JP4666817B2 - High dielectric etching equipment - Google Patents

High dielectric etching equipment Download PDF

Info

Publication number
JP4666817B2
JP4666817B2 JP2001182158A JP2001182158A JP4666817B2 JP 4666817 B2 JP4666817 B2 JP 4666817B2 JP 2001182158 A JP2001182158 A JP 2001182158A JP 2001182158 A JP2001182158 A JP 2001182158A JP 4666817 B2 JP4666817 B2 JP 4666817B2
Authority
JP
Japan
Prior art keywords
substrate
metal
high dielectric
etching
pressing jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001182158A
Other languages
Japanese (ja)
Other versions
JP2002373887A (en
Inventor
俊雄 林
正幸 佐藤
幸一郎 高石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2001182158A priority Critical patent/JP4666817B2/en
Publication of JP2002373887A publication Critical patent/JP2002373887A/en
Application granted granted Critical
Publication of JP4666817B2 publication Critical patent/JP4666817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、LiNbOやPZT等の高誘電率材料をプラズマ中で加工するエッチング装置に関するものである。
【0002】
【従来の技術】
従来のこの種のエッチング装置においては、基板電極表面は耐食性を考慮して20〜30μmの陽極酸化膜で被覆され、基板押さえ治具あるいはクランプ材料はアルミナで構成されていた。基板押さえ治具あるいはクランプ裏面はアルミナ素地のままである。
【0003】
ところで、従来のエッチング装置における基板保持機構の主たる目的は、熱伝導性を良くすることにあった。従って、高誘電率材料のように、プラズマ照射により表面電位と裏面電位の間に大きな隔たりがなく、高電圧(静電)破壊が生じないので、形状制御と均一エッチングが可能な基板電極構造であれば良かった。従来技術においては、例えば金属マスクを用いてSiOをエッチングした場合、僅かにアンダーカットが発生することが見出される。SiOは電荷を持たないプラズマ中の活性種と反応することはなくイオン衝撃でエッチングが進行する。イオンと電子の表面への到達量の僅かな差によって発生した電荷によりマスク金属が帯電し誘電体内部と異なった電位が発生する。従って、入射イオンの軌道は表面の金属マスクに帯電した電荷の作用で曲げられ、その結果アンダーカットが発生すると解釈できる。
【0004】
誘電率の低い誘電体ではこのように僅かなアンダーカットが生じるだけで基板割れの問題は発生しない。しかし、誘電率の高い誘電体では帯電する電荷量が多く静電破壊にまで達することが数多くの実験で確認された。これまでの実験では、密度1011cm−3のAr+Cプラズマを用いてLiNbOをエッチングしたとき5分間は基板の割れが発生しなかったものの10分では割れが発生した。
【0005】
【発明が解決しようとする課題】
本発明は上記のような従来装置に伴う問題点を解決して、基板の割れを発生しないように基板表面電位と裏面電位との差を僅少に保つことのできる基板保持機構を備えたエッチング装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記の目的を達成するために、本発明によれば、ガスを導入してマイクロ波や高周波を用いて高密度プラズマを形成し、基板電極上に載置した基板を加工するエッチング装置において、
基板載置面を含む導電性トレーと、基板押え治具と、金属製の環状箔とから成り、導電性トレー上に載置された基板と基板押え治具との間に金属製の環状箔が挿入されていることを特徴としている。
【0007】
基板載置面の面精度は好ましくは、1μm以下に鏡面仕上げされ、平坦度が10μm以下となるようにされ得る。
【0009】
また、好ましくは、プラズマはパルス放電により形成され、基板バイアス用高周波電源として10MHz以上の高周波電源が使用され得る。
【0010】
このように構成した本発明によるエッチング装置では、高誘電体基板のエッチング時に高誘電体表面に発生する電位とその裏面の電位との差を僅少にするために、基板載置面と基板表面に接する基板押さえ治具あるいはクランプ裏面を導体で構成しているので、基板割れを発生させずに数ミクロン以上の深さまで高誘電体のエッチングが可能となる。
【0011】
また、パルス放電を用いると表面の帯電現象が減少するということが一般に知られており、これを利用して、基板押さえ治具あるいはクランプ裏面に導体膜を用いても帯電現象を抑えることが難しい基板に対しては、プラズマをパルス的に発生させ、基板表面における帯電をパルス休止中に補正する方法を用いることができる。この場合、基板バイアス周波数はできる限り高い方が望ましい。すなわち帯電現象は正負の荷電粒子の僅かな差によって発生する。13.56MHzのバイアス周波数を用いたとき、電子は(1/2)πの位相で数ナノ秒間基板に入射し、イオンは速度が遅く13.56MHzの周波数に追従できず定常的に基板表面に到達する。つまり、電子流入はパルス的に起こり、イオン流入は定常的に起こっている。この電子電流とイオン電流が均衡を保ち、基板電位はエッチング中ある値をとる。周波数が低いと、電子が補給される間隔、つまり(1/2)πから次の周期の(1/2)πまでの間隔が長くなり、その間イオン電流が流れつづけることになる。高誘電体のエッチングではこの間隔が短いほうが望ましい。
【0012】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態について説明する。
図1及び図2には、高誘電体基板をエッチングする際に用いる本発明の一実施の形態における基板保持機構を示す。図1及び図2において、1は基板ホルダであり、その上に金属製の基板載置電極2が取付けられている。金属製の基板載置電極2は上面中央に、基板3を載置するための隆起した基板載置領域2aを備えている。この基板載置領域2aの表面は1μm以下の鏡面仕上げにし、絶縁物である基板との接触面積をできるだけ広く確保するようにしている。すなわち、基板載置領域2aの表面は1μm以下の鏡面仕上げにより平滑度1μm以下、平坦度10μm以下となるようにされる。
【0013】
基板ホルダ1の側面、基板載置電極2の側面及び基板載置領域2aを囲む基板載置電極2の周囲部分2bの表面には、アルミナのような誘電体材料層4で覆われている。
【0014】
また5は基板保持機構のクランプ部材で、基板載置電極2の表面に対して垂直方向に上下に移動できるようにされている。クランプ部材5はアルミナのような誘電体材料から成り、その裏面には導体膜6が無電解めっき法、蒸着法又はスパッタリング法等により形成されている。
【0015】
ところで、クランプ部材5は金属で形成すれば、その裏面に導体膜6を形成する必要はないが、装置の運転中にプラズマ照射によりクランプ部材5の表面もスパッタされ、基板押さえ治具又はクランプ部材6の材料が加工中の高誘電体表面に付着し、金属汚染を引き起こす恐れがある。従って、クランプ部材5の材料として金属を使用すると、金属のエッチング速度が大きいため、汚染と共に耐久性の問題も発生する。
【0016】
これに対してアルミナのような高誘電体材料は一般に金属酸化物であり、金属よりもエッチング速度は低い。従って、クランプ部材5の材料としてはエッチング耐性の強いアルミナが最も適している。しかし、塩素系のガスを用いる場合には石英を使用することもできる。
【0017】
クランプ部材5の裏面に導体膜を蒸着、スパッタ、無電解メッキ等で形成する代りに、薄い金属箔を接着してもよい。導体膜又は金属箔6の材料としては耐食性のあるNi等が好ましいが、CuやAl等も使用することができる。
【0018】
また、基板3上のマスクパターンは金属で構成されるのが望ましく、基板上のどの位置でもクランプ部材5の裏面の導体膜6と接する周辺部に繋がっていることが望ましい。
【0019】
このように構成した図示装置の動作について説明する。
図示していないローディング室にある基板を図示していない搬送ロボットにより、鏡面仕上げされた基板載置電極2の基板載置領域2a上に搬送し、基クランプ部材5により基板3を基板載置電極2の基板載置領域2a上に密着させて保持する。図示していないヘリウム冷却機構により基板3の裏面側にヘリウムを15Torrまで導入した。基板載置電極2の温度は図示していない冷媒を用いた冷却機構により−10℃に設定した。
【0020】
次に、ArとCの混合ガスを真空チャンバ(図示していない)に100sccm導入し、プラズマ形成用誘電コイル(図示していない)に13.56MHzの高周波数電力を1400W、基板載置電極2に13.56MHzの高周波電力を350W印加しエッチングを行った。この結果、従来の基板保持機構を用いたとき10分以内で基板割れが発生していたが、まったく割れが発生せず30分のエッチングが可能であった。
【0021】
図3及び図4には、基板保持機構としてトレーを用いたときの本発明の実施の形態を示す。図3及び図4において、11は基板ホルダで、その上に基板載置電極を構成する金属製のトレー12が取付けられる。金属製のトレー12の表面は粗さ1μm以下の精度で鏡面仕上げされている。図示例では、金属製のトレー12は厚さ2mmであり、周囲縁部には幅10mm、厚さ1mmの環状縁部12aが形成されている。この環状縁部12aの内側領域には、環状縁部12aの内径にほぼ等しい外径と、処理すべき誘電体基板13の外径より4mm小さい内径とをもつ厚さ0.1mm以下のCu製の環状箔14が設けられ、処理すべき誘電体基板13を受けたときに、環状箔14の内周縁部が2mm基板13の外周縁部に重なるようにされている。また15は基板13に対する環状の基板押え冶具で、この環状の基板押え冶具15はAlから成り、厚さ1.5mmをもち、金属製のトレー12の環状縁部12aの内側に収まり、その内径は処理すべき誘電体基板13の外径より6mm小さく、基板13の外周縁部に対する押え代が3mmとなるように構成される。また、環状の基板押え冶具15は、その内周縁部の下側に段部15aを備え、この段部15aの径方向奥行きは3.5mmに構成されている。さらに、16はクランプ部材であり、動作時に環状のの基板押え冶具15を上面から押えるように構成されている。
【0022】
また、図示していないが、基板13をガス冷却できる基板冷却機構が基板ホルダ11に組込まれている。基板13はトレー12に載置されたまま搬送される。
【0023】
図3及び図4には環状箔14としてはCu箔を使用しているが、当然他の金属箔を使用しても良い。また、図3における各部の寸法は単に例示のためのものであり、この寸法に限定されるものではない。
【0024】
図5及び図6には本発明の実施の形態の変形例を示す。この場合には、基板載置部を凸状構造としている金属製のトレー21が使用され、金属製のトレー21の基板載置領域21aの表面は1μm以下の鏡面仕上げにより平滑度1μm以下、平坦度10μm以下となるようにされる。また22はアルミナなどの誘電体材料から成る基板押え治具であり、その裏面は蒸着、スパッタ、無電解メッキ等の方法により金属膜23が形成されている。図1及び図2に示す構造と同様に基板載置部を凸状構造とすることにより、図3及び図4に示すような凹状構造よりも面精度が得られ易いという利点がある。また、図3及び図4の場合と同様に、図示していないが基板23を直接ガス冷却できる機構が設けられる。
【0025】
図3、図4、図5及び図6に示すトレーを用いることによって、万が一割れた場合、破片が真空チャンバ内に残存しないで次の基板を用いることができる可能性が高くなる。すなわち図1及び図2に示す方式では、万が一基板が割れた場合、真空を破り破片を取り出さなければならない。この作業に通常2〜3時間要することになるが、図3、図4、図5及び図6に示すトレー方式では万が一割れたとしてもこの時間を節約できる可能性がある。
【0026】
次に、パルス放電を用いたエッチングの例について説明する。
13.56MHzの高周波電源を用いて100kHzのパルスモジュレーション法によりパルス放電を行った。デュティー比100%(放電休止時間0)から20%間隔で変化させたところ60%以下では基板割れがなく、30分のエッチングを行うことができた。しかし、エッチ速度が低下したので所望の深さまで加工することはできなかった。このことより、所望の深さに加工するまで基板割れが発生しない条件を求めることはできてはいないが、より詳細に調べればその条件が求まるものと思われる。
【0027】
【発明の効果】
以上説明してきたように、本発明によれば、基板載置部を鏡面加工し基板と載置部との接触面積を大きくすると共に、基板押え治具又はクランプの裏面に金属膜(箔)を形成して、プラズマ照射(エッチング)中に高誘電体表面と裏面間に発生する電位差を僅少にするように構成しているので、電圧破壊により基板割れを起こさずに数ミクロンから10ミクロン以上の高誘電体加工が可能になるという効果を奏する。
【0028】
基板押え治具あるいはクランプの裏面に導体膜(箔)を用いても帯電現象を抑えることが難しい基板に対しては、プラズマをパルス的に発生させ、基板表面における帯電をパルス休止中に補正する方法を用いることにより、より広範囲な高誘電体材料へ適用できる可能性が得られる。このことは来るべき、光通信分野のデバイス加工に明るい見通しをつける意味で大きな意義があり、その応用が期待される。
【図面の簡単な説明】
【図1】本発明の一実施の形態における基板保持機構の要部を示す概略分解図。
【図2】図1に示す基板保持機構による基板保持状態を示す概略図。
【図3】本発明の別の実施の形態における基板保持機構の要部を示す概略分解図。
【図4】図3に示す基板保持機構による基板保持状態を示す概略図。
【図5】図3に示す基板保持機構の変形例を示す概略分解図。
【図6】図5に示す基板保持機構による基板保持状態を示す概略図。
【符号の説明】
1:基板ホルダ
2:金属製の基板載置電極
2a:基板載置領域
3:基板
4:誘電体材料層
5:クランプ部材
6:導体膜
11:基板ホルダ
12:金属製のトレー
12a:環状縁部
13:処理すべき誘電体基板
14:環状箔
15:環状の基板押え冶具
15a:段部
16:クランプ部材
21:金属製のトレー
21a:基板載置領域
22:基板押え治具
23:基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an etching apparatus for processing a high dielectric constant material such as LiNbO 3 or PZT in plasma.
[0002]
[Prior art]
In this type of conventional etching apparatus, the surface of the substrate electrode is coated with an anodized film of 20 to 30 μm in consideration of corrosion resistance, and the substrate pressing jig or the clamp material is made of alumina. The substrate pressing jig or the back surface of the clamp remains the alumina substrate.
[0003]
Incidentally, the main purpose of the substrate holding mechanism in the conventional etching apparatus is to improve the thermal conductivity. Therefore, unlike a high dielectric constant material, there is no large gap between the surface potential and the back surface potential due to plasma irradiation, and high voltage (electrostatic) breakdown does not occur. Therefore, a substrate electrode structure capable of shape control and uniform etching is used. I wish I had it. In the prior art, it is found that slight undercut occurs when, for example, SiO 2 is etched using a metal mask. SiO 2 does not react with active species in plasma having no charge, and etching proceeds by ion bombardment. The mask metal is charged by a charge generated by a slight difference in the amount of ions and electrons reaching the surface, and a potential different from that inside the dielectric is generated. Therefore, it can be interpreted that the trajectory of the incident ions is bent by the action of the electric charges charged on the metal mask on the surface, and as a result, an undercut occurs.
[0004]
In a dielectric having a low dielectric constant, such a slight undercut is generated, and the problem of substrate cracking does not occur. However, it has been confirmed in many experiments that a dielectric material having a high dielectric constant has a large amount of charge and reaches electrostatic breakdown. In the experiment so far, when LiNbO 3 was etched using Ar + C 4 F 8 plasma having a density of 10 11 cm −3 , the substrate did not crack for 5 minutes, but cracked in 10 minutes.
[0005]
[Problems to be solved by the invention]
The present invention solves the problems associated with the conventional apparatus as described above, and an etching apparatus provided with a substrate holding mechanism capable of maintaining a slight difference between the substrate surface potential and the back surface potential so as not to cause cracking of the substrate. The purpose is to provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in an etching apparatus for processing a substrate placed on a substrate electrode by forming a high-density plasma using a microwave or a high frequency by introducing a gas,
A conductive tray including a substrate mounting surface, a substrate pressing jig, and a metal annular foil, and a metal annular foil between the substrate placed on the conductive tray and the substrate pressing jig. Is inserted .
[0007]
The surface accuracy of the substrate mounting surface is preferably mirror-finished to 1 μm or less so that the flatness can be 10 μm or less.
[0009]
Preferably, the plasma is formed by pulse discharge, and a high frequency power source of 10 MHz or more can be used as a high frequency power source for substrate bias.
[0010]
In the etching apparatus according to the present invention configured as described above, in order to minimize the difference between the potential generated on the high dielectric surface and the potential on the back surface when etching the high dielectric substrate, Since the substrate pressing jig or the back surface of the clamp that is in contact is made of a conductor, the high dielectric can be etched to a depth of several microns or more without causing substrate cracking.
[0011]
Further, it is generally known that the use of pulse discharge reduces the surface charging phenomenon, and it is difficult to suppress the charging phenomenon even if a conductor film is used on the substrate pressing jig or the back of the clamp. For the substrate, it is possible to use a method in which plasma is generated in a pulsed manner and charging on the substrate surface is corrected during a pulse pause. In this case, it is desirable that the substrate bias frequency be as high as possible. That is, the charging phenomenon occurs due to a slight difference between positive and negative charged particles. When a bias frequency of 13.56 MHz is used, electrons are incident on the substrate for a few nanoseconds with a phase of (1/2) π, and ions are slow and cannot follow the frequency of 13.56 MHz, so that they steadily reach the substrate surface. To reach. That is, the inflow of electrons occurs in a pulse manner, and the inflow of ions occurs constantly. The electron current and ion current are balanced, and the substrate potential takes a certain value during etching. When the frequency is low, the interval at which electrons are replenished, that is, the interval from (1/2) π to (1/2) π of the next period becomes longer, and the ionic current continues to flow during that interval. In high dielectric etching, it is desirable that this distance be short.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
1 and 2 show a substrate holding mechanism according to an embodiment of the present invention used when etching a high dielectric substrate. 1 and 2, reference numeral 1 denotes a substrate holder on which a metal substrate mounting electrode 2 is attached. The metal substrate placement electrode 2 includes a raised substrate placement region 2a for placing the substrate 3 at the center of the upper surface. The surface of the substrate placement area 2a is mirror finished to 1 μm or less so as to ensure as wide a contact area as possible with the substrate which is an insulator. That is, the surface of the substrate placement region 2a is made to have a smoothness of 1 μm or less and a flatness of 10 μm or less by mirror finishing of 1 μm or less.
[0013]
The surface of the peripheral portion 2b of the substrate mounting electrode 2 surrounding the side surface of the substrate holder 1, the side surface of the substrate mounting electrode 2 and the substrate mounting region 2a is covered with a dielectric material layer 4 such as alumina.
[0014]
Reference numeral 5 denotes a clamp member for the substrate holding mechanism, which can move up and down in a direction perpendicular to the surface of the substrate mounting electrode 2. The clamp member 5 is made of a dielectric material such as alumina, and a conductor film 6 is formed on the back surface thereof by an electroless plating method, a vapor deposition method, a sputtering method, or the like.
[0015]
By the way, if the clamp member 5 is made of metal, it is not necessary to form the conductor film 6 on the back surface thereof, but the surface of the clamp member 5 is also sputtered by plasma irradiation during the operation of the apparatus. 6 material may adhere to the surface of the high dielectric material being processed and cause metal contamination. Accordingly, when a metal is used as the material of the clamp member 5, the etching rate of the metal is high, and thus there is a problem of durability as well as contamination.
[0016]
On the other hand, a high dielectric material such as alumina is generally a metal oxide and has a lower etching rate than a metal. Accordingly, alumina having a high etching resistance is most suitable as a material for the clamp member 5. However, quartz can be used when chlorine-based gas is used.
[0017]
Instead of forming a conductor film on the back surface of the clamp member 5 by vapor deposition, sputtering, electroless plating, or the like, a thin metal foil may be bonded. The material of the conductor film or the metal foil 6 is preferably Ni or the like having corrosion resistance, but Cu or Al can also be used.
[0018]
The mask pattern on the substrate 3 is preferably made of metal, and is preferably connected to the peripheral portion in contact with the conductor film 6 on the back surface of the clamp member 5 at any position on the substrate.
[0019]
The operation of the illustrated apparatus configured as described above will be described.
A substrate in a loading chamber (not shown) is transferred by a transfer robot (not shown) onto the substrate mounting region 2 a of the mirror-finished substrate mounting electrode 2, and the substrate 3 is transferred by the base clamp member 5. 2 in close contact with the substrate mounting region 2a. Helium was introduced up to 15 Torr on the back side of the substrate 3 by a helium cooling mechanism (not shown). The temperature of the substrate mounting electrode 2 was set to −10 ° C. by a cooling mechanism using a refrigerant (not shown).
[0020]
Next, a mixed gas of Ar and C 4 F 8 is introduced into a vacuum chamber (not shown) at 100 sccm, and a high frequency power of 13.56 MHz is supplied to a plasma forming dielectric coil (not shown) at 1400 W. Etching was performed by applying 350 W of high frequency power of 13.56 MHz to the placement electrode 2. As a result, the substrate cracking occurred within 10 minutes when the conventional substrate holding mechanism was used, but no cracking occurred and etching for 30 minutes was possible.
[0021]
3 and 4 show an embodiment of the present invention when a tray is used as the substrate holding mechanism. 3 and 4, reference numeral 11 denotes a substrate holder, on which a metal tray 12 constituting a substrate mounting electrode is attached. The surface of the metal tray 12 is mirror-finished with an accuracy of 1 μm or less. In the illustrated example, the metal tray 12 has a thickness of 2 mm, and an annular edge 12 a having a width of 10 mm and a thickness of 1 mm is formed on the peripheral edge. The inner region of the annular edge 12a is made of Cu having a thickness of 0.1 mm or less having an outer diameter substantially equal to the inner diameter of the annular edge 12a and an inner diameter 4 mm smaller than the outer diameter of the dielectric substrate 13 to be processed. When the dielectric substrate 13 to be processed is received, the inner peripheral edge of the annular foil 14 overlaps with the outer peripheral edge of the 2 mm substrate 13. Reference numeral 15 denotes an annular substrate retainer jig for the substrate 13, and this annular substrate retainer jig 15 is made of Al 2 O 3 , has a thickness of 1.5 mm, and fits inside the annular edge portion 12 a of the metal tray 12. The inner diameter is 6 mm smaller than the outer diameter of the dielectric substrate 13 to be processed, and the press margin for the outer peripheral edge of the substrate 13 is 3 mm. The annular substrate pressing jig 15 includes a step portion 15a on the lower side of the inner peripheral edge portion thereof, and the step portion 15a has a radial depth of 3.5 mm. Reference numeral 16 denotes a clamp member configured to press the annular substrate pressing jig 15 from the upper surface during operation.
[0022]
Although not shown, a substrate cooling mechanism capable of gas cooling the substrate 13 is incorporated in the substrate holder 11. The substrate 13 is transported while being placed on the tray 12.
[0023]
In FIG. 3 and FIG. 4, Cu foil is used as the annular foil 14, but other metal foil may naturally be used. Moreover, the dimension of each part in FIG. 3 is for illustration only, and is not limited to this dimension.
[0024]
5 and 6 show a modification of the embodiment of the present invention. In this case, a metal tray 21 having a substrate mounting portion having a convex structure is used, and the surface of the substrate mounting area 21a of the metal tray 21 is flat with a smoothness of 1 μm or less by a mirror finish of 1 μm or less. The degree is set to 10 μm or less. Reference numeral 22 denotes a substrate pressing jig made of a dielectric material such as alumina, and a metal film 23 is formed on the rear surface thereof by a method such as vapor deposition, sputtering, or electroless plating. Similar to the structure shown in FIGS. 1 and 2, by making the substrate mounting portion a convex structure, there is an advantage that it is easier to obtain surface accuracy than the concave structure as shown in FIGS. 3 and 4. Further, as in the case of FIGS. 3 and 4, although not shown, a mechanism capable of directly cooling the gas of the substrate 23 is provided.
[0025]
By using the tray shown in FIGS. 3, 4, 5, and 6, in the unlikely event that it breaks, there is a high possibility that the next substrate can be used without debris remaining in the vacuum chamber. That is, in the system shown in FIGS. 1 and 2, if the substrate is broken, the vacuum must be broken and the fragments must be taken out. Although this operation usually takes 2 to 3 hours, the tray system shown in FIGS. 3, 4, 5, and 6 may save time even if it breaks.
[0026]
Next, an example of etching using pulse discharge will be described.
Pulse discharge was performed by a 100 kHz pulse modulation method using a 13.56 MHz high frequency power source. When the duty ratio was changed from 100% (discharge stop time 0) at 20% intervals, the substrate was not cracked at 60% or less, and etching could be performed for 30 minutes. However, since the etch rate was reduced, it was not possible to process to the desired depth. From this, it is not possible to obtain a condition in which substrate cracking does not occur until processing to a desired depth, but it is considered that the condition can be obtained by examining in more detail.
[0027]
【The invention's effect】
As described above, according to the present invention, the substrate mounting portion is mirror-finished to increase the contact area between the substrate and the mounting portion, and a metal film (foil) is provided on the back surface of the substrate pressing jig or the clamp. Since the potential difference generated between the front surface and the back surface of the high dielectric material during plasma irradiation (etching) is made small, it is several microns to 10 microns or more without causing substrate cracking due to voltage breakdown. There is an effect that high dielectric processing becomes possible.
[0028]
For substrates for which it is difficult to suppress the charging phenomenon even if a conductor film (foil) is used on the back surface of the substrate pressing jig or clamp, plasma is generated in a pulsed manner, and charging on the substrate surface is corrected during the pulse pause. By using the method, the possibility of being applicable to a wider range of high dielectric materials is obtained. This is significant in the sense that it will give a bright outlook for device processing in the field of optical communications, and its application is expected.
[Brief description of the drawings]
FIG. 1 is a schematic exploded view showing a main part of a substrate holding mechanism according to an embodiment of the present invention.
FIG. 2 is a schematic view showing a substrate holding state by the substrate holding mechanism shown in FIG. 1;
FIG. 3 is a schematic exploded view showing a main part of a substrate holding mechanism according to another embodiment of the present invention.
4 is a schematic view showing a substrate holding state by the substrate holding mechanism shown in FIG. 3;
5 is a schematic exploded view showing a modification of the substrate holding mechanism shown in FIG.
6 is a schematic view showing a substrate holding state by the substrate holding mechanism shown in FIG.
[Explanation of symbols]
1: substrate holder 2: metal substrate placement electrode 2a: substrate placement region 3: substrate 4: dielectric material layer 5: clamp member 6: conductor film 11: substrate holder 12: metal tray 12a: annular edge Unit 13: Dielectric substrate 14 to be processed: Ring foil 15: Ring substrate holding jig 15a: Step portion 16: Clamp member 21: Metal tray 21a: Substrate placement region 22: Substrate holding jig 23: Substrate

Claims (1)

ガスを導入してマイクロ波や高周波を用いて高密度プラズマを形成し、基板電極上に載置した基板を加工するエッチング装置において、
基板載置面を含む導電性トレーと、基板押え治具と、金属製の環状箔とから成り、導電性トレー上に載置された基板と基板押え治具との間に金属製の環状箔が挿入されていることを特徴とするエッチング装置。
In an etching apparatus for processing a substrate placed on a substrate electrode by forming a high-density plasma using a microwave or high frequency by introducing a gas,
A conductive tray including a substrate mounting surface, a substrate pressing jig, and a metal annular foil, and a metal annular foil between the substrate placed on the conductive tray and the substrate pressing jig. Is an etching apparatus.
JP2001182158A 2001-06-15 2001-06-15 High dielectric etching equipment Expired - Fee Related JP4666817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001182158A JP4666817B2 (en) 2001-06-15 2001-06-15 High dielectric etching equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001182158A JP4666817B2 (en) 2001-06-15 2001-06-15 High dielectric etching equipment

Publications (2)

Publication Number Publication Date
JP2002373887A JP2002373887A (en) 2002-12-26
JP4666817B2 true JP4666817B2 (en) 2011-04-06

Family

ID=19022313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001182158A Expired - Fee Related JP4666817B2 (en) 2001-06-15 2001-06-15 High dielectric etching equipment

Country Status (1)

Country Link
JP (1) JP4666817B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954754B1 (en) 2008-03-25 2010-04-27 (주)타이닉스 Tray for plasma processing apparatus
JP2010098012A (en) * 2008-10-14 2010-04-30 Ulvac Japan Ltd Etching equipment and etching method
JP2010098010A (en) * 2008-10-14 2010-04-30 Ulvac Japan Ltd Etching equipment and etching method
JP2009105436A (en) * 2009-01-26 2009-05-14 Panasonic Corp Method of processing high dielectric material
CN106158718A (en) * 2015-04-22 2016-11-23 北京北方微电子基地设备工艺研究中心有限责任公司 Mechanical chuck and semiconductor processing equipment
CN115026636B (en) * 2022-06-20 2024-02-09 南京三乐集团有限公司 Preparation method for sheet mirror finish

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269941A (en) * 1988-04-21 1989-10-27 Hitachi Ltd Formation of fine pattern
JPH03274727A (en) * 1990-03-23 1991-12-05 Nec Kansai Ltd Manufacture of semiconductor device
JPH04356921A (en) * 1991-06-03 1992-12-10 Fujitsu Ltd Wafer holding disk in dry etching apparatus
JPH0637049A (en) * 1992-07-17 1994-02-10 Oki Electric Ind Co Ltd Plasma etching apparatus
JPH06167624A (en) * 1992-09-16 1994-06-14 Ibiden Co Ltd Method for producing optical crystal substrate or ridge shape on thin film on this substrate
JPH06302555A (en) * 1993-04-16 1994-10-28 Sumitomo Metal Ind Ltd Plasma etching apparatus
JPH0686341U (en) * 1993-05-24 1994-12-13 日新電機株式会社 Substrate holding device
JPH07153822A (en) * 1993-11-30 1995-06-16 Oki Electric Ind Co Ltd Plasma process equipment
JPH07159638A (en) * 1993-12-10 1995-06-23 Nikon Corp Production of optical waveguide device
JPH0945662A (en) * 1995-07-26 1997-02-14 Sony Corp Plasma etching method for perovskite-type oxide thin film
JPH09199475A (en) * 1996-01-16 1997-07-31 Gijutsu Kenkyu Kumiai Shinjoho Shiyori Kaihatsu Kiko Ion beam etching device
JPH09309800A (en) * 1996-05-24 1997-12-02 Matsushita Electric Ind Co Ltd Dry etching process and apparatus therefor
JPH10274700A (en) * 1997-03-28 1998-10-13 Ebara Corp Method for ultramicro machining
JPH11162950A (en) * 1993-06-25 1999-06-18 Hitachi Ltd Thin-film magnetic head and its manufacture and processing with etching gas
JPH11307513A (en) * 1998-04-20 1999-11-05 Sony Corp Plasma treating apparatus for insulator substrate
JP2000294540A (en) * 1999-04-07 2000-10-20 Nec Corp Manufacture of semiconductor device and apparatus for manufacturing
JP2003502831A (en) * 1998-08-17 2003-01-21 ティーガル コーポレイション Apparatus and method for minimizing semiconductor wafer arcing during semiconductor wafer processing

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269941A (en) * 1988-04-21 1989-10-27 Hitachi Ltd Formation of fine pattern
JPH03274727A (en) * 1990-03-23 1991-12-05 Nec Kansai Ltd Manufacture of semiconductor device
JPH04356921A (en) * 1991-06-03 1992-12-10 Fujitsu Ltd Wafer holding disk in dry etching apparatus
JPH0637049A (en) * 1992-07-17 1994-02-10 Oki Electric Ind Co Ltd Plasma etching apparatus
JPH06167624A (en) * 1992-09-16 1994-06-14 Ibiden Co Ltd Method for producing optical crystal substrate or ridge shape on thin film on this substrate
JPH06302555A (en) * 1993-04-16 1994-10-28 Sumitomo Metal Ind Ltd Plasma etching apparatus
JPH0686341U (en) * 1993-05-24 1994-12-13 日新電機株式会社 Substrate holding device
JPH11162950A (en) * 1993-06-25 1999-06-18 Hitachi Ltd Thin-film magnetic head and its manufacture and processing with etching gas
JPH07153822A (en) * 1993-11-30 1995-06-16 Oki Electric Ind Co Ltd Plasma process equipment
JPH07159638A (en) * 1993-12-10 1995-06-23 Nikon Corp Production of optical waveguide device
JPH0945662A (en) * 1995-07-26 1997-02-14 Sony Corp Plasma etching method for perovskite-type oxide thin film
JPH09199475A (en) * 1996-01-16 1997-07-31 Gijutsu Kenkyu Kumiai Shinjoho Shiyori Kaihatsu Kiko Ion beam etching device
JPH09309800A (en) * 1996-05-24 1997-12-02 Matsushita Electric Ind Co Ltd Dry etching process and apparatus therefor
JPH10274700A (en) * 1997-03-28 1998-10-13 Ebara Corp Method for ultramicro machining
JPH11307513A (en) * 1998-04-20 1999-11-05 Sony Corp Plasma treating apparatus for insulator substrate
JP2003502831A (en) * 1998-08-17 2003-01-21 ティーガル コーポレイション Apparatus and method for minimizing semiconductor wafer arcing during semiconductor wafer processing
JP2000294540A (en) * 1999-04-07 2000-10-20 Nec Corp Manufacture of semiconductor device and apparatus for manufacturing

Also Published As

Publication number Publication date
JP2002373887A (en) 2002-12-26

Similar Documents

Publication Publication Date Title
JP6302000B2 (en) Electrostatic chuck assembly and plasma processing apparatus
JP4180913B2 (en) Top electrode with steps for plasma processing uniformity
US9666416B2 (en) Apparatus and method for depositing electronically conductive pasting material
JP3429391B2 (en) Plasma processing method and apparatus
JP3737363B2 (en) Physical vapor treatment of surfaces with non-uniformity compensation
US8529730B2 (en) Plasma processing apparatus
US20080314321A1 (en) Plasma processing apparatus
TW200834799A (en) Substrate stage and plasma processing apparatus
US20060121195A1 (en) Plasma processing apparatus and method for manufacturing electrostatic chuck
JP4666817B2 (en) High dielectric etching equipment
JP7119113B2 (en) Method for manufacturing an electrostatic chuck and its protrusions
JPH10284475A (en) Treating method
JPH11243077A (en) Method and device for plasma treatment
JP2002220660A (en) Sputtering apparatus
JP3720901B2 (en) Plasma processing apparatus and antenna manufacturing method
JPH04271122A (en) Plasma processing equipment
JP2001230234A (en) Apparatus and method for plasma treatment
JP2002115051A (en) Bias sputtering device
JPH0649936B2 (en) Bias spattering device
JP4355046B2 (en) Cleaning method and substrate processing apparatus
JP5335421B2 (en) Vacuum processing equipment
JPH09252047A (en) Electrostatic attraction electrode
JPH0794480A (en) Plasma processing and plasma processing device
JP3305654B2 (en) Plasma CVD apparatus and recording medium
JP2000188279A (en) Electrostatically attractable transparent insulating substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4666817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees