電解液。 1. Compounds having a structure having a quaternary nitrogen atom of formula (1) spiro atom (A) and a dye-sensitized, characterized in that it contains a solute consisting of iodine ion to be the the counterion Non-aqueous electrolyte for solar cells.

Figure 0004676719
(式中、ZとZ'は、相互に独立して、アミノ基、ニトロ基、シアノ基、カルボキシル基、アルデヒド基若しくはハロゲンで置換されていてもよい炭素数2〜5のアルキレン(アルケン)基、アリーレン基、又はアルケニレン基を表す。)
2.化合物(A)が式(2)で示される(式中、m、nはそれぞれ独立して2〜5である)化合物である請求項1に記載の色素増感型太陽電池用の非水電解液。
Figure 0004676719
(Wherein, Z and Z ', independently of one another, amino group, nitro group, cyano group, carboxyl group, aldehyde group or halogen which may be substituted alkylene having 2 to 5 carbon atoms (alkene) Represents a group, an arylene group, or an alkenylene group.)
2. The non-aqueous electrolysis for a dye-sensitized solar cell according to claim 1, wherein the compound (A) is a compound represented by the formula (2) (wherein m and n are each independently 2 to 5). liquid.

Figure 0004676719
3.化合物(A)が、ピペリジニウム環、ピロリジニウム環、アゼチジニウム環又はアジリジニウム環である、上記1又は2に記載の色素増感型太陽電池用の非水電解液。
.溶媒が、環状カーボネート類、環状エステル類、鎖状エステル類、ニトリル類、アルコール類、エーテル類、又はアミド類であるである溶媒を含有する上記1〜のいずれかに記載の色素増感型太陽電池用非水電解液。
5.イオン性液体である溶媒を含有する請求項1〜3のいずれかに記載の色素増感型太陽電池用非水電解液。
.化合物(A)の濃度が0.1〜4.0モル/リットルある上記1〜のいずれかに記載の色素増感型太陽電池用非水電解液。
.よう素と非水溶媒およびまたはイオン性液体を含有する上記1〜のいずれかに記載の色素増感型太陽電池用の非水電解液。
.上記1〜のいずれかに記載の色素増感型太陽電池用非水電解液を用いる色素増感型太陽電池。



Figure 0004676719
3. 3. The nonaqueous electrolytic solution for a dye-sensitized solar cell according to 1 or 2 above, wherein the compound (A) is a piperidinium ring, a pyrrolidinium ring, an azetidinium ring, or an aziridinium ring.
4 . The dye-sensitized type according to any one of 1 to 3 above, wherein the solvent contains a solvent which is a cyclic carbonate, a cyclic ester, a chain ester, a nitrile, an alcohol, an ether, or an amide. Nonaqueous electrolyte for solar cells.
5. The nonaqueous electrolytic solution for a dye-sensitized solar cell according to any one of claims 1 to 3, comprising a solvent which is an ionic liquid.
6 . 6. The nonaqueous electrolytic solution for a dye-sensitized solar cell according to any one of 1 to 5 above, wherein the concentration of the compound (A) is 0.1 to 4.0 mol / liter.
7 . 7. The nonaqueous electrolytic solution for a dye-sensitized solar cell according to any one of 1 to 6 above, containing iodine and a nonaqueous solvent and / or an ionic liquid.
8 . A dye-sensitized solar cell using the non-aqueous electrolyte for a dye-sensitized solar cell according to any one of 1 to 7 above.



本発明により提供される電解液した非水電解液を用いた色素増感型太陽電池は、優れた電流−電圧特性を示し、光エネルギー変換効率が高く、太陽光に対して長期間安定で安全性の高い色素増感型太陽電池を提供することができ、その工業価値の大なるものである。   The dye-sensitized solar cell using the non-aqueous electrolytic solution provided by the present invention exhibits excellent current-voltage characteristics, has high light energy conversion efficiency, is stable and safe for a long time against sunlight. A highly sensitive dye-sensitized solar cell can be provided, and its industrial value is great.

本発明の電解液が使用される色素増感型太陽電池の構成について説明する。色素増感型太陽電池における光電極の部分は透明電極付きガラス基板上に金属酸化物半導体(酸化チタン)の多孔質膜(半導体電極)を形成させ、四塩化チタン水溶液などで酸化チタン多孔質膜を処理し、その表面に増感色素を付着させたものである。これを一方の電極(光電極)とし、対向電極との間に電解液を置く。太陽電池の周囲は前記電解液が漏れないようにシール材でシールされている。   The structure of the dye-sensitized solar cell in which the electrolytic solution of the present invention is used will be described. In the dye-sensitized solar cell, the photoelectrode part is formed by forming a porous film (semiconductor electrode) of a metal oxide semiconductor (titanium oxide) on a glass substrate with a transparent electrode, and using a titanium tetrachloride aqueous solution, etc. And a sensitizing dye is attached to the surface. This is one electrode (photoelectrode), and an electrolytic solution is placed between the counter electrode. The periphery of the solar cell is sealed with a sealing material so that the electrolyte does not leak.

本発明の色素増感型太陽電池にでは、光電極と対向電極との間の電解液として、上記したように、下記の式(1)で表される4級窒素原子をスピロ原子に持つ構造を有する化合物(A)を溶質として含有する電解液を用いることにより電子移動をスムーズにし、電池の性能を安定させ、電池性能が著しく改善される。   In the dye-sensitized solar cell of the present invention, as described above, the electrolyte solution between the photoelectrode and the counter electrode has a quaternary nitrogen atom represented by the following formula (1) as a spiro atom. By using an electrolytic solution containing the compound (A) having a solute as a solute, electron transfer is smoothed, battery performance is stabilized, and battery performance is remarkably improved.

Figure 0004676719
式(1)中、Z、Z‘は、上記に定義したとおりであるが、特に、アミノ基、カルボキシル基若しくはメチル基で置換したアルキレン(アルケン)基であるのが好ましい。
Figure 0004676719
In the formula (1), Z and Z ′ are as defined above, and an alkylene (alkene) group substituted with an amino group, a carboxyl group or a methyl group is particularly preferable.

本発明では、化合物(A)は、式(2)で示される化合物を溶質とする電解液が性能上及び製造コストの点からして好適である。式(2)中、m、nは。上記したとおりであるが、なかでも、4又は5が好ましく、特に4が好ましい。   In the present invention, as the compound (A), an electrolytic solution containing the compound represented by the formula (2) as a solute is preferable from the viewpoint of performance and production cost. M and n in formula (2). As described above, 4 or 5 is preferable, and 4 is particularly preferable.

Figure 0004676719
本発明で使用される上記式(1)又は(2)で表される化合物の好ましい具体例としては、1,1'-スピロビピロリジニウム、1,1'-スピロビピペリジニウム、1,1'-スピロビアゼチジニウム、スピロ[ピペリジン-1,1'-ピロリジニウム]、スピロ[アゼチジン-1,1'-ピペリジン]、スピロ[アジリジン-1,1'-ピペリジン]、スピロ[アゼチジン-1,1'-ピロリジン]、スピロ[アジリジン-1,1'-ピロリジン]、スピロ[アゼチン-1,1'-ピロリジン]、スピロ[3-メチルピペリジン-1,1'-ピロリジニウム]、スピロ[3-メチルピペリジン-1,1'-(3-エチルピロリジニウム)]、スピロ[3-アミノピペリジン-1,1'-ピロリジニウム]、スピロ[3-カルボキシルピペリジン-1,1'-ピロリジニウムなどが挙げられる。なかでも、1,1'-スピロビピロリジニウム、1,1'-スピロビピペリジニウムが電池特性と製造コストの点からして好ましい。
Figure 0004676719
Preferred specific examples of the compound represented by the above formula (1) or (2) used in the present invention include 1,1′-spirobipyrrolidinium, 1,1′-spirobipiperidinium, 1 , 1'-spirobiazetidinium, spiro [piperidine-1,1'-pyrrolidinium], spiro [azetidine-1,1'-piperidine], spiro [aziridine-1,1'-piperidine], spiro [azetidine- 1,1'-pyrrolidine], spiro [aziridine-1,1'-pyrrolidine], spiro [azetin-1,1'-pyrrolidine], spiro [3-methylpiperidine-1,1'-pyrrolidinium], spiro [3 -Methylpiperidine-1,1 '-(3-ethylpyrrolidinium)], spiro [3-aminopiperidine-1,1'-pyrrolidinium], spiro [3-carboxylpiperidine-1,1'-pyrrolidinium, etc. It is done. Of these, 1,1′-spirobipyrrolidinium and 1,1′-spirobipiperidinium are preferable from the viewpoint of battery characteristics and production cost.

上記の式(1)又は(2)で表される化合物から電解液の溶質を構成する場合、その対イオンとしては、好ましくはよう素イオンが使用される。電解液中のよう素の含有量はイオン導電性及び光エネルギー変換効率の観点から好ましくは0.005〜0.5モル/リットル、特には0.01〜0.1モル/リットルが好ましい。   When the solute of the electrolytic solution is composed of the compound represented by the above formula (1) or (2), iodine ion is preferably used as the counter ion. The iodine content in the electrolytic solution is preferably 0.005 to 0.5 mol / liter, particularly 0.01 to 0.1 mol / liter from the viewpoints of ionic conductivity and light energy conversion efficiency.

また、上記の式(1)又は(2)で表される化合物を電解液の溶質から電解液を形成する場合、有機溶媒としては、メタノール、エタノール、1-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール、tert-ブタノールなどのアルコール類、1,2−ジメトキシエタン、1,2−ジブトキシエタン、テトラヒドロフランなどのエーテル類、プロピオン酸メチルなどのエステル類、ジメチルホルムアミドなどのアミド類など、アセトニトリル(AN)、プロピオニトリル(PN)、メトキシプロピオニトリル(MOPN)などのニトリル類、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、γ−ブチロラクトン(GBL)などの環状カーボネート類が挙げられる。なかでも、アセトニトリル(AN)、メトキシプロピオニトリル(MOPN)、プロピレンカーボネート(PC)、γ−ブチロラクトン(GBL)が好ましい。   In addition, when forming the electrolytic solution from the solute of the electrolytic solution of the compound represented by the above formula (1) or (2), as the organic solvent, methanol, ethanol, 1-propanol, iso-propanol, n-butanol Alcohols such as iso-butanol and tert-butanol, ethers such as 1,2-dimethoxyethane, 1,2-dibutoxyethane, tetrahydrofuran, esters such as methyl propionate, amides such as dimethylformamide, etc. Examples include nitriles such as acetonitrile (AN), propionitrile (PN), and methoxypropionitrile (MOPN), and cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and γ-butyrolactone (GBL). . Of these, acetonitrile (AN), methoxypropionitrile (MOPN), propylene carbonate (PC), and γ-butyrolactone (GBL) are preferable.

また、本発明の上記の式(1)又は(2)で表される化合物を溶質とする場合、溶媒は、上記有機溶媒の代わりに又は上記有機溶媒に加えて、イオン性液体を用いることもできる。イオン性液体の好ましい例としては、1-エチル-3-メチルイミダゾリウムホウフッ化物(EMI-BF4)、1-エチル-3-メチルイミダゾリウムフッ化物2.3フッ化水素酸錯体(EMI-F(HF)2.3)、1-エチル-3-メチルイミダゾリウムジシアナミド(EMI-DCA)、1-エチル-3-メチルイミダゾリウムトリフルオロメタンスルホニルイミド(EMI-TFSI)、1-メチル-3-プロピルイミダゾリウムよう化物(MPImI)、ヘキシルトリメチルアンモニウムトリフルオロメタンスルホニルイミド(HTMA-TFSI)などが挙げられる。   In addition, when the compound represented by the above formula (1) or (2) of the present invention is used as a solute, an ionic liquid may be used as the solvent instead of or in addition to the organic solvent. it can. Preferred examples of ionic liquids include 1-ethyl-3-methylimidazolium borofluoride (EMI-BF4), 1-ethyl-3-methylimidazolium fluoride 2.3 hydrofluoric acid complex (EMI-F (HF) 2.3), 1-ethyl-3-methylimidazolium dicyanamide (EMI-DCA), 1-ethyl-3-methylimidazolium trifluoromethanesulfonylimide (EMI-TFSI), 1-methyl-3-propylimidazolium iodide (MPImI), hexyltrimethylammonium trifluoromethanesulfonylimide (HTMA-TFSI) and the like.

本発明の電解液の形成使用される上記の有機溶媒又はイオン性液体は1種類で使用してもよく、又は2種類以上を組み合わせて使用してもよい。   The organic solvent or ionic liquid used for forming the electrolytic solution of the present invention may be used alone or in combination of two or more.

本発明の色素増感型太陽電池用の電解液における溶質としては、上記の式(1)又は(2)で表される化合物の1種または2種以上が使用され、電解液中のその濃度は、適宜選ばれる。なかでも、その濃度は、好ましくは0.1〜4モルモル/リットル、特に好ましくは0.5〜2モル/リットルが好適である。濃度が0.1モル/リットルより小さい場合には効果が小さくなり、一方、濃度が4モル/リットルより大きい場合には溶解しにくくなり、いずれも好ましくない。   As the solute in the electrolyte solution for the dye-sensitized solar cell of the present invention, one or more of the compounds represented by the above formula (1) or (2) is used, and its concentration in the electrolyte solution Is appropriately selected. Among them, the concentration is preferably 0.1 to 4 mol / liter, particularly preferably 0.5 to 2 mol / liter. When the concentration is less than 0.1 mol / liter, the effect is small, while when the concentration is more than 4 mol / liter, it is difficult to dissolve, both of which are not preferable.

また、本発明の色素増感型太陽電池用の電解液には、上記の式(1)又は(2)で表される化合物の溶質のほかに、他の溶質や添加剤を含有させ電解液の特性を向上させることができる。他の溶質の例としては、1,2-ジメチル-3-プロピルイミダゾリウムよう化物(DMPImI)、テトラプロピルアンモニウムよう化物(TPA-I)、1-メチル-3-プロピルイミダゾリウムよう化物(MPImI)などが挙げられる。また、添加剤の例としては、4-tert-ブチルピリジン(TBP)、よう化リチウム(LiI)などが挙げられる。   In addition to the solute of the compound represented by the above formula (1) or (2), the electrolyte solution for the dye-sensitized solar cell of the present invention contains other solutes and additives, and the electrolyte solution. The characteristics can be improved. Examples of other solutes include 1,2-dimethyl-3-propylimidazolium iodide (DMPImI), tetrapropylammonium iodide (TPA-I), 1-methyl-3-propylimidazolium iodide (MPImI) Etc. Examples of the additive include 4-tert-butylpyridine (TBP), lithium iodide (LiI) and the like.

本発明の色素増感型太陽電池用の電解液は、これにゲル化剤(高分子或いは低分子のゲル化剤)などを添加し、ゲル状乃至半固体の性状にして使用するころもできる。   The electrolyte solution for a dye-sensitized solar cell of the present invention can be used by adding a gelling agent (polymer or low-molecular gelling agent) to the gel-like or semi-solid property. .

以上、本発明の色素増感型太陽電池に用いる電解液についての説明をしたが、本発明の特徴は主に色素増感型太陽電池の電解液にあり、電解液以外の色素増感型太陽電池の構成は通常の一般的な色素増感型太陽電池の構造を使用することができる。   As mentioned above, although the electrolyte solution used for the dye-sensitized solar cell of the present invention has been described, the feature of the present invention is mainly the electrolyte solution of the dye-sensitized solar cell, and the dye-sensitized solar cell other than the electrolyte solution The structure of a battery can use the structure of a normal common dye-sensitized solar cell.

即ち、本発明の電解液を使用する色素増感型太陽電池に使用される、カソード電極は、導電性を有するものであれば特に問題はなく、任意の導電性材料を用いることができるが、I3 -などの還元反応を十分な速さで行わせる触媒能を持ったものが好ましく、たとえば、導電性ガラスなどの導電性材料に白金メッキや白金蒸着を施したものが好ましい。 That is, the cathode electrode used in the dye-sensitized solar cell using the electrolytic solution of the present invention has no particular problem as long as it has conductivity, and any conductive material can be used. I 3 - is preferably one having a catalytic ability to perform quickly enough a reduction reaction such as, for example, those subjected to platinum plating or platinum evaporation on a conductive material such as conductive glass is preferred.

また、アノード電極は、酸化物半導体の微少な結晶の表面に色素を吸着させた酸化物半導体層を有している導電性ガラスからなり、酸化物半導体としては、従来公知のものが使用できる。即ち、Ti、Nb、Zn、Sn、Zr、Y、La、Taなどの遷移金属の酸化物の他、SrTiO3、CaTiO3などのペロブスカイト系酸化物などがあげられる。また、この酸化物半導体はできるだけ微粒子であることが好ましく、その平均粒径は5000nm以下、好ましくは50nm以下である。また、その比表面積は500cm2/cm以上、好ましくは1000cm2/cm以上である。酸化物半導体を電極として用いるには、導電性ガラスなどの導電性基板上に固定して用いる。基板上の酸化物半導体の厚さは1000nm以上が好ましい。 The anode electrode is made of conductive glass having an oxide semiconductor layer in which a dye is adsorbed on the surface of a minute crystal of an oxide semiconductor, and conventionally known oxide semiconductors can be used. That is, in addition to oxides of transition metals such as Ti, Nb, Zn, Sn, Zr, Y, La, and Ta, perovskite oxides such as SrTiO 3 and CaTiO 3 are exemplified. The oxide semiconductor is preferably as fine as possible, and its average particle size is 5000 nm or less, preferably 50 nm or less. The specific surface area is 500 cm 2 / cm or more, preferably 1000 cm 2 / cm or more. In order to use an oxide semiconductor as an electrode, it is used by being fixed on a conductive substrate such as conductive glass. The thickness of the oxide semiconductor on the substrate is preferably 1000 nm or more.

色素増感型太陽電池における酸化物半導体の微少な結晶の表面に吸着させる色素としては、従来公知のものが使用でき、太陽光を高波長範囲にわたって吸収できる能力を持つものであれば特に問題ない。このようなものとして、たとえばルテニウム錯体、クロロフィル、ローダミン、エオシン、フロキシン、フルオレセイン、エリスロシン、ウラニン、ローズベンガルなどがあげられる。   As a dye to be adsorbed on the surface of a minute crystal of an oxide semiconductor in a dye-sensitized solar cell, a conventionally known dye can be used, and there is no problem as long as it has an ability to absorb sunlight over a high wavelength range. . Examples of such compounds include ruthenium complexes, chlorophyll, rhodamine, eosin, phloxine, fluorescein, erythrosine, uranin, and rose bengal.

本発明の色素増感型太陽電池は、以上説明したカソード電極、アノード電極を組み合わせて用いることにより、高光電変換効率を有し、太陽光に対して長期間安定で、安全性の高い色素増感型太陽電池とすることができる。   The dye-sensitized solar cell of the present invention is a dye-sensitized solar cell having a high photoelectric conversion efficiency, stable for a long period of time, and high safety by using the cathode electrode and the anode electrode described above in combination. It can be set as a sensitive solar cell.

次に、実施例及び比較例を挙げて本発明を具体的に説明するが、これらは本発明を何ら限定するものではない。   EXAMPLES Next, although an Example and a comparative example are given and this invention is demonstrated concretely, these do not limit this invention at all.

実施例1
酸化チタンゾル液して、チタンイソプロポキシドを以下のように加水分解することにより、酸化チタンゾル液を調製した。
Example 1
A titanium oxide sol solution was prepared by hydrolyzing titanium isopropoxide as follows.

125mlのチタンイソプロポキシドを、0.1mol/l硝酸水溶液750mlに攪拌しながら添加した。これを80℃で24時間激しく攪拌した。得られた液体をテフロン(登録商標)製の圧力容器内で230℃、24時間オ−トクレ−ブ処理した。沈殿物を含むゾル液を攪拌により再懸濁させた。吸引濾過により、再懸濁しなかった沈殿物を除き、エバポレーターで酸化チタン濃度が10wt%になるまでゾル液を濃縮した。基板への塗れ性を高めるため、Triton
X-100を1滴添加した。
125 ml of titanium isopropoxide was added to 750 ml of 0.1 mol / l aqueous nitric acid solution with stirring. This was stirred vigorously at 80 ° C. for 24 hours. The obtained liquid was autoclaved at 230 ° C. for 24 hours in a pressure vessel made of Teflon (registered trademark). The sol solution containing the precipitate was resuspended by stirring. The precipitate that was not resuspended was removed by suction filtration, and the sol solution was concentrated with an evaporator until the titanium oxide concentration reached 10 wt%. Triton to improve paintability on the substrate
One drop of X-100 was added.

次に、酸化チタン膜の焼成時におけるクラックの発生および導電性表面からの膜の剥離を防止するため以下のようにチタンアルコキシドをゾル液に添加した。すなわち、上記ゾル液を攪拌しながら、ジ−iso−プロポキシ・ビス(アセチルアセトナート)チタンとアセチルアセトンの80:20混合液を少しずつ添加した。添加終了後、1時間攪拌した。   Next, titanium alkoxide was added to the sol solution as follows in order to prevent generation of cracks during the firing of the titanium oxide film and peeling of the film from the conductive surface. That is, while stirring the sol solution, an 80:20 mixed solution of di-iso-propoxy bis (acetylacetonate) titanium and acetylacetone was added little by little. After completion of the addition, the mixture was stirred for 1 hour.

なお、ジ−iso−プロポキシ・ビス(アセチルアセトナート)チタンの添加量は3.4g(酸化チタン微粒子重量に対し10重量%)としてサンプルを作製した。   The sample was prepared with an addition amount of di-iso-propoxy bis (acetylacetonato) titanium of 3.4 g (10 wt% with respect to the titanium oxide fine particle weight).

色素結合電極(酸化チタン電極)の作製は上記のように調製したチタンアルコキシド添加ゾル液を用いて、以下の要領で酸化チタン電極を作製した。   The production of the dye-coupled electrode (titanium oxide electrode) was carried out using the titanium alkoxide-added sol solution prepared as described above, in the following manner.

縦2.0cm、横1.5cm、厚さ1mmの導電性ガラス基板(F−SnO2、シ−ト抵抗10Ω/℃)の導電膜面側に、縦0.5cm、横0.5cmの四角穴を設けた厚さ70μmのマスキングテ−プを貼り、穴の端部に前記チタンアルコキシド添加ゾル液3μLをピペットで添加した。このゾル液を縁が平らなガラス板を用いて引き延ばすことにより基板上に広げた。このように広げた膜を空気中で30分間乾燥し、乾燥後マスキングテ−プを剥がし取った。次に、電気炉を用いて500℃で30分間焼成した。昇温速度は2℃/minとした。 A square of 0.5 cm in length and 0.5 cm in width on the conductive film side of a conductive glass substrate (F-SnO 2 , sheet resistance 10 Ω / ° C.) having a length of 2.0 cm, a width of 1.5 cm, and a thickness of 1 mm. A masking tape having a thickness of 70 μm provided with a hole was attached, and 3 μL of the titanium alkoxide-added sol solution was added to the end of the hole with a pipette. The sol solution was spread on a substrate by stretching using a glass plate having a flat edge. The film thus spread was dried in air for 30 minutes, and after drying, the masking tape was peeled off. Next, it baked for 30 minutes at 500 degreeC using the electric furnace. The heating rate was 2 ° C./min.

焼成後、基板温度が80℃まで下がったところで、増感色素として(4,4’−ジカルボン酸−2,2’−ビピリジン)ルテニウム(II)ジイソチアネ−トを0.3mmol/l濃度で添加した無水エタノ−ル溶液20mlに浸漬し、24時間放置した。   After firing, when the substrate temperature dropped to 80 ° C., anhydrous (4,4′-dicarboxylic acid-2,2′-bipyridine) ruthenium (II) diisothiocyanate was added as a sensitizing dye at a concentration of 0.3 mmol / l. It was immersed in 20 ml of ethanol solution and allowed to stand for 24 hours.

放置後、酸化チタン電極を取り出しアセトニトリルで洗浄した。基板上の酸化チタン膜は吸着されたルテニウム色素により深紅色となった。   After standing, the titanium oxide electrode was taken out and washed with acetonitrile. The titanium oxide film on the substrate became deep red due to the adsorbed ruthenium dye.

対向電極の準備として、対向電極は1mmφの穴が2ヶ所存在する導電性ガラス基板の導電膜面側に、白金を100nmの厚さでスパッタリングしたものを用いた。   As a preparation of the counter electrode, a counter electrode was used in which platinum was sputtered to a thickness of 100 nm on the conductive film side of a conductive glass substrate having two 1 mmφ holes.

電解液として、1,1'-スピロビピロリジニウムよう化物0.6mol/l・4-tert-ブチルピリジン0.5mol/l・よう化リチウム0.1mol/l・よう素0.05mol/lの割合でアセトニトリルに溶解し試験溶液とした。   1,1'-spirobipyrrolidinium iodide 0.6 mol / l, 4-tert-butylpyridine 0.5 mol / l, lithium iodide 0.1 mol / l, iodine 0.05 mol / l as the electrolyte To give a test solution.

太陽電池の作製及び評価
上記の両電極および電解液を用いて、下記の要領で太陽電池サンプルの作製および評価を行った。
Production and Evaluation of Solar Cell A solar cell sample was produced and evaluated in the following manner using both the electrodes and the electrolytic solution.

作用電極である色素結合電極(酸化チタン電極)と対向電極を張り合わせるスペーサーとして、三井デュポンポリケミカル社製ハイミラン(厚さ50μm)を使用した。なお、このスペーサーは、作用電極と張り合わせたときに、色素の吸着した酸化チタン膜と重なり合う中央部分が刳り貫くかれており、この刳り貫かれた空間部分に電解液が貯蔵できるようになっている。これを用いて、作用電極の色素の吸着した酸化チタン膜側と対向電極の白金をスパッタリングした側を張り合わせた。   High Milan (thickness 50 μm) manufactured by Mitsui DuPont Polychemical Co., Ltd. was used as a spacer for bonding the dye-bonded electrode (titanium oxide electrode) as the working electrode and the counter electrode. In addition, when this spacer is bonded to the working electrode, a central portion overlapping with the dye-adsorbed titanium oxide film is perforated, and the electrolyte can be stored in the perforated space portion. . Using this, the titanium oxide film side of the working electrode adsorbed with the dye and the platinum-sputtered side of the counter electrode were bonded together.

その後、対向電極に予め形成させておいた2つの穴のうち1方の穴から、電解液を導入した。電解液が電池内部に導入されるように充分な時間放置した。その後、対向電極の裏面側から封止板として1枚のハイミランと1枚のカバーガラスを順次積層して2つの穴を塞ぎ、電解液を封止した。   Thereafter, an electrolytic solution was introduced from one of the two holes previously formed in the counter electrode. It was left for a sufficient time so that the electrolyte was introduced into the battery. Thereafter, one Hi-Millan and one cover glass were sequentially laminated as a sealing plate from the back side of the counter electrode to close the two holes, and the electrolyte was sealed.

以上のようにして作成した色素増感型太陽電池に対し、ソーラーシュミレーターで照射強度100mW/cm2の光を照射して、光電変換効率をポテンシオスタットを用い測定した結果を表1に示す。 Table 1 shows the results obtained by irradiating the dye-sensitized solar cell produced as described above with light having an irradiation intensity of 100 mW / cm 2 using a solar simulator and measuring the photoelectric conversion efficiency using a potentiostat.

実施例2
実施例1において1,1'-スピロビピロリジニウムよう化物の濃度を1.5mol/lにする以外は実施例1と同様にして実施例2の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 2
A dye-sensitized solar cell of Example 2 was prepared in the same manner as in Example 1 except that the concentration of 1,1′-spirobipyrrolidinium iodide was changed to 1.5 mol / l in Example 1. Measurements were made. The results are shown in Table 1.

実施例3
実施例1において1,1'-スピロビピロリジニウムよう化物の濃度を4.0mol/lにする以外は実施例1と同様にして実施例3の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 3
A dye-sensitized solar cell of Example 3 was prepared in the same manner as in Example 1 except that the concentration of 1,1′-spirobipyrrolidinium iodide was 4.0 mol / l in Example 1. Measurements were made. The results are shown in Table 1.

実施例4
実施例1において1,1'-スピロビピロリジニウムよう化物の濃度を0.1mol/lにする以外は実施例1と同様にして実施例4の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 4
A dye-sensitized solar cell of Example 4 was prepared in the same manner as in Example 1 except that the concentration of 1,1′-spirobipyrrolidinium iodide in Example 1 was 0.1 mol / l. Measurements were made. The results are shown in Table 1.

実施例5
実施例1において1,1'-スピロビピロリジニウムよう化物の濃度を0.3mol/lにする以外は実施例1と同様にして実施例5の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 5
A dye-sensitized solar cell of Example 5 was prepared in the same manner as in Example 1 except that the concentration of 1,1′-spirobipyrrolidinium iodide was 0.3 mol / l in Example 1, and the same Measurements were made. The results are shown in Table 1.

実施例6
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりに1,1'-スピロビピペリジニウムよう化物を用いる以外は実施例1と同様にして実施例6の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 6
The dye-sensitized dye of Example 6 was used in the same manner as in Example 1 except that 1,1'-spirobipiperidinium iodide was used instead of 1,1'-spirobipyrrolidinium iodide in Example 1. A solar cell was prepared and the same measurement was performed. The results are shown in Table 1.

実施例7
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりに1,1'-スピロビアゼチジニウムよう化物を用いる以外は実施例1と同様にして実施例7の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 7
The dye-sensitized dye of Example 7 was used in the same manner as in Example 1 except that 1,1'-spirobiazetidinium iodide was used instead of 1,1'-spirobipyrrolidinium iodide in Example 1. A solar cell was prepared and the same measurement was performed. The results are shown in Table 1.

実施例8
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりにスピロ[ピペリジン-1,1'-ピロリジニウム]よう化物を用いる以外は実施例1と同様にして実施例8の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 8
The dye sensitization of Example 8 was carried out in the same manner as in Example 1 except that spiro [piperidine-1,1'-pyrrolidinium] iodide was used instead of 1,1'-spirobipyrrolidinium iodide in Example 1. Type solar cell was prepared and the same measurement was performed. The results are shown in Table 1.

実施例9
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりにスピロ[アゼチジン-1,1'-ピペリジン]よう化物を用いる以外は実施例1と同様にして実施例9の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 9
The dye sensitization of Example 9 was carried out in the same manner as in Example 1 except that spiro [azetidine-1,1'-piperidine] iodide was used instead of 1,1'-spirobipyrrolidinium iodide in Example 1. Type solar cell was prepared and the same measurement was performed. The results are shown in Table 1.

実施例10
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりにスピロ[アジリジン-1,1'-ピペリジン]よう化物を用いる以外は実施例1と同様にして実施例10の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 10
The dye sensitization of Example 10 was performed in the same manner as in Example 1 except that spiro [aziridine-1,1′-piperidine] iodide was used in place of 1,1′-spirobipyrrolidinium iodide in Example 1. Type solar cell was prepared and the same measurement was performed. The results are shown in Table 1.

実施例11
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりにスピロ[アゼチジン-1,1'-ピロリジン]よう化物を用いる以外は実施例1と同様にして実施例11の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 11
The dye sensitization of Example 11 was performed in the same manner as in Example 1 except that spiro [azetidine-1,1′-pyrrolidine] iodide was used instead of 1,1′-spirobipyrrolidinium iodide in Example 1. Type solar cell was prepared and the same measurement was performed. The results are shown in Table 1.

実施例12
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりにスピロ[アジリジン-1,1'-ピロリジン]よう化物を用いる以外は実施例1と同様にして実施例12の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 12
The dye sensitization of Example 12 was performed in the same manner as in Example 1 except that spiro [aziridine-1,1′-pyrrolidine] iodide was used in place of 1,1′-spirobipyrrolidinium iodide in Example 1. Type solar cell was prepared and the same measurement was performed. The results are shown in Table 1.

実施例13
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりにスピロ[アゼチン-1,1'-ピロリジン]よう化物を用いる以外は実施例1と同様にして実施例13の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 13
The dye sensitization of Example 13 was performed in the same manner as in Example 1 except that spiro [azetin-1,1′-pyrrolidine] iodide was used instead of 1,1′-spirobipyrrolidinium iodide in Example 1. Type solar cell was prepared and the same measurement was performed. The results are shown in Table 1.

実施例14
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりにスピロ[3-メチルピペリジン-1,1'-ピロリジニウム]よう化物を用いる以外は実施例1と同様にして実施例14の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 14
In Example 1, except for using spiro [3-methylpiperidine-1,1′-pyrrolidinium] iodide instead of 1,1′-spirobipyrrolidinium iodide, Example 14 A dye-sensitized solar cell was prepared and subjected to the same measurement. The results are shown in Table 1.

実施例15
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりにスピロ[3-メチルピペリジン-1,1'-(3-エチルピロリジニウム)]よう化物を用いる以外は実施例1と同様にして実施例15の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 15
Example 1 is different from Example 1 except that spiro [3-methylpiperidine-1,1 ′-(3-ethylpyrrolidinium)] iodide is used in place of 1,1′-spirobipyrrolidinium iodide. Similarly, the dye-sensitized solar cell of Example 15 was prepared and subjected to the same measurement. The results are shown in Table 1.

実施例16
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりにスピロ[3-アミノピペリジン-1,1'-ピロリジニウム]よう化物を用いる以外は実施例1と同様にして実施例16の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 16
In Example 1, except that spiro [3-aminopiperidine-1,1′-pyrrolidinium] iodide is used instead of 1,1′-spirobipyrrolidinium iodide, the same procedure as in Example 1 is carried out. A dye-sensitized solar cell was prepared and subjected to the same measurement. The results are shown in Table 1.

実施例17
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりにスピロ[3-カルボキシルピペリジン-1,1'-ピロリジニウム]よう化物を用いる以外は実施例1と同様にして実施例17の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 17
In Example 1, except for using spiro [3-carboxylpiperidine-1,1′-pyrrolidinium] iodide instead of 1,1′-spirobipyrrolidinium iodide, Example 17 A dye-sensitized solar cell was prepared and subjected to the same measurement. The results are shown in Table 1.

実施例18
実施例1においてアセトニトリルの代わりにプロピレンカーボネートを用いる以外は実施例1と同様にして実施例18の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 18
A dye-sensitized solar cell of Example 18 was prepared in the same manner as in Example 1 except that propylene carbonate was used instead of acetonitrile in Example 1, and the same measurement was performed. The results are shown in Table 1.

実施例19
実施例1においてアセトニトリルの代わりに3-メトキシプロピオニトリルを用いる以外は実施例1と同様にして実施例19の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 19
A dye-sensitized solar cell of Example 19 was made in the same manner as in Example 1 except that 3-methoxypropionitrile was used instead of acetonitrile in Example 1, and the same measurement was performed. The results are shown in Table 1.

実施例20
実施例1においてアセトニトリルの代わりにγ-ブチロラクトンを用いる以外は実施例1と同様にして実施例20の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 20
A dye-sensitized solar cell of Example 20 was made in the same manner as in Example 1 except that γ-butyrolactone was used instead of acetonitrile in Example 1, and the same measurement was performed. The results are shown in Table 1.

実施例21
実施例1においてアセトニトリルの代わりにホウフッ化エチルメチルイミダゾリウム(EMI-BF)を用いる以外は実施例1と同様にして実施例21の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 21
A dye-sensitized solar cell of Example 21 was prepared in the same manner as in Example 1 except that ethyl borofluoride (EMI-BF) was used instead of acetonitrile in Example 1, and the same measurement was performed. . The results are shown in Table 1.

実施例22
実施例1においてアセトニトリルの代わりにヘキシルトリメチルアンモニウムトリフルオロメタンスルホニルイミド(HTMA-TFSI)を用いる以外は実施例1と同様にして実施例22の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 22
A dye-sensitized solar cell of Example 22 was prepared in the same manner as in Example 1 except that hexyltrimethylammonium trifluoromethanesulfonylimide (HTMA-TFSI) was used instead of acetonitrile in Example 1, and the same measurement was performed. It was. The results are shown in Table 1.

実施例23
実施例1においてアセトニトリルの代わりにアセトニトリル・3-メトキシプロピオニトリルを容量比1:1にした溶液を用いる以外は実施例1と同様にして実施例23の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Example 23
A dye-sensitized solar cell of Example 23 was prepared in the same manner as in Example 1 except that a solution having a 1: 1 volume ratio of acetonitrile and 3-methoxypropionitrile was used instead of acetonitrile in Example 1, Similar measurements were made. The results are shown in Table 1.

比較例1
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりに1,2-ジメチル-3-プロピルイミダゾリウムよう化物を用いる以外は実施例1と同様にして比較例1の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Comparative Example 1
The dye sensitization of Comparative Example 1 was performed in the same manner as in Example 1 except that 1,2-dimethyl-3-propylimidazolium iodide was used in place of 1,1'-spirobipyrrolidinium iodide in Example 1. Type solar cell was prepared and the same measurement was performed. The results are shown in Table 1.

比較例2
実施例1において1,1'-スピロビピロリジニウムよう化物の代わりにヘキシルトリメチルアンモニウムよう化物を用いる以外は実施例1と同様にして比較例2の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Comparative Example 2
A dye-sensitized solar cell of Comparative Example 2 was prepared in the same manner as in Example 1 except that hexyltrimethylammonium iodide was used in place of 1,1′-spirobipyrrolidinium iodide in Example 1, and Was measured. The results are shown in Table 1.

比較例3
比較例1においてアセトニトリルの代わりにプロピレンカーボネートを用いる以外は比較例1と同様にして比較例3の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Comparative Example 3
A dye-sensitized solar cell of Comparative Example 3 was prepared in the same manner as in Comparative Example 1 except that propylene carbonate was used instead of acetonitrile in Comparative Example 1, and the same measurement was performed. The results are shown in Table 1.

比較例4
比較例1においてアセトニトリルの代わりに3-メトキシプロピオニトリルを用いる以外は比較例1と同様にして比較例4の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Comparative Example 4
A dye-sensitized solar cell of Comparative Example 4 was prepared in the same manner as in Comparative Example 1 except that 3-methoxypropionitrile was used instead of acetonitrile in Comparative Example 1, and the same measurement was performed. The results are shown in Table 1.

比較例5
比較例1においてアセトニトリルの代わりにγ-ブチロラクトンを用いる以外は比較例1と同様にして比較例5の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Comparative Example 5
A dye-sensitized solar cell of Comparative Example 5 was prepared in the same manner as in Comparative Example 1 except that γ-butyrolactone was used instead of acetonitrile in Comparative Example 1, and the same measurement was performed. The results are shown in Table 1.

比較例6
比較例1においてアセトニトリルの代わりにホウフッ化エチルメチルイミダゾリウム(EMI-BF)を用いる以外は比較例1と同様にして比較例6の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Comparative Example 6
A dye-sensitized solar cell of Comparative Example 6 was prepared in the same manner as in Comparative Example 1 except that ethyl borofluoride (EMI-BF) was used instead of acetonitrile in Comparative Example 1, and the same measurement was performed. . The results are shown in Table 1.

比較例7
比較例1においてアセトニトリルの代わりにヘキシルトリメチルアンモニウムトリフルオロメタンスルホニルイミド(HTMA-TFSI)を用いる以外は比較例1と同様にして比較例7の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Comparative Example 7
A dye-sensitized solar cell of Comparative Example 7 was prepared in the same manner as in Comparative Example 1 except that hexyltrimethylammonium trifluoromethanesulfonylimide (HTMA-TFSI) was used instead of acetonitrile in Comparative Example 1, and the same measurement was performed. It was. The results are shown in Table 1.

比較例8
比較例1においてアセトニトリルの代わりにアセトニトリル・3-メトキシプロピオニトリルを容量比1:1にした溶液を用いる以外は比較例1と同様にして比較例8の色素増感型太陽電池を作成し、同様の測定を行なった。この結果を表1に示す。
Comparative Example 8
A dye-sensitized solar cell of Comparative Example 8 was prepared in the same manner as Comparative Example 1 except that a solution in which acetonitrile and 3-methoxypropionitrile were used in a volume ratio of 1: 1 instead of acetonitrile in Comparative Example 1 was prepared. Similar measurements were made. The results are shown in Table 1.

Figure 0004676719
Figure 0004676719

Claims (8)

式(1)で表される4級窒素原子をスピロ原子に持つ構造を有する化合物(A)と、その対イオンであるよう素イオンとからなる質を含有することを特徴とする色素増感型太陽電池用非水電解液。
Figure 0004676719
(式中、ZとZ'は、相互に独立して、アミノ基、ニトロ基、シアノ基、カルボキシル基、アルデヒド基若しくはハロゲンで置換されていてもよい炭素数2〜5のアルキレン基、アリーレン基、又はアルケニレン基を表す。)
Compounds having a structure having a quaternary nitrogen atom of formula (1) spiro atom (A) and a dye-sensitized, characterized in that it contains a solute consisting of iodine ion to be the the counterion Type non-aqueous electrolyte for solar cell.
Figure 0004676719
(Wherein, Z and Z ', independently of one another, amino group, nitro group, cyano group, carboxyl group, aldehyde group or halogen which may be substituted alkylene group having 2 to 5 carbon atoms, an arylene A group or an alkenylene group.)
化合物(A)が、式(2)で示される(式中、m、nはそれぞれ独立して2〜5である)化合物である請求項1に記載の色素増感型太陽電池用非水電解液。
Figure 0004676719
The non-aqueous electrolysis for dye-sensitized solar cell according to claim 1, wherein the compound (A) is a compound represented by the formula (2) (wherein m and n are each independently 2 to 5). liquid.
Figure 0004676719
化合物(A)が、ピペリジニウム環、ピロリジニウム環、アゼチジニウム環又はアジリジニウム環である請求項1又は2に記載の色素増感型太陽電池用非水電解液。   The nonaqueous electrolytic solution for a dye-sensitized solar cell according to claim 1 or 2, wherein the compound (A) is a piperidinium ring, a pyrrolidinium ring, an azetidinium ring, or an aziridinium ring. 状カーボネート類、エステル類、ニトリル類、アルコール類、エーテル類、又はアミド類である溶媒を含有する請求項1〜のいずれかに記載の色素増感型太陽電池用非水電解液。 Ring carbonates, esters, nitriles, alcohols, ethers, or a dye-sensitized solar cell for a non-aqueous electrolyte solution according to any one of claims 1 to 3 containing solvent is a amides. イオン性液体である溶媒を含有する請求項1〜3のいずれかに記載の色素増感型太陽電池用非水電解液。 The nonaqueous electrolytic solution for a dye-sensitized solar cell according to any one of claims 1 to 3, comprising a solvent that is an ionic liquid. 化合物(A)の濃度が0.1〜4モル/リットルある請求項1〜のいずれかに記載の色素増感型太陽電池用非水電解液。 The nonaqueous electrolytic solution for a dye-sensitized solar cell according to any one of claims 1 to 5 , wherein the concentration of the compound (A) is 0.1 to 4 mol / liter. よう素と非水溶媒およびまたはイオン性液体を含有する請求項1〜のいずれか記載の色素増感型太陽電池用非水電解液。 The nonaqueous electrolytic solution for a dye-sensitized solar cell according to any one of claims 1 to 6 , comprising iodine, a nonaqueous solvent and / or an ionic liquid. 請求項1〜いずれか記載の色素増感型太陽電池用非水電解液を用いる色素増感型太陽電池。 Claim 1-7 dye-sensitized solar cell using a dye-sensitized solar cell for a non-aqueous electrolyte solution according to any one.
JP2004167510A 2004-06-04 2004-06-04 Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same Expired - Lifetime JP4676719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004167510A JP4676719B2 (en) 2004-06-04 2004-06-04 Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004167510A JP4676719B2 (en) 2004-06-04 2004-06-04 Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same

Publications (2)

Publication Number Publication Date
JP2005347176A JP2005347176A (en) 2005-12-15
JP4676719B2 true JP4676719B2 (en) 2011-04-27

Family

ID=35499352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004167510A Expired - Lifetime JP4676719B2 (en) 2004-06-04 2004-06-04 Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same

Country Status (1)

Country Link
JP (1) JP4676719B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851623B2 (en) * 2006-11-02 2010-12-14 Astrazeneca Ab Chemical process
KR20080079894A (en) * 2007-02-28 2008-09-02 삼성에스디아이 주식회사 Dye-sensitized solar cell and preparing method thereof
US8088917B2 (en) * 2007-06-01 2012-01-03 Invista North America S.A R.L. Ionic liquids
JP5189869B2 (en) * 2008-03-21 2013-04-24 株式会社豊田中央研究所 Electrolytic solution and dye-sensitized solar cell
JP5189870B2 (en) * 2008-03-21 2013-04-24 株式会社豊田中央研究所 Electrolytic solution and dye-sensitized solar cell
JP2011100777A (en) * 2009-11-04 2011-05-19 Sanyo Chem Ind Ltd Electrolyte and electrochemical element using the same
JP5679541B2 (en) 2010-01-26 2015-03-04 株式会社デルタツーリング Biological signal detection device
KR101781062B1 (en) 2010-01-28 2017-09-25 카릿토 홀딩스 가부시키가이샤 Electrolyte solution for dye sensitized solar cell, and dye sensitized solar cell using same, method for producing a dye sensitized solar cell, and method for improving a photoelectric conversion efficiency of an electrolyte solution for a dye sensitized solar cell
JP5701633B2 (en) * 2011-02-07 2015-04-15 カーリットホールディングス株式会社 Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same
JP2014088361A (en) * 2012-04-27 2014-05-15 Semiconductor Energy Lab Co Ltd Cyclic quaternary ammonium salt, nonaqueous solvent, nonaqueous electrolyte, and power storage device
JP6370449B2 (en) * 2012-04-27 2018-08-08 株式会社半導体エネルギー研究所 Non-aqueous solvent, power storage device
CN106117217B (en) * 2016-06-08 2018-07-10 南京远淑医药科技有限公司 A kind of preparation method of fluozirconate
CN115117254A (en) * 2022-06-13 2022-09-27 华侨大学 Modification method of perovskite solar cell, efficient and stable perovskite solar cell and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175667A (en) * 2002-11-22 2004-06-24 Tokuyama Corp Onium salt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175667A (en) * 2002-11-22 2004-06-24 Tokuyama Corp Onium salt

Also Published As

Publication number Publication date
JP2005347176A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
EP1984968B1 (en) Ionic liquid electrolyte
Tao et al. High-efficiency and stable quasi-solid-state dye-sensitized solar cell based on low molecular mass organogelator electrolyte
EP2175516A1 (en) Coloring matter-sensitized photoelectric conversion element, process for producing the coloring matter-sensitized photoelectric conversion element, electronic equipment, semiconductor electrode, and process for rpoducing the semiconductor electrode
EP2363869A2 (en) Photoelectric conversion element and method of manufacturing the same, and electronic apparatus
KR101231935B1 (en) Electrolyte composition for photoelectric converter and photoelectric converter using same
JP4635473B2 (en) Method for manufacturing photoelectric conversion element and method for manufacturing semiconductor electrode
US20080210296A1 (en) Dye-Sensitized Photovoltaic Device, Method for Making the Same, Electronic Device, Method for Making the Same, and Electronic Apparatus
JP4676719B2 (en) Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same
JP2004214129A (en) Photoelectric conversion element, its manufacturing method, electronic device, and its manufacturing method
JP5590026B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND METHOD FOR MANUFACTURING THE SAME
KR20150090224A (en) Cobaltcomplex salts
JP2008546140A (en) Solid electrolyte containing liquid crystal substance and dye-sensitive solar cell element using the same
JP3462115B2 (en) Non-aqueous electrolyte for dye-sensitized solar cell and solar cell using the same
JP5350851B2 (en) Composition for photoelectric conversion element and photoelectric conversion element using the same
EP2833471B1 (en) Dye-sensitized solar cell and method of manufacturing same
KR101598687B1 (en) A novel quasi-solid state dye-sensitized solar cell fabricated using a multifunctional network polymer membrane electrolyte
JP5439869B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND METHOD FOR MANUFACTURING THE SAME
JP2007200714A (en) Dye-sensitized solar cell and its manufacturing method
JP2005116301A (en) Photoelectric conversion element, its manufacturing method, electronic equipment, its manufacturing method, electrode, and its manufacturing method
JP2013016360A (en) Photoelectric conversion element
JP2009081074A (en) Dye-sensitized photoelectric transfer element, electrolyte composition, additive for electrolyte, and electronic equipment
JP4963751B2 (en) Electrolyte
WANG et al. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte
WO2012115094A1 (en) Photoelectric conversion element
WO2005104291A1 (en) Electrolyte solution for dye sensitized solar cell, oxide semiconductor electrode for dye sensitized solar cell, and dye sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4676719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250