JP4665388B2 - Liquid crystal device and electronic device - Google Patents
Liquid crystal device and electronic device Download PDFInfo
- Publication number
- JP4665388B2 JP4665388B2 JP2003363487A JP2003363487A JP4665388B2 JP 4665388 B2 JP4665388 B2 JP 4665388B2 JP 2003363487 A JP2003363487 A JP 2003363487A JP 2003363487 A JP2003363487 A JP 2003363487A JP 4665388 B2 JP4665388 B2 JP 4665388B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- scattering film
- forward scattering
- angle
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
Description
本発明は、反射型あるいは半透過反射型液晶表示装置に適用することで表示のにじみ(ボケ)およびコントラストの低下を改善し、鮮明な表示を得ることができるとともに、そのような鮮明な表示が可能な液晶装置を備えた電子機器を提供できる技術に関する。 The present invention can be applied to a reflective or transflective liquid crystal display device to improve blurring and blurring of the display, and to obtain a clear display. The present invention relates to a technology capable of providing an electronic device including a possible liquid crystal device.
ノート型パーソナルコンピュータ、携帯型ゲーム機や電子手帳などの種々の電子機器には表示部として消費電力の少ない液晶表示装置が多用されている。特に近年は表示内容の多用化に伴って、カラー表示が可能な液晶表示装置の需要が高まっている。また、前記電子機器のバッテリー駆動時間を長くしたいという要求から、バックライト装置を必要としない反射型のカラー液晶表示装置が開発されている。 In various electronic devices such as notebook personal computers, portable game machines, and electronic notebooks, liquid crystal display devices with low power consumption are often used as display units. Particularly in recent years, with the diversification of display contents, the demand for liquid crystal display devices capable of color display is increasing. In addition, in order to increase the battery driving time of the electronic device, a reflective color liquid crystal display device that does not require a backlight device has been developed.
以下に従来の反射型のカラー液晶表示装置の構成例の概要を図面を参照して説明する。 An outline of a configuration example of a conventional reflective color liquid crystal display device will be described below with reference to the drawings.
図18(a)、(b)は、従来の反射型カラー液晶表示装置の要部を示す拡大概略断面図である。これらの内、図18(a)は前方散乱板タイプの反射型液晶表示装置を示し、図18(b)は内面散乱反射板タイプの液晶表示装置を示している。 18 (a) and 18 (b) are enlarged schematic cross-sectional views showing a main part of a conventional reflective color liquid crystal display device. Among these, FIG. 18A shows a front scattering plate type reflection type liquid crystal display device, and FIG. 18B shows an inner surface scattering reflection plate type liquid crystal display device.
図18(a)に示した前方散乱板タイプの液晶表示装置は、一対のガラス基板100、101間に液晶層102が挟持され、一方(図面では上側)のガラス基板101の液晶層102側の表面部分には、カラーフィルタ104が設けられていおり、他方(図面では下側)のガラス基板100の液晶層102側の表面部分には、光反射層103が設けられている。また、ガラス基板101の上面側には、例えば厚さ50〜200μmのトリアリルシアネートなどからなる基材に金属酸化物粒子をフィラーとして分散させた前方散乱フィルム105が透明な粘着材または粘着シート(図示略)を介して貼付され、その上に偏光板106が設けられている。
In the forward scattering plate type liquid crystal display device shown in FIG. 18A, a
このような前方散乱タイプの反射型液晶装置において入射光L1は、偏光板106、前方散乱フィルム105、ガラス基板101、液晶層102、カラーフィルタ104を通過後、駆動電極を兼ねる光反射層103の表面で反射され、反射された光が液晶層102、カラーフィルタ104、ガラス基板101、前方散乱フィルム105、偏光板106を介して液晶装置から出射され、観察者Eに反射光L2として視認される。ここで液晶装置を出射する光は液晶層102の状態によって制御される、即ち、液晶層102における液晶分子の配列状態により反射光の偏光状態が制御され、反射光の偏光状態が偏光板106の偏光軸と一致した場合には偏光板106を透過して所望の色表示がなされることとなる。
In such a forward scattering type reflective liquid crystal device, incident light L1 passes through the polarizing
また、図18(b)の内面散乱反射板タイプの液晶装置は、一対のガラス基板100、101、液晶層102を備え、ガラス基板100の液晶層102側の表面には、光反射層を兼ねるAl薄膜等からなる画素電極107が表面に光を乱反射する凹凸部を設けた状態で形成されている。
18B includes a pair of
ここで光入射側のガラス基板101の液晶層102側の表面には、カラーフィルタ104が形成され、ガラス基板101の上面側には偏光板106が設けられている。このような内面散乱板タイプの反射型液晶表示装置において、入射光L1は、偏光板106、ガラス基板101、カラーフィルタ104、液晶層102を通過後、画素電極を兼ねる凹凸型の光反射層107の表面で乱反射され、液晶層102の状態によって偏光が変化された後、反射光はカラーフィルタ104とガラス基板101と偏光板106を通過し、偏光板106において、反射光の偏光状態により透過、不透過とされ、透過した場合には散乱光L3’として観察者の肉眼Eに入射することによりカラー表示として視認される。
Here, a
ところで、前記図18(a)に示す従来構造において前方散乱フィルム105は、光反射層103が鏡面反射層である場合に、鏡面独特の特定の方向での強いミラー反射(正反射)を弱め、できるだけ広い範囲で明るい表示を可能とする目的で用いられている。
By the way, in the conventional structure shown in FIG. 18A, the
この種の前方散乱フィルム105は、一般的には厚さ25〜30μm(25〜30×10−6m)程度のアクリル系の樹脂層(例えば屈折率n=1.48〜1.49程度)の内部に粒径4μm(4×10−6m)程度のビーズ(例えば屈折率n=1.4)を多数分散させてなる構造を有するもので、携帯電話用の反射型液晶表示装置、携帯型情報機器等の反射型液晶表示装置には広く用いられているものである。
This type of
なお、携帯機器の液晶表示装置には、反射型の他にバックライトを備えた半透過反射型の液晶表示装置も知られている。この種従来の半透過反射型液晶表示装置は、反射層を半透過反射層として構成し、透過表示の場合にバックライトの光を半透過反射層を介して観察者側に到達させることで透過表示を行い、バックライトを使用していない状態では反射型液晶表示装置として反射光を有効利用することができるように構成されている。 As a liquid crystal display device for a portable device, a transflective liquid crystal display device having a backlight in addition to the reflective type is also known. In this type of conventional transflective liquid crystal display device, the reflective layer is configured as a transflective layer, and in the case of transmissive display, the light from the backlight reaches the viewer side through the transflective layer. In a state where display is performed and a backlight is not used, the reflective liquid crystal display device is configured so that reflected light can be used effectively.
しかしながら、前述の前方散乱フィルム105は、異なる各画素での異なる情報が使用者の目に認識されるまでの間に混在されてしまう傾向があり、表示のにじみ(ボケ)が生じ易いという問題点を有していた。これは、図18(a)に示すように反射型液晶表示装置において、入射光が反射層103で反射されてから使用者の目に届くまでに前方散乱フィルム105で生じる散乱に起因し、隣り合う画素で白表示と黒表示を行っていたとすると、前方散乱フィルム105の散乱作用のために、白表示と黒表示の境界がわかり難くなり易く、表示がにじんでしまう(ボケる)ことに起因していると、本発明者は考えている。
However, the above-described
また、液晶パネルを観察する場合、通常、観察者は入射光の正反射方向からずれた方向、言い換えれば、法線付近の方向あるいは正反射方向より法線方向寄りの方向から表示を観察するが、図18(a)に示す反射型液晶表示装置を正反射方向からずれた方向から観察するとコントラストが低い領域があり、見ずらいという問題点を有していた。これは、従来の反射型液晶表示装置においては、コントラストが高い領域は法線付近の方向あるいは正反射方向より法線方向寄りの方向から見た領域からずれているために、コントラストの低下があると、本発明者は考えている。 When observing a liquid crystal panel, the observer usually observes the display from a direction deviating from the regular reflection direction of incident light, in other words, from a direction near the normal line or a direction closer to the normal direction than the regular reflection direction. When the reflective liquid crystal display device shown in FIG. 18A is observed from a direction deviated from the regular reflection direction, there is a region where the contrast is low, and there is a problem that it is difficult to see. This is because, in a conventional reflective liquid crystal display device, a region with high contrast is deviated from the direction near the normal line or the region viewed from the direction closer to the normal direction than the specular reflection direction, and thus there is a decrease in contrast. The inventor thinks.
また、カラーフィルタ104を設けてなる液晶装置について表示のにじみ(ボケ)について考察すると、色表示の境界が判別し難くなる傾向にあり、混色を生じる恐れがあり、良好な発色性を得られなくなる恐れがある。
Further, when considering the blurring of the display of the liquid crystal device provided with the
また、前記のような表示がにじむことやコントラストが低下すること、あるいは十分な発色性が得られないという事情は、半透過反射型液晶表示装置において反射表示を行っている場合にも該当することである。 In addition, the situation that the display is blurred, the contrast is lowered, or sufficient color developability cannot be obtained also applies to the case where reflective display is performed in a transflective liquid crystal display device. It is.
次に、図18(b)に示すような凹凸を設けた光反射性の画素電極107を備えた構成(内面散乱構造)では、前方散乱フィルムにおける上述のような表示のにじみを生じるおそれは少ないが、凹凸を有する画素電極107を製造するために特別の加工工程と工数が必要になるので、製造コストが高くなってしまう問題を有している。
Next, in the configuration (inner surface scattering structure) provided with the light-
以上のような背景から本発明者らは、前方散乱フィルムに着目して更に研究を重ねた結果、前方散乱フィルムの散乱性に指向性を持たせるようにすることで液晶表示装置の表示のにじみ(ぼけ)を解消できることを知見し、本願発明に到達した。また、本発明者らが前方散乱フィルムについて研究を重ねた結果、図18(a)に示すように前方散乱フィルム105が配置された構造の液晶表示装置の場合、入射光L1が1回目に前方散乱フィルム105を通過する場合に発生する散乱光は表示のにじみ(ぼけ)やコントラストの低下に大きな影響を与えるおそれは少ないが、反射光となって再度前方散乱フィルム105を通過する際に生じる拡散は観察者Eに観察され易く、この反射光が散乱フィルム105を通過する場合の散乱光が表示のにじみ(ぼけ)に対して影響が大きいことを知見している。
From the background as described above, the present inventors have conducted further research focusing on the forward scattering film, and as a result, the scattering of the liquid crystal display device is blurred by providing directivity to the scattering property of the forward scattering film. It was found that (blur) can be eliminated, and the present invention was reached. Further, as a result of the inventors' research on the forward scattering film, in the case of the liquid crystal display device having the structure in which the
本発明は上述の問題点に鑑みてなされたものであり、表示のにじみおよびコントラストの低下を改善して表示品質を向上させることができ、鮮明な表示が可能であることと、内面散乱板を備えた液晶装置に対して構成を単純化することができ、鮮明な表示を備えつつ製造コストを低減できる液晶装置およびその液晶装置を備えた電子機器を提供することを目的の1つとする。 The present invention has been made in view of the above-described problems, and can improve display quality by improving display bleeding and contrast reduction, enabling clear display and providing an inner scattering plate. Another object is to provide a liquid crystal device that can be simplified in configuration with respect to the liquid crystal device provided and can reduce manufacturing costs while providing a clear display, and an electronic device including the liquid crystal device.
本発明の液晶装置は、前記課題を解決するために、一対の基板と、該一対の基板間に挟持されたツイスト角θtであるネマチック液晶層と、該一対の基板のうち一方の基板の該液晶層側に設けられた反射層または半透過反射層と、該一対の基板のうち他方の基板の該液晶層側と反対側に設けられた指向性前方散乱フィルムとを具備した液晶パネルを備えてなり、外部から前記指向性前方散乱フィルムに入射する光による反射表示を行う液晶装置であって、前記指向性前方散乱フィルムを透過した前方散乱光のうち、入射光の進行方向に対して±2゜以内の方向に進む前記前方散乱光の光強度の該入射光強度に対する割合を平行線透過率と定義し、入射光の進行方向に対して±2゜を越えて拡散する前記前方散乱光の光強度の該入射光強度に対する割合を拡散透過率と定義し、前記指向性前方散乱フィルムの法線に対する入射光の入射角度を極角θnと定義し、前記指向性前方散乱フィルムの面内方向の入射光角度を方位角φmと定義した時、前記指向性前方散乱フィルムは、前記拡散透過率が最小かつ前記平行線透過光が最大になる入射角度(φ1,θ1)と、前記拡散透過率が最大になる入射角度(φ2,θ2)とを有し、前記指向性前方散乱フィルムに正対する方向が観察方向とされるとともに、前記指向性前方散乱フィルムにおける前記拡散透過率が最大となる極角と方位角とが前記液晶パネルの採光方向となり、前記平行線透過率が最大となる極角と方位角とが前記観察方向となるように、前記指向性前方散乱フィルムが前記液晶パネルに配置され、前記基板間に印加した電圧を解除した時に、前記液晶層の厚み方向中央部に位置するネマチック液晶分子の長軸方向が、前記拡散透過率が最大となる方位角方向に対して±30°の範囲内にあり、前記液晶分子の長軸方向は前記基板間に電圧を印加した時に前記液晶分子が電界に対して応答する方向であることを特徴とする。
In order to solve the above problems, a liquid crystal device of the present invention includes a pair of substrates, a nematic liquid crystal layer having a twist angle θt sandwiched between the pair of substrates, and the one of the pair of substrates. A liquid crystal panel comprising: a reflective layer or a semi-transmissive reflective layer provided on the liquid crystal layer side; and a directional forward scattering film provided on the opposite side of the pair of substrates to the liquid crystal layer side. It is a liquid crystal device that performs reflection display by light incident on the directional forward scattering film from the outside, and the forward scattered light transmitted through the directional forward scattering film is ±± with respect to the traveling direction of incident light. The ratio of the light intensity of the forward scattered light traveling in the direction within 2 ° to the incident light intensity is defined as parallel light transmittance, and the forward scattered light diffuses beyond ± 2 ° with respect to the traveling direction of the incident light. Of the light intensity of the light to the incident light intensity The ratio is defined as diffuse transmittance, the incident angle of incident light with respect to the normal of the directional forward scattering film is defined as a polar angle θn, and the incident light angle in the in-plane direction of the directional forward scattering film is defined as an azimuth angle φm. The directional forward scattering film has an incident angle (φ1, θ1) at which the diffuse transmittance is minimum and the parallel-line transmitted light is maximized, and an incident angle (φ2) at which the diffuse transmittance is maximized. , Θ2), and the direction facing the directional forward scattering film is an observation direction, and the polar angle and the azimuth angle at which the diffuse transmittance in the directional forward scattering film is maximum are the liquid crystal The directional forward scattering film is disposed on the liquid crystal panel and applied between the substrates so that the polar direction and the azimuth angle at which the parallel line transmittance is maximized are the observation direction. Release voltage The major axis direction of the nematic liquid crystal molecules located in the central portion in the thickness direction of the liquid crystal layer is within a range of ± 30 ° with respect to the azimuth angle direction where the diffuse transmittance is maximum, The major axis direction is a direction in which the liquid crystal molecules respond to an electric field when a voltage is applied between the substrates .
