JP4670497B2 - Thin film electrode paste and method for manufacturing thin film electrode and thin film element - Google Patents

Thin film electrode paste and method for manufacturing thin film electrode and thin film element Download PDF

Info

Publication number
JP4670497B2
JP4670497B2 JP2005175298A JP2005175298A JP4670497B2 JP 4670497 B2 JP4670497 B2 JP 4670497B2 JP 2005175298 A JP2005175298 A JP 2005175298A JP 2005175298 A JP2005175298 A JP 2005175298A JP 4670497 B2 JP4670497 B2 JP 4670497B2
Authority
JP
Japan
Prior art keywords
thin film
paste
electrode
reference example
film electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005175298A
Other languages
Japanese (ja)
Other versions
JP2006032326A (en
Inventor
信幸 曽山
祐介 渡会
一祐 佐藤
貴博 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005175298A priority Critical patent/JP4670497B2/en
Publication of JP2006032326A publication Critical patent/JP2006032326A/en
Application granted granted Critical
Publication of JP4670497B2 publication Critical patent/JP4670497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体記憶装置、薄膜コンデンサ、センサ、圧電素子、表面弾性波素子、フィルタ、表面弾性波光学導波管、光学記憶装置、空間光変調器等に用いられる薄膜素子の薄膜電極用のペースト並びにその薄膜電極の製造方法及びそれを利用した薄膜素子の製造方法に関するものである。   The present invention is for a thin film electrode of a thin film element used in a semiconductor memory device, a thin film capacitor, a sensor, a piezoelectric element, a surface acoustic wave element, a filter, a surface acoustic wave optical waveguide, an optical memory device, a spatial light modulator, etc. The present invention relates to a paste, a method for manufacturing the thin film electrode, and a method for manufacturing a thin film element using the paste.

従来、薄膜素子は、一般的に、多結晶体からなる誘電体材料膜と、この誘電体材料膜を挟んで配置される上部電極及び下部電極と、を備えた構造を有している。この誘電体材料膜の組成は、一般的に、チタン酸ジルコン酸鉛(以下、「PZT」という)や、ペロブスカイト型の結晶構造を有するチタン酸バリウム系誘電物質(以下、「BST」という)が用いられ、この誘電体材料膜の製造に関しては、例えば、ゾルゲル法、レーザーアブレーション法及びCVD法等が用いられている。また、この薄膜素子における上部電極および下部電極を構成する材料としては、従来から白金、イリジウム、ルテニウム、チタン、金、ニッケル等、種々の導電体が使用されている。そして、上部電極および下部電極の従来の製造方法は、真空スパッタ法により成膜することにより上部電極および下部電極を製造していた(例えば、特許文献1参照。)。従って、従来では、下部電極を真空スパッタ法により製造した後、誘電体材料膜をその下部電極上に別工程からなるゾルゲル法、レーザーアブレーション法及びCVD法等で製造した後、得られた誘電体材料膜上に更に上部電極を真空スパッタ法により製造するという手順により得られていた。
特開平5−286131号公報
Conventionally, a thin film element generally has a structure including a dielectric material film made of a polycrystalline body, and an upper electrode and a lower electrode arranged with the dielectric material film interposed therebetween. The dielectric material film is generally composed of lead zirconate titanate (hereinafter referred to as “PZT”) or a barium titanate-based dielectric material (hereinafter referred to as “BST”) having a perovskite crystal structure. For the production of the dielectric material film, for example, a sol-gel method, a laser ablation method, a CVD method or the like is used. In addition, various conductors such as platinum, iridium, ruthenium, titanium, gold, and nickel have been conventionally used as materials constituting the upper electrode and the lower electrode in this thin film element. And the conventional manufacturing method of an upper electrode and a lower electrode manufactured the upper electrode and the lower electrode by forming into a film by a vacuum sputtering method (for example, refer patent document 1). Therefore, conventionally, after the lower electrode is manufactured by the vacuum sputtering method, the dielectric material film is manufactured on the lower electrode by a sol-gel method, a laser ablation method, a CVD method, or the like, which is a separate process. It was obtained by the procedure of further manufacturing the upper electrode on the material film by vacuum sputtering.
Japanese Patent Laid-Open No. 5-286131

しかし、下部電極を真空スパッタ法により製造した後、誘電体材料膜を別工程で製造し、その後更に上部電極を製造する薄膜素子の製造方法では、それぞれの成膜方法が異なり、製造方法が煩雑となる。このため、得られた薄膜素子の単価が押し上げられる不具合があった。この点を解消するために、電極に関しては金属粒子を含むペーストを所定の厚さに塗布して得られた膜を焼成することが考えられるが、その焼成温度が比較的高い場合には、電極を得るまでのタクトタイムも大きくなり、得られた薄膜素子の単価を更に押し上げる問題点もある。
本発明の目的は、薄膜素子の電極を低コストで、かつ短いタクトタイムで形成し、比較的安価な薄膜素子を得ることのできる薄膜電極用ペースト並びに薄膜電極の製造方法及び薄膜素子の製造方法を提供することにある。
However, in the thin film element manufacturing method in which the lower electrode is manufactured by a vacuum sputtering method, the dielectric material film is manufactured in a separate process, and then the upper electrode is further manufactured, each film forming method is different and the manufacturing method is complicated. It becomes. For this reason, there was a problem that the unit price of the obtained thin film element was pushed up. In order to eliminate this point, regarding the electrode, it is conceivable to fire a film obtained by applying a paste containing metal particles to a predetermined thickness. However, if the firing temperature is relatively high, the electrode There is also a problem that the tact time until obtaining is increased, and the unit price of the obtained thin film element is further increased.
An object of the present invention is to provide a thin film electrode paste, a thin film electrode manufacturing method, and a thin film element manufacturing method capable of forming a thin film element electrode at a low cost with a short tact time and obtaining a relatively inexpensive thin film element. Is to provide.

請求項1に係る発明は、Niメタルを気化させて、アルキルナフタレン系のオイルにポリアミンを添加した溶媒中に吹き込むことにより、粒径が1〜40nmのNi粒子が分散したコロイド溶液を作製し、このコロイド溶液を固液分離した後、分離したNiからなる粒径が1〜40nmの金属微粒子を水に分散させてなる薄膜電極用ペーストである。
この請求項1に記載された薄膜電極用ペーストでは、粒径が1〜40nmの金属微粒子を水に分散させたので、400〜900℃の比較的低い温度で焼成することができ、薄膜電極を得るまでのタクトタイムを短縮させることができる。ここで、合金の粒径が1nm未満であると緻密な組織になりにくい不具合があり、その粒径が40nmを越えると低温での焼結が困難になるとともに基板へのアンカー効果による密着力が低下する不具合がある。そして、この合金の好ましい粒径は1〜10nmであり、2〜5nmであることが更に好ましい。
The invention according to claim 1 vaporizes Ni metal and blows it into a solvent in which polyamine is added to an alkylnaphthalene-based oil to produce a colloidal solution in which Ni particles having a particle size of 1 to 40 nm are dispersed, after this the colloidal solution solid-liquid separation, Ni or Ranaru diameter separated is a thin film electrode paste obtained by dispersing fine metal particles 1~40nm water.
In the thin film electrode paste described in claim 1, since the metal fine particles having a particle diameter of 1 to 40 nm are dispersed in water, the thin film electrode can be fired at a relatively low temperature of 400 to 900 ° C. The tact time to obtain can be shortened. Here, when the particle size of the alloy is less than 1 nm, there is a problem that it is difficult to form a dense structure. When the particle size exceeds 40 nm, sintering at low temperature becomes difficult and adhesion due to the anchor effect to the substrate is difficult. There is a problem that decreases. And the preferable particle size of this alloy is 1-10 nm, and it is still more preferable that it is 2-5 nm.

請求項2に係る発明は、図1に示すように、請求項1記載の粒径が1〜40nmのNiからなる金属微粒子を水に分散させた薄膜電極用ペーストを準備する工程と、基板11の上面にペーストを塗布して所定の厚さに成膜する工程と、熱処理によりペーストにおける水を除去して金属微粒子を焼成することにより基板11上に薄膜電極12を得る工程とを含む薄膜電極の製造方法である。
この請求項2に記載された薄膜電極の製造方法では、粒径が1〜40nmの金属微粒子を分散させたペーストを成膜して焼成するので、その焼成温度を比較的低く設定することにより薄膜電極を得るまでのタクトタイムを短縮させることができる。
請求項3に係る発明は、請求項2に係る発明であって、ペーストの塗布成膜がスピンコート法又はスプレー法又は液滴吐出法のいずれかによりなされる薄膜電極の製造方法である。
この請求項3に記載された薄膜電極の製造方法では、ペーストの塗布成膜を大気圧下において行うことができ、従来の真空スパッタ法により電極を製造する場合に比較して、薄膜電極を得るまでのタクトタイムを更に短縮させることができる。
As shown in FIG. 1, the invention according to claim 2 is a process for preparing a paste for a thin film electrode in which metal fine particles made of Ni having a particle diameter of 1 to 40 nm according to claim 1 are dispersed in water; A thin film electrode including a step of applying a paste to the upper surface of the substrate to form a film with a predetermined thickness, and a step of removing the water in the paste by heat treatment and firing the metal fine particles to obtain the thin film electrode 12 on the substrate 11 It is a manufacturing method.
In the method of manufacturing a thin film electrode according to claim 2, since a paste in which metal fine particles having a particle diameter of 1 to 40 nm are dispersed is formed and fired, the thin film electrode can be formed by setting the firing temperature relatively low. The tact time until the electrode is obtained can be shortened.
The invention according to claim 3 is the invention according to claim 2, and is a method of manufacturing a thin film electrode in which the coating film formation of the paste is performed by any one of a spin coating method, a spray method, and a droplet discharge method.
In the method of manufacturing a thin film electrode according to the third aspect, paste coating can be performed under atmospheric pressure, and a thin film electrode is obtained as compared with the case of manufacturing an electrode by a conventional vacuum sputtering method. It is possible to further shorten the tact time.

請求項4に係る発明は、請求項2又は3に係る発明であって、熱処理が大気圧雰囲気中において400℃〜900℃の温度によりなされる薄膜電極の製造方法である。
この請求項4に記載された薄膜電極の製造方法では、熱処理を400〜900℃の比較的低い温度で焼成するので、薄膜電極を得るまでのタクトタイムを更に短縮させることができ、比較的安価な薄膜電極を得ることができる。ここで、熱処理が400℃未満であると十分に焼結しない不具合があり、その熱処理が900℃を越えると成長が起こって密着力が低下する不具合がある。そして、この熱処理の好ましい温度範囲は450〜800℃である。
The invention according to claim 4 is the invention according to claim 2 or 3, wherein the heat treatment is performed at a temperature of 400 ° C. to 900 ° C. in an atmospheric pressure atmosphere.
In the method of manufacturing a thin film electrode according to claim 4, since the heat treatment is performed at a relatively low temperature of 400 to 900 ° C., the tact time until the thin film electrode is obtained can be further shortened and is relatively inexpensive. A thin film electrode can be obtained. Here, when the heat treatment is less than 400 ° C., there is a problem that the sintering is not sufficiently performed, and when the heat treatment exceeds 900 ° C., there is a problem that the growth occurs and the adhesion force is lowered. And the preferable temperature range of this heat processing is 450-800 degreeC.

請求項5に係る発明は、請求項1記載の粒径が1〜40nmのNiからなる金属微粒子を水に分散させた薄膜電極用ペーストを基板11の平坦な上面に塗布して所定の厚さに成膜した後に熱処理して金属微粒子を焼成することにより基板11上に第1薄膜電極12を形成する工程と、第1薄膜電極12上にゾルゲル法により誘電体材料膜13を形成する工程と、誘電体材料膜13上に請求項1記載の粒径が1〜40nmのNiからなる金属微粒子を水に分散させた薄膜電極用ペーストを塗布して所定の厚さに成膜した後に熱処理して金属微粒子を焼成することにより誘電体材料膜13上に第2薄膜電極14を形成する工程とを含む薄膜素子の製造方法である。
この請求項5に記載された薄膜素子の製造方法では、薄膜素子の薄膜電極12,14を低コストで得ることができ、薄膜電極12,14及び誘電体材料膜13が非真空状態で形成され得ることから電極を真空スパッタで行われる従来に比較してその製造工程を単純化させることができ、かつ比較的低温で薄膜電極12,14及び誘電体材料膜13を形成し得ることから、短いタクトタイムで薄膜素子を得ることができ、その単価を安価なものとすることができる。
According to a fifth aspect of the present invention, a thin film electrode paste in which metal fine particles made of Ni having a particle diameter of 1 to 40 nm according to the first aspect are dispersed in water is applied to a flat upper surface of the substrate 11 to a predetermined thickness. Forming a first thin film electrode 12 on the substrate 11 by heat-treating the metal fine particles after the film is formed, and forming a dielectric material film 13 on the first thin film electrode 12 by a sol-gel method. The thin film electrode paste in which the metal fine particles made of Ni having a particle diameter of 1 to 40 nm according to claim 1 are applied to the dielectric material film 13 in water to form a predetermined thickness, followed by heat treatment. Forming a second thin film electrode 14 on the dielectric material film 13 by firing metal fine particles.
In the method of manufacturing the thin film element according to the fifth aspect, the thin film electrodes 12 and 14 of the thin film element can be obtained at low cost, and the thin film electrodes 12 and 14 and the dielectric material film 13 are formed in a non-vacuum state. Therefore, the manufacturing process can be simplified as compared with the conventional case where the electrodes are formed by vacuum sputtering, and the thin film electrodes 12 and 14 and the dielectric material film 13 can be formed at a relatively low temperature. A thin film element can be obtained in tact time, and the unit price can be reduced.

請求項7に係る発明は、粒径が1〜60nmの誘電体微粒子を溶媒に分散させた誘電体ペーストを準備する工程と、請求項2記載の方法により製造された第1薄膜電極12の上面に誘電体ペーストを塗布して所定の厚さに成膜する工程と、熱処理により誘電体ペーストにおける溶媒を除去して誘電体微粒子を焼成することにより第1薄膜電極12上に薄膜誘電体材料膜13を形成する工程と、薄膜誘電体材料膜13上にスパッタリング法、MOCVD法、真空蒸着法又は請求項2記載の方法により第2薄膜電極14を形成する工程とを含む薄膜素子の製造方法である。
この請求項7に記載された薄膜素子の製造方法では、粒径が1〜60nmの誘電体微粒子を溶媒に分散させた誘電体ペーストを成膜して焼成するので、その焼成温度を比較的低く設定することにより誘電体材料膜13を得るまでのタクトタイムを短縮させることができる。ここで、誘電体微粒子の粒径が1nm未満であると緻密な組織になりにくい不具合があり、その粒径が60nmを越えると低温での焼結が困難になるとともに第1薄膜電極12へのアンカー効果による密着力が低下する不具合がある。そして、この誘電体微粒子の好ましい粒径は1〜10nmであり、2〜5nmであることが更に好ましい。
The invention according to claim 7 includes a step of preparing a dielectric paste in which dielectric fine particles having a particle diameter of 1 to 60 nm are dispersed in a solvent, and an upper surface of the first thin film electrode 12 manufactured by the method according to claim 2. A thin film dielectric material film is formed on the first thin film electrode 12 by applying a dielectric paste onto the first thin film electrode 12 by forming a film to a predetermined thickness, and removing the solvent in the dielectric paste by heat treatment and firing the dielectric fine particles. A method of forming a thin film element, and a step of forming a second thin film electrode 14 on the thin film dielectric material film 13 by a sputtering method, an MOCVD method, a vacuum deposition method or a method according to claim 2. is there.
In the method for manufacturing a thin film element described in claim 7, since the dielectric paste in which dielectric fine particles having a particle diameter of 1 to 60 nm are dispersed in a solvent is formed and fired, the firing temperature is relatively low. By setting, the tact time until the dielectric material film 13 is obtained can be shortened. Here, if the particle size of the dielectric fine particles is less than 1 nm, there is a problem that it is difficult to form a dense structure. If the particle size exceeds 60 nm, sintering at a low temperature becomes difficult and the first thin film electrode 12 is not easily sintered. There is a problem that the adhesion due to the anchor effect is reduced. And the preferable particle size of this dielectric fine particle is 1-10 nm, and it is still more preferable that it is 2-5 nm.

また、この請求項7に記載された薄膜素子の製造方法では、薄膜素子の薄膜電極12,14を低コストで得ることができ、薄膜電極12,14を真空スパッタで形成する従来に比較してその製造工程を単純化させることができ、かつ比較的低温で薄膜電極12,14及び誘電体材料膜13を形成し得ることから、短いタクトタイムで薄膜素子を得ることができ、その単価を安価なものとすることができる。   Further, in the method of manufacturing a thin film element described in claim 7, the thin film electrodes 12 and 14 of the thin film element can be obtained at low cost, and compared with the conventional method in which the thin film electrodes 12 and 14 are formed by vacuum sputtering. Since the manufacturing process can be simplified and the thin film electrodes 12, 14 and the dielectric material film 13 can be formed at a relatively low temperature, a thin film element can be obtained with a short tact time, and the unit price is low. Can be.

本発明の薄膜電極用ペーストは、Niメタルを気化させて、アルキルナフタレン系のオイルにポリアミンを添加した溶媒中に吹き込むことにより、粒径が1〜40nmのNi粒子が分散したコロイド溶液を作製し、このコロイド溶液を固液分離した後、分離したNiからなる粒径が1〜40nmの金属微粒子を水に分散させてなるので、400〜900℃の比較的低い温度で焼成することができ、薄膜電極を得るまでのタクトタイムを従来より短縮させることができる。
また、本発明の薄膜電極の製造方法では、上記粒径が1〜40nmのNiからなる金属微粒子を水に分散させた薄膜電極用ペーストを準備する工程と、基板の平坦な上面に前記ペーストを塗布して所定の厚さに成膜する工程と、熱処理によりペーストにおける水を除去して金属微粒子を焼成することにより基板上に薄膜電極を得る工程とを含むので、ペーストの焼成温度を比較的低く設定することにより薄膜電極を得るまでのタクトタイムを短縮させることができる。この際、ペーストの塗布成膜がスピンコート法又はスプレー法又は液滴吐出法のいずれかによりなされる場合には、ペーストの塗布成膜を大気圧下において行うことができ、従来の真空スパッタ法により電極を製造する場合に比較して、薄膜電極を得るまでのタクトタイムを更に短縮させることができる。そして、その熱処理が大気圧雰囲気中において400℃〜900℃の温度により行えば、薄膜電極を得るまでのタクトタイムを更に短縮させることができ、比較的安価な薄膜電極を得ることができる。
The paste for a thin film electrode of the present invention vaporizes Ni metal and blows it into a solvent in which polyamine is added to an alkylnaphthalene-based oil to produce a colloidal solution in which Ni particles having a particle size of 1 to 40 nm are dispersed. after this the colloidal solution solid-liquid separation, since the Ni or Ranaru diameter separated is formed by dispersing the fine metal particles 1~40nm water, be fired at a relatively low temperature of 400 to 900 ° C. In addition, the tact time for obtaining the thin film electrode can be shortened as compared with the prior art.
In the method for producing a thin film electrode of the present invention, a step of preparing a thin film electrode paste in which metal fine particles made of Ni having a particle size of 1 to 40 nm are dispersed in water, and the paste on a flat upper surface of a substrate. The method includes a step of applying and forming a film to a predetermined thickness, and a step of obtaining a thin film electrode on a substrate by removing water in the paste by heat treatment and firing metal fine particles, so that the firing temperature of the paste is relatively By setting it low, the tact time until the thin film electrode is obtained can be shortened. At this time, when the paste coating film is formed by any one of the spin coating method, the spray method, and the droplet discharge method, the paste coating film formation can be performed under atmospheric pressure, and the conventional vacuum sputtering method is used. As compared with the case of manufacturing an electrode, the tact time until obtaining a thin film electrode can be further shortened. If the heat treatment is performed at a temperature of 400 ° C. to 900 ° C. in an atmospheric pressure atmosphere, the tact time until the thin film electrode is obtained can be further shortened, and a relatively inexpensive thin film electrode can be obtained.

更に、本発明の薄膜素子の製造方法では、上記粒径が1〜40nmのNiからなる金属微粒子を水に分散させた薄膜電極用ペーストを基板の平坦な上面に塗布して所定の厚さに成膜した後に熱処理して金属微粒子を焼成することにより基板上に第1薄膜電極を形成する工程と、第1薄膜電極上にゾルゲル法により誘電体材料膜を形成する工程と、誘電体材料膜上に上記粒径が1〜40nmのNiからなる金属微粒子を水に分散させた薄膜電極用ペーストを塗布して所定の厚さに成膜した後に熱処理して金属微粒子を焼成することにより誘電体材料膜上に第2薄膜電極を形成する工程とを含むので、電極を低コストで得ることができ、かつ短いタクトタイムで電極及び誘電体材料膜を形成し得ることから、比較的安価な薄膜素子を得ることができる。
一方、本発明の薄膜素子の製造方法では、粒径が1〜60nmの誘電体微粒子を溶媒に分散させた誘電体ペーストを上述した方法で製造された第1薄膜電極の上面に塗布して成膜した後、焼成することにより薄膜誘電体材料膜を形成し、その薄膜誘電体材料膜上にスパッタリング法、MOCVD法、真空蒸着法又は請求項2記載の方法により第2薄膜電極を形成するようにしてもよい。この場合における第2薄膜電極の形成をスパッタリング法、MOCVD法、真空蒸着法又は上述した薄膜電極の製造方法により行わせれば、その単価を更に安価なものとすることができる。
Further, in the method of manufacturing a thin film element of the present invention, a thin film electrode paste in which metal fine particles made of Ni having a particle diameter of 1 to 40 nm are dispersed in water is applied to a flat upper surface of a substrate to have a predetermined thickness. Forming a first thin film electrode on the substrate by heat-treating the metal fine particles after the film formation and baking the fine metal particles; forming a dielectric material film on the first thin film electrode by a sol-gel method; and dielectric material film A dielectric is obtained by applying a thin film electrode paste in which metal fine particles made of Ni having a particle diameter of 1 to 40 nm are dispersed in water and forming a film with a predetermined thickness, followed by heat treatment and firing the metal fine particles. Forming the second thin film electrode on the material film, so that the electrode can be obtained at low cost and the electrode and the dielectric material film can be formed with a short tact time. Can get the element That.
On the other hand, in the method for manufacturing a thin film element of the present invention, a dielectric paste in which dielectric fine particles having a particle diameter of 1 to 60 nm are dispersed in a solvent is applied to the upper surface of the first thin film electrode manufactured by the above-described method. After the film is formed, a thin film dielectric material film is formed by firing, and a second thin film electrode is formed on the thin film dielectric material film by a sputtering method, an MOCVD method, a vacuum evaporation method or the method according to claim 2. It may be. If the formation of the second thin film electrode in this case is performed by the sputtering method, MOCVD method, vacuum vapor deposition method or the above-described thin film electrode manufacturing method, the unit price can be further reduced.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
図1に示すように、本発明の薄膜素子10の製造方法は、基板11上に第1薄膜電極12を形成する工程と、その第1薄膜電極12上に誘電体材料膜13を形成する工程と、その誘電体材料膜13上に第2薄膜電極14を形成する工程とを備える。ここで、第1薄膜電極12を形成するための基板11とは、シリコンからなる基板や、アルミナ(Al23)からなる基板等が挙げられる。第1薄膜電極12は、薄膜電極用ペーストを基板11の平坦な上面に塗布して所定の厚さに成膜した後に熱処理してそのペーストを焼成することにより得られる。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
As shown in FIG. 1, the method for manufacturing a thin film element 10 of the present invention includes a step of forming a first thin film electrode 12 on a substrate 11 and a step of forming a dielectric material film 13 on the first thin film electrode 12. And a step of forming the second thin film electrode 14 on the dielectric material film 13. Here, the substrate 11 for forming the first thin film electrode 12 includes a substrate made of silicon, a substrate made of alumina (Al 2 O 3 ), and the like. The first thin film electrode 12 is obtained by applying a thin film electrode paste on the flat upper surface of the substrate 11 to form a film having a predetermined thickness, and then heat-treating the paste.

この基板11上に塗布される薄膜電極用ペーストは、Niの粒子が分散したコロイド溶液を作製し、このコロイド溶液を固液分離した後、分離したNiからなる粒径が1〜40nmの金属微粒子を水に分散させたペーストである。このような粒径が1〜40nmの金属微粒子を含むペーストの具体的な製造手順は、例えばPtが含まれる場合、先ず塩化白金酸を水に溶解させて塩化白金酸の水溶液を調製する。この水溶液に分散剤を添加した後攪拌して混合する。その後還元剤を入れて白金イオンを還元して白金の粒子を析出させ、これにより粒径が1〜40nmの白金粒子が分散したコロイド溶液が作製される。一方、Niが含まれる場合は、真空蒸着によりNiメタルを気化させて、アルキルナフタレン系のオイルにポリアミンを添加した溶媒中に吹き込んでNiの粒子を析出させ、これにより、Ni粒子が分散したコロイド溶液が作製される。このコロイド溶液を遠心分離により固液分離し、固形分としての粒子を取り出し水と混合することにより粒径が1〜40nmの金属微粒子を含むペーストを調製できる。このような薄膜電極用ペーストでは、粒径が1〜40nmの金属微粒子を水に分散させることにより、400〜900℃の比較的低い温度で焼成することが可能になり、薄膜電極を得るまでのタクトタイムを短縮させることができる。 Thin film electrode paste is coated on the substrate 11, to prepare a colloidal solution of Ni particles are dispersed, after the colloidal solution solid-liquid separation, the separated Ni or Ranaru particle size of 1~40nm It is a paste in which metal fine particles are dispersed in water. For example, when Pt is contained in a specific manufacturing procedure of a paste containing metal fine particles having a particle diameter of 1 to 40 nm, first, chloroplatinic acid is first dissolved in water to prepare an aqueous solution of chloroplatinic acid. A dispersing agent is added to this aqueous solution and then mixed by stirring. Thereafter, a reducing agent is added to reduce platinum ions to precipitate platinum particles, thereby producing a colloidal solution in which platinum particles having a particle diameter of 1 to 40 nm are dispersed. On the other hand, when Ni is contained, Ni metal is vaporized by vacuum deposition, and blown into a solvent in which polyamine is added to an alkylnaphthalene-based oil to precipitate Ni particles, thereby colloid in which Ni particles are dispersed. A solution is made. The colloidal solution was centrifuged and the separated particles the particle size by mixing water outlet grain child as solids can be prepared a paste containing metal particles of from 1 to 40 nm. In such a thin film electrode paste, by dispersing metal fine particles having a particle size of 1 to 40 nm in water, it becomes possible to fire at a relatively low temperature of 400 to 900 ° C. until the thin film electrode is obtained. Tact time can be shortened.

次に、このように調製されたペーストを用いた第1薄膜電極12の製造方法について説明する。上述したように粒径が1〜40nmの金属微粒子を水に分散させた薄膜電極用ペーストを準備した後、基板11の平坦な上面にこのペーストを塗布して所定の厚さに成膜する。その後、熱処理によりペーストにおける水を除去して金属微粒子を焼成することにより基板11上に薄膜電極を得る。そして、ペーストの塗布成膜はスピンコート法又はスプレー法又は液滴吐出法のいずれかによりなされ、熱処理は大気圧雰囲気中において400℃〜900℃の温度によりなされる。
即ち、この薄膜電極の製造方法では、ペーストの塗布成膜をスピンコート法又はスプレー法又は液滴吐出法のいずれかにより行うことにより、ペーストの塗布成膜を大気圧下において行うことができ、従来の真空スパッタ法により電極を製造する場合に比較して、薄膜電極を得るまでのタクトタイムを更に短縮させることができる。そして、ペーストは粒径が1〜40nmの金属微粒子を水に分散させているので、その焼成温度を比較的低く設定することができ、例えば、焼成させるための熱処理を400〜900℃の比較的低い温度にすることにより、薄膜電極を得るまでのタクトタイムを更に短縮させることができ、比較的安価な薄膜電極を得ることができる。
Next, the manufacturing method of the 1st thin film electrode 12 using the paste prepared in this way is demonstrated. As described above, after preparing a thin film electrode paste in which metal fine particles having a particle diameter of 1 to 40 nm are dispersed in water, this paste is applied to the flat upper surface of the substrate 11 to form a film with a predetermined thickness. Thereafter, the thin film electrode is obtained on the substrate 11 by removing the water in the paste by heat treatment and firing the fine metal particles. Then, the paste is formed by a spin coating method, a spray method, or a droplet discharge method, and the heat treatment is performed at a temperature of 400 ° C. to 900 ° C. in an atmospheric pressure atmosphere.
That is, in this thin film electrode manufacturing method, paste coating can be performed at atmospheric pressure by performing paste coating by either a spin coating method, a spray method, or a droplet discharge method. Compared to the case of manufacturing an electrode by a conventional vacuum sputtering method, the tact time until obtaining a thin film electrode can be further shortened. And since the paste is disperse | distributing the metal fine particle with a particle size of 1-40 nm in water, the baking temperature can be set comparatively low, for example, heat processing for baking is comparatively 400-900 degreeC. By setting the temperature lower, the tact time until the thin film electrode is obtained can be further shortened, and a relatively inexpensive thin film electrode can be obtained.

上述したように基板11上に第1薄膜電極12を形成した後、この第1薄膜電極12上にはゾルゲル法により誘電体材料膜13が形成される。誘電体材料としては従来から用いられているPZTやBSTの他に、PLZT系のいわゆるペロブスカイト型結晶構造を有する複合酸化物や、Bi層状ペロブスカイト型結晶構造を有する複合酸化物も適用できる。このような誘電体材料を用いてゾルゲル法により所定の厚さの誘電体材料膜13を形成する。特に、この膜を形成する組成物がBSTであるBa1-XSrXTiY3であれば、これを塗布、乾燥して、450〜800℃の比較的低い温度で焼成することができ、高誘電率かつ高絶縁性のBa1-XSrXTiY3薄膜を更に容易に形成することができるので好ましい。 After the first thin film electrode 12 is formed on the substrate 11 as described above, the dielectric material film 13 is formed on the first thin film electrode 12 by the sol-gel method. As the dielectric material, besides PZT and BST which have been conventionally used, a complex oxide having a so-called perovskite crystal structure of a PLZT system or a complex oxide having a Bi layered perovskite crystal structure can be applied. Using such a dielectric material, a dielectric material film 13 having a predetermined thickness is formed by a sol-gel method. In particular, if the composition forming this film is Ba 1-X Sr X Ti Y O 3 which is BST, it can be applied, dried and fired at a relatively low temperature of 450 to 800 ° C. A high dielectric constant and high insulating Ba 1-X Sr X Ti Y O 3 thin film can be formed more easily, which is preferable.

そして、このように得られた誘電体材料膜13上には上述した粒径が1〜40nmの金属微粒子を水に分散させた薄膜電極用ペーストを更に塗布して所定の厚さに成膜し、その後に熱処理して金属微粒子を焼成することにより誘電体材料膜13上に第2薄膜電極14を形成する。この第2薄膜電極14の具体的な成膜手順は上述した第1薄膜電極12の成膜手順と同一であり、このようにして第1薄膜電極12と誘電体材料膜13と第2薄膜電極14を有する薄膜素子10を得ることができる。
この薄膜素子10の製造方法では、上述したように薄膜素子10の電極を低コストで得ることができる。また、薄膜電極12,14及び誘電体材料膜13が非真空状態で形成され得ることから電極を真空スパッタで行われる従来に比較してその製造工程を単純化させることができる。そして、比較的低温で薄膜電極12,14及び誘電体材料膜13を形成し得ることから、短いタクトタイムで薄膜素子10を得ることができ、その単価を安価なものとすることができる。
On the dielectric material film 13 thus obtained, a thin film electrode paste in which the metal fine particles having a particle diameter of 1 to 40 nm are dispersed in water is further applied to form a film having a predetermined thickness. Thereafter, the second thin film electrode 14 is formed on the dielectric material film 13 by baking the fine metal particles by heat treatment. The specific film formation procedure of the second thin film electrode 14 is the same as the film formation procedure of the first thin film electrode 12 described above, and thus the first thin film electrode 12, the dielectric material film 13, and the second thin film electrode. The thin film element 10 having 14 can be obtained.
In the method for manufacturing the thin film element 10, as described above, the electrode of the thin film element 10 can be obtained at low cost. Further, since the thin film electrodes 12 and 14 and the dielectric material film 13 can be formed in a non-vacuum state, the manufacturing process can be simplified as compared with the conventional case where the electrodes are formed by vacuum sputtering. Since the thin film electrodes 12 and 14 and the dielectric material film 13 can be formed at a relatively low temperature, the thin film element 10 can be obtained with a short tact time, and the unit price can be reduced.

なお、上述した実施の形態では、所定の厚さの誘電体材料膜13をゾルゲル法により第1薄膜電極12上に形成する場合を示したが、粒径が1〜60nmの誘電体微粒子を溶媒に分散させた誘電体ペーストを準備し、第1薄膜電極12の上面にその誘電体ペーストを塗布して所定の厚さに成膜し、熱処理により誘電体ペーストにおける溶媒を除去して誘電体微粒子を焼成することにより第1薄膜電極12上に薄膜誘電体材料膜13を形成するようにしてもよい。このような薄膜素子の製造方法では、粒径が1〜60nmの誘電体微粒子を溶媒に分散させた誘電体ペーストを成膜して焼成するので、その焼成温度を比較的低く設定することにより誘電体材料膜13を得るまでのタクトタイムを更に短縮させることができる。   In the above-described embodiment, the case where the dielectric material film 13 having a predetermined thickness is formed on the first thin film electrode 12 by the sol-gel method has been described. However, dielectric fine particles having a particle diameter of 1 to 60 nm are used as the solvent. A dielectric paste dispersed in the first thin film electrode 12 is prepared, and the dielectric paste is applied to the upper surface of the first thin film electrode 12 to form a predetermined thickness, and the solvent in the dielectric paste is removed by heat treatment to form dielectric fine particles. The thin film dielectric material film 13 may be formed on the first thin film electrode 12 by baking. In such a method of manufacturing a thin film element, a dielectric paste in which dielectric fine particles having a particle diameter of 1 to 60 nm are dispersed in a solvent is formed and fired. Therefore, the dielectric temperature can be set by setting the firing temperature relatively low. The tact time until the body material film 13 is obtained can be further shortened.

この場合、第2薄膜電極14は、上述した本発明の薄膜電極の製造方法により得られたものに限らず、スパッタリング法、MOCVD法、真空蒸着法により製造しても良い。このような方法により第2薄膜電極14を得ることにより、薄膜電極12,14を真空スパッタで形成する従来に比較してその製造工程を単純化させることができ、かつ比較的低温で薄膜電極12,14及び誘電体材料膜13を形成し得ることから、更に短いタクトタイムで薄膜素子を得ることができ、その単価を安価なものとすることができる。
ここで、スパッタリング法による薄膜電極の具体的な製造方法は、各電極材のスパッタリング用ターゲットを用い、DCスパッタリング法にて各基板に成膜する方法である。また、MOCVD法による薄膜電極の具体的な製造方法は、各金属のβジケトン錯体、シクロペンタジエン系錯体の固体昇華法で成膜するか、又はこれを有機溶剤に溶かした溶液を用いる液体供給法にて各基板に成膜する方法である。更に、真空蒸着法による薄膜電極の具体的な製造方法は、各金属を真空中で熔解し、各基板に成膜を行う方法である。
In this case, the second thin film electrode 14 is not limited to the one obtained by the thin film electrode production method of the present invention described above, and may be produced by a sputtering method, an MOCVD method, or a vacuum evaporation method. By obtaining the second thin film electrode 14 by such a method, the manufacturing process can be simplified as compared with the conventional method in which the thin film electrodes 12 and 14 are formed by vacuum sputtering, and the thin film electrode 12 can be obtained at a relatively low temperature. 14 and the dielectric material film 13 can be formed, so that a thin film element can be obtained with a shorter tact time and the unit price can be reduced.
Here, the specific manufacturing method of the thin film electrode by a sputtering method is a method of forming a film on each substrate by a DC sputtering method using a sputtering target of each electrode material. In addition, a specific method for producing a thin film electrode by MOCVD is a liquid supply method using a solid sublimation method of a β-diketone complex or a cyclopentadiene complex of each metal, or a solution obtained by dissolving this in an organic solvent. In this method, a film is formed on each substrate. Furthermore, the concrete manufacturing method of the thin film electrode by a vacuum evaporation method is a method of melting each metal in a vacuum and forming a film on each substrate.

次に、次の実施例1〜5により本発明の薄膜電極用ペーストが400〜900℃の比較的低い温度で焼成し得ることを確認した。
参考例1>
Pt原料としてH2PtCl6,6H2Oを1グラム用意し、これを0.3リットルの水に溶解させてPt含有水溶液を調製した。この水溶液に分散剤としてのPVP(C69NO)を1グラム添加した後攪拌して混合した。その後、その混合液に還元剤としてのC25OHを100グラム入れてPtイオンを還元してPtの粒子を析出させ、粒径が1〜40nmのPt粒子が分散したコロイド溶液を作製した。このコロイド溶液を遠心分離により固液分離し、固形分としてのPt粒子を取り出し水と混合することにより粒径が1〜40nmのPt金属微粒子を含むペーストを調製した。このペーストを参考例1とした。
Next, it confirmed that the paste for thin film electrodes of this invention could be baked at the comparatively low temperature of 400-900 degreeC by the following Examples 1-5.
< Reference Example 1>
One gram of H 2 PtCl 6 , 6H 2 O was prepared as a Pt raw material and dissolved in 0.3 liter of water to prepare a Pt-containing aqueous solution. One gram of PVP (C 6 H 9 NO) as a dispersant was added to this aqueous solution, and then stirred and mixed. Thereafter, 100 g of C 2 H 5 OH as a reducing agent was added to the mixed solution, Pt ions were reduced to precipitate Pt particles, and a colloidal solution in which Pt particles having a particle size of 1 to 40 nm were dispersed was prepared. . This colloidal solution was subjected to solid-liquid separation by centrifugation, and Pt particles as a solid content were taken out and mixed with water to prepare a paste containing Pt metal fine particles having a particle diameter of 1 to 40 nm. This paste was designated as Reference Example 1.

参考例2>
Au原料としてHAuCl4,4H2Oを1グラム用意し、これを0.3リットルの水に溶解させてAu含有水溶液を調製した。この水溶液に分散剤としてのNa3657を5グラム添加した後攪拌して混合した。その後、その混合液に還元剤としてのNa3657を5グラム入れてAuイオンを還元してAuの粒子を析出させ、粒径が1〜40nmのAu粒子が分散したコロイド溶液を作製した。このコロイド溶液を遠心分離により固液分離し、固形分としてのAu粒子を取り出し水と混合することにより粒径が1〜40nmのAu金属微粒子を含むペーストを調製した。このペーストを参考例2とした。
< Reference Example 2>
One gram of HAuCl 4 and 4H 2 O was prepared as an Au raw material, and this was dissolved in 0.3 liter of water to prepare an Au-containing aqueous solution. To this aqueous solution, 5 g of Na 3 C 6 H 5 O 7 as a dispersant was added and then stirred and mixed. Thereafter, 5 grams of Na 3 C 6 H 5 O 7 as a reducing agent is added to the mixed solution, Au ions are reduced to precipitate Au particles, and Au particles having a particle diameter of 1 to 40 nm are dispersed. Was made. This colloidal solution was subjected to solid-liquid separation by centrifugation, and Au particles as a solid content were taken out and mixed with water to prepare a paste containing Au metal fine particles having a particle diameter of 1 to 40 nm. This paste was used as Reference Example 2.

参考例3>
Ag原料としてAgNO3を1グラム用意し、これを0.3リットルの水に溶解させてAg含有水溶液を調製した。この水溶液に分散剤としてのNa3657を5グラム添加した後攪拌して混合した。その後、その混合液に還元剤としてのFeSO4を5グラム入れてAgイオンを還元してAgの粒子を析出させ、粒径が1〜40nmのAg粒子が分散したコロイド溶液を作製した。このコロイド溶液を遠心分離により固液分離し、固形分としてのAg粒子を取り出し水と混合することにより粒径が1〜40nmのAg金属微粒子を含むペーストを調製した。このペーストを参考例3とした。
< Reference Example 3>
One gram of AgNO 3 was prepared as an Ag raw material and dissolved in 0.3 liter of water to prepare an Ag-containing aqueous solution. To this aqueous solution, 5 g of Na 3 C 6 H 5 O 7 as a dispersant was added and then stirred and mixed. Thereafter, 5 grams of FeSO 4 as a reducing agent was added to the mixed solution to reduce Ag ions to precipitate Ag particles, thereby preparing a colloidal solution in which Ag particles having a particle diameter of 1 to 40 nm were dispersed. This colloidal solution was subjected to solid-liquid separation by centrifugation, and Ag particles as a solid content were taken out and mixed with water to prepare a paste containing Ag metal fine particles having a particle diameter of 1 to 40 nm. This paste was designated as Reference Example 3.

参考例4>
Pd原料としてH2PdCl4を1グラム用意し、これを0.3リットルの水に溶解させてPd含有水溶液を調製した。この水溶液に分散剤としてのPVP(C69NO)を1グラム添加した後攪拌して混合した。その後、その混合液に還元剤としてのC25OHを100グラム入れてPdイオンを還元してPdの粒子を析出させ、粒径が1〜40nmのPd粒子が分散したコロイド溶液を作製した。このコロイド溶液を遠心分離により固液分離し、固形分としてのPd粒子を取り出し水と混合することにより粒径が1〜40nmのPd金属微粒子を含むペーストを調製した。このペーストを参考例4とした。
< Reference Example 4>
One gram of H 2 PdCl 4 was prepared as a Pd raw material, and dissolved in 0.3 liter of water to prepare a Pd-containing aqueous solution. One gram of PVP (C 6 H 9 NO) as a dispersant was added to this aqueous solution, and then stirred and mixed. Thereafter, 100 g of C 2 H 5 OH as a reducing agent was added to the mixed solution, Pd ions were reduced to precipitate Pd particles, and a colloidal solution in which Pd particles having a particle size of 1 to 40 nm were dispersed was prepared. . This colloidal solution was subjected to solid-liquid separation by centrifugation, and Pd particles as a solid content were taken out and mixed with water to prepare a paste containing Pd metal fine particles having a particle diameter of 1 to 40 nm. This paste was designated as Reference Example 4.

実施
真空蒸着によりNiメタルを気化させて、アルキルナフタレン系のオイルにポリアミンを添加した溶媒中に吹き込んでNi微粒子を析出させた。これにより、粒径が約10nmのNi粒子が分散したコロイド溶液を作製した。このコロイド溶液を遠心分離により固液分離し、固形分としてのNi粒子を取り出し水と混合することにより粒径が約10nmのNi金属微粒子を含むペーストを調製した。このペーストを実施例とした。
<Example 1>
Ni metal was vaporized by vacuum deposition, and Ni fine particles were precipitated by blowing into a solvent obtained by adding polyamine to an alkylnaphthalene-based oil. Thereby, a colloidal solution in which Ni particles having a particle size of about 10 nm were dispersed was produced. This colloidal solution was subjected to solid-liquid separation by centrifugation, and Ni particles as a solid content were taken out and mixed with water to prepare a paste containing Ni metal fine particles having a particle size of about 10 nm. This paste was designated as Example 1 .

<評価試験1及び評価1>
実施例1及び参考例1〜4におけるペーストの焼成温度をアルミナ基板上への塗布により調査した。その結果、参考例1のペーストは800℃、参考例2のペーストは500℃、参考例3のペーストは400℃、参考例4のペーストは800℃、実施例のペーストは800℃でそれぞれ焼結させることができた。よって、本発明の薄膜電極用ペーストでは、粒径が1〜40nmの金属微粒子を水に分散させることにより、400〜900℃の比較的低い温度で焼成することが可能になり、薄膜電極を得るまでのタクトタイムを短縮させることができることが判る。
<Evaluation Test 1 and Evaluation 1>
The firing temperature of the paste as in Example 1 and Reference Examples 1 to 4 were investigated by application to the alumina substrate. As a result, the paste of Reference Example 1 was baked at 800 ° C, the paste of Reference Example 2 was 500 ° C, the paste of Reference Example 3 was 400 ° C, the paste of Reference Example 4 was 800 ° C, and the paste of Example 1 was baked at 800 ° C. I was able to conclude. Therefore, the thin film electrode paste of the present invention can be fired at a relatively low temperature of 400 to 900 ° C. by dispersing metal fine particles having a particle diameter of 1 to 40 nm in water, thereby obtaining a thin film electrode. It can be seen that the tact time can be shortened.

次に、上述した薄膜電極用ペーストを用いて次の参考5〜7により薄膜素子を製造した。
参考
参考例1で作製したPtペーストを用いて500nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Si上に塗布、乾燥を繰り返し、最後に800℃で焼結し200nmのPt電極膜を得た。この膜の上にさらに市販のPZTゾルゲル液で200nmのPZT膜を形成し、先述の方法で更に上部電極として200nmのPt電極膜を形成し、PZT薄膜素子を得た。この薄膜素子を参考とした。
Next, the thin film element was manufactured by the following reference examples 5-7 using the paste for thin film electrodes mentioned above.
< Reference Example 5 >
Using the Pt paste prepared in Reference Example 1, a silicon wafer with a thermal oxide film of 500 nm: repeatedly applied and dried on SiO 2 (500 nm) / Si, and finally sintered at 800 ° C. to obtain a 200 nm Pt electrode film. It was. A 200 nm PZT film was further formed on this film with a commercially available PZT sol-gel solution, and a 200 nm Pt electrode film was further formed as an upper electrode by the above-described method to obtain a PZT thin film element. This thin film element was referred to as Reference Example 5 .

参考
参考例1で作製したPtペーストを用いて500nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Si上に塗布、乾燥を繰り返し、最後に800℃で焼結し200nmのPt電極膜を得た。この膜の上にさらに市販のBSTゾルゲル液で200nmのBST膜を形成し、先述の方法で更に上部電極として200nmのPt電極膜を形成し、BST薄膜素子を得た。この薄膜素子を参考とした。
< Reference Example 6 >
Using the Pt paste prepared in Reference Example 1, a silicon wafer with a thermal oxide film of 500 nm: repeatedly applied and dried on SiO 2 (500 nm) / Si, and finally sintered at 800 ° C. to obtain a 200 nm Pt electrode film. It was. A 200 nm BST film was further formed on this film with a commercially available BST sol-gel solution, and a 200 nm Pt electrode film was further formed as the upper electrode by the above-mentioned method to obtain a BST thin film element. This thin film element was referred to as Reference Example 6 .

参考
参考例1で作製したPtペーストを用いて500nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Si上に塗布、乾燥を繰り返し、最後に800℃で焼結し200nmのPt電極膜を得た。この膜の上にさらに市販のBLTゾルゲル液で200nmのBLT膜を形成し、先述の方法で更に上部電極として200nmのPt電極膜を形成し、BLT薄膜素子を得た。この薄膜素子を参考とした。
< Reference Example 7 >
Using the Pt paste prepared in Reference Example 1, a silicon wafer with a thermal oxide film of 500 nm: repeatedly applied and dried on SiO 2 (500 nm) / Si, and finally sintered at 800 ° C. to obtain a 200 nm Pt electrode film. It was. A 200 nm BLT film was further formed on this film with a commercially available BLT sol-gel solution, and a 200 nm Pt electrode film was further formed as an upper electrode by the above-described method to obtain a BLT thin film element. This thin film element was referred to as Reference Example 7 .

<評価試験2及び評価2>
参考における薄膜素子をラジアントテクノロジー社製強誘電体評価テスタRT6000で評価したところ、この参考の薄膜素子では、その残留分極値が23.7uC/cm2であり、抗電界が48.7kV/cmであった。またLCRメーターで比誘電率を測定したところ、1048であった。
また、参考の薄膜素子をLCRメーターで評価し、BST膜の比誘電率を測定したところ、356であった。
更に、参考における薄膜素子をラジアントテクノロジー社製強誘電体評価テスタRT6000で評価したところ、この参考の薄膜素子では、残留分極値が17.7uC/cm2であり、抗電界が53.5kV/cmであった。
よって、本発明の薄膜素子の製造方法では、薄膜電極及び誘電体材料膜が非真空状態で形成され得ることから電極を真空スパッタで行われる従来に比較してその製造工程を単純化させることができ、かつ比較的低温で薄膜電極12,14及び誘電体材料膜13を形成し得ることから、短いタクトタイムで薄膜素子を得ることができることが判る。
<Evaluation Test 2 and Evaluation 2>
When the thin film element in Reference Example 5 was evaluated with a ferroelectric evaluation tester RT6000 manufactured by Radiant Technology, the thin film element of Reference Example 5 had a remanent polarization value of 23.7 uC / cm 2 and a coercive electric field of 48. It was 7 kV / cm. Moreover, it was 1048 when the dielectric constant was measured with the LCR meter.
The thin film element of Reference Example 6 was evaluated with an LCR meter, and the relative dielectric constant of the BST film was measured.
Furthermore, when the thin film element in Reference Example 7 was evaluated by a ferroelectric evaluation tester RT6000 manufactured by Radiant Technology, the thin film element of Reference Example 7 had a remanent polarization value of 17.7 uC / cm 2 and a coercive electric field of 53. 0.5 kV / cm.
Therefore, in the thin film element manufacturing method of the present invention, since the thin film electrode and the dielectric material film can be formed in a non-vacuum state, the manufacturing process can be simplified as compared with the conventional method in which the electrode is formed by vacuum sputtering. Since the thin film electrodes 12 and 14 and the dielectric material film 13 can be formed at a relatively low temperature, it can be seen that a thin film element can be obtained with a short tact time.

続いて、次の参考及びにより誘電体微粒子を溶媒に分散させた誘電体ペーストが比較的低い温度で焼成し得ることを確認した。
参考
平均粒径1μmの市販のBaTiO3粉末をエタノールを5:95の重量比で混合し、ZrO2ボールを混ぜて72時間ボールミルで粉砕し、平均粒径30nmのBaTiO3粒子がエタノールに分散したペーストを調製した。この誘電体ペーストを参考とした。
参考
平均粒径1μmの市販のPbZr0.52Ti0.488粉末をエタノールを5:95の重量比で混合し、ZrO2ボールを混ぜて72時間ボールミルで粉砕し、平均粒径30nmのPZT粒子がエタノールに分散したペーストを調製した。この誘電体ペーストを参考とした。
Subsequently, it was confirmed in the following Reference Examples 8 and 9 that the dielectric paste in which the dielectric fine particles were dispersed in the solvent could be fired at a relatively low temperature.
< Reference Example 8 >
A paste in which commercially available BaTiO 3 powder with an average particle diameter of 1 μm is mixed with ethanol in a weight ratio of 5:95, mixed with ZrO 2 balls and pulverized with a ball mill for 72 hours, and BaTiO 3 particles with an average particle diameter of 30 nm are dispersed in ethanol. Was prepared. This dielectric paste was referred to as Reference Example 8 .
< Reference Example 9 >
Commercially available PbZr 0.52 Ti 0.48 O 8 powder with an average particle size of 1 μm is mixed with ethanol at a weight ratio of 5:95, mixed with ZrO 2 balls and pulverized with a ball mill for 72 hours. A dispersed paste was prepared. This dielectric paste was referred to as Reference Example 9 .

<評価試験3及び評価3>
参考及びにおける誘電体ペーストの焼成温度をアルミナ基板上への塗布により調査した。その結果、参考の誘電体ペーストは900℃、参考の誘電体ペーストは800℃でそれぞれ焼結させることができた。よって、本発明の誘電体ペーストでは、粒径が1〜60nmの誘電体微粒子を溶媒に分散させることにより、比較的低い温度で焼成することが可能になり、更には完全緻密化する必要のない用途にはより低温での焼成も可能であり、誘電体材料膜を得るまでのタクトタイムを短縮させることができることが判る。
<Evaluation Test 3 and Evaluation 3>
The firing temperature of the dielectric paste in Reference Examples 8 and 9 was investigated by coating on an alumina substrate. As a result, the dielectric paste of Reference Example 8 could be sintered at 900 ° C., and the dielectric paste of Reference Example 9 could be sintered at 800 ° C., respectively. Therefore, the dielectric paste of the present invention can be fired at a relatively low temperature by dispersing dielectric fine particles having a particle diameter of 1 to 60 nm in a solvent, and further does not need to be completely densified. It can be seen that firing can be performed at a lower temperature for use, and the tact time until a dielectric material film is obtained can be shortened.

次に、誘電体微粒子を溶媒に分散させた誘電体ペーストを用いて、次の参考1051により薄膜素子を製造した。
参考10
500nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Si上に常温によるスパッタリング法により200nmのPt電極膜を得た。この膜の上に参考で作成したBaTiO3粒子が分散した誘電体ペーストを塗布、乾燥した後に300℃で焼結し厚さが300nmの誘電体材料膜を形成した。その後、この誘電体材料膜上にスパッタリング法により上部電極として200nmのPt電極膜を形成して薄膜素子を得た。この薄膜素子を参考10とした。
Next, a thin film element was manufactured according to Reference Examples 10 to 51 below using a dielectric paste in which dielectric fine particles were dispersed in a solvent.
< Reference Example 10 >
A silicon wafer with a thermal oxide film of 500 nm: A Pt electrode film of 200 nm was obtained by sputtering at room temperature on SiO 2 (500 nm) / Si. On this film, the dielectric paste prepared in Reference Example 8 in which BaTiO 3 particles were dispersed was applied, dried, and then sintered at 300 ° C. to form a dielectric material film having a thickness of 300 nm. Thereafter, a 200-nm Pt electrode film was formed as an upper electrode on the dielectric material film by sputtering to obtain a thin film element. This thin film element was determined as Reference Example 10 .

参考11
Pt電極膜の上に塗布、乾燥したBaTiO3粒子が分散した誘電体ペーストを500℃で焼結させ厚さが300nmの誘電体材料膜を形成したことを除いて参考10と同一の条件及び手順で薄膜素子を得た。この薄膜素子を参考11とした。
参考12
Pt電極膜の上に塗布、乾燥したBaTiO3粒子が分散した誘電体ペーストを700℃で焼結させ厚さが300nmの誘電体材料膜を形成したことを除いて参考10と同一の条件及び手順で薄膜素子を得た。この薄膜素子を参考12とした。
< Reference Example 11 >
The same conditions as in Reference Example 10 except that a dielectric paste in which BaTiO 3 particles coated and dried on a Pt electrode film were dispersed was sintered at 500 ° C. to form a dielectric material film having a thickness of 300 nm. A thin film element was obtained by the procedure. This thin film element was referred to as Reference Example 11 .
< Reference Example 12 >
The same conditions as in Reference Example 10 except that a dielectric material film having a thickness of 300 nm was formed by sintering a dielectric paste dispersed with BaTiO 3 particles coated and dried on a Pt electrode film at 700 ° C. A thin film element was obtained by the procedure. This thin film element was determined as Reference Example 12 .

参考13
BaTiO3粒子が分散した誘電体ペーストを300℃で焼結させることにより形成された誘電体材料膜上に、参考例1で作製したPtペーストを塗布、乾燥を繰り返した後に800℃で焼結し200nmの上部電極としてのPt電極膜を得たことを除いて参考10と同一の条件及び手順で薄膜素子を得た。この薄膜素子を参考13とした。
参考14
BaTiO3粒子が分散した誘電体ペーストを300℃で焼結させることにより形成された誘電体材料膜上に、参考例2で作製したAuペーストを塗布、乾燥を繰り返した後に500℃で焼結し200nmの上部電極としてのAu電極膜を得たことを除いて参考10と同一の条件及び手順で薄膜素子を得た。この薄膜素子を参考14とした。
< Reference Example 13 >
The Pt paste produced in Reference Example 1 was applied on the dielectric material film formed by sintering the dielectric paste in which BaTiO 3 particles were dispersed at 300 ° C., and dried at 800 ° C. after repeated drying. A thin film element was obtained under the same conditions and procedures as in Reference Example 10 except that a Pt electrode film as a 200 nm upper electrode was obtained. This thin film element was referred to as Reference Example 13 .
< Reference Example 14 >
On the dielectric material film formed by sintering the dielectric paste in which BaTiO 3 particles are dispersed at 300 ° C., the Au paste prepared in Reference Example 2 is applied and dried, and then sintered at 500 ° C. A thin film element was obtained under the same conditions and procedure as in Reference Example 10 except that an Au electrode film as a 200 nm upper electrode was obtained. This thin film element was determined as Reference Example 14 .

参考15
BaTiO3粒子が分散した誘電体ペーストを300℃で焼結させることにより形成された誘電体材料膜上に、参考例3で作製したAgペーストを塗布、乾燥を繰り返した後に400℃で焼結し200nmの上部電極としてのAg電極膜を得たことを除いて参考10と同一の条件及び手順で薄膜素子を得た。この薄膜素子を参考15とした。
参考16
BaTiO3粒子が分散した誘電体ペーストを300℃で焼結させることにより形成された誘電体材料膜上に、参考例4で作製したPdペーストを塗布、乾燥を繰り返した後に800℃で焼結し200nmの上部電極としてのPd電極膜を得たことを除いて参考10と同一の条件及び手順で薄膜素子を得た。この薄膜素子を参考16とした。
< Reference Example 15 >
On the dielectric material film formed by sintering the dielectric paste in which BaTiO 3 particles are dispersed at 300 ° C., the Ag paste prepared in Reference Example 3 was applied, dried, and then sintered at 400 ° C. A thin film element was obtained under the same conditions and procedure as in Reference Example 10 except that an Ag electrode film as a 200 nm upper electrode was obtained. This thin film element was determined as Reference Example 15 .
< Reference Example 16 >
The Pd paste prepared in Reference Example 4 was applied on the dielectric material film formed by sintering the dielectric paste in which the BaTiO 3 particles were dispersed at 300 ° C., dried, and then sintered at 800 ° C. A thin film element was obtained under the same conditions and procedures as in Reference Example 10 except that a Pd electrode film as a 200 nm upper electrode was obtained. This thin film element was determined as Reference Example 16 .

参考17
BaTiO3粒子が分散した誘電体ペーストを300℃で焼結させることにより形成された誘電体材料膜上に、実施例で作製したNiペーストを塗布、乾燥を繰り返した後に500℃で焼結し200nmの上部電極としてのNi電極膜を得たことを除いて参考10と同一の条件及び手順で薄膜素子を得た。この薄膜素子を参考17とした。
参考18
参考例1で作製したPtペーストを用いて500nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Si上に塗布、乾燥を繰り返し、最後に800℃で焼結し200nmのPt電極膜を得た。この膜の上に参考で作成したBaTiO3粒子が分散した誘電体ペーストを塗布、乾燥した後に300℃で焼結し厚さが300nmの誘電体材料膜を形成した。その後、この誘電体材料膜上に、参考例1で作製したPtペーストを塗布、乾燥を繰り返した後に800℃で焼結し200nmの上部電極としてのPt電極膜を形成して薄膜素子を得た。この薄膜素子を参考18とした。
< Reference Example 17 >
On the dielectric material film formed by sintering the dielectric paste in which BaTiO 3 particles are dispersed at 300 ° C., the Ni paste prepared in Example 1 was applied, dried, and then sintered at 500 ° C. A thin film element was obtained under the same conditions and procedures as in Reference Example 10 except that a Ni electrode film as a 200 nm upper electrode was obtained. This thin film element was determined as Reference Example 17 .
< Reference Example 18 >
Using the Pt paste prepared in Reference Example 1, a silicon wafer with a thermal oxide film of 500 nm: repeatedly applied and dried on SiO 2 (500 nm) / Si, and finally sintered at 800 ° C. to obtain a 200 nm Pt electrode film. It was. On this film, the dielectric paste prepared in Reference Example 8 in which BaTiO 3 particles were dispersed was applied, dried, and then sintered at 300 ° C. to form a dielectric material film having a thickness of 300 nm. Thereafter, the Pt paste prepared in Reference Example 1 was applied on the dielectric material film, dried, and then sintered at 800 ° C. to form a Pt electrode film as a 200 nm upper electrode to obtain a thin film element. . This thin film element was determined as Reference Example 18 .

参考19
参考例2で作製したAuペーストを用いて500nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Si上に塗布、乾燥を繰り返し、最後に500℃で焼結し200nmのAu電極膜を得た。この膜の上に参考で作成したBaTiO3粒子が分散した誘電体ペーストを塗布、乾燥した後に300℃で焼結し厚さが300nmの誘電体材料膜を形成した。その後、この誘電体材料膜上に、参考で作製したAuペーストを塗布、乾燥を繰り返した後に500℃で焼結し200nmの上部電極としてのAu電極膜を形成して薄膜素子を得た。この薄膜素子を参考19とした。
参考20
参考例3で作製したAgペーストを用いて400nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Si上に塗布、乾燥を繰り返し、最後に400℃で焼結し200nmのAg電極膜を得た。この膜の上に参考で作成したBaTiO3粒子が分散した誘電体ペーストを塗布、乾燥した後に300℃で焼結し厚さが300nmの誘電体材料膜を形成した。その後、この誘電体材料膜上に、参考例3で作製したAgペーストを塗布、乾燥を繰り返した後に400℃で焼結し200nmの上部電極としてのAg電極膜を形成して薄膜素子を得た。この薄膜素子を参考20とした。
< Reference Example 19 >
Using the Au paste prepared in Reference Example 2, a silicon wafer with a thermal oxide film of 500 nm: repeatedly applied and dried on SiO 2 (500 nm) / Si, and finally sintered at 500 ° C. to obtain a 200 nm Au electrode film. It was. On this film, the dielectric paste prepared in Reference Example 8 in which BaTiO 3 particles were dispersed was applied, dried, and then sintered at 300 ° C. to form a dielectric material film having a thickness of 300 nm. Thereafter, the Au paste prepared in Reference Example 2 was applied on the dielectric material film, dried, and then sintered at 500 ° C. to form an Au electrode film as an upper electrode of 200 nm to obtain a thin film element. . This thin film element was determined as Reference Example 19 .
< Reference Example 20 >
Using the Ag paste prepared in Reference Example 3, a silicon wafer with a 400 nm thermal oxide film: repeatedly coated and dried on SiO 2 (500 nm) / Si, and finally sintered at 400 ° C. to obtain a 200 nm Ag electrode film. It was. On this film, the dielectric paste prepared in Reference Example 8 in which BaTiO 3 particles were dispersed was applied, dried, and then sintered at 300 ° C. to form a dielectric material film having a thickness of 300 nm. Thereafter, the Ag paste prepared in Reference Example 3 was applied on the dielectric material film, dried, and then sintered at 400 ° C. to form an Ag electrode film as an upper electrode of 200 nm to obtain a thin film element. . This thin film element was referred to as Reference Example 20 .

参考21
参考例4で作製したPdペーストを用いて400nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Si上に塗布、乾燥を繰り返し、最後に800℃で焼結し200nmのPd電極膜を得た。この膜の上に参考で作成したBaTiO3粒子が分散した誘電体ペーストを塗布、乾燥した後に300℃で焼結し厚さが300nmの誘電体材料膜を形成した。その後、この誘電体材料膜上に、参考例4で作製したPdペーストを塗布、乾燥を繰り返した後に800℃で焼結し200nmの上部電極としてのPd電極膜を形成して薄膜素子を得た。この薄膜素子を参考21とした。
<実施例
実施例で作製したNiペーストを用いて400nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Si上に塗布、乾燥を繰り返し、最後に500℃で焼結し200nmのNi電極膜を得た。この膜の上に参考で作成したBaTiO3粒子が分散した誘電体ペーストを塗布、乾燥した後に300℃で焼結し厚さが300nmの誘電体材料膜を形成した。その後、この誘電体材料膜上に、実施例で作製したNiペーストを塗布、乾燥を繰り返した後に500℃で焼結し200nmの上部電極としてのNi電極膜を形成して薄膜素子を得た。この薄膜素子を実施例とした。
< Reference Example 21 >
Using the Pd paste prepared in Reference Example 4, a silicon wafer with a 400 nm thermal oxide film: repeatedly coated and dried on SiO 2 (500 nm) / Si, and finally sintered at 800 ° C. to obtain a 200 nm Pd electrode film. It was. On this film, the dielectric paste prepared in Reference Example 8 in which BaTiO 3 particles were dispersed was applied, dried, and then sintered at 300 ° C. to form a dielectric material film having a thickness of 300 nm. Thereafter, the Pd paste prepared in Reference Example 4 was applied on the dielectric material film, dried, and then sintered at 800 ° C. to form a Pd electrode film as a 200 nm upper electrode to obtain a thin film element. . This thin film element was referred to as Reference Example 21 .
<Example 2 >
Using the Ni paste prepared in Example 1 , a silicon wafer with a 400 nm thermal oxide film: repeatedly coated and dried on SiO 2 (500 nm) / Si, and finally sintered at 500 ° C. to obtain a 200 nm Ni electrode film. It was. On this film, the dielectric paste prepared in Reference Example 8 in which BaTiO 3 particles were dispersed was applied, dried, and then sintered at 300 ° C. to form a dielectric material film having a thickness of 300 nm. Thereafter, the Ni paste prepared in Example 1 was applied on the dielectric material film, dried, and then sintered at 500 ° C. to form a Ni electrode film as an upper electrode of 200 nm to obtain a thin film element. . This thin film element was referred to as Example 2 .

参考22
SiO2から成るシリコンウェーハ上に常温によるスパッタリング法により200nmのITO(Indium Tin Oxide)電極膜を得た。この膜の上に参考で作成したBaTiO3粒子が分散した誘電体ペーストを塗布、乾燥した後に200℃で焼結し厚さが300nmの誘電体材料膜を形成した。その後、この誘電体材料膜上にスパッタリング法により上部電極として200nmのITO電極膜を形成して薄膜素子を得た。この薄膜素子を参考22とした。
参考23
400nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Siに代えてAl23から成る基板を用いたことを除いて参考18と同一の条件及び手順により薄膜素子を得た。この薄膜素子を参考23とした。
< Reference Example 22 >
A 200 nm ITO (Indium Tin Oxide) electrode film was obtained on a silicon wafer made of SiO 2 by sputtering at room temperature. On this film, the dielectric paste with dispersed BaTiO 3 particles prepared in Reference Example 8 was applied, dried and then sintered at 200 ° C. to form a dielectric material film having a thickness of 300 nm. Thereafter, a 200 nm ITO electrode film was formed as an upper electrode on the dielectric material film by sputtering to obtain a thin film element. This thin film element was determined as Reference Example 22 .
< Reference Example 23 >
Silicon wafer with 400 nm thermal oxide film: A thin film element was obtained under the same conditions and procedures as in Reference Example 18 except that a substrate made of Al 2 O 3 was used instead of SiO 2 (500 nm) / Si. This thin film element was determined as Reference Example 23 .

参考24
400nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Siに代えてAl23から成る基板を用いたことを除いて参考19と同一の条件及び手順により薄膜素子を得た。この薄膜素子を参考24とした。
参考25
400nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Siに代えてAl23から成る基板を用いたことを除いて参考20と同一の条件及び手順により薄膜素子を得た。この薄膜素子を参考25とした。
< Reference Example 24 >
Silicon wafer with 400 nm thermal oxide film: A thin film element was obtained under the same conditions and procedure as in Reference Example 19 except that a substrate made of Al 2 O 3 was used instead of SiO 2 (500 nm) / Si. This thin film element was determined as Reference Example 24 .
< Reference Example 25 >
Silicon wafer with 400 nm thermal oxide film: A thin film element was obtained under the same conditions and procedure as in Reference Example 20 except that a substrate made of Al 2 O 3 was used instead of SiO 2 (500 nm) / Si. This thin film element was determined as Reference Example 25 .

参考26
400nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Siに代えてAl23から成る基板を用いたことを除いて参考21と同一の条件及び手順により薄膜素子を得た。この薄膜素子を参考26とした。
<実施例
400nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Siに代えてAl23から成る基板を用いたことを除いて実施例と同一の条件及び手順により薄膜素子を得た。この薄膜素子を実施例とした。
< Reference Example 26 >
Silicon wafer with 400 nm thermal oxide film: A thin film element was obtained under the same conditions and procedure as in Reference Example 21 except that a substrate made of Al 2 O 3 was used instead of SiO 2 (500 nm) / Si. This thin film element was determined as Reference Example 26 .
<Example 3 >
Silicon wafer with 400 nm thermal oxide film: A thin film element was obtained under the same conditions and procedure as in Example 2 except that a substrate made of Al 2 O 3 was used instead of SiO 2 (500 nm) / Si. This thin film element was referred to as Example 3 .

参考27
400nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Siに代えてYSZから成る基板を用いたことを除いて参考18と同一の条件及び手順により薄膜素子を得た。この薄膜素子を参考27とした。
参考28
400nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Siに代えてYSZから成る基板を用いたことを除いて参考19と同一の条件及び手順により薄膜素子を得た。この薄膜素子を参考28とした。
< Reference Example 27 >
Silicon wafer with 400 nm thermal oxide film: A thin film element was obtained under the same conditions and procedure as in Reference Example 18 except that a substrate made of YSZ was used instead of SiO 2 (500 nm) / Si. This thin film element was determined as Reference Example 27 .
< Reference Example 28 >
Silicon wafer with 400 nm thermal oxide film: A thin film element was obtained under the same conditions and procedures as in Reference Example 19 except that a substrate made of YSZ was used instead of SiO 2 (500 nm) / Si. This thin film element was determined as Reference Example 28 .

参考29
400nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Siに代えてYSZから成る基板を用いたことを除いて参考20と同一の条件及び手順により薄膜素子を得た。この薄膜素子を参考29とした。
参考30
400nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Siに代えてYSZから成る基板を用いたことを除いて参考21と同一の条件及び手順により薄膜素子を得た。この薄膜素子を参考30とした。
< Reference Example 29 >
Silicon wafer with 400 nm thermal oxide film: A thin film element was obtained under the same conditions and procedures as in Reference Example 20 except that a substrate made of YSZ was used instead of SiO 2 (500 nm) / Si. This thin film element was determined as Reference Example 29 .
< Reference Example 30 >
400 nm silicon wafer with a thermal oxide film: A thin film element was obtained under the same conditions and procedure as in Reference Example 21 except that a substrate made of YSZ was used instead of SiO 2 (500 nm) / Si. This thin film element was referred to as Reference Example 30 .

<実施例
400nmの熱酸化膜付きシリコンウェーハ:SiO2(500nm)/Siに代えてYSZから成る基板を用いたことを除いて実施例と同一の条件及び手順により薄膜素子を得た。この薄膜素子を実施例とした。
<実施例5〜実施例7、参考例31〜参考例51
参考で作成したBaTiO3粒子が分散した誘電体ペーストに代えて参考で作成したPZT粒子が分散した誘電体ペーストを用いたことを除き、実施例〜実施例4、参考10〜参考例30と同一の条件及び手順によりそれぞれ薄膜素子を得た。これらの薄膜素子を実施例5〜実施例7、参考例31〜参考例51とした。
上述した実施例2〜実施例7、参考例10〜参考例51の内容を表1及び表2に示す。
<Example 4 >
400 nm silicon wafer with a thermal oxide film: A thin film element was obtained under the same conditions and procedure as in Example 2 except that a substrate made of YSZ was used instead of SiO 2 (500 nm) / Si. This thin film element was referred to as Example 4 .
<Example 5 to Example 7, Reference Example 31 to Reference Example 51 >
Example 2 to Example 4 and Reference Example 10 except that the dielectric paste with dispersed PZT particles prepared in Reference Example 9 was used instead of the dielectric paste with dispersed BaTiO 3 particles prepared in Reference Example 8. -Thin film elements were obtained under the same conditions and procedures as in Reference Example 30 . These thin film elements were referred to as Example 5 to Example 7, and Reference Example 31 to Reference Example 51 .
Tables 1 and 2 show the contents of Examples 2 to 7 and Reference Examples 10 to 51 described above.

Figure 0004670497
Figure 0004670497

Figure 0004670497
Figure 0004670497

<評価試験4及び評価4>
実施例2〜実施例7、参考例10〜参考例51における薄膜素子の比誘電率をLCRメータによりそれぞれ測定した。
<Evaluation Test 4 and Evaluation 4>
The relative dielectric constants of the thin film elements in Examples 2 to 7 and Reference Examples 10 to 51 were measured with an LCR meter.

その結果、実施例2〜実施例4、参考例10〜参考例30におけるBaTiO3膜における比誘電率は150〜370の特性が得られた。また、実施例5〜実施例7、参考例31〜51におけるPZT膜における比誘電率は350〜1200の特性が得られた。
この結果から、良好な薄膜素子が本発明の方法により得られることが判る。
よって、本発明の薄膜素子の製造方法では、従来に比較してその製造工程を単純化させることができ、かつ短いタクトタイムで薄膜素子を得ることができることが判る。
As a result, the dielectric constants of the BaTiO 3 films in Examples 2 to 4 and Reference Examples 10 to 30 were 150 to 370. Moreover, the characteristic of 350-1200 was obtained for the dielectric constant in the PZT film | membrane in Examples 5-7 and Reference Examples 31-51 .
From this result, it can be seen that a good thin film element can be obtained by the method of the present invention.
Therefore, it can be seen that the thin film element manufacturing method of the present invention can simplify the manufacturing process as compared with the conventional method, and can obtain the thin film element with a short tact time.

本発明実施形態の薄膜素子の構造を示す断面図である。It is sectional drawing which shows the structure of the thin film element of embodiment of this invention.

10 薄膜素子
11 基板
12 第1薄膜電極(薄膜電極)
13 誘電体材料膜
14 第2薄膜電極(薄膜電極)
10 Thin Film Element 11 Substrate 12 First Thin Film Electrode (Thin Film Electrode)
13 Dielectric material film 14 Second thin film electrode (thin film electrode)

Claims (8)

Niメタルを気化させて、アルキルナフタレン系のオイルにポリアミンを添加した溶媒中に吹き込むことにより、粒径が1〜40nmのNi粒子が分散したコロイド溶液を作製し、前記コロイド溶液を固液分離した後、分離したNiからなる粒径が1〜40nmの金属微粒子を水に分散させてなる薄膜電極用ペースト。 A colloidal solution in which Ni particles having a particle size of 1 to 40 nm are dispersed is prepared by vaporizing Ni metal and blowing into a solvent in which polyamine is added to an alkylnaphthalene-based oil, and the colloidal solution is separated into solid and liquid. after the separated Ni or Ranaru particle size 1~40nm of the fine metal particles the thin film electrode paste obtained by dispersing in water. 請求項1記載の粒径が1〜40nmのNiからなる金属微粒子を水に分散させた薄膜電極用ペーストを準備する工程と、
基板(11)の上面に前記ペーストを塗布して所定の厚さに成膜する工程と、
熱処理により前記ペーストにおける水を除去して前記金属微粒子を焼成することにより前記基板上に薄膜電極(12)を得る工程と
を含む薄膜電極の製造方法。
Preparing a paste for a thin film electrode in which metal fine particles made of Ni having a particle diameter of 1 to 40 nm according to claim 1 are dispersed in water;
Applying the paste on the upper surface of the substrate (11) to form a film with a predetermined thickness;
Method of manufacturing a thin film electrode and a step of obtaining a thin film electrode (12) on the substrate by sintering the metal fine particles the water is removed in the paste by heat treatment.
前記ペーストの塗布成膜がスピンコート法又はスプレー法又は液滴吐出法のいずれかによりなされる請求項2記載の薄膜電極の製造方法。 3. The method for producing a thin film electrode according to claim 2, wherein the paste is formed by a spin coating method, a spray method, or a droplet discharge method. 前記熱処理が大気圧雰囲気中において400℃〜900℃の温度によりなされる請求項2又は3記載の薄膜電極の製造方法。 The method of manufacturing a thin film electrode according to claim 2 or 3, wherein the heat treatment is performed at a temperature of 400 ° C to 900 ° C in an atmospheric pressure atmosphere. 請求項1記載の粒径が1〜40nmのNiからなる金属微粒子を水に分散させた薄膜電極用ペーストを基板(11)の平坦な上面に塗布して所定の厚さに成膜した後に熱処理して前記金属微粒子を焼成することにより前記基板(11)上に第1薄膜電極(12)を形成する工程と、
前記第1薄膜電極(12)上にゾルゲル法により誘電体材料膜(13)を形成する工程と、
前記誘電体材料膜(13)上に請求項1記載の粒径が1〜40nmのNiからなる金属微粒子を水に分散させた薄膜電極用ペーストを塗布して所定の厚さに成膜した後に熱処理して前記金属微粒子を焼成することにより前記誘電体材料膜(13)上に第2薄膜電極(14)を形成する工程と
を含む薄膜素子の製造方法。
A thin film electrode paste in which metal fine particles made of Ni having a particle diameter of 1 to 40 nm according to claim 1 are dispersed in water is applied to a flat upper surface of a substrate (11) and formed into a predetermined thickness, followed by heat treatment. And forming the first thin film electrode (12) on the substrate (11) by firing the metal fine particles;
Forming a dielectric material film (13) on the first thin film electrode (12) by a sol-gel method;
A thin film electrode paste in which metal fine particles made of Ni having a particle diameter of 1 to 40 nm according to claim 1 are applied on the dielectric material film (13) and formed to a predetermined thickness. Forming a second thin film electrode (14) on the dielectric material film (13) by firing the metal fine particles by heat treatment.
請求項5記載の方法により作製された薄膜素子。   A thin film element manufactured by the method according to claim 5. 粒径が1〜60nmの誘電体微粒子を溶媒に分散させた誘電体ペーストを準備する工程と、
請求項2記載の方法により製造された第1薄膜電極(12)の上面に前記誘電体ペーストを塗布して所定の厚さに成膜する工程と、
熱処理により前記誘電体ペーストにおける溶媒を除去して誘電体微粒子を焼成することにより前記第1薄膜電極(12)上に薄膜誘電体材料膜(13)を形成する工程と、
前記薄膜誘電体材料膜(13)上にスパッタリング法、MOCVD法、真空蒸着法又は請求項2記載の方法により第2薄膜電極(14)を形成する工程と
を含む薄膜素子の製造方法。
Preparing a dielectric paste in which dielectric fine particles having a particle diameter of 1 to 60 nm are dispersed in a solvent;
Applying the dielectric paste to an upper surface of the first thin film electrode (12) manufactured by the method according to claim 2, and forming a film with a predetermined thickness;
Forming a thin film dielectric material film (13) on the first thin film electrode (12) by removing the solvent in the dielectric paste by heat treatment and firing the dielectric fine particles;
Forming a second thin film electrode (14) on the thin film dielectric material film (13) by sputtering, MOCVD, vacuum deposition or the method according to claim 2.
請求項7記載の方法により作製された薄膜素子。   A thin film element produced by the method according to claim 7.
JP2005175298A 2004-06-17 2005-06-15 Thin film electrode paste and method for manufacturing thin film electrode and thin film element Active JP4670497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005175298A JP4670497B2 (en) 2004-06-17 2005-06-15 Thin film electrode paste and method for manufacturing thin film electrode and thin film element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004179015 2004-06-17
JP2005175298A JP4670497B2 (en) 2004-06-17 2005-06-15 Thin film electrode paste and method for manufacturing thin film electrode and thin film element

Publications (2)

Publication Number Publication Date
JP2006032326A JP2006032326A (en) 2006-02-02
JP4670497B2 true JP4670497B2 (en) 2011-04-13

Family

ID=35898381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005175298A Active JP4670497B2 (en) 2004-06-17 2005-06-15 Thin film electrode paste and method for manufacturing thin film electrode and thin film element

Country Status (1)

Country Link
JP (1) JP4670497B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308808B2 (en) * 2008-12-26 2013-10-09 学校法人 中央大学 Ultrasonic motor
JP6623569B2 (en) * 2014-07-23 2019-12-25 Tdk株式会社 Thin film dielectric and thin film capacitor element
US11550172B2 (en) * 2017-12-05 2023-01-10 Hamamatsu Photonics K.K. Reflective spatial light modulator having a perovskite-type electro-optic crystal, optical observation device including same, and light irradiation device including same
CN112537058B (en) * 2020-12-02 2023-02-28 重庆大学 Preparation method of triboelectrification film based on composite nano particle doping

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281783A (en) * 1990-03-29 1991-12-12 Vacuum Metallurgical Co Ltd Formation of thin metallic film
JPH09134891A (en) * 1995-09-06 1997-05-20 Vacuum Metallurgical Co Ltd Formation of thin film of semiconductor substrate
JP2000114101A (en) * 1998-09-30 2000-04-21 Sharp Corp Dielectric thin-film element and its manufacture
JP2001167633A (en) * 1999-12-09 2001-06-22 Ebara Corp Metal-component-containing solution and method forming metal thin film
JP2001325831A (en) * 2000-05-12 2001-11-22 Bando Chem Ind Ltd Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281783A (en) * 1990-03-29 1991-12-12 Vacuum Metallurgical Co Ltd Formation of thin metallic film
JPH09134891A (en) * 1995-09-06 1997-05-20 Vacuum Metallurgical Co Ltd Formation of thin film of semiconductor substrate
JP2000114101A (en) * 1998-09-30 2000-04-21 Sharp Corp Dielectric thin-film element and its manufacture
JP2001167633A (en) * 1999-12-09 2001-06-22 Ebara Corp Metal-component-containing solution and method forming metal thin film
JP2001325831A (en) * 2000-05-12 2001-11-22 Bando Chem Ind Ltd Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film

Also Published As

Publication number Publication date
JP2006032326A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
US5358889A (en) Formation of ruthenium oxide for integrated circuits
Chaudhari et al. Synthesis, structural, and electrical properties of pure PbTiO3 ferroelectric ceramics
JPH0621391A (en) Ferroelectric capacitor and its formation method
KR102469185B1 (en) Ceramic electronic component and method of manufacturing the same and electronic device
JP4670497B2 (en) Thin film electrode paste and method for manufacturing thin film electrode and thin film element
EP2782123A1 (en) Transfer substrate for forming metal wiring line and method for forming metal wiring line by means of said transfer substrate
CN1790569B (en) Dielectric thin film, dielectric thin film device, and method of production thereof
JP5861278B2 (en) Thin film capacitor manufacturing method and thin film capacitor obtained by the method
JPH11260667A (en) Variable-capacitance element for high frequency and manufacture thereof
JP5461951B2 (en) Manufacturing method of ceramic film
JP4419332B2 (en) Substrate surface structure of perovskite oxide film, substrate and perovskite oxide film
US7713576B2 (en) Method to produce a reliable piezoelectric thick film on a substrate
JP4852744B2 (en) Dielectric film capacitor and manufacturing method thereof
JP2005217104A (en) Capacitor, its manufacturing method and semiconductor device
US10790436B2 (en) Oriented piezoelectric film and method of manufacturing same, and liquid ejection head
CN103198923A (en) Manufacturing method of thin-film capacitor and thin-film capacitor obtained through manufacturing method
JP2009280416A (en) Method for manufacturing dielectric thin film and thin film electronic component
WO2005010895A1 (en) Liquid composition for ferroelectric thin film formation and process for producing ferroelectric thin film
CN106463608B (en) The manufacturing method of pzt thin film laminated body and pzt thin film laminated body
JP5029363B2 (en) Manufacturing method of substrate with ferroelectric layer
Wu et al. Low temperature preparation of ferroelectric relaxor composite thick films
KR101640728B1 (en) Lanio3 thin-film-forming composition, and method for forming lanio3 thin-film in which said composition is used
WO2022004068A1 (en) Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate
KR101469170B1 (en) Preparing method of polycrystal lead titanate thick film and the polycrystal lead titanate thick film thereby
JP2003318369A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110103

R150 Certificate of patent or registration of utility model

Ref document number: 4670497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3