WO2012115094A1 - Photoelectric conversion element - Google Patents

Photoelectric conversion element Download PDF

Info

Publication number
WO2012115094A1
WO2012115094A1 PCT/JP2012/054105 JP2012054105W WO2012115094A1 WO 2012115094 A1 WO2012115094 A1 WO 2012115094A1 JP 2012054105 W JP2012054105 W JP 2012054105W WO 2012115094 A1 WO2012115094 A1 WO 2012115094A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
general formula
conversion element
water
nitroxyl radical
Prior art date
Application number
PCT/JP2012/054105
Other languages
French (fr)
Japanese (ja)
Inventor
中村 新
前田 勝美
中原 謙太郎
輝昌 下山
須黒 雅博
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013501065A priority Critical patent/JPWO2012115094A1/en
Publication of WO2012115094A1 publication Critical patent/WO2012115094A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2018Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte characterised by the ionic charge transport species, e.g. redox shuttles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element that can be used for a dye-sensitized solar cell, an optical sensor, and the like.
  • a dye-sensitized solar cell was developed by Gretzel et al. Of Lausanne University of Technology in Switzerland in 1991, and is generally a photoelectric conversion layer made of a semiconductor in which a dye is adsorbed on a conductive substrate. And a counter electrode made of a conductive base material provided opposite to the semiconductor electrode, and an electrolyte layer (charge transport layer) held between the semiconductor electrode and the counter electrode. .
  • Photoelectric conversion elements formed from a semiconductor electrode having a semiconductor layer adsorbed with a dye, an electrolyte layer, a counter electrode, and the like are expected to be applied to energy devices such as dye-sensitized solar cells, optical sensors, and the like.
  • dye-sensitized solar cells are attracting wide attention because they exhibit high conversion efficiency among organic solar cells.
  • the semiconductor layer made of a photoelectric conversion material used in the dye-sensitized solar cell a semiconductor layer in which a spectral sensitizing dye having absorption in the visible light region is adsorbed on the semiconductor surface is used.
  • the electrolyte layer has been formed by injecting an electrolytic solution in which iodine / iodide ions are dissolved in an organic solvent between a semiconductor electrode and a counter electrode.
  • the composition of the electrolytic solution may change due to volatilization of the solvent, which may cause a problem in long-term stability.
  • the manufacturing process in an electrolyte containing an organic solvent, the manufacturing process must be performed in a non-aqueous environment, preferably in a dehydrated state. Therefore, the manufacturing process becomes complicated and the manufacturing cost required for environmental maintenance increases. There was a problem.
  • the organic solvent leaks from the dye-sensitized solar cell, there is a problem that may cause environmental pollution due to volatilization of the organic solvent, and there is a possibility of further ignition or explosion.
  • Patent Documents 1 and 2 propose an electrolyte containing no organic solvent, specifically, an electrolytic solution containing lithium iodide, iodine and water. By using this, an electromotive force of about 0.7 V is proposed. Is obtained. However, when the solvent is changed from organic to aqueous, the output tends to be low.
  • Non-Patent Document 1 proposes an electrolytic solution in which 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) radical is substituted for iodine / iodide ions.
  • TEMPO 2,2,6,6-tetramethylpiperidine-N-oxyl
  • NOBF 4 nitrosonium tetrafluoroborate
  • the present invention has been made in view of the above points. Instead of using an electrolyte in which iodide ions are dissolved in an organic solvent, high output can be obtained by using an electrolyte containing water and a cyclic nitroxyl radical compound at the same time.
  • An object of the present invention is to provide a photoelectric conversion element having a possible aqueous electrolyte.
  • the photoelectric conversion element according to the present invention for solving the above problems is A semiconductor electrode comprising a photosensitizer and a semiconductor layer; A counter electrode; An electrolyte layer provided between the semiconductor electrode and the counter electrode; The electrolyte layer contains water and at least two kinds of cyclic nitroxyl radical compounds having different affinity for water at the same time.
  • a photoelectric conversion element having a semiconductor layer electrode having a photosensitizer and a semiconductor layer, a counter electrode, and an electrolyte layer that performs charge transport between the two, as an electrolyte
  • water is used as a solvent.
  • FIG. 1 is a schematic cross-sectional view showing a basic structure of a photoelectric conversion element according to an embodiment of the present invention.
  • 7 is an IV curve of the photoelectric conversion element obtained in Example 6.
  • the photoelectric conversion element of the present invention comprises a semiconductor electrode, a counter electrode, and an electrolyte layer held between both electrodes.
  • a dye-sensitized photoelectric conversion element provided with the counter electrode which consists of a base material, and the electrolyte layer hold
  • a semiconductor electrode consists of a conductive substrate and the semiconductor layer formed on it, for example.
  • the semiconductor layer has a structure in which a dye functioning as a photosensitizer is adsorbed.
  • the conductive substrate may be a substrate that is conductive, or may be a substrate that is made conductive by forming a conductive layer on the insulating substrate. .
  • the substrate include a glass substrate, a plastic substrate, and a metal plate. Among them, a substrate with high transparency (transparent substrate) is particularly preferable.
  • Type conductive layer formed on the substrate is not particularly limited, for example ITO, FTO, a transparent conductive layer such as SnO 2 is preferred.
  • a method for manufacturing the conductive layer, a film thickness, and the like can be selected as appropriate, but those having a thickness of about 1 nm to 5 ⁇ m can be used.
  • Semiconductor materials constituting the semiconductor layer include known semiconductors such as titanium oxide, zinc oxide, tungsten oxide, barium titanate, strontium titanate, and cadmium sulfide. Two or more kinds of these semiconductor materials can be mixed and used. Among these, titanium oxide is particularly preferable in terms of conversion efficiency, stability, and safety. Examples of such titanium oxide include anatase-type titanium oxide, rutile-type titanium oxide, amorphous titanium oxide, various titanium oxides such as metatitanic acid, orthotitanic acid, and titanium oxide-containing composites. Among these, anatase type titanium oxide is preferable.
  • Examples of the shape of the semiconductor layer include a porous semiconductor layer obtained by sintering semiconductor fine particles, a thin-film semiconductor layer obtained by a sol-gel method, a sputtering method, a spray pyrolysis method, and the like, and other fibers. It can be appropriately selected according to the purpose of use of the photoelectric conversion element such as a semiconductor layer or a semiconductor layer made of needle crystals.
  • the semiconductor layer of the present invention is preferably a semiconductor layer having a large specific surface area, such as a porous semiconductor layer or a needle-like semiconductor layer, from the viewpoint of the amount of dye adsorbed.
  • a porous semiconductor layer formed from semiconductor fine particles is preferable from the viewpoint that the utilization factor of incident light can be adjusted by the particle size of the semiconductor fine particles.
  • the semiconductor layer may be a single layer or a multilayer.
  • the porous multilayer semiconductor layer may be composed of semiconductor fine particle layers having different average particle diameters. For example, by making the average particle size of the semiconductor fine particles constituting the semiconductor layer closer to the light incident side (first semiconductor layer) smaller than that of the farther semiconductor layer (second semiconductor layer), the first semiconductor layer A large amount of light is absorbed, and the light that has passed through the first semiconductor layer is scattered by the second semiconductor layer, returned to the first semiconductor layer, and absorbed by the first semiconductor layer, thereby improving the overall light absorption rate. be able to.
  • the film thickness of the semiconductor layer is not particularly limited, but is preferably about 0.5 to 45 ⁇ m from the viewpoints of permeability and conversion efficiency.
  • the specific surface area of the semiconductor layer is preferably 10 to 200 m 2 / g in order to adsorb a large amount of dye.
  • the porosity is preferably 40 to 80% for adsorbing the dye and for carrying out charge transport by sufficiently diffusing ions in the electrolyte. Note that the porosity means the ratio of the volume occupied by the pores in the semiconductor layer in% in the volume of the semiconductor layer.
  • the porous semiconductor layer is prepared, for example, by adding a semiconductor fine particle together with an organic compound such as a polymer and a dispersing agent to a dispersion medium such as an organic solvent or water, and applying the suspension onto a conductive substrate. And it can form by drying and baking this.
  • the organic compound burns during firing, and a gap can be secured in the porous semiconductor layer.
  • the porosity can be changed by controlling the molecular weight and the addition amount of the organic compound combusted during firing.
  • the type and amount of the organic compound can be appropriately selected and adjusted depending on the state of the fine particles used, the total weight of the entire suspension, and the like.
  • the proportion of the semiconductor fine particles is 10 wt% or more with respect to the total weight of the whole suspension, the strength of the produced film can be sufficiently increased, and the proportion of the semiconductor fine particles is the total weight of the whole suspension. If the content is 40 wt% or less, a porous semiconductor layer having a large porosity can be obtained. Therefore, the ratio of the semiconductor fine particles is preferably 10 to 40 wt% with respect to the total weight of the entire suspension.
  • Examples of the semiconductor fine particles include single or compound semiconductor particles having an appropriate average particle size, for example, an average particle size of about 1 nm to 500 nm. Among them, those having an average particle diameter of about 1 to 50 nm are preferable from the viewpoint of increasing the specific surface area. Further, from the viewpoint of increasing the utilization factor of incident light, semiconductor particles having a large average particle diameter of about 200 to 400 nm may be added.
  • Examples of the method for producing the semiconductor fine particles include a sol-gel method such as a hydrothermal synthesis method, a sulfuric acid method, and a chlorine method. Any method can be used as long as it can produce the desired fine particles. From the viewpoint of crystallinity, it is preferably produced by a hydrothermal synthesis method.
  • Any organic compound can be used as long as it dissolves in the suspension and can be removed by burning when baked.
  • examples thereof include polymers such as polyethylene glycol and ethyl cellulose.
  • examples of the dispersion medium for the suspension include glyme solvents such as ethylene glycol monomethyl ether, alcohols such as isopropyl alcohol, mixed solvents such as isopropyl alcohol / toluene, and water.
  • Examples of the method for applying the suspension include known methods such as a doctor blade method, a squeegee method, a spin coating method, and a screen printing method. Thereafter, the coating film is dried and fired.
  • the drying and firing conditions may be about 10 seconds to 12 hours in the range of about 50 to 800 ° C. in the air or in an inert gas atmosphere. This drying and baking can be performed once at a single temperature or twice or more by changing the temperature.
  • porous semiconductor layer In addition, although the formation method of the porous semiconductor layer was explained in full detail here, another kind of semiconductor layer can also be formed using various well-known methods.
  • a dye that functions as a photosensitizer
  • a dye can be used as a photosensitizer.
  • a dye functioning as a photosensitizer (hereinafter simply referred to as “dye”) has absorption in various visible light regions and infrared light regions, and is strongly adsorbed to the semiconductor layer.
  • Those having an interlock group such as a COOH group, an alkoxy group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group, and a phosphonyl group in the dye molecule are preferable. Of these, those having a COOH group are particularly preferred.
  • the interlock group provides an electrical bond that facilitates electron transfer between the excited dye and the semiconductor conduction band.
  • these dyes containing an interlock group include ruthenium metal complex dyes (ruthenium bipyridine metal complex dyes, ruthenium terpyridine metal complex dyes, ruthenium quarterpyridine metal complex dyes, etc.), azo dyes, and quinone dyes.
  • Quinone imine dyes quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, phthalocyanine dyes, perylene dyes, indigo dyes, naphthalocyanine dyes Examples thereof include dyes and coumarin dyes. Of these, organic dyes are preferred.
  • Examples of the method for adsorbing the dye on the semiconductor layer include a method of immersing the semiconductor layer formed on the substrate in a solution in which the dye is dissolved.
  • Solvents used to dissolve the dye include alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, nitrogen compounds such as acetonitrile, halogenated aliphatic hydrocarbons such as chloroform, and hexane. Examples thereof include aliphatic hydrocarbons, aromatic hydrocarbons such as benzene, and esters such as ethyl acetate. These solvents may be used as a mixture of two or more.
  • the dye concentration in the solution can be adjusted as appropriate depending on the type of the dye and the solvent to be used. In order to improve the adsorption function, it is preferable that the concentration is somewhat high.
  • the concentration can be m5 ⁇ 10 ⁇ 5 mol / L or more.
  • the temperature and pressure of the solution and the atmosphere are not particularly limited, and examples include room temperature and atmospheric pressure, and the immersion time is the dye and solvent to be used. It can be appropriately adjusted depending on the kind of the solution, the concentration of the solution, and the like.
  • the immersion may be performed under heating. Thereby, a pigment
  • deoxycholic acid or guanidine is added to the solution in which the dye is dissolved in order to control the dye and its adsorption state, the surface of fine particles such as TiO 2 constituting the porous semiconductor layer, and the like.
  • Organic compounds such as thiocyanate, tert-butylpyridine, ethanol, and the like may be added.
  • semiconductor fine particles so-called quantum dots, can be used instead of a dye.
  • Counter electrode Examples of the counter electrode include those in which a metal catalyst such as platinum or a carbon film is present on a support substrate. In particular, platinum is preferable. These film thicknesses may be any thickness that can exhibit a catalytic function, and are preferably about 1 to 2000 nm.
  • the support substrate include glass, a polymer film, and a metal plate (foil). In particular, in order to reduce the resistance value, the support substrate is preferably a conductive substrate.
  • the counter electrode may be formed on the same substrate as the semiconductor electrode. In this case, two or more electrodes can be formed on the same substrate by forming a conductive layer on the insulating substrate and cutting the conductive layer between the counter electrode and the semiconductor electrode by laser scribing or the like.
  • the electrolyte layer contains water and at least two types of cyclic nitroxyl radical compounds having different affinity for water.
  • the “cyclic nitroxyl radical compound” in the present invention is a compound containing a nitrogen atom constituting a nitroxyl radical ( ⁇ N—O.) As a ring constituent atom.
  • a nitroxyl radical compound having a piperidinoxyl radical ring structure is particularly preferable. Inclusion of at least two types of cyclic nitroxyl radical compounds is not simply an effect of increasing types.
  • nitroxyl radicals having different nitrogen-containing heterocycles act as redox species at different concentrations. Therefore, when there are differences in the properties and characteristics of at least two types of nitroxyl radicals with respect to the solvent (in the case of the present invention, water), it is possible to separate the roles in the solvent, which have been disclosed so far. An effect that is fundamentally different from that of the present invention can be expected.
  • the present invention uses at least two types of nitroxyl radicals having different affinity for water. Due to the difference in affinity for water, the positional relationship of each radical with water is different. That is, radicals with low affinity for water (hereinafter also referred to as hydrophobic radicals) tend to gather near the surface of the water as the electrolyte solvent, and radicals with excellent affinity for water (hereinafter referred to as hydrophilic radicals). (Also called) concentrates relatively inside the electrolyte. Such a difference in location in the electrolyte makes it possible to divide the function of each radical.
  • the electrolyte is present in the pores of the semiconductor layer of the semiconductor electrode, and the surface of the electrolyte is ideally in contact with the dye adsorbed on the semiconductor layer. Therefore, the hydrophobic radical mainly functions to exchange charges from the dye, that is, to deliver electrons to the dye.
  • hydrophilic radicals exist mainly in the electrolyte solution, and carry electrons from the counter electrode to the hydrophobic radical in the electrolyte solution. In this way, by dividing the role of radicals and selecting a suitable radical, the efficiency of the photoelectric conversion element can be improved, and when the solvent becomes water, the problems shown in the background art can be improved and durability is improved. It becomes possible to improve the performance.
  • Hydrophobic radicals are low solubility in water for hydrophilic radicals. Therefore, generally, it is not possible to dissolve more than the limit amount in water. However, when mixed with a hydrophilic radical and dissolved in water, the hydrophobic radical may be dissolved in a larger amount than the limit amount. If this property is utilized, it will result in the increase of the radical seed
  • the present invention uses a difference in affinity for water (a difference between hydrophilicity and hydrophobicity) in an electrolyte using water as a solvent.
  • This basic principle can be extended to utilizing the difference in affinity for the main solvent constituting the electrolyte. Therefore, even if a solvent is an organic solvent, it is guessed that the same effect is exhibited by utilizing the difference in affinity with respect to the organic solvent.
  • the electrolyte is preferably liquid, but may be solid or gel.
  • the solid electrolyte is a solid electrolyte formed of the nitroxyl radical compound.
  • the gel electrolyte is an electrolyte including a network structure formed by a polymer of a nitroxyl radical. There is a possibility that a polymer having a nitroxyl radical can be used even in a crosslinked structure insoluble in an organic solvent or water.
  • the electrolyte layer has water selected from a cyclic nitroxyl radical compound represented by the following general formula (1) and a cyclic nitroxyl radical compound represented by the following general formula (2). It is preferable to have at least two cyclic nitroxyl radicals having different affinity at the same time.
  • A is a divalent group constituting a 5- to 7-membered heterocyclic ring containing nitrogen and may have a hydrophobic substituent.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a methyl group.
  • B is a divalent group constituting a 5- to 7-membered heterocyclic ring containing nitrogen and has a hydrophilic substituent.
  • R 1 , R 2 , R 3 , R 4 may be different from each other, and represents a hydrogen atom or a methyl group.
  • the divalent group represented by A or B is a group constituting a 5- to 7-membered heterocyclic ring containing nitrogen together with the nitrogen atom of the nitroxyl radical, Examples thereof include an alkylene group having 2 to 4 carbon atoms or an alkenylene group. In addition, some of the carbon atoms of the alkylene group may be replaced with oxygen atoms, nitrogen atoms, sulfur atoms, silicon atoms, phosphorus atoms, or boron atoms. Each carbon atom of the alkylene group may have a substituent, and in the general formula (1), it may have a hydrophobic substituent such as an aliphatic group or an aromatic group.
  • the general formula (2) has a hydrophilic substituent.
  • the hydrophilic substituent include a hydroxyl group, an alkoxy group, an aldehyde group, a carboxyl group, an alkoxycarbonyl group, a cyano group, an amino group, a nitro group, and a nitroso group.
  • the affinity for water varies depending on whether the group represented by R 1 to R 4 is a hydrogen atom or a methyl group, and the number thereof.
  • at least one cyclic nitroxyl radical represented by the general formula (1) and at least one cyclic nitroxyl radical represented by the general formula (2) are selected and have an affinity for water. The larger the difference in sex, the better.
  • an oxoammonium salt represented by the following general formula (3) corresponding to the above general formulas (1) and (2) and an oxoammonium represented by the following general formula (4) It is desirable to include one or both of the salts.
  • R 1 , R 2, R 3, R 4 is A in the formula (1), R 1, R 2, R 3, R 4 represent the same meanings as, X is , AlCl 4 ⁇ , Al 2 Cl 7 — and other metal chlorides, fluorine, chlorine, bromine, iodine, BF 4 , PF 6 , CF 3 SO 3, N (SO 2 CF 3 ) 2 , N (SO 2 F) 2 , CF 3 COO, N (C 2 F 5 SO 2 ), or ClO 4. )
  • a 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) radical useful as the general formula (1) has an equilibrium state between a radical state and a cation state as shown in the following formula (5). Show.
  • TEMPO 2,2,6,6-tetramethylpiperidine-N-oxyl
  • the present invention contains at least two kinds of cyclic nitroxyl radicals having different affinity for water in the electrolyte.
  • cyclic nitroxyl radicals having different affinity for water in the electrolyte.
  • hydrophobic radical and one kind of hydrophilic radical are combined, in order for both of them to act as a redox pair, it is necessary to contain a corresponding oxoammonium salt.
  • one corresponding oxoammonium salt may be included.
  • Specific examples of the compounds represented by the general formulas (1) and (2) as the cyclic nitroxyl radical contained in the electrolyte include compounds represented by the following formulas (6) to (12).
  • Examples of the oxoammonium salts represented by the general formulas (3) and (4) include oxoammonium salts corresponding to nitroxyl radicals represented by the following formulas (6) to (12).
  • any liquid electrolyte may be used as long as it contains at least two types of cyclic nitroxyl radicals having different affinity for water.
  • the electrolyte contains water as a solvent.
  • an organic compound can be added to the electrolyte as appropriate.
  • nitrogen-containing compounds such as N-methylpyrrolidone and N, N-dimethylformamide, nitrile compounds such as methoxypropionitrile and acetonitrile, lactone compounds such as ⁇ -butyrolactone and valerolactone, ethylene carbonate , Carbonate compounds such as diethyl carbonate, dimethyl carbonate, propylene carbonate, ethers such as tetrahydrofuran, dioxane, diethyl ether, ethylene glycol dialkyl ether, alcohols such as methanol, ethanol, isopropyl alcohol, and further imidazoles, etc.
  • nitrogen-containing compounds such as N-methylpyrrolidone and N, N-dimethylformamide
  • nitrile compounds such as methoxypropionitrile and acetonitrile
  • lactone compounds such as ⁇ -butyrolactone and valerolactone
  • ethylene carbonate Carbonate compounds such as diethyl carbonate, dimethyl carbonate, prop
  • an ionic liquid that is, a molten salt can be added to the electrolyte as appropriate.
  • the ionic liquid are disclosed in “Inorg. Chem.” 1996, 35, p1168-1178, “Electrochemistry” 2002.2, p130-136, JP-T-9-507334, JP-A-8-259543, and the like.
  • it will not specifically limit if it can generally be used in the well-known battery, solar cell, etc. which have a melting point lower than room temperature (25 degreeC) or higher than room temperature
  • a salt that liquefies at room temperature by dissolving other molten salt or additives other than the molten salt is preferably used.
  • the anions of the molten salt include metal chlorides such as AlCl 4 ⁇ and Al 2 Cl 7 — , PF 6 ⁇ , BF 4 ⁇ , CF 3 SO 3 ⁇ , N (CF 3 SO 2 ) 2 ⁇ , CF 3.
  • Fluorine-containing materials such as COO ⁇ , NO 3 ⁇ , CH 3 COO ⁇ , C 6 H 11 COO ⁇ , CH 3 OSO 3 ⁇ , CH 3 OSO 2 ⁇ , CH 3 SO 3 ⁇ , CH 3 SO 2 ⁇ , (CH Non-fluorine compounds such as 3 O) 2 PO 2 — , chlorine, bromine. And halides such as iodine.
  • Molten salt can be synthesized by methods known in various literatures and publications. Taking a quaternary ammonium salt as an example, a quaternization of an amine is performed using a tertiary amine as an alkylating agent as an alkylating agent as a first step, and an ion exchange from a halide anion to a target anion is performed as a second step. Can be used. Alternatively, there is a method in which a tertiary amine is reacted with an acid having a target anion to obtain the target compound in one step.
  • Solid Electrolyte examples include a polymer electrolyte solidified by infiltrating an organic solvent into a polymer compound, and an electrolyte obtained by solidifying a liquid electrolyte containing a molten salt with fine particles.
  • a polymer compound to be used there are a case where a polymer itself having a nitroxyl radical is used and a case where a polymer other than a nitroxyl radical polymer is used.
  • the polymer compound for solidifying the liquid electrolyte may be any polymer compound that can hold the liquid electrolyte, including a compound having a polyoxyalkylene chain, and gelling or solidifying the electrolyte.
  • the polymer precursor (polymer gelling agent) having a polyoxyalkylene chain is usually used.
  • alkylenes such as trifunctional terminal acryloyl-modified alkylene oxide polymers and tetrafunctional terminal acryloyl-modified alkylene oxide polymers disclosed in JP-A-5-109311 and JP-A-11-176442 Examples include acryloyl-modified polymer compounds having an oxide polymer chain.
  • (B) in addition, it contains compound A having at least one type of isocyanate group and compound B that is reactive with at least one type of isocyanate group, and at least one of compound A and compound B has a polyoxyalkylene chain.
  • compound having a polyoxyalkylene chain a compound having a polymer structure having a molecular weight of 500 to 50,000 is preferably used.
  • the trifunctional or tetrafunctional terminal acryloyl-modified alkylene oxide polymer (i) is, for example, glycerol or trimethylolpropane in the case of trifunctional, diglycerin or pentaerythritol in the case of tetrafunctional.
  • Etc. as starting materials alkylene oxides such as ethylene oxide and propylene oxide are added thereto, and unsaturated organic acids such as acrylic acid and methacrylic acid are further esterified, or acrylic acid chloride and methacrylic acid chloride It is a compound obtained by carrying out dehydrochlorination reaction of acid chlorides, such as.
  • Examples of (B) compound A include aromatic isocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate; aliphatic isocyanates such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate; fats such as isophorone diisocyanate and cyclohexyl diisocyanate.
  • aromatic isocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate
  • aliphatic isocyanates such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate
  • fats such as isophorone diisocyanate and cyclohexyl diisocyanate.
  • examples thereof include cyclic isocyanates, which may be multimers such as dimers and trimers, or modified products. Further, low molecular alcohols and ad
  • Examples of the compound B include compounds having an active hydrogen group such as a carboxyl group, a hydroxyl group, and an amino group. More specifically, examples of the compound having a carboxyl group include hexanoic acid, adipic acid, phthalic acid, and azelaic acid. Carboxylic acids such as: hydroxyl group-containing compounds such as ethylene glycol, diethylene glycol, glycerin, pentaerythritol, sorbitol, sucrose polyols; amino group-containing compounds such as ethylenediamine, tolylenediamine, diphenylmethanediamine, diethylenetriamine, etc. These organic amines are listed. Compound B also includes compounds having at least one active hydrogen group as described above in a molecule and having a polyoxyalkylene chain.
  • Stabilizing additive The cyclic nitroxyl radical of the electrolyte is oxidized and reduced in a radical state and a cation state as shown in the above formula (5). For the purpose of stabilizing the generated cationic state, it is also possible to add a salt to the electrolyte.
  • fluorine-containing substances such as PF 6 ⁇ , BF 4 ⁇ , CF 3 SO 3 ⁇ , N (CF 3 SO 2 ) 2 ⁇ , F (HF) n ⁇ , CF 3 COO ⁇ , NO 3 ⁇ CH 3 COO ⁇ , C 6 H 11 COO ⁇ , CH 3 OSO 3 ⁇ , CH 3 OSO 2 ⁇ , CH 3 SO 3 ⁇ , CH 3 SO 2 ⁇ , (CH 3 O) 2 PO 2 ⁇ , SbCl 6 ⁇ And non-fluorine compounds such as iodine, bromine and the like.
  • the aforementioned molten salt may function as a stabilizing additive.
  • Electrolyte Preparation Method In order to simultaneously cause two kinds of cyclic nitroxyl radicals having different affinity for water according to the present invention in the electrolyte, there is a method of dissolving each cyclic nitroxyl radical in water. For example, there is a method of dissolving the cyclic nitroxyl radicals represented by the above general formulas (1) and (2) in water, respectively.
  • a method in which one kind of cyclic nitroxyl radical and an oxoammonium salt corresponding to a cyclic nitroxyl radical having different affinity for water are dissolved in water.
  • Any of the methods for dissolving the oxoammonium salt represented by the general formula (3) in water can be used.
  • the cyclic nitroxyl radical represented by the general formula (1) is used.
  • a method of dissolving the oxoammonium salt represented by the general formula (4) in water, or the cyclic nitroxyl radical represented by the general formula (2) and the oxoammonium salt represented by the general formula (3) in water This can be realized by using any one of the dissolving methods.
  • FIG. 1 is a schematic cross-sectional view showing the basic structure of a photoelectric conversion element according to an embodiment of the present invention.
  • the solar cell used for a dye-sensitized solar cell is shown as an example, it is not limited to this.
  • the solar battery cell includes a transparent substrate (1) having optical transparency, a transparent conductive film (2) having optical transparency formed on the surface of the transparent substrate (1), and transparent conductive material.
  • a semiconductor electrode (8) comprising a photoelectric conversion layer (3), which is a porous semiconductor layer adsorbing a dye formed on the film (2), and a counter electrode provided at a position facing the semiconductor electrode (8) (9) and an electrolyte layer (4) held between the semiconductor electrode (8) and the counter electrode (9).
  • the counter electrode (9) is composed of a transparent substrate or a support substrate (7) on which a conductive film (6) is formed, and a platinum catalyst layer (5) is formed on the surface of the conductive film (6).
  • the electrolyte layer (4) is a liquid containing water and at least two nitroxyl radicals having different affinity for water, and at least two types of nitroxyl having different affinity for water. It consists of a gel or solid electrolyte impregnated with an electrolyte containing radicals.
  • the photoelectric conversion element having this structure when light such as sunlight is irradiated from the transparent substrate (1) side, the light is transmitted through the transparent substrate (1) and the transparent conductive film (2) to form a photoelectric conversion layer.
  • the dye adsorbed in (3) is irradiated, and the dye absorbs light and is excited. Electrons generated by this excitation move from the photoelectric conversion layer (3) to the transparent conductive film (2).
  • the electrons moved to the transparent conductive film (2) move to the counter electrode (9) through the external circuit, and return to the dye from the counter electrode (9) through the charge transport layer, that is, the electrolyte layer (4). In this way, a current flows and a photoelectric conversion element (solar cell) can be configured.
  • Example 1 A photoelectric conversion element having the structure shown in FIG. 1 was produced as follows. 1. Formation of porous semiconductor layer The semiconductor layer was produced in the following procedures. First, 20 mL of an acetic acid aqueous solution having a concentration of 15 vol% was used as a solvent, and 5 g of a commercially available porous titanium oxide powder (P25, Nippon Aerosil Co., Ltd.) and a surfactant 0.1 mL (polyoxyethylene-p-isooctylphenol (product) Name: “Triton X-100” (manufactured by Sigma Aldrich) and polyethylene glycol 0.3 g (molecular weight 20000) were added, and the mixture was stirred for about 1 hour (once for 10 minutes) to prepare a titanium oxide paste.
  • a commercially available porous titanium oxide powder P25, Nippon Aerosil Co., Ltd.
  • a surfactant 0.1 mL polyoxyethylene-p-isooctylphenol (product) Name:
  • this titanium oxide paste is applied to a glass substrate (6 cm ⁇ 4 cm, sheet resistance: 20 ⁇ / ⁇ ) with ITO as a transparent conductive film (2) so that the film thickness is about 20 ⁇ m by the doctor blade method ( Application area: 3 cm ⁇ 3 cm)
  • This electrode was inserted into an electric furnace and at 450 ° C. in an air atmosphere. To obtain a semiconductor electrode was baked for 30 minutes.
  • TEMPO-OH A compound represented by the above formula (7)
  • TEMPO a compound represented by the above formula (6)
  • the oxoammonium salt is an ionic substance composed of a cation TEMPO + and an anion BF 4 ⁇ . Therefore, in an aqueous solution, since the cation can form an equilibrium state with the radical state, a part of the cation transitions to the radical state. At this time, it is considered that a part of the TEMPO-OH which is a radical simultaneously transitions to a cation.
  • the electrolyte solution was dropped onto the semiconductor layer (photoelectric conversion layer) adsorbing the dye of the semiconductor electrode formed earlier, and further evacuated with a rotary pump for about 10 minutes to sufficiently soak the solution into the semiconductor layer. Then, the counter electrode (9) which equipped the platinum catalyst layer (5) was installed, and it fixed with the jig
  • the photoelectric conversion element was produced similarly.
  • a photoelectric conversion element was produced according to Example 1 except that ethanol was added.
  • a photoelectric conversion element was produced according to Example 1 except that ethanol was added.
  • a photoelectric conversion element was produced according to Example 1 except that ethanol was added.
  • Comparative Example 1 a photoelectric conversion element was prepared according to Example 1 except that only 0.1 M TEMPO was used instead of the liquid electrolyte in which both TEMPO-OH and TEMPO ⁇ BF 4 were dissolved in Example 1. Produced.
  • Comparative Example 2 Photoelectric conversion according to Example 1 except that only 0.1 M TEMPO-OH was used instead of the liquid electrolyte in which both TEMPO-OH and TEMPO ⁇ BF 4 were dissolved in Example 1. An element was produced.
  • Example 3 Comparative Example 3
  • Example 1 was used except that a liquid electrolyte in which both TEMPO and TEMPO ⁇ BF 4 were dissolved was used instead of the liquid electrolyte in which both TEMPO-OH and TEMPO ⁇ BF 4 were dissolved in Example 1.
  • a photoelectric conversion element was produced according to the above.
  • Example 6 As described above, it is difficult to dissolve 0.1 M or more with TEMPO alone, but as shown in Example 6, the amount of dissolution is increased by the coexistence of TEMPO-OH. I understand that. As a result, it can be seen that the closed circuit current, the fill factor, and the conversion efficiency are the highest.
  • the photoelectric conversion element according to the present invention is suitably used as a dye-sensitized solar cell, and can be used not only as a solar cell but also as an optical sensor.
  • This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-35855 for which it applied on February 22, 2011, and takes in those the indications of all here.

Abstract

Thie photoelectric conversion element is provided with a semiconductor electrode containing a semiconductor layer and a photosensitizer (pigment), a counter electrode, and an electrolyte layer provided between the semiconductor electrode and the counter electrode. The electrolyte layer contains water, and at least two types of cyclic nitroxyl radical compounds with different affinities to water.

Description

光電変換素子Photoelectric conversion element
 本発明は色素増感太陽電池や光センサーなどに使用できる光電変換素子に関するものである。 The present invention relates to a photoelectric conversion element that can be used for a dye-sensitized solar cell, an optical sensor, and the like.
 従来、光エネルギーを電気エネルギーに変換する光電変換素子として、種々の太陽電池が提案されている。係る太陽電池の中で色素増感太陽電池は、1991年にスイスのローザンヌ工科大学のグレッツェルらによって開発されたものであり、一般に、導電性基材上に色素を吸着した半導体からなる光電変換層を持つ半導体電極と、該半導体電極に相対向して設けられた導電性基材からなる対極と、これら半導体電極と対極との間に保持された電解質層(電荷輸送層)とを備えてなる。 Conventionally, various solar cells have been proposed as photoelectric conversion elements that convert light energy into electrical energy. Among such solar cells, a dye-sensitized solar cell was developed by Gretzel et al. Of Lausanne University of Technology in Switzerland in 1991, and is generally a photoelectric conversion layer made of a semiconductor in which a dye is adsorbed on a conductive substrate. And a counter electrode made of a conductive base material provided opposite to the semiconductor electrode, and an electrolyte layer (charge transport layer) held between the semiconductor electrode and the counter electrode. .
 色素が吸着された半導体層を有する半導体電極、電解質層、対電極などから形成される光電変換素子は、色素増感太陽電池などのエネルギーデバイスや、光センサーなどへの応用が期待されている。その中でも色素増感太陽電池は、有機系太陽電池の中で高変換効率を示すため、広く注目されている。この色素増感太陽電池で用いられている光電変換材料からなる半導体層には、半導体表面に可視光領域に吸収を持つ分光増感色素を吸着させたものが用いられている。 Photoelectric conversion elements formed from a semiconductor electrode having a semiconductor layer adsorbed with a dye, an electrolyte layer, a counter electrode, and the like are expected to be applied to energy devices such as dye-sensitized solar cells, optical sensors, and the like. Among them, dye-sensitized solar cells are attracting wide attention because they exhibit high conversion efficiency among organic solar cells. As the semiconductor layer made of a photoelectric conversion material used in the dye-sensitized solar cell, a semiconductor layer in which a spectral sensitizing dye having absorption in the visible light region is adsorbed on the semiconductor surface is used.
 従来、上記電解質層は、半導体電極と対極との間に、有機溶媒にヨウ素/ヨウ化物イオンが溶解した電解液を注入することにより形成されていた。このため、溶媒の揮発による電解液の組成の変化が起こり、長期安定性に問題を生じる可能性があった。また、有機溶媒を含む電解質では、非水環境下、好ましくは脱水状態で、製造工程を実施しなければならず、それゆえに、製造工程が煩雑化し、また、環境整備に要する製造コストが増加するという問題があった。加えて、有機溶媒が色素増感太陽電池から液漏れした場合には、有機溶媒の揮発による環境汚染を引き起こし得る問題があり、その上さらに、引火又は爆発するおそれが潜在的にある。 Conventionally, the electrolyte layer has been formed by injecting an electrolytic solution in which iodine / iodide ions are dissolved in an organic solvent between a semiconductor electrode and a counter electrode. For this reason, the composition of the electrolytic solution may change due to volatilization of the solvent, which may cause a problem in long-term stability. In addition, in an electrolyte containing an organic solvent, the manufacturing process must be performed in a non-aqueous environment, preferably in a dehydrated state. Therefore, the manufacturing process becomes complicated and the manufacturing cost required for environmental maintenance increases. There was a problem. In addition, when the organic solvent leaks from the dye-sensitized solar cell, there is a problem that may cause environmental pollution due to volatilization of the organic solvent, and there is a possibility of further ignition or explosion.
 それらの危険性を考えると、電解液を構成する主たる溶媒が有機溶媒ではない水系の電解質の開発が切望されている。そこで、有機溶媒を水に代える発明はこれまでに多く開示されている。特許文献1及び2には、有機溶媒を含まない電解質、具体的には、ヨウ化リチウム、ヨウ素及び水を含む電解液が提案されており、これを用いることで、0.7V程度の起電力が得られることが記載されている。しかし、溶媒を有機系から水系に代えると出力が低くなる傾向にあった。 Considering these dangers, development of an aqueous electrolyte in which the main solvent constituting the electrolytic solution is not an organic solvent is eagerly desired. Thus, many inventions in which the organic solvent is replaced with water have been disclosed so far. Patent Documents 1 and 2 propose an electrolyte containing no organic solvent, specifically, an electrolytic solution containing lithium iodide, iodine and water. By using this, an electromotive force of about 0.7 V is proposed. Is obtained. However, when the solvent is changed from organic to aqueous, the output tends to be low.
 また近年、非特許文献1には、2,2,6,6-テトラメチルピペリジン-N-オキシル(TEMPO)ラジカルをヨウ素/ヨウ化物イオンの代わりとする電解液が提案されている。グレッツェルらはTEMPOラジカルのレドックス反応を用いることを提唱したが、同時に劇物の試薬であるニトロソニウム テトラフルオロボレート(NOBF)を添加しなければ動作しないため、安全に取り扱うことができないという問題があった。特許文献3から特許文献6には、環状ニトロキシルラジカル化合物を電解質に用いる色素増感太陽電池が開示されている。 In recent years, Non-Patent Document 1 proposes an electrolytic solution in which 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) radical is substituted for iodine / iodide ions. Gretzell et al. Proposed the use of the redox reaction of the TEMPO radical, but at the same time the nitrosonium tetrafluoroborate (NOBF 4 ), which is a deleterious reagent, does not work and cannot be handled safely. there were. Patent Documents 3 to 6 disclose dye-sensitized solar cells using a cyclic nitroxyl radical compound as an electrolyte.
特開2003-308889号公報JP 2003-308889 A 特開2003-308890号公報JP 2003-308890 A 特開2009-021212号公報JP 2009-021212 A 特開2009-076369号公報JP 2009-076369 A 特開2009-098225号公報JP 2009-098225 A 特開2010-205704号公報JP 2010-205704 A
 本発明は、以上の点に鑑みてなされたものであり、有機溶媒にヨウ化物イオンが溶解した電解質を用いる代わりに、水と環状ニトロキシルラジカル化合物を同時に含む電解質を用いることで、高出力が可能な水系の電解質を有する光電変換素子を提供することを目的とする。 The present invention has been made in view of the above points. Instead of using an electrolyte in which iodide ions are dissolved in an organic solvent, high output can be obtained by using an electrolyte containing water and a cyclic nitroxyl radical compound at the same time. An object of the present invention is to provide a photoelectric conversion element having a possible aqueous electrolyte.
 上記課題を解決する本発明に係る光電変換素子は、
 光増感剤と半導体層を含む半導体電極と、
 対電極と、
 前記半導体電極と前記対電極との間に設けられた電解質層と、
を含み、前記電解質層中に水と、水に対する親和性が異なる少なくとも2種の環状ニトロキシルラジカル化合物とを同時に含有することを特徴とするものである。
The photoelectric conversion element according to the present invention for solving the above problems is
A semiconductor electrode comprising a photosensitizer and a semiconductor layer;
A counter electrode;
An electrolyte layer provided between the semiconductor electrode and the counter electrode;
The electrolyte layer contains water and at least two kinds of cyclic nitroxyl radical compounds having different affinity for water at the same time.
 本発明によれば、光増感剤と半導体層を有する半導体層電極と、対電極と、両者間の電荷輸送を行う電解質層とを有する光電変換素子において、電解質として、溶媒である水への親和性の異なる少なくとも2種類の環状ニトロキシルラジカルを含有することにより、有機溶媒系の電解質が抱える問題を解決でき、かつ従来の水系電解質に較べて、高効率な光電変換素子を提供できる。 According to the present invention, in a photoelectric conversion element having a semiconductor layer electrode having a photosensitizer and a semiconductor layer, a counter electrode, and an electrolyte layer that performs charge transport between the two, as an electrolyte, water is used as a solvent. By containing at least two types of cyclic nitroxyl radicals having different affinities, the problems of organic solvent electrolytes can be solved, and a highly efficient photoelectric conversion element can be provided as compared with conventional aqueous electrolytes.
本発明の一実施形態に係る光電変換素子の基本構造を示す模式断面図。1 is a schematic cross-sectional view showing a basic structure of a photoelectric conversion element according to an embodiment of the present invention. 実施例6で得られた光電変換素子のI-V曲線。7 is an IV curve of the photoelectric conversion element obtained in Example 6.
 本発明の光電変換素子は、半導体電極と、対極と、両極間に保持された電解質層とを備えてなるものである。好ましくは、導電性基材上に光増感剤(特に色素)を吸着した半導体(例えばn型半導体)からなる光電変換層を持つ半導体電極と、該半導体電極に相対向して設けられた導電性基材からなる対極と、これら半導体電極と対極との間に保持された電解質層とを備えてなる色素増感型光電変換素子である。 The photoelectric conversion element of the present invention comprises a semiconductor electrode, a counter electrode, and an electrolyte layer held between both electrodes. Preferably, a semiconductor electrode having a photoelectric conversion layer made of a semiconductor (for example, an n-type semiconductor) in which a photosensitizer (particularly a dye) is adsorbed on a conductive substrate, and a conductive electrode provided opposite to the semiconductor electrode It is a dye-sensitized photoelectric conversion element provided with the counter electrode which consists of a base material, and the electrolyte layer hold | maintained between these semiconductor electrodes and counter electrodes.
 以下、この光電変換素子の各構成要素について詳述する。 Hereinafter, each component of the photoelectric conversion element will be described in detail.
1.半導体電極
 半導体電極は、例えば、導電性基板と、その上の形成された半導体層とからなる。半導体層には、光増感剤として機能する色素が吸着されている構造を有する。
1. Semiconductor electrode A semiconductor electrode consists of a conductive substrate and the semiconductor layer formed on it, for example. The semiconductor layer has a structure in which a dye functioning as a photosensitizer is adsorbed.
1-1.導電性基板
 導電性基板は、基板自体が導電性を有しているものであってよく、絶縁性基板上に導電層を形成することによって基板に導電性を持たせたものであってもよい。基板としては、例えば、ガラス基板、プラスチック基板、金属板などが挙げられ、中でも透明性の高い基板(透明基板)が特に好ましい。基板に形成される導電層の種類は、特に限定されるものではないが、例えばITO、FTO、SnOなどの透明導電層が好ましい。導電層の作製方法及び膜厚などは、適宜選択することができるが、1nm~5μm程度のものを用いることができる。
1-1. Conductive substrate The conductive substrate may be a substrate that is conductive, or may be a substrate that is made conductive by forming a conductive layer on the insulating substrate. . Examples of the substrate include a glass substrate, a plastic substrate, and a metal plate. Among them, a substrate with high transparency (transparent substrate) is particularly preferable. Type conductive layer formed on the substrate is not particularly limited, for example ITO, FTO, a transparent conductive layer such as SnO 2 is preferred. A method for manufacturing the conductive layer, a film thickness, and the like can be selected as appropriate, but those having a thickness of about 1 nm to 5 μm can be used.
1-2.半導体層
1-2-1.半導体層の材料・構造
 半導体層を構成する半導体材料としては、酸化チタン、酸化亜鉛、酸化タングステン、チタン酸バリウム、チタン酸ストロンチウム、硫化カドミウムなどの公知の半導体が挙げられる。これらの半導体材料は2種類以上を混合して用いることもできる。これらの中でも、変換効率、安定性、安全性の点から酸化チタンが特に好ましい。このような酸化チタンとしては、アナターゼ型酸化チタン、ルチル型酸化チタン、無定形酸化チタン、メタチタン酸、オルソチタン酸などの種々の酸化チタン、含酸化チタン複合体などが挙げられる。その中でもアナターゼ型酸化チタンであることが好ましい。
1-2. Semiconductor layer 1-2-1. Semiconductor Layer Material / Structure Semiconductor materials constituting the semiconductor layer include known semiconductors such as titanium oxide, zinc oxide, tungsten oxide, barium titanate, strontium titanate, and cadmium sulfide. Two or more kinds of these semiconductor materials can be mixed and used. Among these, titanium oxide is particularly preferable in terms of conversion efficiency, stability, and safety. Examples of such titanium oxide include anatase-type titanium oxide, rutile-type titanium oxide, amorphous titanium oxide, various titanium oxides such as metatitanic acid, orthotitanic acid, and titanium oxide-containing composites. Among these, anatase type titanium oxide is preferable.
 半導体層の形状としては、半導体微粒子などを焼結することにより得られる多孔性半導体層、ゾル-ゲル法、スパッタ法、スプレー熱分解法などにより得られる薄膜状半導体層などが挙げられ、その他繊維状半導体層や針状晶からなる半導体層など光電変換素子の使用目的に応じて、適宜選択することができる。 Examples of the shape of the semiconductor layer include a porous semiconductor layer obtained by sintering semiconductor fine particles, a thin-film semiconductor layer obtained by a sol-gel method, a sputtering method, a spray pyrolysis method, and the like, and other fibers. It can be appropriately selected according to the purpose of use of the photoelectric conversion element such as a semiconductor layer or a semiconductor layer made of needle crystals.
 本発明の半導体層としては、色素吸着量などの観点から、多孔性半導体層、針状晶からなる半導体層など比表面積の大きな半導体層が好ましい。半導体微粒子の粒径により入射光の利用率などを調整できる観点から、半導体微粒子から形成される多孔性半導体層が好ましい。 The semiconductor layer of the present invention is preferably a semiconductor layer having a large specific surface area, such as a porous semiconductor layer or a needle-like semiconductor layer, from the viewpoint of the amount of dye adsorbed. A porous semiconductor layer formed from semiconductor fine particles is preferable from the viewpoint that the utilization factor of incident light can be adjusted by the particle size of the semiconductor fine particles.
 また、半導体層は、単層であっても多層であってもよい。多層にすることによって、十分な厚さの半導体層を容易に形成することができる。また、多孔性の多層半導体層は、平均粒径の異なる半導体微粒子層からなってもよい。例えば、光入射側に近い方の半導体層(第1半導体層)を構成する半導体微粒子の平均粒径を、遠い方の半導体層(第2半導体層)より小さくすることにより、第1半導体層で多くの光を吸収させ、第1半導体層を通過した光は、第2半導体層で散乱させて第1半導体層に戻して第1半導体層で吸収させることにより、全体の光吸収率を向上させることができる。半導体層の膜厚は、特に限定されるものではないが、透過性、変換効率などの観点より、0.5~45μm程度が望ましい。 Further, the semiconductor layer may be a single layer or a multilayer. By using a multilayer structure, a semiconductor layer having a sufficient thickness can be easily formed. The porous multilayer semiconductor layer may be composed of semiconductor fine particle layers having different average particle diameters. For example, by making the average particle size of the semiconductor fine particles constituting the semiconductor layer closer to the light incident side (first semiconductor layer) smaller than that of the farther semiconductor layer (second semiconductor layer), the first semiconductor layer A large amount of light is absorbed, and the light that has passed through the first semiconductor layer is scattered by the second semiconductor layer, returned to the first semiconductor layer, and absorbed by the first semiconductor layer, thereby improving the overall light absorption rate. be able to. The film thickness of the semiconductor layer is not particularly limited, but is preferably about 0.5 to 45 μm from the viewpoints of permeability and conversion efficiency.
 半導体層の比表面積は、多量の色素を吸着させるために、10~200m/gが好ましい。また色素を吸着させるため、及び電解質中のイオンが十分に拡散して電荷輸送を行うためには空隙率は40~80%が好ましい。なお、空隙率とは、半導体層の体積の中で、半導体層中の細孔が占める体積の割合を%で示したものとする。 The specific surface area of the semiconductor layer is preferably 10 to 200 m 2 / g in order to adsorb a large amount of dye. Further, the porosity is preferably 40 to 80% for adsorbing the dye and for carrying out charge transport by sufficiently diffusing ions in the electrolyte. Note that the porosity means the ratio of the volume occupied by the pores in the semiconductor layer in% in the volume of the semiconductor layer.
1-2-2.半導体層の形成方法
 次に、上記半導体層の形成方法について、多孔性半導体層を例にとって説明する。多孔性半導体層は、例えば、半導体微粒子を高分子などの有機化合物及び分散剤と共に、有機溶媒や水など分散媒に加えて懸濁液を調製し、この懸濁液を導電性基板上に塗布し、これを乾燥、焼成することによって形成することができる。
1-2-2. Next, a method for forming the semiconductor layer will be described by taking a porous semiconductor layer as an example. The porous semiconductor layer is prepared, for example, by adding a semiconductor fine particle together with an organic compound such as a polymer and a dispersing agent to a dispersion medium such as an organic solvent or water, and applying the suspension onto a conductive substrate. And it can form by drying and baking this.
 半導体微粒子と共に分散媒に有機化合物を添加しておくと、焼成時に有機化合物が燃焼して多孔性半導体層内に隙間を確保することが可能となる。また焼成時に燃焼する有機化合物の分子量や添加量を制御することで空隙率を変化させることができる。なお、有機化合物の種類や量は、使用する微粒子の状態、懸濁液全体の総重量等により適宜選択し調整することができる。ただし、半導体微粒子の割合が懸濁液全体の総重量に対して10wt%以上のときは、作製した膜の強度を充分に強くすることができ、半導体微粒子の割合が懸濁液全体の総重量に対して40wt%以下であれば、空隙率が大きな多孔性半導体層を得ることができるため、半導体微粒子の割合は懸濁液全体の総重量に対して10~40wt%であることが好ましい。 When an organic compound is added to the dispersion medium together with the semiconductor fine particles, the organic compound burns during firing, and a gap can be secured in the porous semiconductor layer. Moreover, the porosity can be changed by controlling the molecular weight and the addition amount of the organic compound combusted during firing. The type and amount of the organic compound can be appropriately selected and adjusted depending on the state of the fine particles used, the total weight of the entire suspension, and the like. However, when the proportion of the semiconductor fine particles is 10 wt% or more with respect to the total weight of the whole suspension, the strength of the produced film can be sufficiently increased, and the proportion of the semiconductor fine particles is the total weight of the whole suspension. If the content is 40 wt% or less, a porous semiconductor layer having a large porosity can be obtained. Therefore, the ratio of the semiconductor fine particles is preferably 10 to 40 wt% with respect to the total weight of the entire suspension.
 上記半導体微粒子としては、適当な平均粒径、例えば1nm~500nm程度の平均粒径を有する単一または化合物半導体の粒子などが挙げられる。その中でも比表面積を大きくするという点から1~50nm程度の平均粒径のものが望ましい。また入射光の利用率を高めるという点から、200~400nm程度の平均粒径の大きな半導体粒子を添加してもよい。 Examples of the semiconductor fine particles include single or compound semiconductor particles having an appropriate average particle size, for example, an average particle size of about 1 nm to 500 nm. Among them, those having an average particle diameter of about 1 to 50 nm are preferable from the viewpoint of increasing the specific surface area. Further, from the viewpoint of increasing the utilization factor of incident light, semiconductor particles having a large average particle diameter of about 200 to 400 nm may be added.
 半導体微粒子の製造方法としては、水熱合成法などのゾル-ゲル法、硫酸法、塩素法などが挙げられ、目的の微粒子を製造できる方法であればどのような方法を用いてもよいが、結晶性の観点より、水熱合成法により製造することが好ましい。 Examples of the method for producing the semiconductor fine particles include a sol-gel method such as a hydrothermal synthesis method, a sulfuric acid method, and a chlorine method. Any method can be used as long as it can produce the desired fine particles. From the viewpoint of crystallinity, it is preferably produced by a hydrothermal synthesis method.
 有機化合物は、懸濁液中に溶解し、焼成するときに燃焼して除去できるものであれば何れも用いることができる。例えば、ポリエチレングリコール、エチルセルロース等の高分子が挙げられる。懸濁液の分散媒としては、エチレングリコールモノメチルエーテル等のグライム系溶媒、イソプロピルアルコール等のアルコール系、イソプロピルアルコール/トルエン等の混合溶媒、水等が挙げられる。 Any organic compound can be used as long as it dissolves in the suspension and can be removed by burning when baked. Examples thereof include polymers such as polyethylene glycol and ethyl cellulose. Examples of the dispersion medium for the suspension include glyme solvents such as ethylene glycol monomethyl ether, alcohols such as isopropyl alcohol, mixed solvents such as isopropyl alcohol / toluene, and water.
 懸濁液の塗布方法としては、ドクターブレード法、スキージ法、スピンコート法、スクリーン印刷法等公知の方法が挙げられる。その後、塗膜の乾燥、焼成を行う。乾燥と焼成の条件は、大気下又は不活性ガス雰囲気下、50~800℃程度の範囲内で、10秒から12時間程度が挙げられる。この乾燥及び焼成は、単一の温度で1回又は温度を変化させて2回以上行うことができる。 Examples of the method for applying the suspension include known methods such as a doctor blade method, a squeegee method, a spin coating method, and a screen printing method. Thereafter, the coating film is dried and fired. The drying and firing conditions may be about 10 seconds to 12 hours in the range of about 50 to 800 ° C. in the air or in an inert gas atmosphere. This drying and baking can be performed once at a single temperature or twice or more by changing the temperature.
 なお、ここでは、多孔性半導体層の形成方法について詳述したが、他の種類の半導体層も種々の公知の方法を用いて形成することができる。 In addition, although the formation method of the porous semiconductor layer was explained in full detail here, another kind of semiconductor layer can also be formed using various well-known methods.
1-3.光増感剤として機能する色素
 本発明において、光増感剤として色素を用いることができる。光増感剤として機能する色素(以下、単に「色素」と記す。)は、種々の可視光領域及び赤外光領域に吸収を持つものであって、半導体層に強固に吸着させるために、色素分子中にCOOH基、アルコキシ基、ヒドロキシル基、ヒドロキシアルキル基、スルホン酸基、エステル基、メルカプト基、ホスホニル基などのインターロック基を有するものが好ましい。この中でもCOOH基を有するものが特に好ましい。
1-3. Dye that functions as a photosensitizer In the present invention, a dye can be used as a photosensitizer. A dye functioning as a photosensitizer (hereinafter simply referred to as “dye”) has absorption in various visible light regions and infrared light regions, and is strongly adsorbed to the semiconductor layer. Those having an interlock group such as a COOH group, an alkoxy group, a hydroxyl group, a hydroxyalkyl group, a sulfonic acid group, an ester group, a mercapto group, and a phosphonyl group in the dye molecule are preferable. Of these, those having a COOH group are particularly preferred.
 インターロック基は、励起状態の色素と半導体の導電帯との間の電子移動を容易にする電気的結合を供給するものである。これらインターロック基を含有する色素としては、例えば、ルテニウム金属錯体色素(ルテニウムビピリジン系金属錯体色素、ルテニウムターピリジン系金属錯体色素、ルテニウムクォーターピリジン系金属錯体色素など)、アゾ系色素、キノン系色素、キノンイミン系色素、キナクリドン系色素、スクアリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、フタロシアニン系色素、ペリレン系色素、インジゴ系色素、ナフタロシアニン系色素、クマリン系色素などが挙げられる。その中でも有機色素が好ましい。 The interlock group provides an electrical bond that facilitates electron transfer between the excited dye and the semiconductor conduction band. Examples of these dyes containing an interlock group include ruthenium metal complex dyes (ruthenium bipyridine metal complex dyes, ruthenium terpyridine metal complex dyes, ruthenium quarterpyridine metal complex dyes, etc.), azo dyes, and quinone dyes. Quinone imine dyes, quinacridone dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, phthalocyanine dyes, perylene dyes, indigo dyes, naphthalocyanine dyes Examples thereof include dyes and coumarin dyes. Of these, organic dyes are preferred.
 半導体層に色素を吸着させる方法としては、例えば基板上に形成された半導体層を、色素を溶解した溶液に浸漬する方法が挙げられる。色素を溶解するために用いる溶媒は、エタノールなどのアルコール系、アセトンなどのケトン系、ジエチルエーテル、テトラヒドロフランなどのエーテル類、アセトニトリルなどの窒素化合物、クロロホルムなどのハロゲン化脂肪族炭化水素、ヘキサンなどの脂肪族炭化水素、ベンゼンなどの芳香族炭化水素、酢酸エチルなどのエステル類などが挙げられる。またこれらの溶媒は2種類以上を混合して用いてもよい。 Examples of the method for adsorbing the dye on the semiconductor layer include a method of immersing the semiconductor layer formed on the substrate in a solution in which the dye is dissolved. Solvents used to dissolve the dye include alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, nitrogen compounds such as acetonitrile, halogenated aliphatic hydrocarbons such as chloroform, and hexane. Examples thereof include aliphatic hydrocarbons, aromatic hydrocarbons such as benzene, and esters such as ethyl acetate. These solvents may be used as a mixture of two or more.
 溶液中の色素濃度は、使用する色素及び溶媒の種類は適宜調整することができ、吸着機能を向上させるためにはある程度高濃度である方が好ましい。例えばm5×10-5mol/L以上の濃度とすることができる。 The dye concentration in the solution can be adjusted as appropriate depending on the type of the dye and the solvent to be used. In order to improve the adsorption function, it is preferable that the concentration is somewhat high. For example, the concentration can be m5 × 10 −5 mol / L or more.
 色素を溶解した溶液中に半導体を浸漬する際、溶液及び雰囲気の温度、並びに圧力は特に限定されるものではなく、例えば室温程度、かつ大気圧下が挙げられ、浸漬時間は使用する色素、溶媒の種類、溶液の濃度などにより適宜調整することができる。なお、効果的に行うには加熱下にて浸漬を行えばよい。これにより、半導体層に色素を吸着させることができる。 When the semiconductor is immersed in the solution in which the dye is dissolved, the temperature and pressure of the solution and the atmosphere are not particularly limited, and examples include room temperature and atmospheric pressure, and the immersion time is the dye and solvent to be used. It can be appropriately adjusted depending on the kind of the solution, the concentration of the solution, and the like. In order to effectively perform the immersion, the immersion may be performed under heating. Thereby, a pigment | dye can be made to adsorb | suck to a semiconductor layer.
 また色素を吸着する際に、色素及びその吸着状態や、多孔性半導体層を構成するTiO等の微粒子表面などを制御するために、色素を溶解した溶液にデオキシコール酸(Deoxycholic Acid)やグアニジンチオシアナート(Guanidine Thiocyanate)、tert-ブチルピリジン、エタノールなどの有機化合物を加えてもよい。
 光増感剤として、色素ではなく、半導体微粒子、いわゆる量子ドットを用いることもできる。
When adsorbing the dye, deoxycholic acid or guanidine is added to the solution in which the dye is dissolved in order to control the dye and its adsorption state, the surface of fine particles such as TiO 2 constituting the porous semiconductor layer, and the like. Organic compounds such as thiocyanate, tert-butylpyridine, ethanol, and the like may be added.
As a photosensitizer, semiconductor fine particles, so-called quantum dots, can be used instead of a dye.
2.対電極
 対電極としては、支持基板上に白金等の金属触媒やカーボンの膜が存在するものなどが挙げられる。特に、白金であることが好ましい。これらの膜厚は触媒機能を発現できる厚さであればよく、1~2000nm程度が望ましい。支持基板としてはガラスや高分子フィルム、金属板(箔)などが挙げられる。特に抵抗値を低下させるために、支持基板としては導電性基板が好ましい。また対電極は、半導体電極と同一基板上に形成しても良い。この場合、絶縁性基板上に導電層を形成し、対電極と半導体電極の間の導電層をレーザースクライブなどにより切断するなどにより、同一基板上に二つ以上の電極を形成することができる。
2. Counter electrode Examples of the counter electrode include those in which a metal catalyst such as platinum or a carbon film is present on a support substrate. In particular, platinum is preferable. These film thicknesses may be any thickness that can exhibit a catalytic function, and are preferably about 1 to 2000 nm. Examples of the support substrate include glass, a polymer film, and a metal plate (foil). In particular, in order to reduce the resistance value, the support substrate is preferably a conductive substrate. The counter electrode may be formed on the same substrate as the semiconductor electrode. In this case, two or more electrodes can be formed on the same substrate by forming a conductive layer on the insulating substrate and cutting the conductive layer between the counter electrode and the semiconductor electrode by laser scribing or the like.
3.電解質層
3-1 環状ニトロキシルラジカル化合物
 本発明では、電解質層中に水と、水に対する親和性が異なる少なくとも2種類の環状ニトロキシルラジカル化合物を含む。本発明における「環状ニトロキシルラジカル化合物」とは、ニトロキシリルラジカル(=N-O・)を構成する窒素原子を環構成原子として含む化合物である。環構造としては、5~7員環が好ましく、特にピペリジノキシルラジカル環構造を有するニトロキシルラジカル化合物が好ましい。少なくとも2種類の環状ニトロキシルラジカル化合物を含むことは、単に、種類が増えただけの効果ではない。すなわち、窒素を含む複素環が異なる少なくとも2種類のニトロキシルラジカルそれぞれが、異なる濃度で酸化還元種として作用することを意味する。そこで、少なくとも2種類のニトロキシルラジカルの溶媒(本発明の場合には水)に対する性質・特性の違いを有する場合には、溶媒中での役割を分けることが可能となり、これまでに開示されている発明とは根本的に異なる効果が期待できる。
3. Electrolyte Layer 3-1 Cyclic Nitroxyl Radical Compound In the present invention, the electrolyte layer contains water and at least two types of cyclic nitroxyl radical compounds having different affinity for water. The “cyclic nitroxyl radical compound” in the present invention is a compound containing a nitrogen atom constituting a nitroxyl radical (═N—O.) As a ring constituent atom. As the ring structure, a 5- to 7-membered ring is preferable, and a nitroxyl radical compound having a piperidinoxyl radical ring structure is particularly preferable. Inclusion of at least two types of cyclic nitroxyl radical compounds is not simply an effect of increasing types. That is, it means that at least two kinds of nitroxyl radicals having different nitrogen-containing heterocycles act as redox species at different concentrations. Therefore, when there are differences in the properties and characteristics of at least two types of nitroxyl radicals with respect to the solvent (in the case of the present invention, water), it is possible to separate the roles in the solvent, which have been disclosed so far. An effect that is fundamentally different from that of the present invention can be expected.
 本発明は、水に対する親和性が異なる少なくとも2種類のニトロキシルラジカルを用いる。水に対する親和性の違いから、それぞれのラジカルの水に対する位置関係が異なる。すなわち、水に対する親和性が乏しいラジカル(以下、疎水性ラジカルともいう)は電解質の溶媒である水の表面近くに集まろうとする傾向があり、水に対する親和性に優れるラジカル(以下、親水性ラジカルともいう)は、電解質の比較的内部に集中する。このような電解質における存在位置の違いは、それぞれのラジカルの機能を分けることが可能となる。 The present invention uses at least two types of nitroxyl radicals having different affinity for water. Due to the difference in affinity for water, the positional relationship of each radical with water is different. That is, radicals with low affinity for water (hereinafter also referred to as hydrophobic radicals) tend to gather near the surface of the water as the electrolyte solvent, and radicals with excellent affinity for water (hereinafter referred to as hydrophilic radicals). (Also called) concentrates relatively inside the electrolyte. Such a difference in location in the electrolyte makes it possible to divide the function of each radical.
 電解質は半導体電極の半導体層の細孔内部に存在し、電解質の表面は理想的には半導体層に吸着している色素に接触している。そこで、疎水性ラジカルは主に、色素から電荷のやり取り、すなわち、色素に電子を渡す働きをする。それに対して親水性ラジカルは、主に電解液の内部に存在し、電解液内部で電子を対極から疎水性ラジカルにまで運ぶ。このように、ラジカルの役割を分け、それに適したラジカルを選択することにより、光電変換素子の効率を向上できると共に、溶媒が水になることにより、背景技術に示した問題点を改善でき、耐久性の向上が可能となる。 The electrolyte is present in the pores of the semiconductor layer of the semiconductor electrode, and the surface of the electrolyte is ideally in contact with the dye adsorbed on the semiconductor layer. Therefore, the hydrophobic radical mainly functions to exchange charges from the dye, that is, to deliver electrons to the dye. On the other hand, hydrophilic radicals exist mainly in the electrolyte solution, and carry electrons from the counter electrode to the hydrophobic radical in the electrolyte solution. In this way, by dividing the role of radicals and selecting a suitable radical, the efficiency of the photoelectric conversion element can be improved, and when the solvent becomes water, the problems shown in the background art can be improved and durability is improved. It becomes possible to improve the performance.
 疎水性ラジカルとは親水性ラジカルに対して、水に対する溶解度が低いことである。そこで、一般的には、限界の溶解量よりも多くを水に溶かすことはできない。しかし、親水性ラジカルと混合して、水に溶解させると疎水性ラジカルをその限界量よりも多く溶かすことができる場合がある。この性質を利用すれば、表面近くに存在する酸化還元種であるラジカル種を増やす結果となり、効率よく電子を色素に渡すことができるようになる。このような効果も効率向上に寄与していると考えられる。 Hydrophobic radicals are low solubility in water for hydrophilic radicals. Therefore, generally, it is not possible to dissolve more than the limit amount in water. However, when mixed with a hydrophilic radical and dissolved in water, the hydrophobic radical may be dissolved in a larger amount than the limit amount. If this property is utilized, it will result in the increase of the radical seed | species which is a redox seed | species which exists near the surface, and an electron can be efficiently passed to a pigment | dye. Such an effect is also considered to contribute to efficiency improvement.
 以上の考察が示すように本発明は、溶媒を水とする電解質において、水に対する親和性の違い(親水性と疎水性の違い)を利用している。この基本的な原理は、電解質を構成する主たる溶媒に対する親和性の違いを利用することに拡げることができる。よって溶媒が有機溶媒であっても、その有機溶媒に対する親和性の違いを利用することにより同様な効果が発揮されると推察される。 As the above consideration shows, the present invention uses a difference in affinity for water (a difference between hydrophilicity and hydrophobicity) in an electrolyte using water as a solvent. This basic principle can be extended to utilizing the difference in affinity for the main solvent constituting the electrolyte. Therefore, even if a solvent is an organic solvent, it is guessed that the same effect is exhibited by utilizing the difference in affinity with respect to the organic solvent.
 本発明においては、電解質は液体状が望ましいが、固体状又はゲル状であってもよい。ここで、固体状の電解質とは、上記ニトロキシルラジカル化合物で形成された固体電解質である。ゲル状の電解質とは、ニトロキシルラジカルのポリマーにより形成された網目構造体を含む電解質である。なお、ニトロキシルラジカルを有するポリマーは有機溶媒若しくは水に不溶な架橋構造であっても使用できる可能性はある。 In the present invention, the electrolyte is preferably liquid, but may be solid or gel. Here, the solid electrolyte is a solid electrolyte formed of the nitroxyl radical compound. The gel electrolyte is an electrolyte including a network structure formed by a polymer of a nitroxyl radical. There is a possibility that a polymer having a nitroxyl radical can be used even in a crosslinked structure insoluble in an organic solvent or water.
 本発明の光電変換素子において、前記電解質層中に下記一般式(1)で表される環状ニトロキシルラジカル化合物及び下記一般式(2)で表される環状ニトロキシルラジカル化合物から選択される水に対する親和性が異なる少なくとも2種の環状ニトロキシルラジカルを同時に有することが好ましい。 In the photoelectric conversion element of the present invention, the electrolyte layer has water selected from a cyclic nitroxyl radical compound represented by the following general formula (1) and a cyclic nitroxyl radical compound represented by the following general formula (2). It is preferable to have at least two cyclic nitroxyl radicals having different affinity at the same time.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(上記一般式(1)において、Aは、窒素を含む5~7員の複素環を構成する2価の基であって、疎水性の置換基を有してもよい。R、R、R、Rは、それぞれ独立して水素原子又はメチル基を示す。) (In the above general formula (1), A is a divalent group constituting a 5- to 7-membered heterocyclic ring containing nitrogen and may have a hydrophobic substituent. R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a methyl group.)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(一般式(2)において、Bは、窒素を含む5~7員の複素環を構成する2価の基であって、親水性の置換基を有する。R、R、R、Rはそれぞれ異なっていてもよく、水素原子又はメチル基を示す。) (In the general formula (2), B is a divalent group constituting a 5- to 7-membered heterocyclic ring containing nitrogen and has a hydrophilic substituent. R 1 , R 2 , R 3 , R 4 may be different from each other, and represents a hydrogen atom or a methyl group.
 上記一般式(1)及び(2)において、A,Bで表される2価の基としては、ニトロキシルラジカルの窒素原子と共に窒素を含む5~7員の複素環を構成する基であり、炭素数2~4のアルキレン基あるいはアルケニレン基を例示することができる。また、アルキレン基の炭素原子の一部が酸素原子、窒素原子、硫黄原子、ケイ素原子、リン原子、ホウ素原子で置き換わったものでも良い。アルキレン基の各炭素原子には置換基を有していても良く、一般式(1)においては、疎水性の置換基、例えば脂肪族基、芳香族基等を有していても良い。一方、一般式(2)では親水性の置換基を有する。親水性の置換基としては、ヒドロキシル基、アルコキシ基、アルデヒド基、カルボキシル基、アルコキシカルボニル基、シアノ基、アミノ基、ニトロ基、ニトロソ基などを挙げることができる。また、親水性の置換基同士においても、水に対する親和性にはそれぞれ差がある。つまり、一般式(2)の中から水に対する親和性が異なる少なくとも2種の環状ニトロキシルラジカルを選択しても良く、一般式(1)と一般式(2)とからそれぞれ1種以上の環状ニトロキシルラジカルを選択しても良い。また、R~Rで表される基が水素原子であるかメチル基であるか、またその数によっても水に対する親和性が異なる。一般式(1)で表される環状ニトロキシルラジカルの中から1種以上と、一般式(2)で表される環状ニトロキシルラジカルの中から1種以上を選択することが好ましく、水に対する親和性の差が大きいほど好ましい。特に、それぞれ単独での25℃における水に対する溶解度が0.1mol/lを境に、0.1mol/l以上の環状ニトロキシルラジカルの少なくとも1種と、0.1mol/l未満の少なくとも1種との組合せであることが好ましい。 In the general formulas (1) and (2), the divalent group represented by A or B is a group constituting a 5- to 7-membered heterocyclic ring containing nitrogen together with the nitrogen atom of the nitroxyl radical, Examples thereof include an alkylene group having 2 to 4 carbon atoms or an alkenylene group. In addition, some of the carbon atoms of the alkylene group may be replaced with oxygen atoms, nitrogen atoms, sulfur atoms, silicon atoms, phosphorus atoms, or boron atoms. Each carbon atom of the alkylene group may have a substituent, and in the general formula (1), it may have a hydrophobic substituent such as an aliphatic group or an aromatic group. On the other hand, the general formula (2) has a hydrophilic substituent. Examples of the hydrophilic substituent include a hydroxyl group, an alkoxy group, an aldehyde group, a carboxyl group, an alkoxycarbonyl group, a cyano group, an amino group, a nitro group, and a nitroso group. Also, there is a difference in affinity for water between hydrophilic substituents. That is, at least two types of cyclic nitroxyl radicals having different affinity for water may be selected from general formula (2), and one or more types of cyclic nitroxyl radicals may be selected from general formula (1) and general formula (2), respectively. Nitroxyl radicals may be selected. Also, the affinity for water varies depending on whether the group represented by R 1 to R 4 is a hydrogen atom or a methyl group, and the number thereof. Preferably, at least one cyclic nitroxyl radical represented by the general formula (1) and at least one cyclic nitroxyl radical represented by the general formula (2) are selected and have an affinity for water. The larger the difference in sex, the better. In particular, at least one kind of cyclic nitroxyl radical of 0.1 mol / l or more and at least one kind of less than 0.1 mol / l, each having a solubility in water at 25 ° C. of 0.1 mol / l alone. It is preferable that it is the combination of these.
 また、本発明に係る電解質層においては、上記一般式(1)及び(2)に対応する下記一般式(3)で表されるオキソアンモニウム塩と下記一般式(4)で表されるオキソアンモニウム塩の、どちらか一方若しくは両方を含むことが望ましい。 In the electrolyte layer according to the present invention, an oxoammonium salt represented by the following general formula (3) corresponding to the above general formulas (1) and (2) and an oxoammonium represented by the following general formula (4) It is desirable to include one or both of the salts.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(一般式(3)において、A、R、R、R、Rは一般式(1)のA、R、R、R、Rと同一の意味を示し、Xは、AlCl 、AlCl などの金属塩化物、フッ素、塩素、臭素、ヨウ素、BF、PF、CFSO3、N(SOCF、N(SOF)、CFCOO、N(CSO)、又はClOを示す。) (In the general formula (3), A, R 1 , R 2, R 3, R 4 is A in the formula (1), R 1, R 2, R 3, R 4 represent the same meanings as, X is , AlCl 4 , Al 2 Cl 7 and other metal chlorides, fluorine, chlorine, bromine, iodine, BF 4 , PF 6 , CF 3 SO 3, N (SO 2 CF 3 ) 2 , N (SO 2 F) 2 , CF 3 COO, N (C 2 F 5 SO 2 ), or ClO 4. )
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(一般式(4)において、B、R、R、R、Rは一般式(2)のB、R、R、R、Rと同一の意味を示し、Xは、AlCl 、AlCl などの金属塩化物、フッ素、塩素、臭素、ヨウ素、BF、PF、CFSO3、N(SOCF、N(SOF)、CFCOO、N(CSO)、又はClOを示す。) In (formula (4), B, R 1 , R 2, R 3, R 4 is B in the general formula (2), R 1, R 2, R 3, R 4 represent the same meanings as, X is , AlCl 4 , Al 2 Cl 7 and other metal chlorides, fluorine, chlorine, bromine, iodine, BF 4 , PF 6 , CF 3 SO 3, N (SO 2 CF 3 ) 2 , N (SO 2 F) 2 , CF 3 COO, N (C 2 F 5 SO 2 ), or ClO 4. )
 電解質の環状ニトロキシルラジカルはラジカル状態とカチオン状態で酸化還元している。例えば、一般式(1)として有用な2,2,6,6-テトラメチルピペリジン-N-オキシル(TEMPO)ラジカルは下記式(5)に示すように、ラジカル状態とカチオン状態との平衡状態を示す。 The cyclic nitroxyl radical in the electrolyte is oxidized and reduced in a radical state and a cation state. For example, a 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) radical useful as the general formula (1) has an equilibrium state between a radical state and a cation state as shown in the following formula (5). Show.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 そのために、環状ニトロキシルラジカルを電解質の酸化還元対として用いる場合には、電解質中に相当するオキソアンモニウム塩が存在することが必要である。 Therefore, when a cyclic nitroxyl radical is used as the redox couple of the electrolyte, it is necessary that the corresponding oxoammonium salt is present in the electrolyte.
 本発明は、水に対する親和性が異なる少なくとも2種類の環状ニトロキシルラジカルを電解質に含む。例えば、疎水性ラジカルの1種類と親水性ラジカルの1種類とを組み合わせる場合、2種類ともが、酸化還元対として作用してするためには、それぞれ対応するオキソアンモニウム塩を含む必要がある。また、一方のニトロキシルラジカルだけを酸化還元対として作用させるのであれば、対応する1種類のオキソアンモニウム塩を含めばよい。 The present invention contains at least two kinds of cyclic nitroxyl radicals having different affinity for water in the electrolyte. For example, when one kind of hydrophobic radical and one kind of hydrophilic radical are combined, in order for both of them to act as a redox pair, it is necessary to contain a corresponding oxoammonium salt. Further, if only one nitroxyl radical is allowed to act as a redox pair, one corresponding oxoammonium salt may be included.
 電解質に含まれる環状ニトロキシルラジカルとして一般式(1)及び(2)で表される化合物の具体例としては、下記式(6)~(12)で表される化合物が挙げられる。また、一般式(3)及び(4)で表されるオキソアンモニウム塩としては、下記式(6)~(12)で表されるニトキシルラジカルにそれぞれ対応するオキソアンモニウム塩が挙げられる。 Specific examples of the compounds represented by the general formulas (1) and (2) as the cyclic nitroxyl radical contained in the electrolyte include compounds represented by the following formulas (6) to (12). Examples of the oxoammonium salts represented by the general formulas (3) and (4) include oxoammonium salts corresponding to nitroxyl radicals represented by the following formulas (6) to (12).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
3-2.液体電解質
 液体電解質としては、先に示した水に対する親和性が異なる少なくとも2種類の環状ニトロキシルラジカルを含有し、液体状態のものであれば良い。上記電解質は溶媒として水を含む。
 また、適宜、電解質には有機化合物を添加できる。例えば、添加される有機溶媒として、N-メチルピロリドン、N,N-ジメチルホルムアミドなどの含窒素化合物、メトキシプロピオニトリルやアセトニトリルなどのニトリル化合物、γ-ブチロラクトンやバレロラクトンなどのラクトン化合物、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、プロピレンカーボネートなどのカーボネート化合物、テトラヒドロフラン、ジオキサン、ジエチルエーテル、エチレングリコールジアルキルエーテルなどのエーテル類、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、さらにはイミダゾール類などが挙げられ、これらはそれぞれ単独で、又は2種以上混合して使用することができる。特にエタノールを添加することにより多孔質半導体電極の細孔への電解液の浸透が改善される。
3-2. Liquid Electrolyte As the liquid electrolyte, any liquid electrolyte may be used as long as it contains at least two types of cyclic nitroxyl radicals having different affinity for water. The electrolyte contains water as a solvent.
In addition, an organic compound can be added to the electrolyte as appropriate. For example, as an organic solvent to be added, nitrogen-containing compounds such as N-methylpyrrolidone and N, N-dimethylformamide, nitrile compounds such as methoxypropionitrile and acetonitrile, lactone compounds such as γ-butyrolactone and valerolactone, ethylene carbonate , Carbonate compounds such as diethyl carbonate, dimethyl carbonate, propylene carbonate, ethers such as tetrahydrofuran, dioxane, diethyl ether, ethylene glycol dialkyl ether, alcohols such as methanol, ethanol, isopropyl alcohol, and further imidazoles, etc. These can be used alone or in admixture of two or more. In particular, the addition of ethanol improves the penetration of the electrolyte into the pores of the porous semiconductor electrode.
 また、適宜、電解質には、イオン液体、即ち溶融塩を添加できる。イオン液体としては、「Inorg. Chem.」1996,35,p1168-1178、「Electrochemistry」2002.2,p130-136、特表平9-507334号公報、特開平8-259543号公報などに開示されている公知の電池や太陽電池などにおいて一般的に使用することができるものであれば、特に限定されないが、室温(25℃)より低い融点を有する塩か、または室温よりも高い融点を有しても、他の溶融塩や溶融塩以外の添加物を溶解させることにより室温で液状化する塩が好ましく用いられる。 Also, an ionic liquid, that is, a molten salt can be added to the electrolyte as appropriate. Examples of the ionic liquid are disclosed in “Inorg. Chem.” 1996, 35, p1168-1178, “Electrochemistry” 2002.2, p130-136, JP-T-9-507334, JP-A-8-259543, and the like. Although it will not specifically limit if it can generally be used in the well-known battery, solar cell, etc. which have a melting point lower than room temperature (25 degreeC) or higher than room temperature However, a salt that liquefies at room temperature by dissolving other molten salt or additives other than the molten salt is preferably used.
 具体的には、溶融塩のカチオンとしては、アンモニウム、イミダゾリウム、オキサゾリウム、チアゾリウム、ピペリジニウム、ピラゾリウム、イソオキサゾリウム、チアジアゾリウム、オキサジアゾリウム、トリアゾリウム、ピロリジニウム、ピリジニウム、ピリミジニウム、ピリダジニウム、ピラジニウム、トリアジニウム、ホスホニウム、スルホニウム、カルバゾリウム、インドリウム、及びこれらの誘導体が好ましく、特に好ましくは、アンモニウム、イミダゾリウム、ピリジニウム、ピペリジニウム、ピラゾリウム、スルホニウムである。また、溶融塩のアニオンとしては、AlCl 、AlCl などの金属塩化物、PF 、BF 、CFSO 、N(CFSO 、CFCOOなどのフッ素含有物、NO 、CHCOO、C11COO、CHOSO 、CHOSO 、CHSO 、CHSO 、(CHO)PO などの非フッ素化合物、塩素、臭素。ヨウ素などのハロゲン化物などが挙げられる。 Specifically, as the cation of the molten salt, ammonium, imidazolium, oxazolium, thiazolium, piperidinium, pyrazolium, isoxazolium, thiadiazolium, oxadiazolium, triazolium, pyrrolidinium, pyridinium, pyrimidinium, pyridazinium, pyrazinium, Triazinium, phosphonium, sulfonium, carbazolium, indolium, and derivatives thereof are preferable, and ammonium, imidazolium, pyridinium, piperidinium, pyrazolium, and sulfonium are particularly preferable. The anions of the molten salt include metal chlorides such as AlCl 4 and Al 2 Cl 7 , PF 6 , BF 4 , CF 3 SO 3 , N (CF 3 SO 2 ) 2 , CF 3. Fluorine-containing materials such as COO , NO 3 , CH 3 COO , C 6 H 11 COO , CH 3 OSO 3 , CH 3 OSO 2 , CH 3 SO 3 , CH 3 SO 2 , (CH Non-fluorine compounds such as 3 O) 2 PO 2 , chlorine, bromine. And halides such as iodine.
 溶融塩は、各種文献や公報で公知の方法により合成することができる。4級アンモニウム塩を例に挙げると、第一段階として3級アミンにアルキル化剤としてアルキルハライドを用いてアミンの4級化を行い、第二段階としてハライドアニオンから目的のアニオンへイオン交換を行うという方法を用いることができる。若しくは、3級アミンを目的のアニオンを有する酸と反応させて一段階で目的の化合物を得る方法がある。 Molten salt can be synthesized by methods known in various literatures and publications. Taking a quaternary ammonium salt as an example, a quaternization of an amine is performed using a tertiary amine as an alkylating agent as an alkylating agent as a first step, and an ion exchange from a halide anion to a target anion is performed as a second step. Can be used. Alternatively, there is a method in which a tertiary amine is reacted with an acid having a target anion to obtain the target compound in one step.
3-3.固体電解質
 固体電解質としては、有機溶媒を高分子化合物に浸透させることにより固体化した高分子電解質、溶融塩を含む液体電解質を微粒子により固体化した電解質などが挙げられる。用いる高分子化合物としてはニトロキシルラジカルを有するポリマー自身を用いる場合と、ニトロキシルラジカルポリマー以外を用いる場合がある。
3-3. Solid Electrolyte Examples of the solid electrolyte include a polymer electrolyte solidified by infiltrating an organic solvent into a polymer compound, and an electrolyte obtained by solidifying a liquid electrolyte containing a molten salt with fine particles. As a polymer compound to be used, there are a case where a polymer itself having a nitroxyl radical is used and a case where a polymer other than a nitroxyl radical polymer is used.
 ニトロキシルラジカルポリマー以外で、液体電解質を固体化するための高分子化合物としては、液体電解質を保持できる高分子化合物であればよく、ポリオキシアルキレン鎖を持つ化合物を含み、電解質をゲル化又は固体化できるものであれば特に限定されず、通常はポリオキシアルキレン鎖を持つポリマー前駆体(ポリマーゲル化剤)が用いられる。例えば、(イ)特開平5-109311号公報や特開平11-176452号公報に開示された、三官能性末端アクリロイル変性アルキレンオキサイド重合体や、四官能性末端アクリロイル変性アルキレンオキサイド重合体などのアルキレンオキサイド重合体鎖を有するアクリロイル変性高分子化合物が挙げられる。(ロ)また、少なくとも一種類のイソシアネート基を有する化合物Aと、少なくとも一種のイソシアネート基と反応性のある化合物Bとを含み、化合物Aと化合物Bのうち少なくとも一種類がポリオキシアルキレン鎖を持つものが挙げられる(上記特許文献2,3参照)。ポリオキシアルキレン鎖を持つ化合物としては、分子量500~50,000の高分子構造を有する化合物が好ましく用いられる Other than the nitroxyl radical polymer, the polymer compound for solidifying the liquid electrolyte may be any polymer compound that can hold the liquid electrolyte, including a compound having a polyoxyalkylene chain, and gelling or solidifying the electrolyte. The polymer precursor (polymer gelling agent) having a polyoxyalkylene chain is usually used. For example, (i) alkylenes such as trifunctional terminal acryloyl-modified alkylene oxide polymers and tetrafunctional terminal acryloyl-modified alkylene oxide polymers disclosed in JP-A-5-109311 and JP-A-11-176442 Examples include acryloyl-modified polymer compounds having an oxide polymer chain. (B) In addition, it contains compound A having at least one type of isocyanate group and compound B that is reactive with at least one type of isocyanate group, and at least one of compound A and compound B has a polyoxyalkylene chain. (See Patent Documents 2 and 3 above). As the compound having a polyoxyalkylene chain, a compound having a polymer structure having a molecular weight of 500 to 50,000 is preferably used.
 上記(イ)の三官能性又は四官能性末端アクリロイル変性アルキレンオキサイド重合体は、例えば、三官能性の場合にはグリセロールやトリメチロールプロパン等を、四官能性の場合にはジグリセリンやペンタエリスリトール等を、それぞれ出発物質として、これらにエチレンオキサイドやプロピレンオキサイド等のアルキレンオキサイドを付加させ、さらにアクリル酸、メタクリル酸等の不飽和有機酸をエステル化反応させるか、又はアクリル酸クロリド、メタクリル酸クロリド等の酸クロリド類を脱塩酸反応させることによって得られる化合物である。 The trifunctional or tetrafunctional terminal acryloyl-modified alkylene oxide polymer (i) is, for example, glycerol or trimethylolpropane in the case of trifunctional, diglycerin or pentaerythritol in the case of tetrafunctional. Etc. as starting materials, alkylene oxides such as ethylene oxide and propylene oxide are added thereto, and unsaturated organic acids such as acrylic acid and methacrylic acid are further esterified, or acrylic acid chloride and methacrylic acid chloride It is a compound obtained by carrying out dehydrochlorination reaction of acid chlorides, such as.
 上記(ロ)の化合物Aとしては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネートなどの芳香族イソシアネート;ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の脂肪族イソシアネート;イソホロンジイソシアネート、シクロヘキシルジイソシアネート等の脂環族イソシアネートが挙げられ、これらの2量体、3量体などの多量体又は変性体であってもよい。また、低分子アルコールとこれらイソシアネートのアダクト体、さらには、ポリオキシアルキレンとこれらイソシアネートをあらかじめ付加反応させた化合物が挙げられる。化合物Bとしては、カルボキシル基、ヒドロキシル基、アミノ基などの活性水素基を有する化合物が挙げられ、より具体的には、カルボキシル基を有する化合物としては、ヘキサン酸、アジピン酸、フタル酸、アゼライン酸などのカルボン酸;ヒドロキシル基を有する化合物としては、エチレングリコール、ジエチレングリコール、グリセリン、ペンタエリスリトール、ソルビトール、ショ糖などのポリオール;アミノ基を有する化合物としては、エチレンジアミン、トリレンジアミン、ジフェニルメタンジアミン、ジエチレントリアミンなどの有機アミン類などがそれぞれ挙げられる。また、化合物Bとしては、上記のような活性水素基を一分子中に一つ以上有し、かつポリオキシアルキレン鎖を有する化合物も挙げられる。 Examples of (B) compound A include aromatic isocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate; aliphatic isocyanates such as hexamethylene diisocyanate and trimethylhexamethylene diisocyanate; fats such as isophorone diisocyanate and cyclohexyl diisocyanate. Examples thereof include cyclic isocyanates, which may be multimers such as dimers and trimers, or modified products. Further, low molecular alcohols and adducts of these isocyanates, and compounds obtained by addition reaction of polyoxyalkylene and these isocyanates in advance are also included. Examples of the compound B include compounds having an active hydrogen group such as a carboxyl group, a hydroxyl group, and an amino group. More specifically, examples of the compound having a carboxyl group include hexanoic acid, adipic acid, phthalic acid, and azelaic acid. Carboxylic acids such as: hydroxyl group-containing compounds such as ethylene glycol, diethylene glycol, glycerin, pentaerythritol, sorbitol, sucrose polyols; amino group-containing compounds such as ethylenediamine, tolylenediamine, diphenylmethanediamine, diethylenetriamine, etc. These organic amines are listed. Compound B also includes compounds having at least one active hydrogen group as described above in a molecule and having a polyoxyalkylene chain.
3-4.安定化添加剤
 電解質の環状ニトロキシルラジカルは前述の式(5)に示すように、ラジカル状態とカチオン状態で酸化還元している。この発生するカチオン状態を安定化させる目的で、電解質中に塩を添加することも可能である。用いる塩としては、カチオンとして、リチウム、ナトリウム、カリウム、アンモニウム、イミダゾリウム、オキサゾリウム、チアゾリウム、ピペリジニウム、ピラゾリウム、イソオキサゾリウム、チアジアゾリウム、オキサジアゾリウム、トリアゾリウム、ピロリジニウム、ピリジニウム、ピリミジニウム、ピリダジニウム、ピラジニウム、トリアジニウム、ホスホニウム、スルホニウム、カルバゾリウム、インドリウム、及びこれらの誘導体が好ましく、特に好ましくは、アンモニウム、イミダゾリウム、ピリジニウム、ピペリジニウム、ピラゾリウム、スルホニウムである。また、アニオンとしては、PF 、BF 、CFSO 、N(CFSO 、F(HF) 、CFCOOなどのフッ素含有物、NO 、CHCOO、C11COO、CHOSO 、CHOSO 、CHSO 、CHSO 、(CHO)PO 、SbCl などの非フッ素化合物、ヨウ素、臭素などのハロゲン化物などが挙げられる。前述の溶融塩は安定化添加剤として機能する場合もある。
3-4. Stabilizing additive The cyclic nitroxyl radical of the electrolyte is oxidized and reduced in a radical state and a cation state as shown in the above formula (5). For the purpose of stabilizing the generated cationic state, it is also possible to add a salt to the electrolyte. As a salt to be used, as a cation, lithium, sodium, potassium, ammonium, imidazolium, oxazolium, thiazolium, piperidinium, pyrazolium, isoxazolium, thiadiazolium, oxadiazolium, triazolium, pyrrolidinium, pyridinium, pyrimidinium, pyridazinium, Pyrazinium, triazinium, phosphonium, sulfonium, carbazolium, indolium, and derivatives thereof are preferable, and ammonium, imidazolium, pyridinium, piperidinium, pyrazolium, and sulfonium are particularly preferable. As anions, fluorine-containing substances such as PF 6 , BF 4 , CF 3 SO 3 , N (CF 3 SO 2 ) 2 , F (HF) n , CF 3 COO , NO 3 CH 3 COO , C 6 H 11 COO , CH 3 OSO 3 , CH 3 OSO 2 , CH 3 SO 3 , CH 3 SO 2 , (CH 3 O) 2 PO 2 , SbCl 6 And non-fluorine compounds such as iodine, bromine and the like. The aforementioned molten salt may function as a stabilizing additive.
3-5 電解質作製方法
 本発明に係る水に対する親和性の異なる2種類の環状ニトロキシルラジカルを電解質中に同時に存在させるためには、それぞれの環状ニトロキシルラジカルを水に溶解させる方法がある。例えば、上記の一般式(1)と(2)で表される環状ニトロキシルラジカルをそれぞれ水に溶解させる方法がある
3-5 Electrolyte Preparation Method In order to simultaneously cause two kinds of cyclic nitroxyl radicals having different affinity for water according to the present invention in the electrolyte, there is a method of dissolving each cyclic nitroxyl radical in water. For example, there is a method of dissolving the cyclic nitroxyl radicals represented by the above general formulas (1) and (2) in water, respectively.
 上記の方法以外に、1種の環状ニトロキシルラジカルと、水に対する親和性が異なる環状ニトロキシルラジカルに対応するオキソアンモニウム塩を水に溶解させる方法を挙げることができる。例えば、前記一般式(1)で表される環状ニトロキシルラジカルと一般式(4)で表されるオキソアンモニウム塩を水に溶解させる方法、若しくは一般式(2)で表される環状ニトロキシルラジカルと一般式(3)で表されるオキソアンモニウム塩を水に溶解させる方法のいずれかを用いることができる。 In addition to the above method, there can be mentioned a method in which one kind of cyclic nitroxyl radical and an oxoammonium salt corresponding to a cyclic nitroxyl radical having different affinity for water are dissolved in water. For example, a method of dissolving the cyclic nitroxyl radical represented by the general formula (1) and the oxoammonium salt represented by the general formula (4) in water, or the cyclic nitroxyl radical represented by the general formula (2) Any of the methods for dissolving the oxoammonium salt represented by the general formula (3) in water can be used.
 一般式(1)で表される環状ニトロキシルラジカルと一般式(4)で表されるオキソアンモニウム塩を水に溶解させた場合には、前記式(5)に示すように、一般式(1)の環状ニトロキシルラジカルの一部は、一般式(3)のオキソアンモニウム塩となり、同時に、一般式(4)で表されるオキソアンモニウム塩は一部が一般式(2)で表される環状ニトロキシルラジカルになる。 When the cyclic nitroxyl radical represented by the general formula (1) and the oxoammonium salt represented by the general formula (4) are dissolved in water, as shown in the above formula (5), the general formula (1 A part of the cyclic nitroxyl radical of) becomes an oxoammonium salt of the general formula (3), and at the same time, a part of the oxoammonium salt represented by the general formula (4) Becomes a nitroxyl radical.
 また、一般式(2)で表される環状ニトロキシルラジカルと一般式(3)で表されるオキソアンモニウム塩を水に溶解させた場合には、一般式(2)の環状ニトロキシルラジカルの一部は、一般式(4)のオキソアンモニウム塩となり、同時に、一般式(3)で表されるオキソアンモニウム塩は前記式(5)に示すように一部が一般式(1)で表される環状ニトロキシルラジカルになる。 Further, when the cyclic nitroxyl radical represented by the general formula (2) and the oxoammonium salt represented by the general formula (3) are dissolved in water, one of the cyclic nitroxyl radicals represented by the general formula (2) is obtained. Part is an oxoammonium salt of the general formula (4), and at the same time, a part of the oxoammonium salt represented by the general formula (3) is represented by the general formula (1) as shown in the above formula (5). It becomes a cyclic nitroxyl radical.
 このために、一般式(1)の環状ニトロキシルラジカルと一般式(2)の環状ニトロキシルラジカル化合物を同時に電解質中に存在させるためには、一般式(1)で表される環状ニトロキシルラジカルと一般式(4)で表されるオキソアンモニウム塩を水に溶解させる方法、若しくは一般式(2)で表される環状ニトロキシルラジカルと一般式(3)で表されるオキソアンモニウム塩を水に溶解させる方法のいずれかを用いることにより、実現できる。 For this reason, in order for the cyclic nitroxyl radical of the general formula (1) and the cyclic nitroxyl radical compound of the general formula (2) to be simultaneously present in the electrolyte, the cyclic nitroxyl radical represented by the general formula (1) is used. And a method of dissolving the oxoammonium salt represented by the general formula (4) in water, or the cyclic nitroxyl radical represented by the general formula (2) and the oxoammonium salt represented by the general formula (3) in water. This can be realized by using any one of the dissolving methods.
4.光電変換素子(太陽電池セル)構造
 図1は、本発明の一実施形態に係る光電変換素子の基本構造を示す断面模式図である。ここでは、一例として色素増感太陽電池に用いる太陽電池セルを示すが、これに限定されるものではない。図示するように、この太陽電池セルは、光透過性を有する透明基板(1)、この透明基板(1)の表面に形成された光透過性を有する透明導電膜(2)、及び、透明導電膜(2)上に形成された色素を吸着した多孔性半導体層である光電変換層(3)からなる半導体電極(8)と、この半導体電極(8)と相対向する位置に設けられた対極(9)と、半導体電極(8)と対極(9)との間に保持された電解質層(4)とを備えてなる。対極(9)は、導電膜(6)が形成された透明基板又は支持基板(7)からなり、この導電膜(6)の表面に白金触媒層(5)が形成されている。そして、本実施形態では、電解質層(4)が、水と、水に対する親和性が異なる少なくとも2種のニトロキシルラジカルを含む液体状、水と、水に対する親和性が異なる少なくとも2種のニトロキシルラジカルを含む電解液を含浸したゲル状又は固体状電解質からなる。
4). Photoelectric Conversion Element (Solar Cell) Structure FIG. 1 is a schematic cross-sectional view showing the basic structure of a photoelectric conversion element according to an embodiment of the present invention. Here, although the solar cell used for a dye-sensitized solar cell is shown as an example, it is not limited to this. As shown in the figure, the solar battery cell includes a transparent substrate (1) having optical transparency, a transparent conductive film (2) having optical transparency formed on the surface of the transparent substrate (1), and transparent conductive material. A semiconductor electrode (8) comprising a photoelectric conversion layer (3), which is a porous semiconductor layer adsorbing a dye formed on the film (2), and a counter electrode provided at a position facing the semiconductor electrode (8) (9) and an electrolyte layer (4) held between the semiconductor electrode (8) and the counter electrode (9). The counter electrode (9) is composed of a transparent substrate or a support substrate (7) on which a conductive film (6) is formed, and a platinum catalyst layer (5) is formed on the surface of the conductive film (6). In this embodiment, the electrolyte layer (4) is a liquid containing water and at least two nitroxyl radicals having different affinity for water, and at least two types of nitroxyl having different affinity for water. It consists of a gel or solid electrolyte impregnated with an electrolyte containing radicals.
 この構造を持つ光電変換素子において、透明基板(1)側から太陽光などの光が照射されると、光は、透明基板(1)、透明導電膜(2)を透過して、光電変換層(3)に吸着された色素に照射され、色素は光を吸収して励起する。この励起によって発生した電子は光電変換層(3)から透明導電膜(2)に移動する。透明導電膜(2)へ移動した電子は、外部回路を通じて対極(9)に移動し、対極(9)から電荷輸送層すなわち電解質層(4)を通って色素に戻る。このようにして電流が流れ、光電変換素子(太陽電池セル)を構成することができる。 In the photoelectric conversion element having this structure, when light such as sunlight is irradiated from the transparent substrate (1) side, the light is transmitted through the transparent substrate (1) and the transparent conductive film (2) to form a photoelectric conversion layer. The dye adsorbed in (3) is irradiated, and the dye absorbs light and is excited. Electrons generated by this excitation move from the photoelectric conversion layer (3) to the transparent conductive film (2). The electrons moved to the transparent conductive film (2) move to the counter electrode (9) through the external circuit, and return to the dye from the counter electrode (9) through the charge transport layer, that is, the electrolyte layer (4). In this way, a current flows and a photoelectric conversion element (solar cell) can be configured.
 以下、本発明を実施例により具体的に説明するが、本発明の範囲はこれに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the scope of the present invention is not limited thereto.
(実施例1)
 上記した図1に示す構造を持つ光電変換素子を次のようにして作製した。
 1.多孔性半導体層の形成
 半導体層は以下の手順で作製した。まず溶剤として濃度15vol%の酢酸水溶液20mLを用い、そこに市販の多孔質酸化チタン粉末5g(P25、日本アエロジル(株))、界面活性剤0.1mL(ポリオキシエチレン-p-イソオクチルフェノール(商品名:「Triton X-100」、シグマアルドリッチ社製)、ポリエチレングリコール0.3g(分子量20000)を加え、攪拌ミキサーで約1時間攪拌(1回10分間)することで、酸化チタンペーストを作製した。次いで、この酸化チタンペーストを透明導電膜(2)としてITOを具備するガラス基板(6cm×4cm、シート抵抗:20Ω/□)にドクターブレード法で膜厚が20μm程度となるように適量塗布(塗布面積:3cm×3cm)した。この電極を電気炉に挿入し、大気雰囲気にて450℃で約30分間焼成して半導体電極を得た。
Example 1
A photoelectric conversion element having the structure shown in FIG. 1 was produced as follows.
1. Formation of porous semiconductor layer The semiconductor layer was produced in the following procedures. First, 20 mL of an acetic acid aqueous solution having a concentration of 15 vol% was used as a solvent, and 5 g of a commercially available porous titanium oxide powder (P25, Nippon Aerosil Co., Ltd.) and a surfactant 0.1 mL (polyoxyethylene-p-isooctylphenol (product) Name: “Triton X-100” (manufactured by Sigma Aldrich) and polyethylene glycol 0.3 g (molecular weight 20000) were added, and the mixture was stirred for about 1 hour (once for 10 minutes) to prepare a titanium oxide paste. Next, an appropriate amount of this titanium oxide paste is applied to a glass substrate (6 cm × 4 cm, sheet resistance: 20Ω / □) with ITO as a transparent conductive film (2) so that the film thickness is about 20 μm by the doctor blade method ( Application area: 3 cm × 3 cm) This electrode was inserted into an electric furnace and at 450 ° C. in an air atmosphere. To obtain a semiconductor electrode was baked for 30 minutes.
2.色素の吸着
 次にルテニウム色素(Ru(2,2’-bipyridine-4,4’-dicarboxylic acid)(NSC)、小島化学株式会社製)を無水エタノールに濃度4×10-4 mol/Lで溶解させ、吸着用色素溶液を調製した。この吸着用色素溶液と、上述で得られた半導体電極を容器に入れ、12時間静置し、色素を吸着させた。その後、無水エタノールで数回洗浄し、50℃で約30分間自然乾燥させた。
2. Adsorption of dye Next, ruthenium dye (Ru (2,2′-bipyridine-4,4′-dicboxylic acid) 2 (NSC) 2 , manufactured by Kojima Chemical Co., Ltd.) in anhydrous ethanol at a concentration of 4 × 10 −4 mol / L The dye solution for adsorption was prepared. This adsorption dye solution and the semiconductor electrode obtained above were put in a container and allowed to stand for 12 hours to adsorb the dye. Thereafter, it was washed several times with absolute ethanol and naturally dried at 50 ° C. for about 30 minutes.
3.電解質の注入
 次に電解液を調製した。親水性の環状ニトロキシルラジカルとして、前記式(7)で表される化合物(TEMPO-OHと称す)を用い、疎水性の環状ニトロキシルラジカルとして、前記式(6)で表される化合物(TEMPOと称す)を含有する電解液を調製するために、濃度0.05M(M=mol/l)の環状ニトロキシルラジカルであるTEMPO-OHと濃度0.05Mのオキソアンモニウム塩であるTEMPO・BFの両方を溶解した水溶液を用いた。
3. Injection of electrolyte Next, an electrolyte solution was prepared. A compound represented by the above formula (7) (referred to as TEMPO-OH) is used as a hydrophilic cyclic nitroxyl radical, and a compound represented by the above formula (6) (TEMPO as a hydrophobic cyclic nitroxyl radical). TEMPO-BF 4 which is a cyclic nitroxyl radical having a concentration of 0.05M (M = mol / l) and an oxoammonium salt having a concentration of 0.05M. An aqueous solution in which both were dissolved was used.
 オキソアンモニウム塩はカチオンであるTEMPOとアニオンであるBF からなるイオン性物質である。そこで水溶液中では、カチオンはラジカル状態との間で平衡状態を形成できうるために、カチオンの一部は、ラジカル状態に遷移する。また、この時、同時にラジカルであるTEMPO-OHの一部は、カチオンに遷移していると考えられる。 The oxoammonium salt is an ionic substance composed of a cation TEMPO + and an anion BF 4 . Therefore, in an aqueous solution, since the cation can form an equilibrium state with the radical state, a part of the cation transitions to the radical state. At this time, it is considered that a part of the TEMPO-OH which is a radical simultaneously transitions to a cation.
 このようにしてTEMPO・BFのTEMPOカチオンが環状ニトロキシルラジカルであるTEMPOに置き換わることにより、溶液中には、TEMPO-OHとTEMPOが共存する状態を作り出すことができる。この場合、TEMPO-OHは、TEMPOに較べて親水性であることが、溶解度の評価から確かめられる。 Thus, by replacing the TEMPO cation of TEMPO · BF 4 with TEMPO, which is a cyclic nitroxyl radical, a state where TEMPO-OH and TEMPO coexist can be created in the solution. In this case, it is confirmed from the evaluation of solubility that TEMPO-OH is more hydrophilic than TEMPO.
 先に形成した半導体電極の色素を吸着した半導体層(光電変換層)上に上記電解液を滴下し、さらにロータリーポンプで約10分間真空引きして溶液を半導体層に十分浸みこませた。その後、白金触媒層(5)を具備した対極(9)を設置し、治具にて固定した。その後、50℃で60分間放置することにより、TEMPO-OHとTEMPO・BF電解質層(7)を具備した素子を作製した。その後、エポキシ樹脂にて外界との接触を避ける封止を実施し光電変換素子を作製した。 The electrolyte solution was dropped onto the semiconductor layer (photoelectric conversion layer) adsorbing the dye of the semiconductor electrode formed earlier, and further evacuated with a rotary pump for about 10 minutes to sufficiently soak the solution into the semiconductor layer. Then, the counter electrode (9) which equipped the platinum catalyst layer (5) was installed, and it fixed with the jig | tool. Thereafter, the device was left to stand at 50 ° C. for 60 minutes to produce a device having a TEMPO-OH and a TEMPO · BF 4 electrolyte layer (7). Then, sealing which avoids a contact with the external world with an epoxy resin was implemented, and the photoelectric conversion element was produced.
 (実施例2)
 実施例2では、電解液として、濃度0.09M(M=mol/l)のTEMPO-OHと濃度0.01MのTEMPO・BFの両方が溶解した水溶液を用いた以外は、実施例1に準じて光電変換素子を作製した。
(Example 2)
Example 2 is the same as Example 1 except that an aqueous solution in which both TEMPO-OH having a concentration of 0.09M (M = mol / l) and TEMPO · BF 4 having a concentration of 0.01M was used as an electrolytic solution. The photoelectric conversion element was produced similarly.
 (実施例3)
 実施例3では、電解液として、濃度0.05M(M=mol/l)のTEMPO-OHと濃度0.05MのTEMPO・BFの両方が溶解した水溶液を用い、水に対して10%のエタノールを添加したこと以外は、実施例1に準じて光電変換素子を作製した。
(Example 3)
In Example 3, an aqueous solution in which both TEMPO-OH having a concentration of 0.05 M (M = mol / l) and TEMPO · BF 4 having a concentration of 0.05 M was used as an electrolytic solution, and 10% of water was used. A photoelectric conversion element was produced according to Example 1 except that ethanol was added.
 (実施例4)
 実施例4では、電解液として、濃度0.05M(M=mol/l)のTEMPO-OHと濃度0.05MのTEMPO・BFの両方が溶解した水溶液を用い、水に対して30%のエタノールを添加したこと以外は、実施例1に準じて光電変換素子を作製した。
Example 4
In Example 4, as an electrolytic solution, an aqueous solution in which both TEMPO-OH having a concentration of 0.05 M (M = mol / l) and TEMPO · BF 4 having a concentration of 0.05 M was used, and 30% of water was used. A photoelectric conversion element was produced according to Example 1 except that ethanol was added.
 (実施例5)
 実施例5では、電解液として、濃度0.05M(M=mol/l)のTEMPO-OHと濃度0.05MのTEMPO・BFの両方が溶解した水溶液を用い、水に対して50%のエタノールを添加したこと以外は、実施例1に準じて光電変換素子を作製した。
(Example 5)
In Example 5, an aqueous solution in which both TEMPO-OH having a concentration of 0.05 M (M = mol / l) and TEMPO · BF 4 having a concentration of 0.05 M was used as the electrolytic solution was 50% of water. A photoelectric conversion element was produced according to Example 1 except that ethanol was added.
 (実施例6)
 実施例6では、電解液として、濃度0.25M(M=mol/l)のTEMPO-OHと濃度0.25MのTEMPO・BFの両方が溶解した水溶液を用い、水に対して30%のエタノールを添加したこと以外は、実施例1に準じて光電変換素子を作製した。
(Example 6)
In Example 6, an aqueous solution in which both TEMPO-OH having a concentration of 0.25 M (M = mol / l) and TEMPO · BF 4 having a concentration of 0.25 M was used as an electrolytic solution, and 30% of water was used. A photoelectric conversion element was produced according to Example 1 except that ethanol was added.
 (比較例1)
 比較例1では、実施例1においてTEMPO-OHとTEMPO・BFの両方が溶解した液体電解質の代わりに、0.1MのTEMPOのみを用いた以外は、実施例1に準じて光電変換素子を作製した。
(Comparative Example 1)
In Comparative Example 1, a photoelectric conversion element was prepared according to Example 1 except that only 0.1 M TEMPO was used instead of the liquid electrolyte in which both TEMPO-OH and TEMPO · BF 4 were dissolved in Example 1. Produced.
 (比較例2)
 比較例2では、実施例1においてTEMPO-OHとTEMPO・BFの両方が溶解した液体電解質の代わりに、0.1MのTEMPO-OHのみを用いた以外は、実施例1に準じて光電変換素子を作製した。
(Comparative Example 2)
In Comparative Example 2, photoelectric conversion according to Example 1 except that only 0.1 M TEMPO-OH was used instead of the liquid electrolyte in which both TEMPO-OH and TEMPO · BF 4 were dissolved in Example 1. An element was produced.
 (比較例3)
 比較例3では、実施例1においてTEMPO-OHとTEMPO・BFの両方が溶解した液体電解質の代わりに、TEMPOとTEMPO・BFの両方が溶解した液体電解質を用いた以外は、実施例1に準じて光電変換素子を作製した。
(Comparative Example 3)
In Comparative Example 3, Example 1 was used except that a liquid electrolyte in which both TEMPO and TEMPO · BF 4 were dissolved was used instead of the liquid electrolyte in which both TEMPO-OH and TEMPO · BF 4 were dissolved in Example 1. A photoelectric conversion element was produced according to the above.
 (光電変換素子特性の評価)
 作製した光電変換素子の特性の評価はソーラーシミュレーター用いてAM1.5、100mW/cm照射条件下でのI-V測定を行った。ここで光電変換素子の両端を電子負荷装置に接続して、開放電圧から取り出し電圧がゼロになるまで5mV/secステップの電位走査を繰り返して行った。図2に実施例6で得られた光電変換素子のI-V曲線を示した。表1には、実施例1~6および比較例1~3で得られた光電変換素子の特性評価の結果を示す。実施例1~6は、比較例1~3に対して高い効率が得られることが分かる。
(Evaluation of photoelectric conversion element characteristics)
Evaluation of the characteristics of the produced photoelectric conversion element was carried out by IV measurement under irradiation conditions of AM 1.5 and 100 mW / cm 2 using a solar simulator. Here, both ends of the photoelectric conversion element were connected to an electronic load device, and potential scanning at a step of 5 mV / sec was repeated until the voltage was extracted from the open circuit voltage and became zero. FIG. 2 shows an IV curve of the photoelectric conversion element obtained in Example 6. Table 1 shows the results of the characteristic evaluation of the photoelectric conversion elements obtained in Examples 1 to 6 and Comparative Examples 1 to 3. It can be seen that Examples 1 to 6 have higher efficiency than Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 比較例1又は2に示される環状ニトロキシルラジカル1種のみを用いる場合、発電しないか、発電してもわずかであり実用的ではない。比較例3に示されるTEMPOとTEMPO・BFとの組合せでは、発電効率が比較例1,2に比較して高くなっている。さらに実施例1~6に示されるように、水との親和性が異なる2種類の環状ニトロキシルラジカルを用いることにより、比較例3よりも高効率である。このことは、水に対する親和性の違いにより、溶媒中、若しくは表面近くでの存在場所の違いにより生じる効果であると考えられる。 When only one type of cyclic nitroxyl radical shown in Comparative Example 1 or 2 is used, power generation is not performed or power generation is slight, which is not practical. In the combination of TEMPO and TEMPO · BF 4 shown in Comparative Example 3, the power generation efficiency is higher than those in Comparative Examples 1 and 2. Further, as shown in Examples 1 to 6, the use of two types of cyclic nitroxyl radicals having different affinity for water is more efficient than Comparative Example 3. This is considered to be an effect caused by the difference in the location in the solvent or near the surface due to the difference in affinity for water.
 (溶解度の評価)
 本実施例で用いたラジカル種である、TEMPO-OH、TEMPO、TEMPO・BFの水に対する溶解度を評価した。TEMPO、TEMPO・BFは、室温25℃において水に対して0.1M(M=mol/l)以上を溶解させることはできなかった。これに対してTEMPO-OHは、0.25M以上を溶解することを確認した。このことから、TEMPO-OHはTEMPOよりも、水に対する親和性が高い(親水性)ものである。
(Evaluation of solubility)
Is a radical species used in this example, TEMPO-OH, TEMPO, to evaluate the solubility to water of TEMPO · BF 4. TEMPO and TEMPO · BF 4 could not dissolve 0.1 M (M = mol / l) or more in water at room temperature of 25 ° C. On the other hand, it was confirmed that TEMPO-OH dissolves 0.25 M or more. Therefore, TEMPO-OH has a higher affinity for water (hydrophilicity) than TEMPO.
 以上のように、TEMPO単独では0.1M以上溶解させることが難しい状況であるのに対して、実施例6に示されるように、TEMPO-OHを共存させることにより、溶解量が増加していることが分かる。この結果として、閉回路電流、フィルファクター、変換効率がもっとも高くなっていることが分かる。 As described above, it is difficult to dissolve 0.1 M or more with TEMPO alone, but as shown in Example 6, the amount of dissolution is increased by the coexistence of TEMPO-OH. I understand that. As a result, it can be seen that the closed circuit current, the fill factor, and the conversion efficiency are the highest.
 この溶解度評価の結果から、光電変換素子に用いられる電解質において、環状ニトロキシルラジカル化合物の親和性の差により明確に作用が現れるのは、室温25℃における水への溶解度が0.1Mを境にして起こると考えられる。 From the results of this solubility evaluation, the effect of the cyclic nitroxyl radical compound on the electrolyte used in the photoelectric conversion element clearly appears because the solubility in water at room temperature of 25 ° C is 0.1M. It is thought that it happens.
 以上の結果は、本発明が開示する、水に対する親和性が異なる少なくとも2種類の環状ニトロキシルラジカルと水を含む電解質を用いることにより、高い変換効率を実現できること、その場合には、同時にオキソアンモニウム塩が存在すること、また、少なくとも2種類のニトロキシルラジカルの溶媒である水に対する親和性の差により生じている効果(ラジカル種の違いによる溶媒内の存在場所の違い、及び、溶解量の増加)を示唆している。 The above results show that high conversion efficiency can be realized by using an electrolyte containing water and at least two types of cyclic nitroxyl radicals different in affinity for water disclosed in the present invention. The effect of the presence of salt and the difference in the affinity of water for at least two nitroxyl radicals as a solvent (difference in the location of the solvent due to the difference in radical species and increase in the amount of dissolution )It suggests.
 本発明に係る光電変換素子は、色素増感太陽電池として好適に用いられるものであり、さらに太陽電池だけでなく、光センサーなどとしても利用することができる。
 この出願は、2011年2月22日に出願された日本出願特願2011-35855を基礎とする優先権を主張し、その開示の全てをここに取り込む。
The photoelectric conversion element according to the present invention is suitably used as a dye-sensitized solar cell, and can be used not only as a solar cell but also as an optical sensor.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2011-35855 for which it applied on February 22, 2011, and takes in those the indications of all here.
1…透明基板
2…透明導電膜
3…光電変換層
4…電解質層
5…白金触媒層
6…導電膜
7…透明基板若しくは支持基板
8…半導体電極
9…対極
DESCRIPTION OF SYMBOLS 1 ... Transparent substrate 2 ... Transparent conductive film 3 ... Photoelectric conversion layer 4 ... Electrolyte layer 5 ... Platinum catalyst layer 6 ... Conductive film 7 ... Transparent substrate or support substrate 8 ... Semiconductor electrode 9 ... Counter electrode

Claims (10)

  1.  光増感剤と半導体層を含む半導体電極と、
     対電極と、
     前記半導体電極と前記対電極との間に設けられた電解質層と、
    を含み、
     前記電解質層中に水と、水に対する親和性が異なる少なくとも2種の環状ニトロキシルラジカル化合物とを同時に含有する光電変換素子。
    A semiconductor electrode comprising a photosensitizer and a semiconductor layer;
    A counter electrode;
    An electrolyte layer provided between the semiconductor electrode and the counter electrode;
    Including
    The photoelectric conversion element which contains simultaneously the water and the at least 2 sort (s) of cyclic nitroxyl radical compound from which affinity with water differs in the said electrolyte layer.
  2.  前記水に対する親和性が異なる少なくとも2種の環状ニトロキシルラジカル化合物は、下記一般式(1)で表される環状ニトロキシルラジカル化合物及び下記一般式(2)で表される環状ニトロキシルラジカル化合物から選択される請求項1に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)において、Aは、窒素を含む5~7員の複素環を構成する2価の基であって、疎水性の置換基を有してもよい。R、R、R、Rは、それぞれ独立して水素原子又はメチル基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)において、Bは、窒素を含む5~7員の複素環を構成する2価の基であって、親水性の置換基を有する。R、R、R、Rはそれぞれ異なっていてもよく、水素原子又はメチル基を示す。)
    The at least two kinds of cyclic nitroxyl radical compounds having different affinity for water are a cyclic nitroxyl radical compound represented by the following general formula (1) and a cyclic nitroxyl radical compound represented by the following general formula (2). The photoelectric conversion element of Claim 1 selected.
    Figure JPOXMLDOC01-appb-C000001
    (In the above general formula (1), A is a divalent group constituting a 5- to 7-membered heterocyclic ring containing nitrogen and may have a hydrophobic substituent. R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a methyl group.)
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), B is a divalent group constituting a 5- to 7-membered heterocyclic ring containing nitrogen and has a hydrophilic substituent. R 1 , R 2 , R 3 , R 4 may be different from each other, and represents a hydrogen atom or a methyl group.
  3.  前記電解質層中に、さらに下記一般式(3)及び下記一般式(4)で表されるオキソアンモニウム塩から選択される1種又は2種以上を含む請求項2に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)において、A、R、R、R、Rは一般式(1)のA、R、R、R、Rと同一の意味を示し、Xは、金属塩化物、フッ素、塩素、臭素、ヨウ素、BF、PF、CFSO3、N(SOCF、N(SOF)、CFCOO、N(CSO)、又はClOを示す。)
    Figure JPOXMLDOC01-appb-C000004
    (一般式(4)において、B、R、R、R、Rは一般式(2)のB、R、R、R、Rと同一の意味を示し、Xは、金属塩化物、フッ素、塩素、臭素、ヨウ素、BF、PF、CFSO3、N(SOCF、N(SOF)、CFCOO、N(CSO)、又はClOを示す。)
    The photoelectric conversion element according to claim 2, wherein the electrolyte layer further contains one or more selected from oxoammonium salts represented by the following general formula (3) and the following general formula (4).
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (3), A, R 1 , R 2, R 3, R 4 is A in the formula (1), R 1, R 2, R 3, R 4 represent the same meanings as, X is , Metal chloride, fluorine, chlorine, bromine, iodine, BF 4 , PF 6 , CF 3 SO 3, N (SO 2 CF 3 ) 2 , N (SO 2 F) 2 , CF 3 COO, N (C 2 F 5 SO 2 ), or ClO 4. )
    Figure JPOXMLDOC01-appb-C000004
    In (formula (4), B, R 1 , R 2, R 3, R 4 is B in the general formula (2), R 1, R 2, R 3, R 4 represent the same meanings as, X is , Metal chloride, fluorine, chlorine, bromine, iodine, BF 4 , PF 6 , CF 3 SO 3, N (SO 2 CF 3 ) 2 , N (SO 2 F) 2 , CF 3 COO, N (C 2 F 5 SO 2 ), or ClO 4. )
  4.  前記水に対する親和性が異なる少なくとも2種の環状ニトロキシルラジカル化合物は、それぞれ単独での25℃における水に対する溶解度が0.1mol/l以上の少なくとも1種と0.1mol/l未満の少なくとも1種との組合せである請求項1乃至3のいずれか1項に記載の光電変換素子。 The at least two kinds of cyclic nitroxyl radical compounds having different affinity for water are each at least one kind having a solubility in water at 25 ° C. of not less than 0.1 mol / l and at least one kind having less than 0.1 mol / l. The photoelectric conversion element according to any one of claims 1 to 3, wherein the photoelectric conversion element is a combination thereof.
  5.  前記水に対する親和性が異なる少なくとも2種の環状ニトロキシルラジカル化合物は、下記式(6)
    Figure JPOXMLDOC01-appb-C000005
    で表される環状ニトロキシルラジカル化合物と、下記式(7)
    Figure JPOXMLDOC01-appb-C000006
    で表される環状ニトロキシルラジカル化合物である請求項4に記載の光電変換素子。
    The at least two kinds of cyclic nitroxyl radical compounds having different affinity for water are represented by the following formula (6):
    Figure JPOXMLDOC01-appb-C000005
    A cyclic nitroxyl radical compound represented by formula (7):
    Figure JPOXMLDOC01-appb-C000006
    The photoelectric conversion element according to claim 4, which is a cyclic nitroxyl radical compound represented by the formula:
  6.  前記電解質層中にさらにエタノールを含む請求項1乃至5のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to claim 1, further comprising ethanol in the electrolyte layer.
  7.  前記半導体基板は、前記光増感剤として色素を前記半導体層に吸着させたものである請求項1乃至6のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 6, wherein the semiconductor substrate is obtained by adsorbing a dye as the photosensitizer on the semiconductor layer.
  8.  前記半導体層が多孔性の酸化チタンである請求項7に記載の光電変換素子。 The photoelectric conversion element according to claim 7, wherein the semiconductor layer is porous titanium oxide.
  9.  前記光増感剤が有機色素である請求項1乃至8のいずれか1項に記載の光電変換素子。 The photoelectric conversion element according to any one of claims 1 to 8, wherein the photosensitizer is an organic dye.
  10.  請求項1乃至請求項9のいずれか1項に記載の光電変換素子における前記電解質を調合する方法であって、下記一般式(1)で表される環状ニトロキシルラジカルの少なくとも1種と下記一般式(4)で表されるオキソアンモニウム塩の少なくとも1種を水に溶解させる方法、若しくは下記一般式(2)で表される環状ニトロキシルラジカルの少なくとも1種と下記一般式(3)で表されるオキソアンモニウム塩の少なくとも1種を水に溶解させる方法、のいずれかを用いることを特徴とする電解質調合方法。
    Figure JPOXMLDOC01-appb-C000007
    (式中、Aは、窒素を含む5~7員の複素環を構成する2価の基であって、疎水性の置換基を有してもよい。Bは、窒素を含む5~7員の複素環を構成する2価の基であって、親水性の置換基を有する。R、R、R、Rはそれぞれ異なっていてもよく、水素原子又はメチル基を示す。Xは、金属塩化物、フッ素、塩素、臭素、ヨウ素、BF、PF、CFSO3、N(SOCF、N(SOF)、CFCOO、N(CSO)、又はClOを示す。)
    A method for preparing the electrolyte in the photoelectric conversion device according to any one of claims 1 to 9, wherein at least one cyclic nitroxyl radical represented by the following general formula (1) and the following general formula: A method in which at least one oxoammonium salt represented by the formula (4) is dissolved in water, or at least one cyclic nitroxyl radical represented by the following general formula (2) and the following general formula (3) Any one of the methods of dissolving at least 1 sort of the oxoammonium salt to be dissolved in water is used.
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, A is a divalent group constituting a 5- to 7-membered heterocyclic ring containing nitrogen and may have a hydrophobic substituent. B is a 5- to 7-membered containing nitrogen. A divalent group constituting a heterocyclic ring having a hydrophilic substituent, R 1 , R 2 , R 3 and R 4 may be different from each other and each represents a hydrogen atom or a methyl group. Is metal chloride, fluorine, chlorine, bromine, iodine, BF 4 , PF 6 , CF 3 SO 3, N (SO 2 CF 3 ) 2 , N (SO 2 F) 2 , CF 3 COO, N (C 2 F 5 SO 2), or an ClO 4.)
PCT/JP2012/054105 2011-02-22 2012-02-21 Photoelectric conversion element WO2012115094A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013501065A JPWO2012115094A1 (en) 2011-02-22 2012-02-21 Photoelectric conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-035855 2011-02-22
JP2011035855 2011-02-22

Publications (1)

Publication Number Publication Date
WO2012115094A1 true WO2012115094A1 (en) 2012-08-30

Family

ID=46720871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054105 WO2012115094A1 (en) 2011-02-22 2012-02-21 Photoelectric conversion element

Country Status (2)

Country Link
JP (1) JPWO2012115094A1 (en)
WO (1) WO2012115094A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222808A (en) * 2014-04-28 2015-12-10 パナソニック株式会社 Photoelectric conversion element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100930A1 (en) * 2009-03-06 2010-09-10 日本電気株式会社 Photoelectric conversion element and method for manufacturing the same, optical sensor and solar battery
JP2011023344A (en) * 2009-06-19 2011-02-03 Panasonic Electric Works Co Ltd Photoelectric element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100930A1 (en) * 2009-03-06 2010-09-10 日本電気株式会社 Photoelectric conversion element and method for manufacturing the same, optical sensor and solar battery
JP2011023344A (en) * 2009-06-19 2011-02-03 Panasonic Electric Works Co Ltd Photoelectric element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015222808A (en) * 2014-04-28 2015-12-10 パナソニック株式会社 Photoelectric conversion element

Also Published As

Publication number Publication date
JPWO2012115094A1 (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5143476B2 (en) Photoelectric conversion element
JP5404058B2 (en) Ionic liquid electrolyte
JP4591131B2 (en) Dye-sensitized photoelectric conversion element, manufacturing method thereof, electronic device, manufacturing method thereof, and electronic apparatus
JP5089381B2 (en) Electrolyte composition for photoelectric conversion element and photoelectric conversion element using the same
US20100116340A1 (en) Dye sensitized photoelectric conversion device and manufacturing method thereof, electronic equipment, and semiconductor electrode and manufacturing method thereof
JP4391447B2 (en) Electrolyte composition and solar cell using the same
WO2014082704A1 (en) Cobaltcomplex salts
JP5590026B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND METHOD FOR MANUFACTURING THE SAME
US20120301992A1 (en) Electrolyte solution for dye sensitized solar cell, and dye sensitized solar cell using same
JP5350851B2 (en) Composition for photoelectric conversion element and photoelectric conversion element using the same
EP2833471B1 (en) Dye-sensitized solar cell and method of manufacturing same
JP4356865B2 (en) Method for producing metal-metal oxide composite electrode, photoelectric conversion element and photovoltaic cell
JP5439869B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND METHOD FOR MANUFACTURING THE SAME
JP2013016360A (en) Photoelectric conversion element
WO2012115094A1 (en) Photoelectric conversion element
JP2007200714A (en) Dye-sensitized solar cell and its manufacturing method
JP5996255B2 (en) Photoelectric conversion element and π-conjugated organic radical compound
JP2011165615A (en) Photoelectric conversion element and method of manufacturing the same
JP4963751B2 (en) Electrolyte
JP2002175841A (en) Water-containing electrolysis body
JP2014086239A (en) Energy storage type dye-sensitized solar cell
TW201422595A (en) Redox pair, and photoelectric conversion element produced using same
JP2006134615A (en) Photoelectric conversion element
JP2004127579A (en) Manufacturing method of metal-metal oxide composite electrode, photoelectric transducing element and photoelectric cell
JP2011150883A (en) Photoelectric transfer element, optical sensor, and solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12748921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013501065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12748921

Country of ref document: EP

Kind code of ref document: A1