指向性前方散乱フィルムを備えた反射型液晶表示装置において、最小透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの採光側になるように、最大透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの観察方向側になるようにして指向性前方散乱フィルムを液晶パネルに配置してなることで、平行線透過光の最小透過率を示す場合の方位角φ2は入射角方向となり、平行線透過光の最大透過率を示す場合の方位角φ1は観察者方向になる。このように配置された指向性前方散乱フィルムを有する液晶表示装置ならば、指向性前方散乱フィルムに対して入射された光は入射時に強く散乱されるが、液晶パネル内部の反射層により反射された後に指向性前方散乱フィルムを通過する際に光が散乱される量が少なくなるので、表示のにじみ(ボケ)に対する影響は少なく、表示のにじみ(ボケ)の少ない鮮明な表示形態が得られる。 In a reflection type liquid crystal display device having a directional forward scattering film, a polar angle indicating a maximum transmittance so that an incident light side in the case of a polar angle and an azimuth angle indicating a minimum transmittance is a lighting side of the liquid crystal panel. When the directional forward scattering film is arranged on the liquid crystal panel so that the incident light side in the case of the azimuth angle is the observation direction side of the liquid crystal panel, the minimum transmittance of parallel line transmitted light is shown. The azimuth angle φ2 is the incident angle direction, and the azimuth angle φ1 in the case of showing the maximum transmittance of parallel-line transmitted light is the observer direction. In the case of a liquid crystal display device having a directional forward scattering film arranged in this way, light incident on the directional forward scattering film is strongly scattered at the time of incidence, but is reflected by a reflective layer inside the liquid crystal panel. Since the amount of light scattered when passing through the directional front scattering film later is reduced, there is little influence on display blur (blur), and a clear display form with less display blur (blur) can be obtained.
また、前記のように配置された指向性前方散乱フィルムを有する反射型液晶表示装置において、前記指向性前方散乱フィルムは、該指向性前方散乱フィルムを透過した平行線透過光が最小透過率を示す方位角φ2方向と、前記基板間に印加した電圧を解除した時に前記液晶層の中央部に位置するネマチック液晶分子の長軸方向が揃うように配置されたことにより、通常、前記液晶層の中央部に位置するネマチック液晶分子の長軸方向はコントラストが高い方向であり、このコントラストが高い方向と前記の表示のにじみ(ボケ)が少なく見える方向が合わせられたこととなり、高コントラストでにじみ(ボケ)がない表示が得られ、よって鮮明な表示形態が得られ、表示品質を向上できる。 Further, in the reflective liquid crystal display device having the directional forward scattering film arranged as described above, the directional forward scattering film exhibits a minimum transmittance of parallel-line transmitted light transmitted through the directional forward scattering film. Since the orientation of the azimuth angle φ2 and the major axis direction of the nematic liquid crystal molecules located at the center of the liquid crystal layer when the voltage applied between the substrates is released, the center of the liquid crystal layer is usually aligned. The major axis direction of the nematic liquid crystal molecules located in the area is the direction in which the contrast is high, and the direction in which this contrast is high is combined with the direction in which the above-mentioned display blur (blur) is seen to be low, so that the blur (bokeh with high contrast) ), A clear display form can be obtained, and display quality can be improved.
本発明は前記課題を解決するために、前述の構造の液晶装置の反射層に代えて半透過反射層を備えた構造の半透過反射型の液晶装置にも本発明構造を適用することができる。 In order to solve the above problems, the present invention can be applied to a transflective liquid crystal device having a transflective layer in place of the reflective layer of the liquid crystal device having the structure described above. .
半透過反射層を備えた液晶装置においても反射表示を行う場合に本発明が効果的であり、先の構造の場合と同様に、平行線透過光の最小透過率を示す場合の方位角φ2は入射角方向となり、平行線透過光の最大透過率を示す場合の方位角φ1は観察者方向になる。このように配置された指向性前方散乱フィルムを有するならば、指向性前方散乱フィルムに対して入射された光は入射時に強く散乱されるが、液晶パネル内部の反射層により反射されて指向性前方散乱フィルムを通過する光は散乱される量が少なくなるので、表示のにじみ(ボケ)の少ない鮮明な表示形態が得られる。また、前記のように配置された指向性前方散乱フィルムを有する半透過反射型の液晶表示装置において、前記指向性前方散乱フィルムは、該指向性前方散乱フィルムを透過した平行線透過光が最小透過率を示す(拡散透過光が最大透過率を示す)方位角φ2方向と、前記基板間に印加した電圧を解除した時に前記液晶層の中央部に位置するネマチック液晶分子の長軸方向が揃うように配置されことにより、通常、前記液晶層の中央部に位置するネマチック液晶分子の長軸方向はコントラストが高い方向であり、このコントラストが高い方向と前記の表示のにじみ(ボケ)が少なく見える方向が合わせられたこととなり、高コントラストでにじみ(ボケ)がない表示が得られ、よって鮮明な表示形態が得られ、表示品質を向上できる。 Even in a liquid crystal device having a transflective layer, the present invention is effective when performing reflective display, and the azimuth angle φ2 in the case where the minimum transmittance of parallel-line transmitted light is shown is the same as in the previous structure. The azimuth angle φ1 in the incident angle direction and the maximum transmittance of parallel-line transmitted light is in the observer direction. If the directional forward scattering film is arranged in this manner, the light incident on the directional forward scattering film is strongly scattered at the time of incidence, but is reflected by the reflective layer inside the liquid crystal panel and is directed forward. Since the amount of light passing through the scattering film is reduced, a clear display form with little blurring of display can be obtained. Further, in the transflective liquid crystal display device having the directional forward scattering film arranged as described above, the directional forward scattering film has minimal transmission of parallel-line transmitted light transmitted through the directional forward scattering film. The direction of the azimuth angle φ2 indicating the transmittance (diffuse transmitted light exhibits the maximum transmittance) and the major axis direction of the nematic liquid crystal molecules located in the center of the liquid crystal layer when the voltage applied between the substrates is released are aligned. In general, the major axis direction of the nematic liquid crystal molecules located in the central part of the liquid crystal layer is a direction in which the contrast is high, and the direction in which the contrast is high and the direction in which the blur (blurring) of the display appears to be small. As a result, a display with high contrast and no blur is obtained, and thus a clear display form can be obtained and display quality can be improved.
また、前記のいずれか構成の本発明の液晶装置において、前記指向性前方散乱フィルムは、該指向性前方散乱フィルムを透過した平行線透過光が最小透過率を示す方位角φ2±30度の方向と、前記基板間に印加した電圧を解除した時に液晶層の中央部に位置するネマチック液晶分子の長軸方向が揃うように配置されていてもよい。 Moreover, in the liquid crystal device of the present invention having any one of the above-described configurations, the directional forward scattering film has a direction of an azimuth angle φ2 ± 30 degrees in which parallel-line transmitted light transmitted through the directional forward scattering film exhibits a minimum transmittance. In addition, when the voltage applied between the substrates is released, the major axis directions of nematic liquid crystal molecules located at the center of the liquid crystal layer may be aligned.
また、前記のいずれかの構成の本発明の液晶装置において、前記液晶層のネマチック液晶分子はツイスト角60度〜80度程度に設定されたものであり、前記基板間に印加した電圧を解除した時に液晶層の中央部に位置するネマチック液晶分子は基板表面で配向しているネマチック液晶分子に対して30度〜40度程度捻れている。 In the liquid crystal device according to the present invention having any one of the above-described configurations, the nematic liquid crystal molecules of the liquid crystal layer are set to a twist angle of about 60 to 80 degrees, and the voltage applied between the substrates is released. Sometimes the nematic liquid crystal molecules located in the center of the liquid crystal layer are twisted by about 30 to 40 degrees with respect to the nematic liquid crystal molecules aligned on the substrate surface.
また、前記のいずれかの構成の本発明の液晶装置において、前記液晶層のネマチック液晶分子はツイスト角240度〜255度程度に設定されたものであり、前記基板間に印加した電圧を解除した時に液晶層の中央部に位置するネマチック液晶分子は基板表面で配向しているネマチック液晶分子に対して120度〜127.5度程度捻れている。 Moreover, in the liquid crystal device of the present invention having any one of the above structures, the nematic liquid crystal molecules in the liquid crystal layer are set to a twist angle of about 240 to 255 degrees, and the voltage applied between the substrates is released. Sometimes the nematic liquid crystal molecules located in the center of the liquid crystal layer are twisted by about 120 to 127.5 degrees with respect to the nematic liquid crystal molecules aligned on the substrate surface.
また、本発明は前記課題を解決するために、一対の基板と、これらの基板間に挟持された液晶層と、前記一方の基板の液晶層側に設けられた反射層と、前記他方の基板の液晶層側と反対側に設けられた指向性前方散乱フィルムとを具備した液晶パネルを備えてなり、 前記指向性前方散乱フィルムに対してその一面側に配置した光源から光を入射し、前記指向性前方散乱フィルムの他面側に配置した受光部において、前記指向性前方散乱フィルムを透過した全透過光のうち、拡散透過光を除いた平行線透過光を観測した際、
前記指向性前方散乱フィルムの法線に対する入射光の入射角度を極角θnと定義し、前記指向性前方散乱フィルムの面内方向の入射光角度を方位角φmと定義し、平行線透過光の最大透過率をTmax(φ1,θ1)と定義し、平行線透過光の最小透過率をTmin(φ2,θ2)と定義した場合、最小透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの採光側になるように、最大透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの観察方向側になるように、前記指向性前方散乱フィルムを前記液晶パネルに配置してなり、
さらに前記指向性前方散乱フィルムは、該指向性前方散乱フィルムを透過した平行線透過光が最小透過率を示す方位角φ2方向と、極角方向からの入射光角度が10度から30度の入射光に対して液晶パネルのコントラストが高い面内方向が揃うように配置されていることを特徴とする。
In order to solve the above problems, the present invention provides a pair of substrates, a liquid crystal layer sandwiched between the substrates, a reflective layer provided on the liquid crystal layer side of the one substrate, and the other substrate. A liquid crystal panel provided with a directional forward scattering film provided on the opposite side of the liquid crystal layer side, incident light from a light source disposed on one side of the directional forward scattering film, In the light receiving part disposed on the other surface side of the directional forward scattering film, among the total transmitted light transmitted through the directional forward scattering film, when observing parallel line transmitted light excluding diffuse transmitted light,
The incident angle of incident light with respect to the normal of the directional forward scattering film is defined as a polar angle θn, the incident light angle in the in-plane direction of the directional forward scattering film is defined as an azimuth angle φm, and When the maximum transmittance is defined as Tmax (φ1, θ1) and the minimum transmittance of parallel-line transmitted light is defined as Tmin (φ2, θ2), the incident light side in the case of polar angles and azimuths indicating the minimum transmittance The directional forward scattering film is placed on the liquid crystal panel so that the incident light side in the case of the polar angle and the azimuth angle indicating the maximum transmittance is on the observation direction side of the liquid crystal panel. Placed on the panel,
Further, the directional forward scattering film has an incident angle of 10 to 30 degrees with respect to an azimuth angle φ2 direction in which parallel-line transmitted light transmitted through the directional forward scattering film exhibits a minimum transmittance and a polar angle direction. The liquid crystal panel is arranged so that the in-plane directions with high contrast are aligned with light.
この反射型液晶表示装置においては、最小透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの採光側になるように、最大透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの観察方向側になるようにして指向性前方散乱フィルムを液晶パネルに配置してなることで、指向性前方散乱フィルムに対して入射された光は入射時に強く散乱されるが、液晶パネル内部の反射層により反射された後に指向性前方散乱フィルムを通過する際に光が散乱される量が少なくなるので、表示のにじみ(ボケ)に対する影響は少なく、表示のにじみ(ボケ)の少ない鮮明な表示形態が得られる。 In this reflection type liquid crystal display device, in the case of the polar angle and the azimuth angle indicating the maximum transmittance, the incident light side in the case of the polar angle and the azimuth angle indicating the minimum transmittance becomes the daylighting side of the liquid crystal panel. By arranging the directional forward scattering film on the liquid crystal panel so that the incident light side is on the viewing direction side of the liquid crystal panel, the light incident on the directional forward scattering film is strongly scattered upon incidence. However, since the amount of light scattered when reflected by the reflective layer inside the liquid crystal panel passes through the directional forward scattering film is reduced, there is little effect on display blur (blur) and display blur ( A clear display form with less blur is obtained.
また、前記のように配置された指向性前方散乱フィルムを有する反射型液晶表示装置において、前記指向性前方散乱フィルムは、該指向性前方散乱フィルムを透過した平行線透過光が最小透過率を示す方位角φ2方向と、極角方向からの入射光角度が10度から30度の入射光に対して液晶パネルのコントラストが高い面内方向が揃うように配置されたことにより、液晶パネルのコントラストが高い方向と前記の表示のにじみ(ボケ)が少なく見える方向が合わせられたこととなり、高コントラストでにじみ(ボケ)がない表示が得られ、よって鮮明な表示形態が得られ、表示品質を向上できる。 Further, in the reflective liquid crystal display device having the directional forward scattering film arranged as described above, the directional forward scattering film exhibits a minimum transmittance of parallel-line transmitted light transmitted through the directional forward scattering film. Since the liquid crystal panel is arranged so that the in-plane direction in which the contrast of the liquid crystal panel is high is aligned with respect to the incident light whose azimuth angle φ2 direction and the incident light angle from the polar angle direction are 10 degrees to 30 degrees, the contrast of the liquid crystal panel is reduced. The high direction and the direction in which the blur of the display can be seen are combined, so that a display with high contrast and no blur is obtained, and thus a clear display form can be obtained and display quality can be improved. .
本発明は前記課題を解決するために、前述の構造の液晶装置の反射層に代えて半透過反射層を備えた構造の半透過反射型の液晶装置にも本発明構造を適用することができる。 In order to solve the above problems, the present invention can be applied to a transflective liquid crystal device having a transflective layer in place of the reflective layer of the liquid crystal device having the structure described above. .
この半透過反射層を備えた液晶装置においても反射表示を行う場合に本発明が効果的であり、先の構造の場合と同様に、平行線透過光の最小透過率を示す場合の方位角φ2は入射角方向となり、平行線透過光の最大透過率を示す場合の方位角φ1は観察者方向になる。このように配置された指向性前方散乱フィルムを有するならば、指向性前方散乱フィルムに対して入射された光は入射時に強く散乱されるが、液晶パネル内部の反射層により反射されて指向性前方散乱フィルムを通過する光は散乱される量が少なくなるので、表示のにじみ(ボケ)の少ない鮮明な表示形態が得られる。 The present invention is effective when performing a reflective display even in a liquid crystal device provided with this transflective layer. As in the case of the previous structure, the azimuth angle φ2 when the minimum transmittance of parallel-line transmitted light is shown. Is the incident angle direction, and the azimuth angle φ1 in the case of indicating the maximum transmittance of parallel-line transmitted light is the observer direction. If the directional forward scattering film is arranged in this manner, the light incident on the directional forward scattering film is strongly scattered at the time of incidence, but is reflected by the reflective layer inside the liquid crystal panel and is directed forward. Since the amount of light passing through the scattering film is reduced, a clear display form with little blurring of display can be obtained.
また、前記のように配置された指向性前方散乱フィルムを有する半透過反射型の液晶表示装置において、前記指向性前方散乱フィルムは、該指向性前方散乱フィルムを透過した平行線透過光が最小透過率を示す方位角φ2方向と、極角方向からの入射光角度が10度から30度の入射光に対して液晶パネルのコントラストが高い面内方向が揃うように配置されことにより、液晶パネルのコントラストが高い方向と前記の表示のにじみ(ボケ)が少なく見える方向が合わせられたこととなり、高コントラストでにじみ(ボケ)がない表示が得られ、よって鮮明な表示形態が得られ、表示品質を向上できる。 Further, in the transflective liquid crystal display device having the directional forward scattering film arranged as described above, the directional forward scattering film has minimal transmission of parallel-line transmitted light transmitted through the directional forward scattering film. The azimuth angle φ2 direction indicating the ratio and the in-plane direction in which the contrast of the liquid crystal panel is high with respect to the incident light with the incident light angle from the polar angle direction of 10 degrees to 30 degrees are aligned. The direction in which the contrast is high and the direction in which the blurring (blurring) of the display is seen are combined, so that a display with high contrast and no blurring (blur) is obtained, and thus a clear display form is obtained and the display quality is improved. Can be improved.
また、前記のいずれか構成の本発明の液晶装置において、前記指向性前方散乱フィルムは、該指向性前方散乱フィルムを透過した平行線透過光が最小透過率を示す方位角φ2±30度の方向と、極角方向からの入射光角度が10度から30度の入射光に対して液晶パネルのコントラストが高い面内方向が揃うように配置されていてもよい。 Moreover, in the liquid crystal device of the present invention having any one of the above-described configurations, the directional forward scattering film has a direction of an azimuth angle φ2 ± 30 degrees in which parallel-line transmitted light transmitted through the directional forward scattering film exhibits a minimum transmittance. The in-plane direction in which the contrast of the liquid crystal panel is high with respect to the incident light with the incident light angle from the polar angle direction of 10 degrees to 30 degrees may be aligned.
また、本発明は前記課題を解決するために、前記のいずれかの構成の本発明の液晶装置において、前記平行線透過光の最大透過率Tmaxと最小透過率Tminの比を、(Tmax/Tmin)≧2の関係にすることができる。 In order to solve the above-described problems, the present invention provides a liquid crystal device according to any one of the above-described configurations, wherein the ratio of the maximum transmittance Tmax and the minimum transmittance Tmin of the parallel-line transmitted light is set to (Tmax / Tmin). ) ≧ 2.
(Tmax/Tmin)≧2の関係を満たすことで、指向性前方散乱フィルムにおいて光の入射時に十分な散乱が得られるので、従来の等方性前方散乱フィルムを備えた液晶装置よりも明るく表示の鮮明な(クリアな)表示が得られる。 By satisfying the relationship of (Tmax / Tmin) ≧ 2, sufficient scattering can be obtained at the time of incidence of light in the directional forward scattering film, so that the display is brighter than a liquid crystal device having a conventional isotropic forward scattering film. A clear (clear) display can be obtained.
本発明は前記課題を解決するために、前記のいずれかの構成の本発明の液晶装置において、前記一方の基板の液晶層と前記他方の基板の液晶層側に液晶駆動用の電極が設けられてなることを特徴とする。 In order to solve the above problems, in the liquid crystal device according to the present invention having any one of the above-described configurations, a liquid crystal driving electrode is provided on the liquid crystal layer side of the one substrate and the liquid crystal layer side of the other substrate. It is characterized by.
かかる液晶装置によれば、液晶層を挟む電極により液晶の配向状態を制御し、表示、非表示、中間調表示の切り替えを行うことができる。 According to such a liquid crystal device, it is possible to switch between display, non-display, and halftone display by controlling the alignment state of the liquid crystal by electrodes sandwiching the liquid crystal layer.
本発明は前記課題を解決するために、前記のいずれかの構成の本発明の液晶装置において、前記一対の基板のどちらか一方の液晶層側にカラーフィルタを設けてなるものでも良い。 In order to solve the above-described problems, the present invention may be the liquid crystal device of the present invention having any one of the above-described structures, in which a color filter is provided on one liquid crystal layer side of the pair of substrates.
かかる液晶装置によれば、カラーフィルタが設けられたことでカラー表示が可能となり、先のいずれかの構造を採用することで高コントラストで、表示のにじみの少ない、鮮明なカラー表示を有するものが得られる。 According to such a liquid crystal device, it is possible to perform color display by providing a color filter, and by adopting any of the structures described above, there is a device that has a clear color display with high contrast and little display blur. can get.
本発明は前記反射層が微細な凸凹を有している場合には、入射光を強く散乱し、反射層へと導くので、反射層が微細な凸凹を有しているために生じるぎらつき感を緩和させることができ、さらに、反射層による反射光は指向性前方散乱フィルムで強い散乱を受けないので表示のにじみの少ない、鮮明な表示を得ることができる。 In the present invention, when the reflective layer has fine irregularities, the incident light is strongly scattered and guided to the reflective layer. Therefore, the glare sensation generated because the reflective layer has fine irregularities. Furthermore, since the reflected light from the reflective layer is not strongly scattered by the directional forward scattering film, a clear display with less display blur can be obtained.
本発明の電子機器は前記課題を解決するために、前記いずれかの構成の本発明の液晶装置を表示手段として備えたことを特徴とする。 In order to solve the above-described problems, an electronic apparatus according to the present invention includes the liquid crystal device according to the present invention having any one of the above configurations as a display unit.
かかる電子機器は、前述の優れた表示形態の本発明の液晶装置が備えられたことにより、高コントラストで、表示のにじみの少ない、鮮明な表示を有する表示形態を備えたものを得ることができる。 By providing the above-described liquid crystal device of the present invention with an excellent display form, such an electronic device can be obtained with a display form having a high contrast, a display blur and a clear display. .
以上説明したように本発明の液晶装置によれば、指向性前方散乱フィルムを備えた反射型あるいは半透過型の液晶表示装置において、最小透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの採光側になるように、最大透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの観察方向側になるようにして指向性前方散乱フィルムを液晶パネルに配置してなることで、平行線透過光の最小透過率を示す場合の方位角φ2は入射角方向となり、平行線透過光の最大透過率を示す場合の方位角φ1は観察者方向になる。このように配置された指向性前方散乱フィルムを有する液晶表示装置ならば、指向性前方散乱フィルムに対して入射された光は入射時に強く散乱されるが、液晶パネル内部の反射層により反射された後に指向性前方散乱フィルムを通過する際に光が散乱される量が少なくなるので、表示のにじみ(ボケ)に対する影響は少なく、表示のにじみ(ボケ)の少ない鮮明な表示形態が得られる。 As described above, according to the liquid crystal device of the present invention, in the reflective or transflective liquid crystal display device provided with the directional forward scattering film, the incident light side in the case of the polar angle and the azimuth angle indicating the minimum transmittance. The directional forward scattering film on the liquid crystal panel so that the incident light side in the polar angle and azimuth angle indicating the maximum transmittance is on the observation direction side of the liquid crystal panel By arranging, the azimuth angle φ2 when showing the minimum transmittance of parallel line transmitted light is the incident angle direction, and the azimuth angle φ1 when showing the maximum transmittance of parallel line transmitted light is the observer direction. In the case of a liquid crystal display device having a directional forward scattering film arranged in this way, light incident on the directional forward scattering film is strongly scattered at the time of incidence, but is reflected by a reflective layer inside the liquid crystal panel. Since the amount of light scattered when passing through the directional front scattering film later is reduced, there is little influence on display blur (blur), and a clear display form with less display blur (blur) can be obtained.
また、前記のように配置された指向性前方散乱フィルムを備えた反射型あるいは半透過型の液晶表示装置において、前記指向性前方散乱フィルムは、該指向性前方散乱フィルムを透過した平行線透過光が最小透過率を示す方位角φ2方向と、前記基板間に印加した電圧を解除した時に前記液晶層の中央部に位置するネマチック液晶分子の長軸方向が揃うように配置されたことにより、前記液晶層の中央部に位置するネマチック液晶分子の長軸方向はコントラストが高い方向であり、このコントラストが高い方向と前記の表示のにじみ(ボケ)が少なく見える方向が合わせられたこととなり、高コントラストでにじみ(ボケ)がない表示が得られ、よって鮮明な表示形態が得られ、表示品質を向上できる。 Further, in the reflective or transflective liquid crystal display device including the directional forward scattering film arranged as described above, the directional forward scattering film is a parallel-line transmitted light transmitted through the directional forward scattering film. Is arranged such that the direction of the azimuth angle φ2 indicating the minimum transmittance and the major axis direction of the nematic liquid crystal molecules located in the center of the liquid crystal layer when the voltage applied between the substrates is released are aligned, The major axis direction of the nematic liquid crystal molecules located in the center of the liquid crystal layer is a direction with high contrast, and the direction in which this contrast is high and the direction in which the blurring (blurring) of the display is seen are combined. A display without blur is obtained, and thus a clear display form can be obtained and display quality can be improved.
また、前記のように配置された指向性前方散乱フィルムを備えた反射型あるいは半透過型の液晶表示装置において、前記指向性前方散乱フィルムは、該指向性前方散乱フィルムを透過した平行線透過光が最小透過率を示す方位角φ2方向と、極角方向からの入射光角度が10度から30度の入射光に対して液晶パネルのコントラストが高い面内方向が揃うように配置されたことにより、液晶パネルのコントラストが高い方向と前記の表示のにじみ(ボケ)が少なく見える方向が合わせられたこととなり、高コントラストでにじみ(ボケ)がない表示が得られ、よって鮮明な表示形態が得られ、表示品質を向上できる。 Further, in the reflective or transflective liquid crystal display device including the directional forward scattering film arranged as described above, the directional forward scattering film is a parallel-line transmitted light transmitted through the directional forward scattering film. Is arranged so that the in-plane direction in which the contrast of the liquid crystal panel is high is aligned with respect to the azimuth angle φ2 direction where the minimum transmittance is incident and the incident light angle from the polar angle direction is 10 degrees to 30 degrees. Therefore, the direction in which the contrast of the liquid crystal panel is high and the direction in which the blurring (blurring) of the above-mentioned display is seen are combined, so that a display with high contrast and no blurring (blur) is obtained. , Display quality can be improved.
更に、前述の種々構造の液晶装置を有する電子機器であるならば、表示のにじみ(ボケ)がなく、高コントラストで、鮮鋭な高品位の画像表示を行うことができる電子機器を提供することができる。 Furthermore, if the electronic apparatus has the liquid crystal device having the various structures described above, it is possible to provide an electronic apparatus that can display a high-contrast and sharp high-quality image without blurring of display. it can.
以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(液晶装置の第1実施形態)
本発明による液晶装置の第1実施形態の液晶パネルについて、図1〜図3を参照して以下に説明する。図1は、本発明を単純マトリクス型の反射型液晶パネルに適用した第1実施形態を示した平面図であり、図2は図1に示した液晶パネルのA−A線に沿う部分断面図、図3は前記液晶表示装置に内蔵されたカラーフィルタ部分の拡大断面図である。この実施形態の液晶パネル10に、液晶駆動用IC、支持体などの付帯要素を装着することによって、最終製品としての液晶表示装置(液晶装置)が構成される。
(First Embodiment of Liquid Crystal Device)
A liquid crystal panel according to a first embodiment of the liquid crystal device according to the present invention will be described below with reference to FIGS. FIG. 1 is a plan view showing a first embodiment in which the present invention is applied to a simple matrix type reflective liquid crystal panel, and FIG. 2 is a partial sectional view taken along line AA of the liquid crystal panel shown in FIG. FIG. 3 is an enlarged cross-sectional view of a color filter portion built in the liquid crystal display device. A liquid crystal display device (liquid crystal device) as a final product is configured by mounting auxiliary elements such as a liquid crystal driving IC and a support on the
この実施形態の液晶パネル10は、平面視略矩形状、かつ環状のシール材12を介して互いにセルギャップをあけて対向するように貼り付けられた一対の平面視矩形状の基板ユニット13、14と、これらの間に前記シール材12とともに囲まれて挟持された液晶層15と、一方(図2の上側)の基板ユニット13の上面側に設けられた指向性前方散乱フィルム18と位相差板19と偏光板16を主体として構成されている。基板ユニット13、14のうち、基板ユニット13は観測者側に向いて設けられる表側(上側)の基板ユニットであり、基板ユニット14はその反対側、換言すると裏側(下側)に設けられる基板ユニットである。
The
前記上側の基板ユニット13は、例えばガラス等の透明材料からなる基板17と、基板17の表側(図2では上面側、観測者側)に順次設けられた指向性前方散乱フィルム18、位相差板19及び偏光板16と、基板17の裏側(換言すると液晶層15側)に順次形成されたカラーフィルタ層20、オーバーコート層21と、該オーバーコート層21において液晶層15側の面に形成された液晶駆動用のストライプ状の複数の電極層23を具備して構成されている。
The
液晶層15は、ツイスト角θtが240度〜255度のネマチック液晶分子から構成されている。
The
なお、実際の液晶装置においては、電極層23の液晶層15側と、後述する下基板側のストライプ状の電極層35の液晶層15側に、各々配向膜が被覆形成されるが、図2ではこれらの配向膜を省略し説明も略するとともに、以下に順次説明する他の実施形態においても配向膜の図示と説明は省略する。また、図2および以下の各図に示す液晶装置の断面構造は、図示した場合に各層が見やすいように各層の厚さを実際の液晶装置とは異なる厚さに調節して示してある。
In an actual liquid crystal device, alignment films are formed on the
前記上基板側の駆動用の各電極層23は本実施形態ではITO(Indium Tin Oxide:インジウム錫酸化物)などの透明導電材料から平面視ストライプ状に形成されたもので、液晶パネル10の表示領域と画素数に合わせて必要本数形成されている。
In the present embodiment, each
前記カラーフィルタ層20は、本実施形態では図3に拡大して示すように、上側の基板17の下面(換言すると液晶層15側の面)に、光遮断用のブラックマスク26、カラー表示用のRGBの各パターン27を形成することにより構成されている。また、RGBのパターン27を保護する透明な保護平坦化膜としてオーバーコート層21が被覆されている。
In the present embodiment, the
このようなブラックマスク26は例えばスパッタリング法、真空蒸着法等により厚さ100〜200nm程度のクロム等の金属薄膜をパターニングして形成されている。RGBの各パターン27は、赤色パターン(R)、緑色パターン(G)、青色パターン(B)が、所望のパターン形状で配列され、例えば、所定の着色材を含有する感光性樹脂を使用した顔料分散法、各種印刷法、電着法、転写法、染色法等の種々の方法で形成されている。
Such a
一方、下側の基板ユニット14は、ガラスなどの透明材料あるいはその他の不透明材料からなる基板28と、基板28の表面側(図2では上面側、換言すると液晶層15側)に順次形成された反射層31、オーバーコート層33と、該オーバーコート層33の液晶層15側の面に形成されたストライプ状の駆動用の複数の電極層35とから構成されている。これらの電極層35においても先の電極層23と同様に液晶パネル10の表示領域と画素数に合わせて必要本数形成されている。
On the other hand, the
次に、本実施形態の反射層31は、AgまたはAlなどの光反射性かつ導電性の優れた金属材料からなり、基板28上に蒸着法あるいはスパッタ法などにより形成されたものである。ただし、反射層31が導電材料からなることは必須ではなく、反射層31とは別に導電材料製の駆動用電極層を設け、反射層31と駆動電極を別個に設けた構造を採用して差し支えない。
Next, the
次に、上述の上側の基板ユニット13に付設されている指向性前方散乱フィルム18について以下に詳細に説明する。
Next, the directional
本実施形態において用いられる指向性前方散乱フィルム18とは、基本構造の面から見れば、特開2000−035506、特開2000−066026、特開2000−180607等に開示されている指向性を有する前方散乱フィルムを適宜用いることができる。例えば、特開2000−035506に開示されているように、相互に屈折率の異なる2種以上の光重合可能なモノマーまたはオリゴマーの混合物である樹脂シートに、紫外線を斜め方向から照射して特定の広い方向のみを効率良く散乱させる機能を持たせたもの、あるいは、特開2000−066026に開示されているオンラインホログラフィック拡散シートとして、ホログラム用感光材料にレーザを照射して部分的に屈折率の異なる領域を層構造となるように製造したものなどを適宜用いることができる。
The directional
ここで本実施形態において用いる指向性前方散乱フィルム18は、以下に説明する平行線透過率等の各種パラメータを液晶表示装置に好適な特定の位置関係としたものである。
Here, the directional
まず、図4に示すように平面視矩形状の指向性前方散乱フィルム18を水平に設置するものとする。なお、図4では水平設置状態が説明し易いので水平設置状態で説明するが、指向性前方散乱フィルム18を設置する方向は水平方向に限らず、どの方向でも良く、要は以下に説明する光源Kと受光部Jと指向性前方散乱フィルム18の位置関係(後述の極角θ、方位角φ)を明確に定めることができ、前記平行線透過光が最小透過率を示す(拡散透過光が最大透過率を示す)方位角φ2方向と、液晶層15の中央部に位置するネマチック液晶分子の長軸方向を揃えることができ、平行線透過光が最小透過率を示す(拡散透過光が最大透過率を示す)方位角φ2方向と、極角方向からの入射光角度が10度から30度の入射光に対して液晶パネルのコントラストが高い面内方向が揃うように配置できれば良い。本実施形態では説明の際に方向の理解が容易な方向として指向性前方散乱フィルム18の水平方向設置を一例にして説明する。
First, as shown in FIG. 4, the directional
図4において、指向性前方散乱フィルム18の右斜め上方奥側から指向性前方散乱フィルム18の中央部の原点Oに向けて、光源Kからの入射光L1を入射する場合を想定する。そして、指向性前方散乱フィルム18の原点Oを通過させて指向性前方散乱フィルム18を透過して直進する透過光を光センサ等の受光部Jにて受光する測定系を想定する。
In FIG. 4, it is assumed that incident light L <b> 1 from the light source K enters from the diagonally upper right rear side of the directional
ここで、指向性前方散乱フィルム18への入射光L1の方向を特定するため、図4に示すように0°、90°、180°、270°の座標軸によって指向性前方散乱フィルム18を矩形状に4等分して中央部の原点Oを通過する座標を想定し、(換言すると、指向性前方散乱フィルム18の各辺の中心を座標軸の一端が通過するように4等分し)、この指向性前方散乱フィルム18の表面上に垂直投影される入射光L1の水平方向回転角度(0°の座標軸からの右回りの角度を+、0°の座標軸から左回りの角度を−とする。)を方位角φと定義する。次に、0°の座標軸と180°の座標軸を含む垂直面(図4に符号M1で示す面)に水平投影される入射光L1の方向に対して指向性前方散乱フィルムの法線Hとのなす角度を入射光L1の極角θと定義する。換言すると、極角θとは水平設置した指向性前方散乱フィルム18に対する鉛直面内の入射光L1の入射角度を示し、方位角φとは入射光L1の水平面内回転角に相当する。
Here, in order to specify the direction of the incident light L1 to the directional
この状態において例えば、入射光L1の極角を0°、方位角を0°とした場合は、入射光L1が指向性前方フィルム18に対して図5に示すように直角に入射する(法線方向からの入射する)ことになり、指向性前方散乱フィルム18は図5の符号18に示す状態となり、極角θを+60°とした場合に光源Kと受光部Jと指向性前方フィルム18との位置関係は図5の符号18Aに示すように指向性前方散乱フィルム18を配置した状態となり、極角θを−60°とした場合に光源Kと受光部Jと指向性前方散乱フィルム18との位置関係は符号18Bに示すように指向性前方散乱フィルム18を配置した状態となることを意味する。
In this state, for example, when the polar angle of the incident light L1 is 0 ° and the azimuth angle is 0 °, the incident light L1 enters the
次に、指向性前方散乱フィルム18の一面側(図6(A)では左側)に設置された光源から発せられた入射光L1が図6(A)に示すように指向性前方散乱フィルム18を透過して指向性前方散乱フィルム18の他面側(図6(A)では右側)に抜ける場合、指向性前方散乱フィルム18の一面側(左側)において散乱する光を後方散乱光LRと称し、指向性前方散乱フィルム18を透過する光を前方散乱光と称することとする。そして、指向性前方散乱フィルム18を透過した前方散乱光に関し、入射光L1の進行方向に対して±2°以内の角度誤差で同じ方向に直進する前方散乱光(平行線透過光)L3の光強度について、入射光L1の光強度に対する割合を平行線透過率と定義し、更に、±2゜を越えて周囲側に斜めに拡散する前方散乱光(拡散透過光)LTの光強度について、入射光L1の光強度に対する割合を拡散透過率と定義し、透過光全体の入射光に対する割合を全光線透過率と定義する。以上の定義から、全光線透過率から拡散透過率を差し引いたものが平行線透過率であると定義することができる。以上の説明を更に理解し易くするために、図1にも入射光L1と方位角φと平行線透過光L3の関係を示した。
Next, the incident light L1 emitted from the light source installed on one side of the directional forward scattering film 18 (left side in FIG. 6A) is applied to the directional
なお、光学の分野においてヘイズ(Haze)と称される透過率尺度も一般的には知られているが、ヘイズとは拡散透過率を全光線透過率で除算して%表示した値であり、本実施形態において用いる平行線透過率とは全く異なる概念の定義である。 In addition, in the field of optics, a transmittance scale called “haze” is also generally known. However, haze is a value obtained by dividing diffuse transmittance by total light transmittance and expressing it in%. The definition of the concept is completely different from the parallel line transmittance used in the present embodiment.
次に、先の極角θと方位角φを用いて平行線透過率の最大透過率を標記する場合、Tmax(φ1,θ1)と標記することと定義し、平行線透過率の最小透過率をTmin(φ2,θ2)と標記することと定義する。また、換言すると、指向性前方散乱フィルムの性質から、最大透過率を示す条件においては最も散乱が弱い条件であり、最小透過率を示す条件においては最も散乱が強い条件である。 Next, when the maximum transmittance of the parallel line transmittance is marked using the previous polar angle θ and the azimuth angle φ, it is defined as Tmax (φ1, θ1), and the minimum transmittance of the parallel line transmittance is defined. Is defined as Tmin (φ2, θ2). In other words, due to the nature of the directional forward scattering film, the conditions for the maximum transmittance are the weakest conditions for scattering and the conditions for the minimum transmittance are the conditions for strongest scattering.
例えば、仮に極角θ=0°、方位角=0°の時に最大透過率を示す場合に、Tmax(0,0)と標記する。(これは、指向性前方散乱フィルムの法線方向に沿う平行線透過率が最大であることを意味する。換言すると、指向性前方散乱フィルムの法線方向に沿う散乱が最も弱いことを意味する。)また、極角θ=10°、方位角=45°の時に最小透過率を示す場合に、Tmin(10,45)と標記し、この場合はこの方向の散乱が最も強いことを意味する。 For example, if the maximum transmittance is shown when the polar angle θ = 0 ° and the azimuth angle = 0 °, it is denoted as Tmax (0, 0). (This means that the parallel transmission along the normal direction of the directional forward scattering film is maximum. In other words, the scattering along the normal direction of the directional forward scattering film is the weakest. In addition, when the minimum transmittance is shown when the polar angle θ = 10 ° and the azimuth angle = 45 °, it is denoted as Tmin (10, 45), which means that the scattering in this direction is the strongest. .
以上の定義に基づき、液晶装置に適用して好ましい指向性前方散乱フィルム18の各特性について以下に説明する。
Based on the above definition, each characteristic of the directional
前述したように指向性前方散乱フィルム18において、平行線透過率が最大透過率を示す角度は、最も散乱が弱い角度であり、最小透過率を示す角度は、最も散乱が強い角度である。
As described above, in the directional
よって換言すると、図2に示すように反射型液晶表示装置においては、液晶パネル10に対する周囲光を入射光L1として利用し、反射層31にて反射した光を観察者が反射光として認識すると考えると、図4の座標軸において、光の入射時に散乱が強い方向(換言すると平行線透過率の低い方向)から液晶パネル10に入射光を入れ、観察者が反射光を観察する場合に散乱が弱い方向(換言すると平行線透過率の高い方向)から見れば、表示のにじみ(ボケ)の少ない状態を得ることができると考えられる。これは、本発明者らが知見した、指向性前方散乱フィルム18に対する入射時の1回目の散乱は表示のにじみ(ボケ)に影響が出にくいが、反射光として指向性前方散乱フィルム18を2回目に通過する際の散乱が表示のにじみ(ボケ)に影響が大きいという知見に基づくものである。
Therefore, in other words, as shown in FIG. 2, in the reflective liquid crystal display device, it is considered that the ambient light with respect to the
即ち、本実施形態では入射光L1が1回目に指向前方性散乱フィルム18を通過する場合には光を散乱した方(拡散透過光が多い方)が、反射層31の正反射(ミラー反射)を防止して広い視野角で明るい表示を得ようとする目的のためには好ましく、更に、液晶装置の内部の反射層31で反射した光が2回目に指向性前方散乱フィルム18を通過する場合には散乱が少ない方が表示のにじみ(ボケ)を少なくする上で好ましいと考えられるからである。従って、指向性前方散乱フィルム18の特性において、最小透過率を示す極角と方位角、換言すると最も散乱が強い入射光の極角と方位角方向(拡散透過率が最大を示す極角と方位角)を液晶パネル10の採光側に向けること、換言すると観察者側と反対側に向けることが好ましく、平行線透過率が最大透過率を示す極角と方位角(拡散透過率が最小を示す極角と方位角)角、換言すると最も散乱が弱い入射光角度と入射方向を液晶パネル10の観察者側に向けることが必要である。
That is, in the present embodiment, when the incident light L1 passes through the directional
ここで図6(B)に、本実施形態において用いる指向性前方散乱フィルム18の断面構造を示し、以上のような極角と方位角の状態について説明する。
Here, FIG. 6B shows a cross-sectional structure of the directional
本実施形態において用いる指向性前方散乱フィルム18の断面構造モデルは図6(B)に示すように、屈折率がn1の部分と屈折率がn2の部分が指向性前方散乱フィルム18の断面構造において所定の角度を有して斜め方向に層状に交互配置されてなる構造である。この構造の指向性前方散乱フィルム18に斜め方向から適切な極角を有して入射光L1が入射されるとすると、屈折率の異なる各層の境界部分において散乱されるとともに、散乱光の一部が液晶層15を通過して反射層31において反射されるとこの反射光L2が再度液晶層15を通過して指向性前方散乱フィルム18を先程の入射光L1とは異なる極角にて通過しようとするがここでの反射光L2は散乱の少ない状態で指向性前方散乱フィルム18を通過することができる。
As shown in FIG. 6B, the cross-sectional structure model of the directional
そして、このような関係を満足させるためには、方位角φ1とφ2の関係として、φ1=φ2±180°であることが最も好ましい。これは、φ2を入射角方向、φ1を観察方向とすることを意味し、実際の液晶装置で適用する場合にこれらの角度が180°異なる。この場合、液晶装置に入射された光は入射時に強く散乱され、反射層31で反射された光は散乱され難いので、表示のにじみ(ボケ)の無い鮮鋭な表示形態が得られる。ただし、前述のような所定の角度を有して斜め方向に層状に交互に屈折率の異なる層が配置される指向性前方散乱フィルム18が組織的に完全に均一ではないことを考慮すると、方位角φ1とφ2の関係としては、φ1=φ2±180°で理想的ではあるが、φ1=φ2±180°の関係を基にして、その角度から(±10)°程度ずれたものまで本発明では包含するものとする。この角度が(±10)゜を超えてずれたものでは表示のにじみ(ボケ)の無い鮮鋭な表示形態が得られ難くなる。
In order to satisfy such a relationship, the relationship between the azimuth angles φ1 and φ2 is most preferably φ1 = φ2 ± 180 °. This means that φ2 is the incident angle direction and φ1 is the viewing direction, and these angles differ by 180 ° when applied in an actual liquid crystal device. In this case, the light incident on the liquid crystal device is strongly scattered at the time of incidence, and the light reflected by the
次に、先の(Tmax/Tmin)の値が(Tmax/Tmin)≧2の関係を満足することが好ましい。この関係とすることで、入射時に十分な散乱が得られ、明るく鮮鋭な反射表示が得られる。また、この関係を満足させることで、従来から知られている等方性散乱フィルムを用いた場合よりも明るい反射表示を実現できる。 Next, it is preferable that the value of (Tmax / Tmin) satisfies the relationship of (Tmax / Tmin) ≧ 2. With this relationship, sufficient scattering can be obtained at the time of incidence, and a bright and sharp reflective display can be obtained. Further, by satisfying this relationship, it is possible to realize a reflective display that is brighter than when a conventionally known isotropic scattering film is used.
次に、極角θ1とθ2を個々に見ると、等方性の散乱フィルムよりも明るい表示を得るためには、−40°≦θ1<0°かつ0°<θ2≦+40°の範囲、より好ましくは−30°≦θ1≦−10°、かつ、10°≦θ2≦30°の範囲とすることが好ましい。 Next, when the polar angles θ1 and θ2 are individually viewed, in order to obtain a brighter display than the isotropic scattering film, the range of −40 ° ≦ θ1 <0 ° and 0 ° <θ2 ≦ + 40 ° Preferably, the ranges of −30 ° ≦ θ1 ≦ −10 ° and 10 ° ≦ θ2 ≦ 30 ° are preferable.
次に、指向性前方散乱フィルム18の法線方向の(真正面)の平行線透過率をT(0,0)と定義すると、従来から知られている等方性の散乱フィルムよりも明るい表示を得るためには、θ1=−20°、θ2=20°の場合に、T(0,0)が3%以上、50%以下であることが好ましく、T(0,0)が5%以上、40%以下であることがより好ましい。T(0,0)が3%を下回ると、散乱が強すぎて表示がぼけることとなり、T(0,0)が40%を超えると正面の散乱が弱すぎてミラー反射に近くなる。
Next, when the parallel line transmittance in the normal direction of the directional
次に、指向性前方散乱フィルムの方位角φをφ1±60°(φ2±60°)の範囲と規定した場合、常にθ1で平行線透過率の極大をとり、θ2で平行線透過率の極小値をとるとともに、極大値と極小値の比を1.5以上とすることが好ましい。このような特徴を有しているならば、φ2の一方向のみならず、方位角で±60°までの光を散乱させることができるので、個々の環境下に対応することが容易になり、明るい表示を実現できる。 Next, when the azimuth angle φ of the directional forward scattering film is defined as a range of φ1 ± 60 ° (φ2 ± 60 °), the maximum of the parallel line transmittance is always taken at θ1, and the minimum of the parallel line transmittance is taken at θ2. It is preferable to take a value and set the ratio between the maximum value and the minimum value to 1.5 or more. If it has such a feature, it is possible to scatter light up to ± 60 ° not only in one direction of φ2 but also in an azimuth angle, so it is easy to cope with each environment. Bright display can be realized.
次に、最大透過率を示す方位角φ1および最小透過率を示す方位角φ2と直交する方向の極角θを−40°〜+40°まで変化させた場合、この範囲において平行線透過率が指向性前方散乱フィルムの法線方向の透過率と同等か、あるいは高ければ、液晶装置を横方向から観察しても表示のにじみ(ボケ)の無い鮮鋭な表示を得ることができる。即ち、T(0,0)≦T(φ1±90,θ)の関係を満足し、T(0,0)≦T(φ2±90,θ)の関係を満足するものとすることが好ましい。 Next, when the polar angle θ in the direction orthogonal to the azimuth angle φ1 indicating the maximum transmittance and the azimuth angle φ2 indicating the minimum transmittance is changed from −40 ° to + 40 °, the parallel line transmittance is directed in this range. If the transmittance is equal to or higher than the transmittance of the normal forward scattering film in the normal direction, a sharp display without blurring of display can be obtained even when the liquid crystal device is observed from the lateral direction. That is, it is preferable to satisfy the relationship of T (0,0) ≦ T (φ1 ± 90, θ) and satisfy the relationship of T (0,0) ≦ T (φ2 ± 90, θ).
次に、極角θが−60°≦θ≦+60°の範囲において、平行線透過率T(φ,θ)が2%以上であり、50%以下であることが好ましい。即ち、2%≦T(φ,θ)≦50%、但し−60°≦θ≦+60°の関係を満足することが好ましい。このような関係とすることで、明るく、表示のにじみ(ボケ)の無い鮮鋭な表示を得ることができる。 Next, when the polar angle θ is in the range of −60 ° ≦ θ ≦ + 60 °, the parallel line transmittance T (φ, θ) is 2% or more and preferably 50% or less. That is, it is preferable to satisfy the relationship of 2% ≦ T (φ, θ) ≦ 50%, but −60 ° ≦ θ ≦ + 60 °. With such a relationship, it is possible to obtain a bright and sharp display with no blurring of display.
さらに、前記指向性前方散乱フィルム18は、図15に示すように指向性前方散乱フィルム18を透過した平行線透過光L3が最小透過率を示す(拡散透過光LTが最大透過率を示す)方位角φ2方向と、前記基板17,28間が無電界時(印加した電圧を解除した時)に液晶層15の厚み方向中央部に位置するネマチック液晶分子15aの長軸方向αが揃うように配置されている。この液晶分子15aは、上述したようにツイスト角θtが240度〜255度のものあるので、前記基板間が無電界時(印加した電圧を解除した時)に液晶層15の厚み方向中央部に位置するネマチック液晶分子15aは捻れ角θtmが120度〜127.5度で捻れており、この捻れ角θtmのときの長軸方向αが前記方位角φ2方向と合わせられている。
Further, as shown in FIG. 15, the directional
前記指向性前方散乱フィルム18を透過した平行線透過光L3が最小透過率を示す方位角φ2方向と、前記基板間が無電界時(印加した電圧を解除した時)に液晶層15の厚み方向中央部に位置するネマチック液晶分子15aの長軸方向αとのなす角度は、0度でなくてもよく、±30度の範囲であればよい。言い替えれば、指向性前方散乱フィルム18を透過した平行線透過光L3が最小透過率を示す方位角φ2±30度の方向と、基板間17,28に印加した電圧を解除した時に液晶層15の中央部に位置するネマチック液晶分子の長軸方向αが揃うように配置されていればよい。
The direction of the thickness of the
このように指向性前方散乱フィルム18は、平行線透過光L3が最小透過率を示す方位角φ2方向と、液晶層15の中央部に位置するネマチック液晶分子15aの長軸方向αが概ね揃うように配置されており、無電界時(印加した電圧を解除した時)に液晶層15の中央部に位置するネマチック液晶分子15aの長軸方向αはコントラストが高い方向であり、このコントラストが高い方向と前記の表示のにじみ(ボケ)が少なく見える方向が合わせられたこととなり、高コントラストでにじみ(ボケ)がない表示が得られ、よって鮮明な表示形態が得られ、表示品質を向上できる。
Thus, the directional
さらに、指向性前方散乱フィルム18は、該指向性前方フィルム18を透過した平行線透過光L3が最小透過率を示す(拡散透過光LTが最大透過率を示す)方位角φ2方向と、極角θの方向からの入射光角度が10度から30度の入射光に対して液晶パネル10のコントラストが高い面内方向が揃うように配置されている。
Further, the directional
前記指向性前方散乱フィルム18を透過した平行線透過光L3が最小透過率を示す方位角φ2方向と、極角θ方向からの入射光角度が10度から30度の入射光に対して液晶パネル10のコントラストが高い面内方向とのなす角度は、0度でなくてもよく、±30度の範囲であればよい。言い替えれば、指向性前方散乱フィルム18を透過した平行線透過光L3が最小透過率を示す方位角φ2±30度の方向と、極角方向からの入射光角度が10度から30度の入射光に対して液晶パネルのコントラストが高い面内方向が揃うようが揃うように配置されていればよい。
A liquid crystal panel with respect to incident light having an incident light angle of 10 degrees to 30 degrees from an azimuth angle φ2 direction in which parallel-line transmitted light L3 transmitted through the directional
このように指向性前方散乱フィルム18は、該指向性前方散乱フィルム18を透過した平行線透過光が最小透過率を示す方位角φ2方向と、極角θ方向からの入射光角度が10度から30度の入射光に対して液晶パネル10のコントラストが高い面内方向が揃うように配置されことにより、液晶パネル10のコントラストが高い領域を最大限に含む方向と前記の表示のにじみ(ボケ)が少なく見える方向が合わせられたこととなり、高コントラストでにじみ(ボケ)がない表示が得られ、よって鮮明な表示形態が得られ、表示品質を向上できる。
Thus, the directional
図16は、本実施形態の液晶パネル10に入射光を極角20度、方位角0度で入射させたときのコントラスト特性を示す図である。このときの入射光の方位角は、指向性前方散乱フィルム18を透過した平行線透過光が最小透過率を示す(拡散透過光が最大透過率を示す)方位角φ2方向である。図16に示す同心円の中心は、液晶パネル10の法線方向の視角であり、最外円が法線方向Hから80度傾斜した方向から見た視角、外側から2つ目の円が法線方向Hから60度傾斜した方向から見た視角、外側から3つ目の円が法線方向Hから40度傾斜した方向から見た視角、最内円が法線方向Hから20度傾斜した方向から見た視角を表す。図16中、斜線で示される領域3)は、コントラストが1:10以上得られることを示している。
FIG. 16 is a diagram showing contrast characteristics when incident light is incident on the
図16から観察者の視角が法線方向から40度傾いても方位角φ2方向からの入射光に対して1:10のコントラストを示しており、視角が法線方向から30度〜0度に傾いても方位角φ2方向からの入射光に対して1:10以上のコントラストを示すことができる。液晶パネルを観察するときは、通常、観察者は入射光の正反射方向からずれた方向、言い換えれば、法線付近の方向あるいは正反射方向より法線方向寄りの方向から表示を観察するので、本実施形態の液晶パネルのように方位角φ2方向と、極角θ方向からの入射光角10〜30度の入射光に対して液晶パネル10のコントラストが高い面内方向γが揃うように配置されていると、図16のように視角が法線方向から30度〜0度のときのコントラストが高く、表示品質を向上できることがわかる。
FIG. 16 shows a contrast of 1:10 with respect to incident light from the azimuth angle φ2 direction even when the observer's viewing angle is tilted 40 degrees from the normal direction, and the viewing angle is 30 degrees to 0 degrees from the normal direction. Even if it is tilted, it can show a contrast of 1:10 or more with respect to incident light from the direction of the azimuth angle φ2. When observing a liquid crystal panel, the observer usually observes the display from a direction deviated from the regular reflection direction of incident light, in other words, from the direction near the normal line or the direction closer to the normal direction than the regular reflection direction. As in the liquid crystal panel of the present embodiment, the
また、指向性前方散乱フィルム18を透過した平行線透過光L3が最小透過率を示す方位角φ2±30度の方向と、極角方向からの入射光角度が10〜30度の入射光に対して液晶パネルのコントラストが高い面内方向γが揃うように配置した場合、図16からわかるように視角が法線方向から30度〜0度のときのコントラストが高いことがわかる。
Further, with respect to the incident light having the azimuth angle φ2 ± 30 degrees at which the parallel-line transmitted light L3 transmitted through the directional
(液晶装置の第2実施形態)
図7に示すものは、本発明に係る液晶装置の第2実施形態の液晶パネル40を示す部分断面図である。
(Second Embodiment of Liquid Crystal Device)
FIG. 7 is a partial cross-sectional view showing a
この実施形態の液晶パネル40は先の図1〜図3を基に説明した第1実施形態の液晶パネル10と同様に指向性前方散乱フィルム18を備えた反射型の単純マトリクス構造のものであり、基本的な構造は第1実施形態と同様であるので同一構成要素には同一符号を付してそれら構成要素の説明を省略し、以下に異なる構成要素を主体に説明する。
The
本実施形態の液晶パネル40は対向された基板ユニット41と基板ユニット42の間にシール材12に囲まれて液晶層15を挟持して構成されている。前記上側の基板ユニット41は先の第1実施形態の基板ユニット13において、カラーフィルタ層20が省略されたもので、カラーフィルタ層20は対向側の下側の基板ユニット42の反射層31の上に積層されていて、この部分の構成が先の第1実施形態の構造と異なっている。即ち、図4に示す液晶パネル40は、先の第1実施形態では上側(観察者側)の基板ユニット13側に設けられていたカラーフィルタ層20を液晶層15の下側(観察者側と反対側)の基板ユニット42側に設けた構造である。カラーフィルタ層20の構造は第1実施形態の構造と同等であるが、カラーフィルタ層20が基板28の上面側に形成されているので、図3に示すカラーフィルタ層20の積層構造が図3の状態に対して上下逆とされている。
The
この第2実施形態の構造においても、指向性前方散乱フィルム18は先の第1実施形態の構造及び配置(平行線透過光L3が最小透過率を示す方位角φ2方向と、前記基板間が無電界時(印加した電圧を解除した時)に液晶層15の中央部に位置するネマチック液晶分子15aの長軸方向αとが合わせられ、平行線透過光が最小透過率を示す方位角φ2方向と、極角θ方向からの入射光角度が10度から30度の入射光に対して液晶パネル40のコントラストが高い面内方向が合わせられている)と同様に設けられているので、反射表示のにじみ(ボケ)やコントラストに関して先の第1実施形態の構造と同等の効果を得ることができる。
Also in the structure of the second embodiment, the directional
また、図4に示す液晶装置40では、反射層31の直上にカラーフィルタ層20が形成されているので、液晶装置40に入射された光が液晶層15を介して反射層31に至り、反射されてから直ちにカラーフィルタ32を通過するので、色ずれの問題が起こりにくい特徴を有する。
In the
本実施形態では、反射層31はミラー(鏡面)状態であるが、1〜20μm程度の微細な凸凹を有していても構わない。
In the present embodiment, the
(液晶装置の第3実施形態)
図8に示すものは、本発明に係る液晶装置の第3実施形態の液晶パネル50を示す断面図である。
(Third embodiment of liquid crystal device)
FIG. 8 is a cross-sectional view showing a
この実施形態の液晶パネル50は先の図1〜図3を基に説明した第1実施形態の液晶パネル10に設けられていた反射層31に代えて、半透過反射層52を設けた基板ユニット55を備えた半透過反射型の単純マトリクス構造のものであって、その他の基本的な構造において第1実施形態と同様な部分には同一符号を付してそれら構成要素の説明を省略し、以下に異なる構成要素を主体に説明する。
The
液晶パネル50において第1実施形態の構造と異なるのは、半透過反射層52が設けられた点であり、更に液晶パネル50の背後側(図8の下側)にはバックライトなどの光源60が配置されている点と、位相差板56、偏光板57が配置されている点である。
The
なお、透過型として液晶表示装置を用いる場合に下側の基板28’はガラス等の透明基板からなることを必要とする。
When the liquid crystal display device is used as the transmission type, the
半透過反射層52は、背後側(図8の下側)のバックライトなどの光源60が発した透過光を通過させるために十分な厚さの半透過反射層、あるいは、反射膜の一部に多数の微細な透孔を形成して光透過性を高めた構造など、半透過反射型の液晶表示装置に広く用いられているものを適宜採用することができる。
The semi-transmissive
この第3実施形態の液晶装置では、バックライトなどの光源60からの透過光を利用する際には透過型の液晶表示形態をとり、光源からの光を利用しない場合は周囲光を用いた反射表示を行うことで反射型液晶表示装置として利用することができる。そして、この第3実施形態に構造においても、指向性前方散乱フィルム18は先の第1実施形態の構造および配置(平行線透過光L3が最小透過率を示す方位角φ2方向と、前記基板間が無電界時(印加した電圧を解除した時)に液晶層15の中央部に位置するネマチック液晶分子15aの長軸方向αとが合わせられ、平行線透過光が最小透過率を示す方位角φ2方向と、極角θ方向からの入射光角度が10度から30度の入射光に対して液晶パネル50のコントラストが高い面内方向が合わせられている)と同様に設けられているので、反射型液晶表示装置としての表示形態を採用する場合、先の第1実施形態の場合と同様に、表示のにじみ(ボケ)やコントラストの低下を解消した鮮鋭な反射型の表示形態を得ることができる。
The liquid crystal device according to the third embodiment takes a transmissive liquid crystal display form when using light transmitted from a
なお、これまで説明した第1、第2、第3実施形態においては、単純マトリクス型の反射型液晶表示装置に本発明を適用した例について説明したが、本発明を2端子型スイッチング素子あるいは3端子型スイッチング素子を備えたアクティブマトリクス型の反射型液晶表示装置あるいは半透過反射型液晶表示装置に適用しても良いのは勿論である。 In the first, second, and third embodiments described so far, the example in which the present invention is applied to the simple matrix reflective liquid crystal display device has been described. However, the present invention is not limited to a two-terminal switching element or 3 Of course, the present invention may be applied to an active matrix reflective liquid crystal display device or a transflective liquid crystal display device having a terminal type switching element.
それらのアクティブマトリクス型の液晶表示装置に適用した場合、図2、図7、図8に示すストライプ状の電極に代えて、一方の基板側に共通電極を設け、他方の基板側に多数の画素電極を画素毎に設け、各画素電極を個々に3端子型のスイッチング素子である薄膜トランジスタで駆動する型のTFT(薄膜トランジスタ)駆動型の構造、一方の基板側にストライプ状の電極を設け、他方の基板側に画素毎に画素電極を設け、これらの画素電極を個々に2端子型の線形素子である薄膜ダイオードで駆動する2端子型線形素子駆動型の液晶表示装置などに適用できるのは勿論であり、これらのいずれの型の液晶表示装置に対しても、本発明は前記指向性前方散乱フィルムを前記した特定の方向に配置するのみで適用可能であるので、極めて容易に種々の形態の液晶表示装置に適用することができる特徴を有する。 When applied to these active matrix liquid crystal display devices, a common electrode is provided on one substrate side instead of the striped electrodes shown in FIGS. 2, 7, and 8, and a large number of pixels are provided on the other substrate side. An electrode is provided for each pixel, and each pixel electrode is individually driven by a thin film transistor that is a three-terminal switching element. A TFT (thin film transistor) drive type structure, a striped electrode is provided on one substrate side, and the other Needless to say, the present invention can be applied to a liquid crystal display device of a two-terminal type linear element driving type in which a pixel electrode is provided for each pixel on the substrate side, and these pixel electrodes are individually driven by a thin film diode that is a two-terminal type linear element. In any of these types of liquid crystal display devices, the present invention can be applied simply by disposing the directional forward scattering film in the specific direction as described above. It has a feature that can be applied to a liquid crystal display device of various forms.
本発明の液晶装置をアクティブマトリクス型の液晶表示装置に適用した場合、液晶層を構成するネマチック液晶分子はツイスト角60度〜80度に設定されたものを用いることができ、この場合の指向性前方散乱フィルムは、図17に示すように指向性前方散乱フィルムを透過した平行線透過光が最小透過率を示す(拡散透過光が最大透過率を示す)方位角φ2方向と、前記基板間が無電界時(印加した電圧を解除した時)に液晶層の厚み方向中央部に位置するネマチック液晶分子15bの長軸方向βが揃うように配置される。この液晶分子15bは、上述したようにツイスト角θtが60度〜80度のものあるので、前記基板間が無電界時(印加した電圧を解除した時)に液晶層の厚み方向中央部に位置するネマチック液晶分子15bは捻れ角θtmが30度〜40度で捻れており、この捻れ角θtmのときの長軸方向βが前記方位角φ2方向と合わせられている。 When the liquid crystal device of the present invention is applied to an active matrix type liquid crystal display device, nematic liquid crystal molecules constituting the liquid crystal layer can be those having a twist angle set between 60 degrees and 80 degrees, and the directivity in this case As shown in FIG. 17, the forward scattering film has a azimuth angle φ2 direction in which parallel-line transmitted light that has passed through the directional forward scattering film exhibits minimum transmittance (diffuse transmitted light exhibits maximum transmittance), and the distance between the substrates is When no electric field is applied (when the applied voltage is released), the major axis directions β of the nematic liquid crystal molecules 15b located at the center in the thickness direction of the liquid crystal layer are arranged to be aligned. Since the liquid crystal molecules 15b have a twist angle θt of 60 ° to 80 ° as described above, the liquid crystal layer 15b is positioned at the central portion in the thickness direction of the liquid crystal layer when there is no electric field (when the applied voltage is released). The nematic liquid crystal molecules 15b are twisted at a twist angle θtm of 30 to 40 degrees, and the major axis direction β at the twist angle θtm is aligned with the azimuth angle φ2 direction.
また、前記指向性前方散乱フィルムを透過した平行線透過光が最小透過率を示す方位角φ2方向と、前記基板間が無電界時(印加した電圧を解除した時)に液晶層15の厚み方向中央部に位置するネマチック液晶分子15bの長軸方向βとのなす角度は、0度でなくてもよく、±30度の範囲であればよい。言い替えれば、指向性前方散乱フィルムを透過した平行線透過光が最小透過率を示す方位角φ2±30度の方向と、基板間に印加した電圧を解除した時に液晶層の中央部に位置するネマチック液晶分子の長軸方向βが揃うように配置されていればよい。
Further, the direction of the thickness of the
なお、前記の実施形態においては、指向性前方散乱フィルムが、該指向性前方散乱フィルムを透過する平行線透過光が最小透過率を示す方位角φ2方向と、前記基板間が無電界時(印加した電圧を解除した時)に液晶層の中央部に位置するネマチック液晶分子の長軸方向とが揃うように配置され、しかも前記平行線透過光が最小透過率を示す方位角φ2方向と、極角θ方向からの入射光角度が10度から30度の入射光に対して液晶パネルのコントラストが高い面内方向が揃うように配置された場合について説明したが、指向性前方散乱フィルムは、前記方位角φ2方向と前記基板間が無電界時に液晶層の中央部に位置するネマチック液晶分子の長軸方向とが揃うように配置されているか、または、方位角φ2方向と、極角θ方向からの入射光角度が10度から30度の入射光に対して液晶パネルのコントラストが高い面内方向が揃うように配置されていれば、本発明の課題を解決できる。 In the above-described embodiment, the directional forward scattering film has an azimuth angle φ2 direction in which parallel-line transmitted light transmitted through the directional forward scattering film exhibits a minimum transmittance, and no electric field is applied between the substrates. When the applied voltage is released), the long axis direction of the nematic liquid crystal molecules located at the center of the liquid crystal layer is aligned, and the parallel-line transmitted light has an azimuth angle φ2 direction indicating the minimum transmittance, The case where the incident light angle from the angle θ direction is arranged so that the in-plane direction in which the contrast of the liquid crystal panel is high with respect to incident light with an angle of 10 to 30 degrees is aligned, the directional forward scattering film is the above-mentioned The azimuth angle φ2 direction is arranged so that the substrate is aligned with the major axis direction of the nematic liquid crystal molecules located in the center of the liquid crystal layer when there is no electric field, or from the azimuth angle φ2 direction and the polar angle θ direction. Incident light angle There be arranged so as to be aligned in-plane direction with high contrast of the liquid crystal panel with respect to the incident light 30 degrees from 10 degrees can solve the problem of the present invention.
(電子機器の実施形態)
次に、前記の第1〜第3の実施形態の液晶パネル10、40、50のいずれかを備えた電子機器の具体例について説明する。
(Embodiment of electronic device)
Next, a specific example of an electronic device including any one of the
図9(a)は、携帯電話の一例を示した斜視図である。 FIG. 9A is a perspective view showing an example of a mobile phone.
図9(a)において、符号200は携帯電話本体を示し、符号201は前記の液晶パネル10、40、50のいずれかを用いた液晶表示部を示している。
In FIG. 9A,
図9(b)は、ワープロ、パソコンなどの携帯型情報処理装置の一例を示した斜視図である。 FIG. 9B is a perspective view illustrating an example of a portable information processing apparatus such as a word processor or a personal computer.
図9(b)において、符号300は情報処理装置、符号301はキーボードなどの入力部、符号303は情報処理装置本体、符号302は前記の液晶パネル10、40、50のいずれかを用いた液晶表示部を示している。
In FIG. 9B,
図9(c)は、腕時計型電子機器の一例を示した斜視図である。 FIG. 9C is a perspective view showing an example of a wristwatch type electronic device.
図9(c)において、符号400は時計本体を示し、符号401は前記の液晶パネル10、40、50のいずれかを用いた液晶表示部を示している。
In FIG. 9C,
図9(a)〜(c)に示すそれぞれの電子機器は、前記の液晶パネル10、40、50のいずれかを用いた液晶表示部を備えたものであるので、表示にじみ(ボケ)がなく、高コントラストである鮮鋭な表示品質の優れたものとなる。
Each of the electronic devices shown in FIGS. 9A to 9C is provided with a liquid crystal display unit using any one of the
「試験例1」
透過型のホログラム技術で作成した指向性前方散乱フィルムを用いて透過率の測定試験を行った。
“Test Example 1”
A transmittance measurement test was conducted using a directional forward scattering film prepared by a transmission hologram technique.
水平に設置した(50×40)mmの平面視長方形状の指向性前方散乱フィルムの表面中心部に(ハロゲン)ランプの光源(指向性前方散乱フィルムから300mm離れた位置に設置)から光を入射し、指向性前方散乱フィルムの裏面側にCCDからなる受光素子を有する受光部(指向性前方散乱フィルムから300mm離れた位置に設置)を、光源からの入射光に対して正視対向する方向に各々設置し、光源の極角と方位角を図4に示すように規定し、受光部において2度視野で平行線透過率を測定した。
Light is incident from the light source of the (halogen) lamp (installed at a
光源の極角θ(指向性前方散乱フィルムの法線に対する入射光の入射角度)を±60゜の範囲で調整し、極角の角度毎の平行線透過率(%)を測定した結果を図10に示す。また、方位角については、0゜、+30゜、+60°、+90°、+180°(いずれも図4に示す右回り方向)と、−30゜、−60°、−90°(いずれも図4に示す左回り方向)のいずれのデータについても計測し、図10にまとめて記載した。 Fig. 3 shows the result of measuring the parallel line transmittance (%) for each polar angle by adjusting the polar angle θ of the light source (incident angle of incident light with respect to the normal of the directional forward scattering film) within a range of ± 60 °. 10 shows. As for the azimuth angle, 0 °, + 30 °, + 60 °, + 90 °, + 180 ° (all in the clockwise direction shown in FIG. 4), −30 °, −60 °, −90 ° (all in FIG. 4). All the data in the counterclockwise direction shown in Fig. 10 were measured and collectively shown in Fig. 10.
図10に示す結果から、0°と180°の場合の測定結果が全く同一曲線になり、平行線透過光の最大透過率Tmaxと最小透過率Tminとの関係は、(Tmax/Tmin)≒50:6≒8.33となり、本発明で望まれる2を超える値を示した。 From the results shown in FIG. 10, the measurement results at 0 ° and 180 ° are exactly the same curve, and the relationship between the maximum transmittance Tmax and the minimum transmittance Tmin of parallel-line transmitted light is (Tmax / Tmin) ≈50. : 6≈8.33, indicating a value exceeding 2 that is desired in the present invention.
次に、透過型ホログラムで作成した別の指向性前方散乱フィルムを用いて同様の透過率の測定試験を行った結果を図11に示し、さらに別の透過型ホログラム指向性前方散乱フィルムを用いて同様の透過率の測定試験を行った結果を図12に示す。 Next, FIG. 11 shows the result of a similar transmittance measurement test using another directional forward scattering film created with a transmission hologram, and further using another transmission hologram directional forward scattering film. The result of the same transmittance measurement test is shown in FIG.
図11に示す特性を見ると、平行線透過光の最大透過率Tmaxと最小透過率Tminとの関係は、(Tmax/Tmin)≒12:3≒4であり、本発明で望まれる2を超える値を示した。 Looking at the characteristics shown in FIG. 11, the relationship between the maximum transmittance Tmax and the minimum transmittance Tmin of parallel-line transmitted light is (Tmax / Tmin) ≈12: 3≈4, which exceeds 2 as desired in the present invention. The value is shown.
図12に示す特性を見ると、平行線透過光の最大透過率Tmaxと最小透過率Tminとの関係は、(Tmax/Tmin)≒52:26≒2であり、本発明で望まれる値の2を示した。 Looking at the characteristics shown in FIG. 12, the relationship between the maximum transmittance Tmax and the minimum transmittance Tmin of parallel-line transmitted light is (Tmax / Tmin) ≈52: 26≈2, which is 2 which is the value desired in the present invention. showed that.
また、図10と図11と図12に示すいずれの例の指向性前方散乱フィルムにおいても、±60°の範囲において、概ね、極大と極小の数値がほぼ同じ角度に存在することが明らかになった。例えば、図10に示す結果から、極大値は極角−30°の場合、極小値は極角+(23)゜の場合、図11に示す結果から、極大値は極角−(20)°の場合、極小値は極角+(18)゜の場合、図12に示す結果から、極大値は極角−30°の場合、極小値は極角+(25)゜の場合であった。 Also, in any of the example directional forward scattering films shown in FIGS. 10, 11, and 12, it is clear that the maximum and minimum values exist at substantially the same angle in the range of ± 60 °. It was. For example, from the results shown in FIG. 10, the maximum value is a polar angle of −30 °, the minimum value is a polar angle + (23) °, and the maximum value is a polar angle − (20) ° from the result shown in FIG. In this case, the local minimum value is the polar angle + (18) °. From the results shown in FIG. 12, the local maximum value is the polar angle −30 °, and the local minimum value is the polar angle + (25) °.
次に、図10、図11、図12に示す例の指向性前方散乱フィルムにおいて、φが±90°の場合、いずれの例においても極角θが0の場合に一番透過率が低い、言い換えれば、入射時の散乱が強い(拡散透過光が多い)ことも判明した。 Next, in the directional forward scattering film of the example shown in FIG. 10, FIG. 11 and FIG. 12, when φ is ± 90 °, the transmittance is lowest when the polar angle θ is 0 in any example. In other words, it was also found that scattering at the time of incidence is strong (a lot of diffuse transmitted light).
また、図10、図11、図12に示す例の指向性前方散乱フィルムにおいて、全ての条件の場合の透過率においていずれも2〜50%の範囲に入っていることも明らかである。 Moreover, in the directional front scattering film of the example shown in FIG. 10, FIG. 11, FIG. 12, it is also clear that the transmittances under all conditions are all in the range of 2 to 50%.
次に、極角θを固定して方位角φを変化させた際に、換言すると、指向性前方散乱フィルムのみを水平面内で回転させた場合に、指向性前方散乱フィルムの透過率を測定した結果を図13に示す。 Next, when the polar angle θ was fixed and the azimuth angle φ was changed, in other words, when only the directional forward scattering film was rotated in the horizontal plane, the transmittance of the directional forward scattering film was measured. The results are shown in FIG.
図13に示す結果によれば、θ=0°の条件では指向性前方散乱フィルムの法線方向に光を入射した状態を示すが、ほぼ一定の透過率を示し、θ=−20°、−40°、−60°の場合に方位角は0±90°の範囲で透過率が上側に凸の極大をとる曲線を示し、θ=+20°、+40°、+60°の場合に方位角0±90°の範囲で透過率が下側に凸(上側には凹)の極小をとる曲線を示す傾向を示した。このことから、本実施例で用いた指向性前方散乱フィルムは極角と方位角に応じて透過率の極大と極小を示すことが明瞭に示された。 According to the results shown in FIG. 13, under the condition of θ = 0 °, the light is incident in the normal direction of the directional forward scattering film, but shows a substantially constant transmittance, θ = −20 °, − In the case of 40 ° and −60 °, the azimuth angle is in the range of 0 ± 90 °, and the transmittance has a convex maximum curve upward, and in the case of θ = + 20 °, + 40 °, + 60 °, the azimuth angle is 0 ±. In the range of 90 °, the transmittance showed a tendency to show a curve having a minimum convex on the lower side (concave on the upper side). From this, it was clearly shown that the directional forward scattering film used in the present example exhibits maximum and minimum transmittances according to the polar angle and the azimuth angle.
なお、図13に示す透過率の関係を解析すると、負の極角θ(−20°、−40°、−60°)において方位角φ=±30°以内、即ち、φ=−30°〜+30゜の範囲において透過率の最大値が5%以内の変動に抑えられており、正の極角θ(+20°、+40°、+60°)において方位角φ=±30°以内、即ちφ=−30°〜+30゜の範囲において透過率の最小値が5%以内の変動に抑えられている。 13 is analyzed, the negative polar angle θ (−20 °, −40 °, −60 °) has an azimuth angle within φ = ± 30 °, that is, φ = −30 ° to In the range of + 30 °, the maximum transmittance is suppressed within 5%, and the azimuth angle φ is within ± 30 ° at the positive polar angle θ (+ 20 °, + 40 °, + 60 °), that is, φ = In the range of −30 ° to + 30 °, the minimum value of the transmittance is suppressed within 5%.
図14は、従来の等方性前方散乱フィルム(大日本印刷(株)製商品名:IDS−16K)を用いて構成された液晶装置の試料において、極角と透過率の関係を方位角毎に測定した結果を示すものである。試験に際し、先の第1の試験例と同じ液晶装置を用い、指向性前方散乱フィルム(異方性前方フィルム)を今回使用の等方性散乱フィルムに変更して測定した結果である。 FIG. 14 shows the relationship between polar angle and transmittance for each azimuth angle in a sample of a liquid crystal device constructed using a conventional isotropic forward scattering film (trade name: IDS-16K, manufactured by Dai Nippon Printing Co., Ltd.). Shows the measurement results. In the test, the same liquid crystal device as in the previous first test example was used, and the directional front scattering film (anisotropic front film) was changed to the isotropic scattering film used this time and measured.
図14に示す結果から、平行線透過光の透過率はいずれの方位角でもほとんど変化が見られず、ほぼ1つの曲線に重なるとともに、極角が0°の場合を最大として極角を+領域か−領域に変化させても数%程度しか変化しないことが明らかである。この結果から、等方性前方散乱フィルムを液晶装置に用いても、本発明の効果が得られないことが明らかである。 From the results shown in FIG. 14, the transmittance of parallel-line transmitted light hardly changes at any azimuth, almost overlaps with one curve, and the polar angle is + region with the maximum when the polar angle is 0 °. It is clear that even if it is changed to a region, it changes only about several percent. From this result, it is clear that the effect of the present invention cannot be obtained even when an isotropic front scattering film is used in a liquid crystal device.
「試験例2」
次に、先の試験の極角θ1と極角θ2を種々変化させた場合の指向性前方散乱フィルムを用いた反射型カラー液晶表示装置の明るさを蛍光灯点灯下のオフィスにおいて比較した。明るさとしては、従来品の等方性前方散乱フィルムを用いた反射型カラー液晶表示装置(先の図14に示す測定に用いた等方性散乱フィルムを用いた反射型カラー液晶表示装置)と比較し、従来品の反射型カラー液晶表示装置よりも明るく認識できたものを〇、同等のものを△、暗いものを×として以下の表1に示した。
"Test Example 2"
Next, the brightness of the reflective color liquid crystal display device using the directional forward scattering film when the polar angle θ1 and the polar angle θ2 of the previous test were changed in various ways was compared in an office under a fluorescent lamp. As the brightness, a reflective color liquid crystal display device using a conventional isotropic forward scattering film (a reflective color liquid crystal display device using an isotropic scattering film used for the measurement shown in FIG. 14) and In comparison, Table 1 below shows the results that were recognized brighter than the conventional reflective color liquid crystal display device, ◯, equivalent ones, and dark ones.
「表1」
θ1(°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2(°) 0 0 0 0 0 0 0 0 0
評価結果 × × × × × △ △ △ ×
θ1(°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2(°) 10 10 10 10 10 10 10 10 10
評価結果 × × × × △ 〇 〇 〇 ×
θ1(°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2(°) 20 20 20 20 20 20 20 20 20
評価結果 × × × × △ 〇 〇 〇 ×
θ1(°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2(°) 30 30 30 30 30 30 30 30 30
評価結果 × × × × △ 〇 〇 〇 ×
θ1(°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2(°) 40 40 40 40 40 40 40 40 20
評価結果 × × × × × △ △ △ ×
表1に示す測定結果から明らかなように、平行線透過光が最大となる場合(拡散透過光が最小となる場合)の極角θ1が、−40°≦θ1≦0°の範囲、0°≦θ2≦40°の範囲であれば従来品と同程度の明るさを確保でき、−30°≦θ1≦−10°の範囲、10°≦θ2≦30°の範囲であれば従来品よりも明るさに優れている液晶表示装置が得られることがわかる。
"Table 1"
θ1 (°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2 (°) 0 0 0 0 0 0 0 0 0
Evaluation result × × × × × △ △ △ ×
θ1 (°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2 (°) 10 10 10 10 10 10 10 10 10
Evaluation result × × × × △ ○ ○ ○ ×
θ1 (°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2 (°) 20 20 20 20 20 20 20 20 20
Evaluation result × × × × △ ○ ○ ○ ×
θ1 (°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2 (°) 30 30 30 30 30 30 30 30 30
Evaluation result × × × × △ ○ ○ ○ ×
θ1 (°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2 (°) 40 40 40 40 40 40 40 40 20
Evaluation result × × × × × △ △ △ ×
As is clear from the measurement results shown in Table 1, the polar angle θ1 when the parallel-line transmitted light is maximized (when the diffusely transmitted light is minimized) is in the range of −40 ° ≦ θ1 ≦ 0 °, 0 ° If the range is ≦ θ2 ≦ 40 °, the same level of brightness as that of the conventional product can be ensured. It can be seen that a liquid crystal display device having excellent brightness can be obtained.
「試験例3」
指向性前方散乱フィルムの法線方向の平行線透過率T(0,0)を種々の値に変えた指向性前方散乱フィルムを用意し、この指向性前方散乱フィルムを備えた液晶表示装置の明るさを蛍光灯点灯下のオフィスにおいて比較した。比較した従来品は先の試験例で用いたものと同じである。従来品の等方性前方散乱フィルムを用いた反射型カラー液晶表示装置よりも明るく認識できたものを〇、同等のものを△、暗いものを×として以下の表2に示した。
“Test Example 3”
A directional forward scattering film is prepared in which the parallel line transmittance T (0, 0) in the normal direction of the directional forward scattering film is changed to various values, and the brightness of a liquid crystal display device including the directional forward scattering film is improved. This was compared in offices under fluorescent lighting. The compared conventional product is the same as that used in the previous test example. Table 2 below shows the results that were recognized brighter than the reflective type color liquid crystal display device using the conventional isotropic forward scattering film, ◯ for the equivalent, Δ for the equivalent, and × for the dark.
「表2」
T(0,0) 3% 5% 10% 20% 30% 40% 50% 60%
評価結果 △ 〇 〇 〇 〇 〇 △ ×
表2に示す結果から明らかなように、3%≦T(0,0)≦60%、より好ましくは5%≦T(0,0)≦40%の範囲であれば、実際の使用環境下において従来よりも明るい反射型カラー液晶表示装置を提供できることが明らかである。
"Table 2"
T (0.0) 3% 5% 10% 20% 30% 40% 50% 60%
Evaluation result △ ○ ○ ○ ○ ○ △ ×
As is apparent from the results shown in Table 2, if 3% ≦ T (0,0) ≦ 60%, more preferably 5% ≦ T (0,0) ≦ 40%, the actual usage environment It is apparent that a brighter reflective color liquid crystal display device can be provided.
次に、図10、図11、図12に示す結果から、指向性前方散乱フィルムの方位角φをφ1±60°かつφ2±60°の範囲で規定した場合、常にθ1において平行線透過率の極大(言い換えれば拡散透過率の極小)を示し、θ2において平行線透過率の極小(言い換えれば拡散透過率の極大)を示すことも明らかである。 Next, from the results shown in FIG. 10, FIG. 11, and FIG. 12, when the azimuth angle φ of the directional forward scattering film is defined in the range of φ1 ± 60 ° and φ2 ± 60 °, the parallel transmittance is always at θ1. It is also clear that the maximum (in other words, the minimum of diffuse transmittance) is shown, and the minimum of parallel line transmittance (in other words, the maximum of diffuse transmittance) is shown at θ2.
「試験例4」
次に、透過型ホログラム指向性前方散乱フィルムを多数枚用意し、(Tmax/Tmin)の値を種々の値に調整した場合の反射型カラー表示装置の明るさを先の従来品の等方性散乱フィルムを用いた液晶表示装置と比較した結果を以下の表3に記載した。従来品の液晶表示装置に比べて2倍以上明るく認識できた場合は◎、従来品よりも明るく認識できたものは〇、同等の場合は△、暗い場合は×とした。
“Test Example 4”
Next, a number of transmissive hologram directional forward scattering films are prepared, and the brightness of the reflective color display device when the value of (Tmax / Tmin) is adjusted to various values is adjusted to be isotropic with respect to the conventional product. The results compared with a liquid crystal display device using a scattering film are shown in Table 3 below. ◎ if it was recognized more than twice as bright as the conventional liquid crystal display device, ○ if it was recognized brighter than the conventional product, △ if it was equivalent, × if it was dark.
「表3」
Tmax/Tmin 10.0 5.0 3.0 2.0 1.8 1.5 1.0
評価結果 ◎ ◎ ◎ ◎ 〇 △ △
表3に示す結果から、先に説明した平行線透過率の極小値と極大値の比が2以上である場合に特に明るく認識できたことが明らかである。
"Table 3"
Tmax / Tmin 10.0 5.0 3.0 2.0 1.8 1.5 1.0
Evaluation result ◎ ◎ ◎ ◎ △ △ △
From the results shown in Table 3, it is clear that recognition was particularly bright when the ratio between the minimum value and maximum value of the parallel line transmittance described above was 2 or more.
「試験例5」
指向性前方散乱フィルムにおいて平行線透過率が最小値(言い換えれば拡散透過率が最大値)または平行線透過率が最大値(言い換えれば拡散透過率が最小値)をとる時の方位角をφ2またはφ1とすると、φ2±60°、φ1±60°の範囲で極角θを変化させて測定した透過光特性の極大値と極小値の比を測定した。この比を変化させて反射型カラー液晶表示装置の明るさを蛍光灯点灯下のオフィスにおいて比較した。比較した従来品は先の試験例で用いたものと同じである。従来品の等方性前方散乱フィルムを用いた反射型カラー液晶表示装置よりも明るく認識できたものを〇、同等のものを△、暗いものを×として以下の表4に示した。
"Test Example 5"
In the directional forward scattering film, the azimuth angle when the parallel line transmittance is the minimum value (in other words, the diffuse transmittance is the maximum value) or the parallel line transmittance is the maximum value (in other words, the diffuse transmittance is the minimum value) is φ2 or Assuming φ1, the ratio between the maximum value and the minimum value of the transmitted light characteristics measured by changing the polar angle θ in the range of φ2 ± 60 ° and φ1 ± 60 ° was measured. By changing this ratio, the brightness of the reflection type color liquid crystal display device was compared in an office under a fluorescent lamp. The compared conventional product is the same as that used in the previous test example. Table 4 below shows those that could be recognized brighter than the reflective type color liquid crystal display device using the conventional isotropic forward scattering film, ◯ for the equivalent, Δ for the dark, and × for the dark.
「表4」
極大値/極小値 5.0 3.5 2.0 1.5 1.2 1.0
評価結果 〇 〇 〇 〇 △ △
表4に示す結果から、極大値/極小値の値は1.5以上が好ましいことが明らかになった。即ち、指向性前方散乱フィルムの方位角φをφ1±60°かつθ2±60°の範囲で規定した場合、平行線透過率の極小値と極大値の比が1.5以上であることが明らかである。
“Table 4”
Maximum / minimum value 5.0 3.5 2.0 1.5 1.5 1.2 1.0
Evaluation result 〇 〇 〇 〇 △ △
From the results shown in Table 4, it was revealed that the maximum / minimum value is preferably 1.5 or more. That is, when the azimuth angle φ of the directional forward scattering film is defined in the range of φ1 ± 60 ° and θ2 ± 60 °, it is clear that the ratio between the minimum value and the maximum value of the parallel line transmittance is 1.5 or more. It is.
「試験例6」
指向性前方散乱フィルムにおいて、極角θを−60°≦θ≦+60°としたとき、平行線透過率Tの最大値と最小値を変化させて、反射型カラー液晶表示装置の明るさを蛍光灯点灯下のオフィスにおいて比較した。比較した従来品は先の試験例で用いたものと同じである。従来品のの等方性前方散乱フィルムを用いた反射型カラー液晶表示装置よりも明るく認識できたものを〇、同等のものを△、暗いものを×として以下の表5に示した。
"Test Example 6"
In the directional forward scattering film, when the polar angle θ is set to −60 ° ≦ θ ≦ + 60 °, the maximum value and the minimum value of the parallel-line transmittance T are changed to change the brightness of the reflective color liquid crystal display device to fluorescence. Comparisons were made in offices with lights on. The compared conventional product is the same as that used in the previous test example. Table 5 below shows the results that were recognized brighter than the reflection type color liquid crystal display device using the conventional isotropic forward scattering film, ◯ for the equivalent, Δ for the equivalent, and × for the dark.
「表5」
最大透過率Tmax 60% 50% 40% 30% 20% 10% 最小透過率Tmin 1% 1% 1% 1% 1% 1% 評価結果 × × △ △ △ ×
最大透過率Tmax 60% 50% 40% 30% 20% 10% 最小透過率Tmin 2% 2% 2% 2% 2% 2% 評価結果 × 〇 〇 〇 〇 〇
最大透過率Tmax 60% 50% 40% 30% 20% 10% 最小透過率Tmin 5% 5% 5% 5% 5% 5% 評価結果 △ 〇 〇 〇 〇 〇
最大透過率Tmax 60% 50% 40% 30% 20% 10% 最小透過率Tmin 10% 10% 10% 10% 10% 10% 評価結果 △ 〇 〇 〇 〇 △
最大透過率Tmax 60% 50% 40% 30% 20% 10% 最小透過率Tmin 20% 20% 20% 20% 20% 20% 評価結果 × 〇 〇 △ △ ×
最大透過率Tmax 60% 50% 40% 30% 20% 10% 最小透過率Tmin 30% 30% 30% 30% 30% 30% 評価結果 × △ △ × × ×
最大透過率Tmax 60% 50% 40% 30% 20% 10% 最小透過率Tmin 40% 40% 40% 40% 40% 40% 評価結果 × × × × × ×
表5に示す結果から、最大値/最小値≧2を満足し、かつ、2%以上、50%以下の透過率が必要であることがわかる。
"Table 5"
From the results shown in Table 5, it can be seen that the maximum value / minimum value ≧ 2 is satisfied and the transmittance of 2% or more and 50% or less is necessary.
α、β…長軸方向
γ…面内方向
θ…極角、
φ…方位角、
K…光源、
J…受光部、
LT…拡散透過光、
L3…平行線透過光、
Tmax(φ1,θ1)…最大透過率、
Tmin(φ2,θ2)…最小透過率、
10、40、50…液晶パネル、
15…液晶層、
15a…液晶分子
15b…液晶分子
17、28、28’…基板、
18…指向性前方散乱フィルム、
20…カラーフィルタ層、
23、35…電極層、
31…反射層、
52…半透過反射層、
200…携帯電話本体、
300…携帯型情報処理機器、
400…腕時計型電子機器。
α, β ... major axis direction γ ... in-plane direction θ ... polar angle,
φ ... azimuth,
K ... light source,
J: Light receiving part,
LT: Diffuse transmitted light,
L3 ... Parallel line transmitted light,
Tmax (φ1, θ1) ... maximum transmittance,
Tmin (φ2, θ2) ... minimum transmittance,
10, 40, 50 ... Liquid crystal panel,
15 ... Liquid crystal layer,
15a ... Liquid crystal molecule 15b ...
18: Directional forward scattering film,
20 Color filter layer,
23, 35 ... electrode layer,
31 ... reflective layer,
52 ... a transflective layer,
200 ... mobile phone body,
300 ... portable information processing device,
400: A wristwatch type electronic device.
Claims (5)
外部から前記指向性前方散乱フィルムに入射する光による反射表示を行う液晶装置であって、
前記指向性前方散乱フィルムを透過した前方散乱光のうち、入射光の進行方向に対して±2゜以内の方向に進む前記前方散乱光の光強度の該入射光強度に対する割合を平行線透過率と定義し、入射光の進行方向に対して±2゜を越えて拡散する前記前方散乱光の光強度の該入射光強度に対する割合を拡散透過率と定義し、前記指向性前方散乱フィルムの法線に対する入射光の入射角度を極角θnと定義し、前記指向性前方散乱フィルムの面内方向の入射光角度を方位角φmと定義した時、
前記指向性前方散乱フィルムは、前記拡散透過率が最小かつ前記平行線透過光が最大になる入射角度(φ1,θ1)と、前記拡散透過率が最大になる入射角度(φ2,θ2)とを有し、
前記指向性前方散乱フィルムに正対する方向が観察方向とされるとともに、
前記指向性前方散乱フィルムにおける前記拡散透過率が最大となる極角と方位角とが前記液晶パネルの採光方向となり、前記平行線透過率が最大となる極角と方位角とが前記観察方向となるように、前記指向性前方散乱フィルムが前記液晶パネルに配置され、
前記基板間に印加した電圧を解除した時に、前記液晶層の厚み方向中央部に位置するネマチック液晶分子の長軸方向が、前記拡散透過率が最大となる方位角方向に対して±30°の範囲内にあり、前記液晶分子の長軸方向は前記基板間に電圧を印加した時に前記液晶分子が電界に対して応答する方向であることを特徴とする液晶装置。 A pair of substrates, and a nematic liquid crystal layer is sandwiched by the twist angle θt between the pair of substrates, and the reflective layer provided on the liquid crystal layer side of one of the pair of substrates or semi-transmissive reflective layer , it includes a liquid crystal panel provided with the the other of the liquid crystal layer side of the substrate and the directional forward scattering film provided on the opposite side of the pair of substrates,
A liquid crystal device that performs reflection display by light incident on the directional forward scattering film from the outside,
Of the forward scattered light transmitted through the directional forward scattering film , the ratio of the light intensity of the forward scattered light traveling in the direction within ± 2 ° with respect to the traveling direction of the incident light to the incident light intensity is a parallel line transmittance. And the ratio of the light intensity of the forward scattered light diffusing beyond ± 2 ° with respect to the traveling direction of the incident light to the incident light intensity is defined as diffuse transmittance, and the method of the directional forward scattering film When the incident angle of the incident light with respect to the line is defined as the polar angle θn, and the incident light angle in the in-plane direction of the directional forward scattering film is defined as the azimuth angle φm ,
The directional forward scattering film has an incident angle (φ1, θ1) at which the diffuse transmittance is minimum and the parallel line transmitted light is maximized, and an incident angle (φ2, θ2) at which the diffuse transmittance is maximized. Have
The direction facing the directional forward scattering film is the observation direction,
Wherein said diffuse transmission rate becomes maximum polar angle in the directional forward scattering film and the azimuth angle is the lighting direction of the liquid crystal panel, wherein the polar angle and the azimuth angle parallel ray transmittance is maximized and said viewing direction The directional forward scattering film is disposed on the liquid crystal panel,
When the voltage applied between the substrates is released, the major axis direction of the nematic liquid crystal molecules located at the central portion in the thickness direction of the liquid crystal layer is ± 30 ° with respect to the azimuthal direction in which the diffuse transmittance is maximum. The liquid crystal device is characterized in that the liquid crystal molecules are in a range, and the major axis direction of the liquid crystal molecules is a direction in which the liquid crystal molecules respond to an electric field when a voltage is applied between the substrates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003363487A JP4665388B2 (en) | 2000-12-13 | 2003-10-23 | Liquid crystal device and electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000379275 | 2000-12-13 | ||
JP2003363487A JP4665388B2 (en) | 2000-12-13 | 2003-10-23 | Liquid crystal device and electronic device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001111817A Division JP2002244119A (en) | 2000-12-13 | 2001-04-10 | Liquid crystal device and electronic apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2004110055A JP2004110055A (en) | 2004-04-08 |
JP2004110055A5 JP2004110055A5 (en) | 2008-05-22 |
JP4665388B2 true JP4665388B2 (en) | 2011-04-06 |
Family
ID=32300092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003363487A Expired - Lifetime JP4665388B2 (en) | 2000-12-13 | 2003-10-23 | Liquid crystal device and electronic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4665388B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5818719B2 (en) | 2012-03-05 | 2015-11-18 | 株式会社ジャパンディスプレイ | Display device and anisotropic scatterer |
CN104197863B (en) * | 2014-08-05 | 2017-04-05 | 暨南大学 | A kind of azimuthal determination method of photonic crystal fiber |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000330100A (en) * | 1999-05-21 | 2000-11-30 | Seiko Epson Corp | Liquid crystal device and electronic apparatus |
WO2001038932A1 (en) * | 1999-11-24 | 2001-05-31 | Citizen Watch Co., Ltd. | Liquid crystal display unit |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3339334B2 (en) * | 1996-12-05 | 2002-10-28 | 松下電器産業株式会社 | Reflective liquid crystal display |
-
2003
- 2003-10-23 JP JP2003363487A patent/JP4665388B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000330100A (en) * | 1999-05-21 | 2000-11-30 | Seiko Epson Corp | Liquid crystal device and electronic apparatus |
WO2001038932A1 (en) * | 1999-11-24 | 2001-05-31 | Citizen Watch Co., Ltd. | Liquid crystal display unit |
Also Published As
Publication number | Publication date |
---|---|
JP2004110055A (en) | 2004-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3575024B2 (en) | Reflective color liquid crystal device and electronic equipment using the same | |
TW451097B (en) | Liquid crystal device and electronic device | |
KR100332519B1 (en) | Liquid crystal display device | |
KR100429728B1 (en) | Liquid crystal device and electronic apparatus | |
US6912028B2 (en) | Liquid crystal display device with improved viewing angle properly and portable electronic apparatus using the same | |
JP2003015133A (en) | Liquid crystal display device | |
JP2003075987A (en) | Mask, substrate with light reflecting film, forming method for the light reflecting film, manufacturing method for electrooptic device, the electrooptic device, and electronic equipment | |
JP2003302740A (en) | Mask, substrate with light reflection film, method for forming light reflection film, method for manufacturing electro-optic device, electro-optic device, and electronic apparatus | |
JP2003302741A (en) | Mask, substrate with light reflection film, method for manufacturing light reflection film, and optical display device, and electronic apparatus | |
US6842205B2 (en) | Liquid crystal display and electronic device | |
JP2004333645A (en) | Liquid crystal display device and electronic apparatus | |
JP4153674B2 (en) | Liquid crystal device and electronic device | |
JP4665388B2 (en) | Liquid crystal device and electronic device | |
JP3435113B2 (en) | Liquid crystal display | |
JP4032661B2 (en) | Liquid crystal device and electronic device | |
JP3800865B2 (en) | Liquid crystal device and electronic device | |
JP4068815B2 (en) | Liquid crystal device and electronic device | |
JP2003057631A (en) | Liquid crystal device and electronic machine | |
JP3379427B2 (en) | Liquid crystal devices and electronic equipment | |
JP4032569B2 (en) | Liquid crystal device and electronic device | |
JP2004078249A (en) | Liquid crystal device and electronic apparatus | |
JP2002244119A (en) | Liquid crystal device and electronic apparatus | |
JP2002090723A (en) | Liquid crystal device and electronic instrument | |
JP2004126606A (en) | Liquid crystal apparatus and electronic equipment | |
JP2002182191A (en) | Electrooptic device and electronic equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070403 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080408 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080408 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101214 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101227 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4665388 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |