JP4068815B2 - Liquid crystal device and electronic device - Google Patents
Liquid crystal device and electronic device Download PDFInfo
- Publication number
- JP4068815B2 JP4068815B2 JP2001111816A JP2001111816A JP4068815B2 JP 4068815 B2 JP4068815 B2 JP 4068815B2 JP 2001111816 A JP2001111816 A JP 2001111816A JP 2001111816 A JP2001111816 A JP 2001111816A JP 4068815 B2 JP4068815 B2 JP 4068815B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- light
- scattering film
- forward scattering
- directional forward
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Liquid Crystal (AREA)
- Optical Elements Other Than Lenses (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、反射型あるいは半透過反射型液晶表示装置に適用することで表示のにじみ(ボケ)および色付きを解消し、鮮明な表示を得ることができるとともに、そのような鮮明な表示が可能な液晶装置を備えた電子機器を提供できる技術に関する。
【0002】
【従来の技術】
ノート型パーソナルコンピュータ、携帯型ゲーム機や電子手帳などの種々の電子機器には表示部として消費電力の少ない液晶表示装置が多用されている。特に近年は表示内容の多用化に伴って、カラー表示が可能な液晶表示装置の需要が高まっている。また、前記電子機器のバッテリー駆動時間を長くしたいという要求から、バックライト装置を必要としない反射型のカラー液晶表示装置が開発されている。
【0003】
以下に従来の反射型のカラー液晶表示装置の構成例の概要を図面を参照して説明する。
【0004】
図20(a)、(b)は、従来の反射型カラー液晶表示装置の要部を示す拡大概略断面図である。これらの内、図20(a)は前方散乱板タイプの反射型液晶表示装置を示し、図20(b)は内面散乱反射板タイプの液晶表示装置を示している。
【0005】
図20(a)に示した前方散乱板タイプの液晶表示装置は、一対のガラス基板100、101間に液晶層102が挟持され、一方(図面では上側)のガラス基板101の液晶層102側の表面部分には、カラーフィルタ104が設けられていおり、他方(図面では下側)のガラス基板100の液晶層102側の表面部分には、光反射層103が設けられている。また、ガラス基板101の上面側には、例えば厚さ50〜200μmのトリアリルシアネートなどからなる基材に金属酸化物粒子をフィラーとして分散させた前方散乱フィルム105が透明な粘着材または粘着シート(図示略)を介して貼付され、その上に偏光板106が設けられている。
【0006】
このような前方散乱タイプの反射型液晶装置において入射光L1は、偏光板106、前方散乱フィルム105、ガラス基板101、液晶層102、カラーフィルタ104を通過後、駆動電極を兼ねる光反射層103の表面で反射され、反射された光が液晶層102、カラーフィルタ104、ガラス基板101、前方散乱フィルム105、偏光板106を介して液晶装置から出射され、観察者Eに反射光L2として視認される。ここで液晶装置を出射する光は液晶層102の状態によって制御される、即ち、液晶層102における液晶分子の配列状態により反射光の偏光状態が制御され、反射光の偏光状態が偏光板106の偏光軸と一致した場合には偏光板106を透過して所望の色表示がなされることとなる。
【0007】
また、図20(b)の内面散乱反射板タイプの液晶装置は、一対のガラス基板100、101、液晶層102を備え、ガラス基板100の液晶層102側の表面には、光反射層を兼ねるAl薄膜等からなる画素電極107が表面に光を乱反射する凹凸部を設けた状態で形成されている。
【0008】
ここで光入射側のガラス基板101の液晶層102側の表面には、カラーフィルタ104が形成され、ガラス基板101の上面側には偏光板106が設けられている。このような内面散乱板タイプの反射型液晶表示装置において、入射光L1は、偏光板106、ガラス基板101、カラーフィルタ104、液晶層102を通過後、画素電極を兼ねる凹凸型の光反射層107の表面で乱反射され、液晶層102の状態によって偏光が変化された後、反射光はカラーフィルタ104とガラス基板101と偏光板106を通過し、偏光板106において、反射光の偏光状態により透過、不透過とされ、透過した場合には散乱光L3’として観察者の肉眼Eに入射することによりカラー表示として視認される。
【0009】
ところで、前記図20(a)に示す従来構造において前方散乱フィルム105は、光反射層103が鏡面反射層である場合に、鏡面独特の特定の方向での強いミラー反射(正反射)を弱め、できるだけ広い範囲で明るい表示を可能とする目的で用いられている。
【0010】
この種の前方散乱フィルム105は、一般的には厚さ25〜30μm(25〜30×10-6m)程度のアクリル系の樹脂層(例えば屈折率n=1.48〜1.49程度)の内部に粒径4μm(4×10-6m)程度のビーズ(例えば屈折率n=1.4)を多数分散させてなる構造を有するもので、携帯電話用の反射型液晶表示装置、携帯型情報機器等の反射型液晶表示装置には広く用いられているものである。
【0011】
なお、携帯機器の液晶表示装置には、反射型の他にバックライトを備えた半透過反射型の液晶表示装置も知られている。この種従来の半透過反射型液晶表示装置は、反射層を半透過反射層として構成し、透過表示の場合にバックライトの光を半透過反射層を介して観察者側に到達させることで透過表示を行い、バックライトを使用していない状態では反射型液晶表示装置として反射光を有効利用することができるように構成されている。
【0012】
【発明が解決しようとする課題】
しかしながら、前述の前方散乱フィルム105は、異なる各画素での異なる情報が使用者の目に認識されるまでの間に混在されてしまう傾向があり、表示のにじみ(ボケ)が発生し易いという問題点を有していた。これは、図20(a)に示すように反射型液晶表示装置において、入射光が反射層103で反射されてから使用者の目に届くまでに前方散乱フィルム105で生じる散乱に起因し、隣り合う画素で白表示と黒表示を行っていたとすると、前方散乱フィルム105の散乱作用のために、白表示と黒表示の境界がわかり難くなり易く、表示がにじんでしまう(ボケる)ことに起因していると、本発明者は考えている。また、カラーフィルタ104を設けてなる液晶装置について表示のにじみ(ボケ)について考察すると、色表示の境界が判別し難くなる傾向にあり、混色を生じる恐れがあり、良好な発色性を得られなくなる恐れがある。
【0013】
また、図20(a)に示す構造の液晶表示装置の場合、表示が黄色味を帯びてしまう(表示の色づき)傾向があった。
【0014】
また、前記のような表示がにじむこと、あるいは十分な発色性が得られないという事情は、半透過反射型液晶表示装置において反射表示を行っている場合にも該当することである。
【0015】
次に、図20(b)に示すような凹凸を設けた光反射性の画素電極107を備えた構成(内面散乱構造)では、前方散乱フィルムにおける上述のような表示のにじみを生じるおそれは少ないが、凹凸を有する画素電極107を製造するために特別の加工工程と工数が必要になるので、製造コストが高くなってしまう問題を有している。
【0016】
以上のような背景から本発明者らは、前方散乱フィルムに着目して更に研究を重ねた結果、前方散乱フィルムの散乱性に指向性を持たせるようにすることで液晶表示装置の表示のにじみ(ぼけ)を解消できることを知見し、本願発明に到達した。また、本発明者らが前方散乱フィルムについて研究を重ねた結果、図20(a)に示すように前方散乱フィルム105が配置された構造の液晶表示装置の場合、入射光L1が1回目に前方散乱フィルム105を通過する場合に発生する散乱光は表示のにじみ(ぼけ)に大きな影響を与えるおそれは少ないが、反射光となって再度前方散乱フィルム105を通過する際に生じる拡散は観察者Eに観察され易く、この反射光が散乱フィルム105を通過する場合の散乱光が表示のにじみ(ぼけ)に対して影響が大きいことを知見している。
【0017】
また、図20(a)に示す構造の液晶表示装置の場合、表示が黄色味を帯びてしまう(表示の色づき)理由は、液晶表示装置を構成する偏光板106、配向膜、透明電極、絶縁膜、保護膜等は黄色を呈する(L*a*b*表色系で表される色相がb*>0を示す)ものが多く、また、従来の等方的な前方散乱フィルム105の散乱光も黄味を帯びている(L*a*b*表色系で表される色相がb*>0を示す)おり、さらにこの散乱光が液晶パネルの内部の反射層103により反射された後も黄味を帯びているので、色相がb*>0の液晶表示装置から反射した色相がb*>0反射光により観察した表示も黄色を帯びてしまうことを知見している。
【0018】
本発明は上述の問題点に鑑みてなされたものであり、表示のにじみおよび色付きを低減して表示品質を向上させることができ、鮮明な表示が可能であることと、内面散乱板を備えた液晶装置に対して構成を単純化することができ、鮮明な表示を備えつつ製造コストを低減できる液晶装置およびその液晶装置を備えた電子機器を提供することを目的の1つとする。
【0019】
【課題を解決するための手段】
本発明の液晶装置は、前記課題を解決するために、一対の基板と、これらの基板間に挟持された液晶層と、前記一方の基板の液晶層側に設けられた反射層と、前記他方の基板の液晶層側と反対側に設けられた指向性前方散乱フィルムとを具備した液晶パネルを備えてなり、 前記指向性前方散乱フィルムに対してその一面側に配置した光源から光を入射し、前記指向性前方散乱フィルムの他面側に配置した受光部において、前記指向性前方散乱フィルムを透過した全透過光のうち、拡散透過光を除いた平行線透過光を観測した際、
前記指向性前方散乱フィルムの法線に対する入射光の入射角度を極角θnと定義し、前記指向性前方散乱フィルムの面内方向の入射光角度を方位角φmと定義し、平行線透過光の最大透過率をTmax(φ1,θ1)と定義し、平行線透過光の最小透過率をTmin(φ2,θ2)と定義した場合、最小透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの採光側になるように、最大透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの観察方向側になるように、前記指向性前方散乱フィルムを前記液晶パネルに配置してなり、
前記指向性前方散乱フィルムは、前記光源からの光を最小透過率を示す極角と方位角方向から該指向性前方散乱フィルムに入射し、透過した拡散透過光が、L*a*b*表色系で表される色相がb*<0を示すように設定されたものであることを特徴とする。
【0020】
指向性前方散乱フィルムを備えた反射型液晶表示装置において、最小透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの採光側になるように、最大透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの観察方向側になるようにして指向性前方散乱フィルムを液晶パネルに配置してなることで、平行線透過光の最小透過率を示す場合の方位角φ2は入射角方向となり、平行線透過光の最大透過率を示す場合の方位角φ1は観察者方向になる。このように配置された指向性前方散乱フィルムを有する液晶表示装置ならば、指向性前方散乱フィルムに対して入射された光は入射時に強く散乱されるが、液晶パネル内部の反射層により反射された後に指向性前方散乱フィルムを通過する際に光が散乱される量が少なくなるので、表示のにじみ(ボケ)に対する影響は少なく、表示のにじみ(ボケ)の少ない鮮明な表示形態が得られる。
【0021】
また、前記のように配置された指向性前方散乱フィルムを有する反射型液晶表示装置において、前記指向性前方散乱フィルムは、前記光源からの光を最小透過率を示す極角と方位角方向から該指向性前方散乱フィルムに入射し、透過した拡散透過光が、L*a*b*表色系で表される色相がb*<0を示すように設定されたことにより、入射時に強く散乱している拡散透過光が青系白色を呈するので、このような青系白色(色相がb*<0)の拡散透過光は、偏光板、配向膜、透明電極、絶縁膜、保護膜等の構成部材の殆どが黄色を呈している(L*a*b*表色系で表される色相がb*>0を示す)液晶パネルの内部の反射層により反射された後も青系白色(色相がb*<0)を帯びているので、この青系白色(色相がb*<0)の反射光により表示を観察すると、色相が相殺された状態となり、色づきのない(無彩色)の表示が得られ、よって鮮明な表示形態が得られ、表示品質を向上できる。
【0022】
本発明は前記課題を解決するために、前述の構造の液晶装置の反射層に代えて半透過反射層を備えた構造の半透過反射型の液晶装置にも本発明構造を適用することができる。
【0023】
半透過反射層を備えた液晶装置においても反射表示を行う場合に本発明が効果的であり、先の構造の場合と同様に、平行線透過光の最小透過率を示す場合の方位角φ2は入射角方向となり、平行線透過光の最大透過率を示す場合の方位角φ1は観察者方向になる。このように配置された指向性前方散乱フィルムを有するならば、指向性前方散乱フィルムに対して入射された光は入射時に強く散乱されるが、液晶パネル内部の反射層により反射されて指向性前方散乱フィルムを通過する光は散乱される量が少なくなるので、表示のにじみ(ボケ)の少ない鮮明な表示形態が得られる。また、前記指向性前方散乱フィルムは、前記光源からの光を最小透過率を示す極角と方位角方向から該指向性前方散乱フィルムに入射し、透過した拡散透過光が、L*a*b*表色系で表される色相がb*<0を示すように設定されたことにより、入射時に強く散乱している拡散透過光が構成部材の殆どが黄色を呈している(L*a*b*表色系で表される色相がb*>0を示す)液晶パネルに入射して液晶パネルの内部に入射し、反射層により反射された後も青系白色(色相がb*<0)を帯びているので、このような青系白色(色相がb*<0)の反射光により表示を観察すると、色相が相殺された状態となり、色づきのない(無彩色)の表示が得られ、よって鮮明な表示形態が得られ、表示品質を向上できる。
【0024】
前記のいずれか構成の本発明の液晶装置において、前記指向性前方散乱フィルムは、前記光源からの光を最小透過率を示す極角と方位角方向から前記指向性前方散乱フィルムに入射し、透過した拡散透過光はL*a*b*表色系で表される色相が−6<b*<0を示すように設定されていることが、色づきのない(無彩色)の表示が得られ、表示品質をより向上できる点で好ましい。
【0025】
また、前記のいずれか構成の本発明の液晶装置において、前記指向性前方散乱フィルムは、前記光源からの光を最小透過率を示す極角と方位角方向から前記指向性前方散乱フィルムに入射し、透過した拡散透過光はL*a*b*表色系で表される色相が−10<a*<10を示すように設定されていることが、色づきのない(無彩色)の表示が得られ、表示品質をより向上できる点で好ましい。
【0026】
また、前記のいずれかの構成の本発明の液晶装置において、前記指向性前方散乱フィルムは、前記光源からの光を最小透過率を示す極角と方位角方向から前記指向性前方散乱フィルムに入射し、透過した拡散透過光はL*a*b*表色系で表される色相が−5<a*<5を示すように設定されていることが、色づきのない品質をより向上できる点でさらに好ましい。
【0027】
また、本発明は前記課題を解決するために、前記のいずれかの構成の本発明の液晶装置において、前記平行線透過光の最大透過率Tmaxと最小透過率Tminの比を、(Tmax/Tmin)≧2の関係にすることができる。
【0028】
(Tmax/Tmin)≧2の関係を満たすことで、指向性前方散乱フィルムにおいて光の入射時に十分な散乱が得られるので、従来の等方性前方散乱フィルムを備えた液晶装置よりも明るく表示の鮮明な(クリアな)表示が得られる。また、(Tmax/Tmin)≧2の関係を満たすことで、前記光源からの光を最小透過率を示す極角と方位角方向から該指向性前方散乱フィルムに入射し、透過した拡散透過光のL*a*b*表色系で表される色相をb*<0を示すことができるための手段として特に有効であり、より好ましくは(Tmax/Tmin)≧4の関係を満たすことが、前記拡散透過光の色相をb*<0とでき、表示品質をより向上できる点で好ましい。
【0029】
本発明は前記課題を解決するために、前記のいずれかの構成の本発明の液晶装置において、前記一方の基板の液晶層と前記他方の基板の液晶層側に液晶駆動用の電極が設けられてなることを特徴とする。
【0030】
かかる液晶装置によれば、液晶層を挟む電極により液晶の配向状態を制御し、表示、非表示、中間調表示の切り替えを行うことができる。
【0031】
本発明は前記課題を解決するために、前記のいずれかの構成の本発明の液晶装置において、前記一対の基板のどちらか一方の液晶層側にカラーフィルタを設けてなるものでも良い。
【0032】
かかる液晶装置によれば、カラーフィルタが設けられたことでカラー表示が可能となり、先のいずれかの構造を採用することで表示の色つきや表示のにじみの少ない、鮮明なカラー表示を有するものが得られる。
【0033】
本発明は前記反射層が微細な凸凹を有している場合には、入射光を強く散乱し、反射層へと導くので、反射層が微細な凸凹を有しているために生じるぎらつき感を緩和させることができ、さらに、反射層による反射光は指向性前方散乱フィルムで強い散乱を受けないので表示のにじみの少ない、鮮明な表示を得ることができる。
【0034】
本発明の電子機器は前記課題を解決するために、前記いずれかの構成の本発明の液晶装置を表示手段として備えたことを特徴とする。
【0035】
かかる電子機器は、前述の優れた表示形態の本発明の液晶装置が備えられたことにより、表示のにじみや色づきの少ない、鮮明な表示を有する表示形態を備えたものを得ることができる。
【0036】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0037】
(液晶装置の第1実施形態)
本発明による液晶装置の第1実施形態の液晶パネルについて、図1〜図3を参照して以下に説明する。図1は、本発明を単純マトリクス型の反射型液晶パネルに適用した第1実施形態を示した平面図であり、図2は図1に示した液晶パネルのA−A線に沿う部分断面図、図3は前記液晶表示装置に内蔵されたカラーフィルタ部分の拡大断面図である。この実施形態の液晶パネル10に、液晶駆動用IC、支持体などの付帯要素を装着することによって、最終製品としての液晶表示装置(液晶装置)が構成される。
【0038】
この実施形態の液晶パネル10は、平面視略矩形状、かつ環状のシール材12を介して互いにセルギャップをあけて対向するように貼り付けられた一対の平面視矩形状の基板ユニット13、14と、これらの間に前記シール材12とともに囲まれて挟持された液晶層15と、一方(図2の上側)の基板ユニット13の上面側に設けられた指向性前方散乱フィルム18と位相差板19と偏光板16を主体として構成されている。基板ユニット13、14のうち、基板ユニット13は観測者側に向いて設けられる表側(上側)の基板ユニットであり、基板ユニット14はその反対側、換言すると裏側(下側)に設けられる基板ユニットである。
【0039】
前記上側の基板ユニット13は、例えばガラス等の透明材料からなる基板17と、基板17の表側(図2では上面側、観測者側)に順次設けられた指向性前方散乱フィルム18、位相差板19及び偏光板16と、基板17の裏側(換言すると液晶層15側)に順次形成されたカラーフィルタ層20、オーバーコート層21と、該オーバーコート層21において液晶層15側の面に形成された液晶駆動用のストライプ状の複数の電極層23を具備して構成されている。なお、実際の液晶装置においては、電極層23の液晶層15側と、後述する下基板側のストライプ状の電極層35の液晶層15側に、各々配向膜が被覆形成されるが、図2ではこれらの配向膜を省略し説明も略するとともに、以下に順次説明する他の実施形態においても配向膜の図示と説明は省略する。また、図2および以下の各図に示す液晶装置の断面構造は、図示した場合に各層が見やすいように各層の厚さを実際の液晶装置とは異なる厚さに調節して示してある。
【0040】
前記上基板側の駆動用の各電極層23は本実施形態ではITO(Indium Tin Oxide:インジウム錫酸化物)などの透明導電材料から平面視ストライプ状に形成されたもので、液晶パネル10の表示領域と画素数に合わせて必要本数形成されている。
【0041】
前記カラーフィルタ層20は、本実施形態では図3に拡大して示すように、上側の基板17の下面(換言すると液晶層15側の面)に、光遮断用のブラックマスク26、カラー表示用のRGBの各パターン27を形成することにより構成されている。また、RGBのパターン27を保護する透明な保護平坦化膜としてオーバーコート層21が被覆されている。
【0042】
このようなブラックマスク26は例えばスパッタリング法、真空蒸着法等により厚さ100〜200nm程度のクロム等の金属薄膜をパターニングして形成されている。RGBの各パターン27は、赤色パターン(R)、緑色パターン(G)、青色パターン(B)が、所望のパターン形状で配列され、例えば、所定の着色材を含有する感光性樹脂を使用した顔料分散法、各種印刷法、電着法、転写法、染色法等の種々の方法で形成されている。
【0043】
一方、下側の基板ユニット14は、ガラスなどの透明材料あるいはその他の不透明材料からなる基板28と、基板28の表面側(図2では上面側、換言すると液晶層15側)に順次形成された反射層31、オーバーコート層33と、該オーバーコート層33の液晶層15側の面に形成されたストライプ状の駆動用の複数の電極層35とから構成されている。これらの電極層35においても先の電極層23と同様に液晶パネル10の表示領域と画素数に合わせて必要本数形成されている。
【0044】
次に、本実施形態の反射層31は、AgまたはAlなどの光反射性かつ導電性の優れた金属材料からなり、基板28上に蒸着法あるいはスパッタ法などにより形成されたものである。ただし、反射層31が導電材料からなることは必須ではなく、反射層31とは別に導電材料製の駆動用電極層を設け、反射層31と駆動電極を別個に設けた構造を採用して差し支えない。
【0045】
次に、上述の上側の基板ユニット13に付設されている指向性前方散乱フィルム18について以下に詳細に説明する。
【0046】
本実施形態において用いられる指向性前方散乱フィルム18とは、基本構造の面から見れば、特開2000−035506、特開2000−066026、特開2000−180607等に開示されている指向性を有する前方散乱フィルムを適宜用いることができる。例えば、特開2000−035506に開示されているように、相互に屈折率の異なる2種以上の光重合可能なモノマーまたはオリゴマーの混合物である樹脂シートに、紫外線を斜め方向から照射して特定の広い方向のみを効率良く散乱させる機能を持たせたもの、あるいは、特開2000−066026に開示されているオンラインホログラフィック拡散シートとして、ホログラム用感光材料にレーザを照射して部分的に屈折率の異なる領域を層構造となるように製造したものなどを適宜用いることができる。
【0047】
ここで本実施形態において用いる指向性前方散乱フィルム18は、以下に説明する平行線透過率等の各種パラメータを液晶表示装置に好適な特定の位置関係としたものである。
【0048】
まず、図4に示すように平面視矩形状の指向性前方散乱フィルム18を水平に設置するものとする。なお、図4では水平設置状態が説明し易いので水平設置状態で説明するが、指向性前方散乱フィルム18を設置する方向は水平方向に限らず、どの方向でも良く、要は以下に説明する光源Kと受光部Jと指向性前方散乱フィルム18の位置関係(後述の極角θ、方位角φ)を明確に定めることができ、指向性前方散乱フィルム18に入射し、透過した拡散透過光が、L*a*b*表色系で表される色相がb*<0を示すことができれば良い。本実施形態では説明の際に方向の理解が容易な方向として指向性前方散乱フィルム18の水平方向設置を一例にして説明する。
【0049】
図4において、指向性前方散乱フィルム18の右斜め上方奥側から指向性前方散乱フィルム18の中央部の原点Oに向けて、光源Kからの入射光L1を入射する場合を想定する。そして、指向性前方散乱フィルム18の原点Oを通過させて指向性前方散乱フィルム18を透過して直進する透過光を光センサ等の受光部Jにて受光する測定系を想定する。
【0050】
ここで、指向性前方散乱フィルム18への入射光L1の方向を特定するため、図4に示すように0°、90°、180°、270°の座標軸によって指向性前方散乱フィルム18を矩形状に4等分して中央部の原点Oを通過する座標を想定し、(換言すると、指向性前方散乱フィルム18の各辺の中心を座標軸の一端が通過するように4等分し)、この指向性前方散乱フィルム18の表面上に垂直投影される入射光L1の水平方向回転角度(0°の座標軸からの右回りの角度を+、0°の座標軸から左回りの角度を−とする。)を方位角φと定義する。次に、0°の座標軸と180°の座標軸を含む垂直面(図4に符号M1で示す面)に水平投影される入射光L1の方向に対して指向性前方散乱フィルムの法線Hとのなす角度を入射光L1の極角θと定義する。換言すると、極角θとは水平設置した指向性前方散乱フィルム18に対する鉛直面内の入射光L1の入射角度を示し、方位角φとは入射光L1の水平面内回転角に相当する。
【0051】
この状態において例えば、入射光L1の極角を0°、方位角を0°とした場合は、入射光L1が指向性前方フィルム18に対して図5に示すように直角に入射する(法線方向からの入射する)ことになり、指向性前方散乱フィルム18は図5の符号18に示す状態となり、極角θを+60°とした場合に光源Kと受光部Jと指向性前方フィルム18との位置関係は図5の符号18Aに示すように指向性前方散乱フィルム18を配置した状態となり、極角θを−60°とした場合に光源Kと受光部Jと指向性前方散乱フィルム18との位置関係は符号18Bに示すように指向性前方散乱フィルム18を配置した状態となることを意味する。
【0052】
次に、指向性前方散乱フィルム18の一面側(図6(A)では左側)に設置された光源から発せられた入射光L1が図6(A)に示すように指向性前方散乱フィルム18を透過して指向性前方散乱フィルム18の他面側(図6(A)では右側)に抜ける場合、指向性前方散乱フィルム18の一面側(左側)において散乱する光を後方散乱光LRと称し、指向性前方散乱フィルム18を透過する光を前方散乱光と称することとする。そして、指向性前方散乱フィルム18を透過した前方散乱光に関し、入射光L1の進行方向に対して±2°以内の角度誤差で同じ方向に直進する前方散乱光(平行線透過光)L3の光強度について、入射光L1の光強度に対する割合を平行線透過率と定義し、更に、±2゜を越えて周囲側に斜めに拡散する前方散乱光(拡散透過光)LTの光強度について、入射光L1の光強度に対する割合を拡散透過率と定義し、透過光全体の入射光に対する割合を全透過率と定義する。以上の定義から、全光線透過率から拡散透過率を差し引いたものが平行線透過率であると定義することができる。以上の説明を更に理解し易くするために、図1にも入射光L1と方位角φと平行線透過光L3の関係を示した。
【0053】
なお、光学の分野においてヘイズ(Haze)と称される透過率尺度も一般的には知られているが、ヘイズとは拡散透過率を全光線透過率で除算して%表示した値であり、本実施形態において用いる平行線透過率とは全く異なる概念の定義である。
【0054】
次に、先の極角θと方位角φを用いて平行線透過率の最大透過率を標記する場合、Tmax(φ1,θ1)と標記することと定義し、平行線透過率の最小透過率をTmin(φ2,θ2)と標記することと定義する。また、換言すると、指向性前方散乱フィルムの性質から、最大透過率を示す条件においては最も散乱が弱い条件であり、最小透過率を示す条件においては最も散乱が強い条件である。
【0055】
例えば、仮に極角θ=0°、方位角=0°の時に最大透過率を示す場合に、Tmax(0,0)と標記する。(これは、指向性前方散乱フィルムの法線方向に沿う平行線透過率が最大であることを意味する。換言すると、指向性前方散乱フィルムの法線方向に沿う散乱が最も弱いことを意味する。)また、極角θ=10°、方位角=45°の時に最小透過率を示す場合に、Tmin(10,45)と標記し、この場合はこの方向の散乱が最も強いことを意味する。
【0056】
以上の定義に基づき、液晶装置に適用して好ましい指向性前方散乱フィルム18の各特性について以下に説明する。
【0057】
前述したように指向性前方散乱フィルム18において、平行線透過率が最大透過率を示す角度は、最も散乱が弱い角度であり、最小透過率を示す角度は、最も散乱が強い角度である。
【0058】
よって換言すると、図2に示すように反射型液晶表示装置においては、液晶パネル10に対する周囲光を入射光L1として利用し、反射層31にて反射した光を観察者が反射光として認識すると考えると、図4の座標軸において、光の入射時に散乱が強い方向(換言すると平行線透過率の低い方向)から液晶パネル10に入射光を入れ、観察者が反射光を観察する場合に散乱が弱い方向(換言すると平行線透過率の高い方向)から見れば、表示のにじみ(ボケ)の少ない状態を得ることができると考えられる。これは、本発明者らが知見した、指向性前方散乱フィルム18に対する入射時の1回目の散乱は表示のにじみ(ボケ)に影響が出にくいが、反射光として指向性前方散乱フィルム18を2回目に通過する際の散乱が表示のにじみ(ボケ)に影響が大きいという知見に基づくものである。
【0059】
即ち、本実施形態では入射光L1が1回目に指向前方性散乱フィルム18を通過する場合には光を散乱した方(拡散透過光が多い方)が、反射層31の正反射(ミラー反射)を防止して広い視野角で明るい表示を得ようとする目的のためには好ましく、更に、液晶装置の内部の反射層31で反射した光が2回目に指向性前方散乱フィルム18を通過する場合には散乱が少ない方が表示のにじみ(ボケ)を少なくする上で好ましいと考えられるからである。従って、指向性前方散乱フィルム18の特性において、最小透過率を示す極角と方位角、換言すると最も散乱が強い入射光の極角と方位角方向を液晶パネル10の採光側に向けること、換言すると観察者側と反対側に向けることが好ましく、平行線透過率が最大透過率を示す極角と方位角、換言すると最も散乱が弱い入射光角度と入射方向を液晶パネル10の観察者側に向けることが必要である。
【0060】
ここで図6(B)に、本実施形態において用いる指向性前方散乱フィルム18の断面構造を示し、以上のような極角と方位角の状態について説明する。
【0061】
本実施形態において用いる指向性前方散乱フィルム18の断面構造モデルは図6(B)に示すように、屈折率がn1の部分と屈折率がn2の部分が指向性前方散乱フィルム18の断面構造において所定の角度を有して斜め方向に層状に交互配置されてなる構造である。この構造の指向性前方散乱フィルム18に斜め方向から適切な極角を有して入射光L1が入射されるとすると、屈折率の異なる各層の境界部分において散乱されるとともに、散乱光の一部が液晶層15を通過して反射層31において反射されるとこの反射光L2が再度液晶層15を通過して指向性前方散乱フィルム18を先程の入射光L1とは異なる極角にて通過しようとするがここでの反射光L2は散乱の少ない状態で指向性前方散乱フィルム18を通過することができる。
【0062】
そして、このような関係を満足させるためには、方位角φ1とφ2の関係として、φ1=φ2±180°であることが最も好ましい。これは、φ2を入射角方向、φ1を観察方向とすることを意味し、実際の液晶装置で適用する場合にこれらの角度が180°異なる。この場合、液晶装置に入射された光は入射時に強く散乱され、反射層31で反射された光は散乱され難いので、表示のにじみ(ボケ)の無い鮮鋭な表示形態が得られる。ただし、前述のような所定の角度を有して斜め方向に層状に交互に屈折率の異なる層が配置される指向性前方散乱フィルム18が組織的に完全に均一ではないことを考慮すると、方位角φ1とφ2の関係としては、φ1=φ2±180°で理想的ではあるが、φ1=φ2±180°の関係を基にして、その角度から±10°程度ずれたものまで本発明では包含するものとする。この角度が±10゜を超えてずれたものでは表示のにじみ(ボケ)の無い鮮鋭な表示形態が得られ難くなる。
【0063】
次に、先の(Tmax/Tmin)の値が(Tmax/Tmin)≧2の関係を満足することが好ましい。この関係とすることで、入射時に十分な散乱が得られ、明るく鮮鋭な反射表示が得られる。また、この関係を満足させることで、従来から知られている等方性散乱フィルムを用いた場合よりも明るい反射表示を実現できる。
【0064】
また、(Tmax/Tmin)≧2の関係を満たすことで、前記光源Kからの光を最小透過率を示す極角と方位角方向から指向性前方散乱フィルム18に入射し、透過した拡散透過光LTのL*a*b*表色系で表される色相がb*<0を示し、平行線透過光L3のL*a*b*表色系で表される色相がb*>0を示す(黄色味を帯びる)ための手段として特に有効であり、より好ましくは(Tmax/Tmin)≧4の関係を満たすことが、前記拡散透過光LTの色相をb*<0とすることができ、表示品質をより向上できる点で好ましい。
【0065】
このような色相がb*<0(青系白色)の拡散透過光LTは、黄色を呈している(L*a*b*表色系で表される色相がb*>0を示す)液晶パネル内の反射層28により反射された後も青系白色(色相がb*<0)を帯びているので、この青系白色(色相がb*<0)の反射光L2により表示を観察すると、色相が相殺された状態となり、色づきのない(無彩色)の表示が得られ、よって鮮明な表示形態が得られ、表示品質を向上できる。
【0066】
また、前記拡散透過光LTはL*a*b*表色系で表される色相が−6<b*<0を示すことが、色づきのない(無彩色)の表示が得られ、表示品質をより向上できる点で好ましい。拡散透過光LTがこのような特性を示すようにするには、平行線透過光L3の色相が10≦b*の関係を満たすようにすればよい。
【0067】
また、前記拡散透過光LTはL*a*b*表色系で表される色相が−10<a*<10を示すことが、色づきのない(無彩色)の表示が得られ、表示品質をより向上できる点で好ましい。
【0068】
次に、極角θ1とθ2を個々に見ると、等方性の散乱フィルムよりも明るい表示を得るためには、−40°≦θ1<0°、0°<θ2≦40°の範囲、より好ましくは−30°≦θ1≦−10°、かつ、10°≦θ2≦30°の範囲とすることが好ましい。
【0069】
次に、指向性前方散乱フィルム18の法線方向の(真正面)の平行線透過率をT(0,0)と定義すると、従来から知られている等方性の散乱フィルムよりも明るい表示を得るためには、θ1=−20°、θ2=20°の場合に、T(0,0)が3%以上、50%以下であることが好ましく、T(0,0)が5%以上、40%以下であることがより好ましい。T(0,0)が3%を下回ると、散乱が強すぎて表示がぼけることとなり、T(0,0)が40%を超えると正面の散乱が弱すぎてミラー反射に近くなる。
【0070】
次に、指向性前方散乱フィルムの方位角φをφ1±60°(φ2±60°)の範囲と規定した場合、常にθ1で平行線透過率の極大をとり、θ2で平行線透過率の極小値をとるとともに、極大値と極小値の比を1.5以上とすることが好ましい。このような特徴を有しているならば、φ2の一方向のみならず、方位角で±60°までの光を散乱させることができるので、個々の環境下に対応することが容易になり、明るい表示を実現できる。
【0071】
次に、最大透過率を示す方位角φ1および最小透過率を示す方位角φ2と直交する方向の極角θを−40°〜+40°まで変化させた場合、この範囲において平行線透過率が指向性前方散乱フィルムの法線方向の透過率と同等か、あるいは高ければ、液晶装置を横方向から観察しても表示のにじみ(ボケ)の無い鮮鋭な表示を得ることができる。即ち、T(0,0)≦T(φ1±90,θ)の関係を満足し、T(0,0)≦T(φ2±90,θ)の関係を満足するものとすることが好ましい。
【0072】
次に、極角θが−60°≦θ≦+60°の範囲において、平行線透過率T(φ,θ)が2%以上であり、50%以下であることが好ましい。即ち、2%≦T(φ,θ)≦50%、但し−60°≦θ≦+60°の関係を満足することが好ましい。 このような関係とすることで、明るく、表示のにじみ(ボケ)の無い鮮鋭な表示を得ることができる。
【0073】
(液晶装置の第2実施形態)
図7に示すものは、本発明に係る液晶装置の第2実施形態の液晶パネル40を示す部分断面図である。
【0074】
この実施形態の液晶パネル40は先の図1〜図3を基に説明した第1実施形態の液晶パネル10と同様に指向性前方散乱フィルム18を備えた反射型の単純マトリクス構造のものであり、基本的な構造は第1実施形態と同様であるので同一構成要素には同一符号を付してそれら構成要素の説明を省略し、以下に異なる構成要素を主体に説明する。
【0075】
本実施形態の液晶パネル40は対向された基板ユニット41と基板ユニット42の間にシール材12に囲まれて液晶層15を挟持して構成されている。前記上側の基板ユニット41は先の第1実施形態の基板ユニット13において、カラーフィルタ層20が省略されたもので、カラーフィルタ層20は対向側の下側の基板ユニット42の反射層31の上に積層されていて、この部分の構成が先の第1実施形態の構造と異なっている。即ち、図4に示す液晶パネル40は、先の第1実施形態では上側(観察者側)の基板ユニット13側に設けられていたカラーフィルタ層20を液晶層15の下側(観察者側と反対側)の基板ユニット42側に設けた構造である。カラーフィルタ層20の構造は第1実施形態の構造と同等であるが、カラーフィルタ層20が基板28の上面側に形成されているので、図3に示すカラーフィルタ層20の積層構造が図3の状態に対して上下逆とされている。
【0076】
この第2実施形態の構造においても、指向性前方散乱フィルム18は先の第1実施形態の構造と同様に設けられているので、表示の色づきや反射表示のにじみ(ボケ)に関して先の第1実施形態の構造と同等の効果を得ることができる。
【0077】
また、図4に示す液晶装置40では、反射層31の直上にカラーフィルタ層20が形成されているので、液晶装置40に入射された光が液晶層15を介して反射層31に至り、反射されてから直ちにカラーフィルタ32を通過するので、色ずれの問題が起こりにくい特徴を有する。
【0078】
本実施形態では、反射層31はミラー(鏡面)状態であるが、1〜20μm程度の微細な凸凹を有していても構わない。
【0079】
(液晶装置の第3実施形態)
図8に示すものは、本発明に係る液晶装置の第3実施形態の液晶パネル50を示す断面図である。
【0080】
この実施形態の液晶パネル50は先の図1〜図3を基に説明した第1実施形態の液晶パネル10に設けられていた反射層31に代えて、半透過反射層52を設けた基板ユニット55を備えた半透過反射型の単純マトリクス構造のものであって、その他の基本的な構造において第1実施形態と同様な部分には同一符号を付してそれら構成要素の説明を省略し、以下に異なる構成要素を主体に説明する。
【0081】
液晶パネル50において第1実施形態の構造と異なるのは、半透過反射層52が設けられた点であり、更に液晶パネル50の背後側(図8の下側)にはバックライトなどの光源60が配置されている点と、位相差板56、偏光板57が配置されている点である。
【0082】
なお、透過型として液晶表示装置を用いる場合に下側の基板28’はガラス等の透明基板からなることを必要とする。
【0083】
半透過反射層52は、背後側(図8の下側)のバックライトなどの光源60が発した透過光を通過させるために十分な厚さの半透過反射層、あるいは、反射膜の一部に多数の微細な透孔を形成して光透過性を高めた構造など、半透過反射型の液晶表示装置に広く用いられているものを適宜採用することができる。
【0084】
この第3実施形態の液晶装置では、バックライトなどの光源60からの透過光を利用する際には透過型の液晶表示形態をとり、光源からの光を利用しない場合は周囲光を用いた反射表示を行うことで反射型液晶表示装置として利用することができる。そして、反射型液晶表示装置としての表示形態を採用する場合、先の第1実施形態の場合と同様に、指向性前方散乱フィルム18の存在により、表示の色づきおよび表示のにじみ(ボケ)を解消した鮮鋭な反射型の表示形態を得ることができる。
【0085】
なお、これまで説明した第1、第2、第3実施形態においては、単純マトリクス型の反射型液晶表示装置に本発明を適用した例について説明したが、本発明を2端子型スイッチング素子あるいは3端子型スイッチング素子を備えたアクティブマトリクス型の反射型液晶表示装置あるいは半透過反射型液晶表示装置に適用しても良いのは勿論である。
【0086】
それらのアクティブマトリクス型の液晶表示装置に適用した場合、図2、図7、図8に示すストライプ状の電極に代えて、一方の基板側に共通電極を設け、他方の基板側に多数の画素電極を画素毎に設け、各画素電極を個々に3端子型のスイッチング素子である薄膜トランジスタで駆動する型のTFT(薄膜トランジスタ)駆動型の構造、一方の基板側にストライプ状の電極を設け、他方の基板側に画素毎に画素電極を設け、これらの画素電極を個々に2端子型の線形素子である薄膜ダイオードで駆動する2端子型線形素子駆動型の液晶表示装置などに適用できるのは勿論であり、これらのいずれの型の液晶表示装置に対しても、本発明は入射光を最小透過率を示す極角と方位角方向から指向性前方散乱フィルムに入射し、透過した拡散透過光のL*a*b*表色系で表される色相がb*<0を示すように設定された指向性前記散乱フィルムを液晶パネル上で前述した特定の方向に配置するのみで適用可能であるので、極めて容易に種々の形態の液晶表示装置に適用することができる特徴を有する。
【0087】
(電子機器の実施形態)
次に、前記の第1〜第3の実施形態の液晶パネル10、40、50のいずれかを備えた電子機器の具体例について説明する。
【0088】
図9(a)は、携帯電話の一例を示した斜視図である。
【0089】
図9(a)において、符号200は携帯電話本体を示し、符号201は前記の液晶パネル10、40、50のいずれかを用いた液晶表示部を示している。
【0090】
図9(b)は、ワープロ、パソコンなどの携帯型情報処理装置の一例を示した斜視図である。
【0091】
図9(b)において、符号300は情報処理装置、符号301はキーボードなどの入力部、符号303は情報処理装置本体、符号302は前記の液晶パネル10、40、50のいずれかを用いた液晶表示部を示している。
【0092】
図9(c)は、腕時計型電子機器の一例を示した斜視図である。
【0093】
図9(c)において、符号400は時計本体を示し、符号401は前記の液晶パネル10、40、50のいずれかを用いた液晶表示部を示している。
【0094】
図9(a)〜(c)に示すそれぞれの電子機器は、前記の液晶パネル10、40、50のいずれかを用いた液晶表示部を備えたものであるので、表示の色づきや表示にじみ(ボケ)を有しない鮮鋭な表示品質の優れたものとなる。
【0095】
【実施例】
「試験例1」
透過型もホログラム技術で作成した指向性前方散乱フィルムを用いて透過率の測定試験を行った。
【0096】
水平に設置した(50×40)mmの平面視長方形状の指向性前方散乱フィルムの表面中心部に(ハロゲン)ランプの光源(指向性前方散乱フィルムから300mm離れた位置に設置)から光を入射し、指向性前方散乱フィルムの裏面側にCCDからなる受光素子を有する受光部(指向性前方散乱フィルムから300mm離れた位置に設置)を、光源からの入射光に対して正視対向する方向に各々設置し、光源の極角と方位角を図4に示すように規定し、受光部において2度視野で平行線透過率を測定した。
【0097】
光源の極角θ(指向性前方散乱フィルムの法線に対する入射光の入射角度)を±60゜の範囲で調整し、極角の角度毎の平行線透過率(%)を測定した結果を図10に示す。また、方位角については、0゜、+30゜、+60°、+90°、+180°(いずれも図4に示す右回り方向)と、−30゜、−60°、−90°(いずれも図4に示す左回り方向)のいずれのデータについても計測し、図10にまとめて記載した。
【0098】
図10に示す結果から、0°と180°の場合の測定結果が全く同一曲線になり、平行線透過光の最大透過率Tmaxと最小透過率Tminとの関係は、(Tmax/Tmin)≒50:6≒8.33となり、本発明で望まれる2を超える値を示した。
【0099】
次に、透過型のホログラム技術で作成した別の指向性前方散乱フィルムを用いて同様の透過率の測定試験を行った結果を図11に示し、さらに別の透過型ホログラム技術で作成した指向性前方散乱フィルムを用いて同様の透過率の測定試験を行った結果を図12に示す。
【0100】
図11に示す特性を見ると、平行線透過光の最大透過率Tmaxと最小透過率Tminとの関係は、(Tmax/Tmin)≒12:3≒4であり、本発明で望まれる2を超える値を示した。
【0101】
図12に示す特性を見ると、平行線透過光の最大透過率Tmaxと最小透過率Tminとの関係は、(Tmax/Tmin)≒52:26≒2であり、本発明で望まれる値の2を示した。
【0102】
また、図10と図11と図12に示すいずれの例の指向性前方散乱フィルムにおいても、±60°の範囲において、概ね、極大と極小の数値がほぼ同じ角度に存在することが明らかになった。例えば、図10に示す結果から、極大値は極角−30°の場合、極小値は極角+23゜の場合、図11に示す結果から、極大値は極角−20°の場合、極小値は極角+18゜の場合、図12に示す結果から、極大値は極角−30°の場合、極小値は極角+25゜の場合であった。
【0103】
次に、図10、図11、図12に示す例の指向性前方散乱フィルムにおいて、φが±90°の場合、いずれの例においても極角θが0の場合に一番透過率が低い、言い換えれば、入射時の散乱が強い(拡散透過光が多い)ことも判明した。
【0104】
また、図10、図11、図12に示す例の指向性前方散乱フィルムにおいて、全ての条件の場合の透過率においていずれも2〜50%の範囲に入っていることも明らかである。
【0105】
次に、極角θを固定して方位角φを変化させた際に、換言すると、指向性前方散乱フィルムのみを水平面内で回転させた場合に、指向性前方散乱フィルムの透過率を測定した結果を図13に示す。
【0106】
図13に示す結果によれば、θ=0°の条件では指向性前方散乱フィルムの法線方向に光を入射した状態を示すが、ほぼ一定の透過率を示し、θ=−20°、−40°、−60°の場合に方位角は0±90°の範囲で透過率が上側に凸の極大をとる曲線を示し、θ=+20°、+40°、+60°の場合に方位角0±90°の範囲で透過率が下側に凸(上側には凹)の極小をとる曲線を示す傾向を示した。このことから、本実施例で用いた指向性前方散乱フィルムは極角と方位角に応じて透過率の極大と極小を示すことが明瞭に示された。
【0107】
なお、図13に示す透過率の関係を解析すると、負の極角θ(−20°、−40°、−60°)において方位角φ=±30°以内、即ち、φ=−30°〜+30゜の範囲において透過率の最大値が5%以内の変動に抑えられており、正の極角θ(+20°、+40°、+60°)において方位角φ=±30°以内、即ちφ=−30°〜+30゜の範囲において透過率の最小値が5%以内の変動に抑えられている。
【0108】
図14は、従来の等方性前方散乱フィルム(大日本印刷(株)製商品名:IDS−16K)を用いて構成された液晶装置の試料において、極角と透過率の関係を方位角毎に測定した結果を示すものである。試験に際し、先の第1の試験例と同じ液晶装置を用い、指向性前方散乱フィルム(異方性前方フィルム)を今回使用の等方性散乱フィルムに変更して測定した結果である。
【0109】
図14に示す結果から、平行線透過光の透過率はいずれの方位角でもほとんど変化が見られず、ほぼ1つの曲線に重なるとともに、極角が0°の場合を最大として極角を+領域か−領域に変化させても数%程度しか変化しないことが明らかである。この結果から、等方性前方散乱フィルムを液晶装置に用いても、本発明の効果が得られないことが明らかである。
【0110】
「試験例2」
次に、先の試験の極角θ1と極角θ2を種々変化させた場合の指向性前方散乱フィルム((Tmax/Tmin)≒12:3≒4の関係を満たす)を用いた反射型カラー液晶表示装置の明るさを蛍光灯点灯下のオフィスにおいて比較した。明るさとしては、従来品の等方性前方散乱フィルムを用いた反射型カラー液晶表示装置(先の図14に示す測定に用いた等方性散乱フィルムを用いた反射型カラー液晶表示装置)と比較し、従来品の反射型カラー液晶表示装置よりも明るく認識できたものを〇、同等のものを△、暗いものを×として以下の表1に示した。
【0111】
「表1」
θ1(°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2(°) 0 0 0 0 0 0 0 0 0
評価結果 × × × × × △ △ △ ×
θ1(°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2(°) 10 10 10 10 10 10 10 10 10
評価結果 × × × × △ 〇 〇 〇 ×
θ1(°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2(°) 20 20 20 20 20 20 20 20 20
評価結果 × × × × △ 〇 〇 〇 ×
θ1(°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2(°) 30 30 30 30 30 30 30 30 30
評価結果 × × × × △ 〇 〇 〇 ×
θ1(°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2(°) 40 40 40 40 40 40 40 40 20
評価結果 × × × × × △ △ △ ×
表1に示す測定結果から明らかなように、平行線透過光が最大となる場合(拡散透過光が最小となる場合)の極角θ1が、−40°≦θ1≦0°の範囲、0°≦θ2≦40°の範囲であれば従来品と同程度の明るさを確保でき、−30°≦θ1≦−10°の範囲、10°≦θ2≦30°の範囲であれば従来品よりも明るさに優れている液晶表示装置が得られることがわかる。
【0112】
「試験例3」
指向性前方散乱フィルムの法線方向の平行線透過率T(0,0)を種々の値に変えた指向性前方散乱フィルムを用意し、この指向性前方散乱フィルムを備えた液晶表示装置の明るさを蛍光灯点灯下のオフィスにおいて比較した。比較した従来品は先の試験例で用いたものと同じである。従来品の等方性前方散乱フィルムを用いた反射型カラー液晶表示装置よりも明るく認識できたものを〇、同等のものを△、暗いものを×として以下の表2に示した。
【0113】
「表2」
T(0,0) 3% 5% 10% 20% 30% 40% 50% 60%
評価結果 △ 〇 〇 〇 〇 〇 △ ×
表2に示す結果から明らかなように、3%≦T(0,0)≦60%、より好ましくは5%≦T(0,0)≦40%の範囲であれば、実際の使用環境下において従来よりも明るい反射型カラー液晶表示装置を提供できることが明らかである。
【0114】
次に、図10、図11、図12に示す結果から、指向性前方散乱フィルムの方位角φをφ1±60°かつφ2±60°の範囲で規定した場合、常にθ1において平行線透過率の極大(言い換えれば拡散透過率の極小)を示し、θ2において平行線透過率の極小(言い換えれば拡散透過率の極大)を示すことも明らかである。
【0115】
「試験例4」
次に、透過型のホログラム技術で作成した指向性前方散乱フィルムを多数枚用意し、(Tmax/Tmin)の値を種々の値に調整した場合の反射型カラー表示装置の明るさを先の従来品の等方性散乱フィルムを用いた液晶表示装置と比較した結果を以下の表3に記載した。従来品の液晶表示装置に比べて2倍以上明るく認識できた場合は◎、従来品よりも明るく認識できたものは〇、同等の場合は△、暗い場合は×とした。
【0116】
「表3」
表3に示す結果から、先に説明した平行線透過率の極小値と極大値の比が2以上である場合に特に明るく認識できたことが明らかである。
【0117】
「試験例5」
指向性前方散乱フィルムにおいて平行線透過率が最小値(言い換えれば拡散透過率が最大値)または平行線透過率が最大値(言い換えれば拡散透過率が最小値)をとる時の方位角をφ2またはφ1とすると、φ2±60°、φ1±60°の範囲で極角θを変化させて測定した透過光特性の極大値と極小値の比を測定した。この比を変化させて反射型カラー液晶表示装置の明るさを蛍光灯点灯下のオフィスにおいて比較した。比較した従来品は先の試験例で用いたものと同じである。従来品の等方性前方散乱フィルムを用いた反射型カラー液晶表示装置よりも明るく認識できたものを〇、同等のものを△、暗いものを×として以下の表4に示した。
【0118】
表4に示す結果から、極大値/極小値の値は1.5以上が好ましいことが明らかになった。即ち、指向性前方散乱フィルムの方位角φをφ1±60°かつφ2±60°の範囲で規定した場合、平行線透過率の極小値と極大値の比が1.5以上であることが明らかである。
【0119】
「試験例6」
指向性前方散乱フィルムにおいて、極角θを−60°≦θ≦+60°としたとき、平行線透過率Tの最大値と最小値を変化させて、反射型カラー液晶表示装置の明るさを蛍光灯点灯下のオフィスにおいて比較した。比較した従来品は先の試験例で用いたものと同じである。従来品のの等方性前方散乱フィルムを用いた反射型カラー液晶表示装置よりも明るく認識できたものを〇、同等のものを△、暗いものを×として以下の表5に示した。
【0120】
「表5」
最大透過率Tmax 60% 50% 40% 30% 20% 10%
最小透過率Tmin 1% 1% 1% 1% 1% 1%
評価結果 × × △ △ △ ×
最大透過率Tmax 60% 50% 40% 30% 20% 10%
最小透過率Tmin 2% 2% 2% 2% 2% 2%
評価結果 × 〇 〇 〇 〇 〇
最大透過率Tmax 60% 50% 40% 30% 20% 10%
最小透過率Tmin 5% 5% 5% 5% 5% 5%
評価結果 △ 〇 〇 〇 〇 〇
最大透過率Tmax 60% 50% 40% 30% 20% 10%
最小透過率Tmin 10% 10% 10% 10% 10% 10%
評価結果 △ 〇 〇 〇 〇 △
最大透過率Tmax 60% 50% 40% 30% 20% 10%
最小透過率Tmin 20% 20% 20% 20% 20% 20%
評価結果 × 〇 〇 △ △ ×
最大透過率Tmax 60% 50% 40% 30% 20% 10%
最小透過率Tmin 30% 30% 30% 30% 30% 30%
評価結果 × △ △ × × ×
最大透過率Tmax 60% 50% 40% 30% 20% 10%
最小透過率Tmin 40% 40% 40% 40% 40% 40%
評価結果 × × × × × ×
表5に示す結果から、最大値/最小値≧2を満足し、かつ、2%以上、50%以下の透過率が必要であることがわかる。
【0121】
「試験例7」
図11に示すような特性(平行線透過光の最大透過率Tmaxと最小透過率Tminとの関係が(Tmax/Tmin)≒12:3≒4を満たす)を示す指向性前方散乱フィルムを用いて反射分光特性を調べた。
【0122】
ここでの反射分光特性は、図15に示すように下面にAl反射層405が設けられたガラス基板406の上面に(50×40)mmの平面視長方形状の前記特性を示す指向性前方散乱フィルム(実施例の指向性前方散乱フィルム)408を設けた積層体409を水平に設置し、指向性前方散乱フィルム408の表面側に配置した(ハロゲン)ランプの光源K(指向性前方散乱フィルムから300mm離れた位置に設置)から指向性前方散乱フィルム408の表面中心部に光を極角θ=−30度で、方位角φ=−90度で入射し、この指向性フィルム408、ガラス基板406を透過して、反射層405で反射した反射光を指向性前方散乱フィルムの表面中心部側に配置されたCCDからなる受光素子を有する受光部J(指向性前方散乱フィルムの法線方向で、指向性前方散乱フィルムから300mm離れた位置に設置)で受光角0度(極角θ=0度、方位角φ=0度)で受光し、さらにこの受光部で受光した反射光L2を分光器を用いて波長と反射強度の関係を調べた。その結果を図16に示す。図16中、▲1▼は、実施例の指向性前方散乱フィルムを設けたものの反射分光特性である。
【0123】
また、比較のために前記指向性前方散乱フィルムに代えて従来の等方性前方散乱フィルムを配置した積層体に前記方法と同様にして光源Kから光を入射させたときの反射光を分光器を用いて波長と反射強度の関係を調べた。その結果を図16に合わせて示す。図16中、▲2▼は、比較例の等方性前方散乱フィルムを設けたものの反射分光特性である。
【0124】
図16から従来の等方性前方散乱フィルムを用いたものは、650nmを越える長波長側に反射強度のピークがあり、反射光が黄色あるいは橙色を帯びたもの(L*a*b*表色系で表される色相がb*>0を示す)であることがわかる。これに対して実施例の指向性前方散乱フィルムを用いたものは、500nm付近の短波長側に反射強度のピークがあり、法線方向の反射光が青色を帯びたもの(L*a*b*表色系で表される色相がb*<0を示す)であることがわかる。
【0125】
「試験例8」
図11に示すような特性(平行線透過光の最大透過率Tmaxと最小透過率Tminとの関係が(Tmax/Tmin)≒12:3≒4を満たす)を示す多数の指向性前方散乱フィルムを用いて透過分光特性を調べた。
【0126】
ここでの透過分光特性は、図15と同様の装置を用い、ガラス基板406の上面に(50×40)mmの平面視長方形状の前記特性を示す指向性前方散乱フィルム(実施例の指向性前方散乱フィルム)408を設けた積層体409(なお、ここで用いる積層体の下面には、Al反射層を設けていない。)を水平に設置し、指向性前方散乱フィルム408の表面側に配置した(ハロゲン)ランプの光源K(指向性前方散乱フィルムから300mm離れた位置に設置)から指向性前方散乱フィルム408の表面中心部に光を極角θ=−30度で、方位角φ=−90度で入射し、この指向性フィルム408、ガラス基板406を透過した平行透過光を、指向性前方散乱フィルムの裏面側に光源Kからの入射光L1に対して正視対向する方向に配置されたCCDからなる受光素子を有する受光部J(指向性前方散乱フィルムから300mm離れた位置に設置)で受光し、さらにこの受光部で受光した平行線透過光を分光器を用いて波長と透過強度の関係を調べた。その結果を図17に示す。
【0127】
図17から実施例の指向性前方散乱フィルムを用いたものは、いずれも650nmを越える長波長側に平行線透過光のピークがあり、平行線透過光が黄色あるいは橙色を帯びたものであることがわかる。反射層がある場合、平行透過光は正反射するので、正反射方向が黄色あるいは橙色を帯びることがわかる。液晶表示装置を観察する場合、通常、観察者は正反射方向からずれた方向から表示を観察するため、正反射からずれた方向の青色を帯びた反射光で表示を観察するようにすれば、表示が黄味を帯びて見えることがなく、表示品質を向上できると考えられる。「試験例9」
図11に示すような特性(平行線透過光の最大透過率Tmaxと最小透過率Tminとの関係が(Tmax/Tmin)≒12:3≒4を満たす)を示す多数の指向性前方散乱フィルムを用いて色相を測定した。
【0128】
ここでの色相測定は、図15と同様の装置を用い、下面にAl反射層を設けガラス基板406の上面に(50×40)mmの平面視長方形状の前記特性を示す指向性前方散乱フィルム(実施例の指向性前方散乱フィルム)408を設けた積層体409を水平に設置し、指向性前方散乱フィルム408の表面側に配置した(ハロゲン)ランプの光源K(指向性前方散乱フィルムから300mm離れた位置に設置)から指向性前方散乱フィルム408の表面中心部に光を極角θ=−25度で、方位角φ=−90度で入射し、指向性フィルム408、ガラス基板406を透過して、反射層405で反射した反射光を指向性前方散乱フィルムの表面側に配置されたCCDからなる受光素子を有する受光部J(指向性前方散乱フィルムから300mm離れた位置に設置)で受光角0〜60度(極角θ=0〜60度、方位角φ=90度)で受光し、さらにこの受光部で受光した反射光の受光角と色相(L*a*b*表色系で表される色相)の関係を調べた。その結果を図18に示す。
【0129】
図18から実施例の指向性前方散乱フィルムを用いたものは、正反射方向の25度付近の反射光の色相がb*>6を示しており、特に受光角20度から40度の範囲の反射光の色相はb*>4であり、黄味を帯びたものであることがわかる。これに対して受光角0度から17度の範囲の反射光の色相は、いずれもb*<0を示すことがわかる。液晶表示装置を観察する場合、通常、観察者は正反射方向からずれた方向から表示を観察するため、正反射からずれた方向、特に、法線方向寄り(受光角0度から17度)の青色を帯びた反射光で表示を観察するようにすれば、表示が黄味を帯びて見えることがなく、表示品質を向上できると考えられる。
【0130】
「試験例10」
図11に示すような特性(平行線透過光の最大透過率Tmaxと最小透過率Tminとの関係が(Tmax/Tmin)≒12:3≒4を満たす)を示す多数の指向性前方散乱フィルムを多数用意し、色相を測定した。
【0131】
ここでの色相測定は、図15と同様の装置を用い、下面にAl反射層405が設けられたガラス基板406の上面に(50×40)mmの平面視長方形状の前記特性を示す指向性前方散乱フィルム(実施例の指向性前方散乱フィルム)408を設けた積層体409を水平に設置し、指向性前方散乱フィルム408の表面側に配置した(ハロゲン)ランプの光源K(指向性前方散乱フィルムから300mm離れた位置に設置)から指向性前方散乱フィルム408の表面中心部に光を極角θ=−30度で、方位角φ=−90度で入射し、この指向性フィルム408、ガラス基板406を透過して、反射層405で反射した反射光を指向性前方散乱フィルムの表面中心部側に配置されたCCDからなる受光素子を有する受光部J(指向性前方散乱フィルムの法線方向で、指向性前方散乱フィルムから300mm離れた位置に設置)で受光角0度(極角θ=0度、方位角φ=0度)で受光し、さらにこの受光部で受光した反射光L2の色相(L*a*b*表色系で表される色相)の関係を調べた。その結果を図19に示す。
【0132】
また、指向性前方散乱フィルムを設けていない以外は図2と同様の液晶パネルを多数用意し、前記方法と同様のして色相を測定した。その結果を図19に合わせて示す。
【0133】
図19から液晶パネルの色相はいずれもb*>0であり黄色を帯びていることがわかる。また、実施例の指向性前方散乱フィルムの反射光の色相はいずれもb*<0であり青味を帯びており、特に−6<b*<0で、−10<a*<10の範囲内の色相であることがわかる。従って、このような実施例の指向性前方散乱フィルムを液晶パネルに備えるようにすれば、この指向性前方散乱フィルムに入射し、透過した拡散透過光が、L*a*b*表色系で表される色相がb*<0を示し、入射時に強く散乱している拡散透過光が青系を呈するので、このような青系(色相がb*<0)の拡散透過光は、黄色を呈している(L*a*b*表色系で表される色相がb*>0を示す)液晶パネルの内部の反射層により反射された後も青系白色(色相がb*<0)を帯びているので、この青系の(色相がb*<0)の反射光により表示を観察すると、色相が図19の原点付近(a* とb* が共に0付近)となり、言い換えれば色相が相殺された状態となり、表示が色づいて見えることがなく、よって鮮明な表示形態が得られ、表示品質を向上できことがわかる。
【0134】
さらに、指向性前方散乱フィルムを液晶パネルに配置する際、最小透過率を示す極角と方位角の場合(最も拡散透過光が強い角度の場合)の入射光側を前記液晶パネルの採光側になるように、最大透過率を示す極角と方位角の場合(最も拡散透過光が弱い角度の場合)の入射光側を前記液晶パネルの観察方向側になるようにすれば、色相がb*<0の拡散透過光の量が多くなり、表示のにじみ(ボケ)に対する影響および表示の色付きは少なく、表示のにじみ(ボケ)および色づきの少ない鮮明な表示形態が得られる。
【0135】
【発明の効果】
以上説明したように本発明の液晶装置によれば、指向性前方散乱フィルムを備えた反射型あるいは半透過型の液晶表示装置において、最小透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの採光側になるように、最大透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの観察方向側になるようにして指向性前方散乱フィルムを液晶パネルに配置してなることで、平行線透過光の最小透過率を示す場合の方位角φ2は入射角方向となり、平行線透過光の最大透過率を示す場合の方位角φ1は観察者方向になる。このように配置された指向性前方散乱フィルムを有する液晶表示装置ならば、指向性前方散乱フィルムに対して入射された光は入射時に強く散乱されるが、液晶パネル内部の反射層により反射された後に指向性前方散乱フィルムを通過する際に光が散乱される量が少なくなるので、表示のにじみ(ボケ)に対する影響は少なく、表示のにじみ(ボケ)の少ない鮮明な表示形態が得られる。
【0136】
また、前記のように配置された指向性前方散乱フィルムを備えた反射型あるいは半透過型の液晶表示装置において、前記指向性前方散乱フィルムは、前記光源からの光を最小透過率を示す極角と方位角方向から該指向性前方散乱フィルムに入射し、透過した拡散透過光が、L*a*b*表色系で表される色相がb*<0を示すように設定されたことにより、入射時に強く散乱している拡散透過光が青系白色を呈するので、このような青系白色(色相がb*<0)の拡散透過光は、偏光板、配向膜、透明電極、絶縁膜、保護膜等の構成部材の殆どが黄色を呈している(L*a*b*表色系で表される色相がb*>0を示す)液晶パネルの内部の反射層により反射された後も青系白色(色相がb*<0)を帯びているので、この青系白色(色相がb*<0)の反射光により表示を観察すると、色相が相殺された状態となり、色づきのない(無彩色)の表示が得られ、よって鮮明な表示形態が得られ、表示品質を向上できる。
【0137】
更に、前述の種々構造の液晶装置を有する電子機器であるならば、表示のにじみ(ボケ)や色づきを有しない、鮮鋭な高品位の画像表示を行うことができる電子機器を提供することができる。
【図面の簡単な説明】
【図1】 図1は本発明に係る第1実施形態の液晶パネルの平面図である。
【図2】 図1に示す液晶パネルのA−A線に沿う部分断面略図である。
【図3】 図3は図2に示す液晶パネルのカラーフィルタ部分を示す拡大断面図である。
【図4】 図4は指向性前方散乱フィルムと光源と受光部と極角と方位角と平行線透過光の位置関係を示す説明図である。
【図5】 図5は指向性前方散乱フィルムと光源と受光部の位置関係を示す説明図である。
【図6】 図6(A)は指向性前方散乱フィルムに対する入射光と平行線透過光、拡散透過光、並びに後方散乱光と前方散乱光の関係を示す説明図、図6(B)は指向性前方散乱フィルムの断面構造の一例と入射光及び反射光の関係を示す説明図である。
【図7】 図7は本発明に係る第2実施形態の液晶パネルの断面図である。
【図8】 図8は本発明に係る第3実施形態の液晶パネルの断面図である。
【図9】 本発明の電子機器の応用例を示すもので、図9(a)は携帯型電話機を示す斜視図、図9(b)は携帯型情報処理装置の一例を示す斜視図、図9(c)は腕時計型電子機器の一例を示す斜視図である。
【図10】 図10は実施例において測定された極角と透過率の関係の第1の例を方位角毎に測定した結果を示す図である。
【図11】 図11は実施例において測定された極角と透過率の関係の第2の例を方位角毎に測定した結果において、平行線透過率の極小値と極大値の比が4の場合の測定結果を示す図である。
【図12】 図12は実施例において測定された極角と透過率の関係の第3の例を方位角毎に測定した結果において、平行線透過率の極小値と極大値の比が2の場合の測定結果を示す図である。
【図13】 図13は実施例において測定された方位角と透過率の関係を極角毎に測定した結果を示す図である。
【図14】 図14は比較例において測定された極角と透過率の関係を方位角毎に測定した結果を示す図である。
【図15】 試験例において反射分光特性の測定方法の説明図である。
【図16】 実施例と比較例において入射光を−30度で入射し、反射光を受光角0度で受光したときの反射分光特性を示す図である。
【図17】 実施例において、入射光を−30度で入射したときの平行透過光の透過分光特性を示す図である。
【図18】 実施例において、入射光を−25度で入射したときの反射光の受光角と色相との関係を示す図である。
【図19】 実施例の指向性前方散乱フィルムの反射光と、液晶パネルの色相を示す図である。
【図20】 図20は従来の反射型液晶装置を示すもので、図20(a)は散乱フィルムを備えた反射型液晶装置の一例を示す断面略図、図20(b)は内面拡散板を備えた反射型液晶装置の一例を示す断面略図である。
【符号の説明】
θ…極角、
φ…方位角、
K…光源、
J…受光部、
LT…拡散透過光、
L3…平行線透過光、
Tmax(φ1,θ1)…最大透過率、
Tmin(φ2,θ2)…最小透過率、
10、40、50…液晶パネル、
15…液晶層、
17、28、28’…基板、
18…指向性前方散乱フィルム、
20…カラーフィルタ層、
23、35…電極層、
31…反射層、
52…半透過反射層、
200…携帯電話本体、
300…携帯型情報処理機器、
400…腕時計型電子機器。[0001]
BACKGROUND OF THE INVENTION
The present invention can be applied to a reflective or transflective liquid crystal display device to eliminate blurring and coloring of the display and obtain a clear display, and such a clear display is possible. The present invention relates to a technology capable of providing an electronic device including a liquid crystal device.
[0002]
[Prior art]
In various electronic devices such as notebook personal computers, portable game machines, and electronic notebooks, liquid crystal display devices with low power consumption are often used as display units. Particularly in recent years, with the diversification of display contents, the demand for liquid crystal display devices capable of color display is increasing. In addition, in order to increase the battery driving time of the electronic device, a reflective color liquid crystal display device that does not require a backlight device has been developed.
[0003]
An outline of a configuration example of a conventional reflective color liquid crystal display device will be described below with reference to the drawings.
[0004]
20 (a) and 20 (b) are enlarged schematic cross-sectional views showing a main part of a conventional reflective color liquid crystal display device. Among these, FIG. 20A shows a front scattering plate type reflection type liquid crystal display device, and FIG. 20B shows an inner side scattering reflection plate type liquid crystal display device.
[0005]
In the forward scattering plate type liquid crystal display device shown in FIG. 20A, a
[0006]
In such a forward scattering type reflective liquid crystal device, incident light L1 passes through the polarizing
[0007]
20B includes a pair of
[0008]
Here, a
[0009]
By the way, in the conventional structure shown in FIG. 20A, the
[0010]
This type of
[0011]
As a liquid crystal display device for a portable device, a transflective liquid crystal display device having a backlight in addition to the reflective type is also known. In this type of conventional transflective liquid crystal display device, the reflective layer is configured as a transflective layer, and in the case of transmissive display, the light from the backlight reaches the viewer side through the transflective layer. In a state where display is performed and a backlight is not used, the reflective liquid crystal display device is configured so that reflected light can be used effectively.
[0012]
[Problems to be solved by the invention]
However, the above-mentioned
[0013]
Further, in the case of the liquid crystal display device having the structure shown in FIG. 20A, the display tends to be yellowish (the display is colored).
[0014]
Moreover, the situation that the display as described above bleeds or a sufficient color developability cannot be obtained also applies to a case where reflective display is performed in a transflective liquid crystal display device.
[0015]
Next, in the configuration (inner surface scattering structure) provided with the light-
[0016]
From the background as described above, the present inventors have conducted further research focusing on the forward scattering film, and as a result, the scattering of the liquid crystal display device is blurred by providing directivity to the scattering property of the forward scattering film. It was found that (blur) can be eliminated, and the present invention was reached. Further, as a result of the inventors' research on the forward scattering film, in the case of the liquid crystal display device having the structure in which the
[0017]
In the case of the liquid crystal display device having the structure shown in FIG. 20A, the reason why the display is yellowish (the color of the display) is that the
[0018]
The present invention has been made in view of the above-described problems, and can improve display quality by reducing display bleeding and coloring, enabling clear display, and including an internal scattering plate. An object is to provide a liquid crystal device that can have a simplified structure with respect to a liquid crystal device and can reduce manufacturing costs while providing a clear display, and an electronic device including the liquid crystal device.
[0019]
[Means for Solving the Problems]
In order to solve the above problems, a liquid crystal device of the present invention includes a pair of substrates, a liquid crystal layer sandwiched between the substrates, a reflective layer provided on the liquid crystal layer side of the one substrate, and the other A directional forward scattering film provided on the side opposite to the liquid crystal layer side of the substrate, and the light is incident from a light source disposed on one side of the directional forward scattering film. In the light receiving part disposed on the other surface side of the directional forward scattering film, when observing parallel line transmitted light excluding diffuse transmitted light among all the transmitted light transmitted through the directional forward scattering film,
The incident angle of incident light with respect to the normal of the directional forward scattering film is defined as a polar angle θn, the incident light angle in the in-plane direction of the directional forward scattering film is defined as an azimuth angle φm, and When the maximum transmittance is defined as Tmax (φ1, θ1) and the minimum transmittance of parallel-line transmitted light is defined as Tmin (φ2, θ2), the incident light side in the case of polar angles and azimuths indicating the minimum transmittance The directional forward scattering film is placed on the liquid crystal panel so that the incident light side in the case of the polar angle and the azimuth angle indicating the maximum transmittance is on the observation direction side of the liquid crystal panel. Placed on the panel,
In the directional forward scattering film, the light from the light source is incident on the directional forward scattering film from the polar angle and azimuth direction indicating the minimum transmittance, and the transmitted diffuse transmitted light is L * a * b * table. The hue represented by the color system is set to show b * <0.
[0020]
In a reflection type liquid crystal display device having a directional forward scattering film, a polar angle indicating a maximum transmittance so that an incident light side in the case of a polar angle and an azimuth angle indicating a minimum transmittance is a lighting side of the liquid crystal panel. When the directional forward scattering film is arranged on the liquid crystal panel so that the incident light side in the case of the azimuth angle is the observation direction side of the liquid crystal panel, the minimum transmittance of parallel line transmitted light is shown. The azimuth angle φ2 is the incident angle direction, and the azimuth angle φ1 in the case of showing the maximum transmittance of parallel-line transmitted light is the observer direction. In the case of a liquid crystal display device having a directional forward scattering film arranged in this way, light incident on the directional forward scattering film is strongly scattered at the time of incidence, but is reflected by a reflective layer inside the liquid crystal panel. Since the amount of light scattered when passing through the directional front scattering film later is reduced, there is little influence on display blur (blur), and a clear display form with less display blur (blur) can be obtained.
[0021]
Further, in the reflective liquid crystal display device having the directional forward scattering film arranged as described above, the directional forward scattering film can transmit the light from the light source from the polar and azimuthal directions indicating the minimum transmittance. Diffuse transmitted light that has entered and transmitted through the directional forward scattering film is strongly scattered at the time of incidence because the hue represented by the L * a * b * color system is set to indicate b * <0. The diffused and transmitted light presenting a bluish white color, such diffused and transmitted light of a bluish white color (hue is b * <0) is composed of a polarizing plate, an alignment film, a transparent electrode, an insulating film, a protective film, etc. Most of the members have a yellow color (the hue represented by the L * a * b * color system indicates b *> 0) even after being reflected by the reflective layer inside the liquid crystal panel. Since b * <0), the display is viewed with the reflected light of this bluish white (hue is b * <0). Then, a state in which hue offset, obtained display without coloring (achromatic), thus sharp display form is obtained, the display quality can be improved.
[0022]
In order to solve the above problems, the present invention can be applied to a transflective liquid crystal device having a transflective layer in place of the reflective layer of the liquid crystal device having the structure described above. .
[0023]
Even in a liquid crystal device having a transflective layer, the present invention is effective when performing reflective display, and the azimuth angle φ2 in the case where the minimum transmittance of parallel-line transmitted light is shown is the same as in the previous structure. The azimuth angle φ1 in the incident angle direction and the maximum transmittance of parallel-line transmitted light is in the observer direction. If the directional forward scattering film is arranged in this manner, the light incident on the directional forward scattering film is strongly scattered at the time of incidence, but is reflected by the reflective layer inside the liquid crystal panel and is directed forward. Since the amount of light passing through the scattering film is reduced, a clear display form with little blurring of display can be obtained. Further, the directional forward scattering film is incident on the directional forward scattering film from the polar angle and azimuth direction indicating the minimum transmittance of the light from the light source, and the transmitted diffuse transmitted light is L * a * b. * By setting the hue represented by the color system to show b * <0, most of the constituent members exhibit diffuse transmitted light that is strongly scattered at the time of incidence (L * a *). b * white color after entering the liquid crystal panel and entering the inside of the liquid crystal panel and being reflected by the reflective layer (the hue is b * <0) Therefore, when the display is observed with reflected light of such blue white color (hue is b * <0), the hue is canceled out, and a display with no color (achromatic color) is obtained. Therefore, a clear display form can be obtained and display quality can be improved.
[0024]
In the liquid crystal device of the present invention having any one of the above-described configurations, the directional forward scattering film is incident on the directional forward scattering film from the polar angle and azimuth direction indicating the minimum transmittance and transmitted through the light from the light source. The diffused diffused light is set so that the hue represented by the L * a * b * color system indicates -6 <b * <0, so that a display with no coloring (achromatic color) is obtained. This is preferable in that the display quality can be further improved.
[0025]
In the liquid crystal device of the present invention having any one of the above-described configurations, the directional forward scattering film is incident on the directional forward scattering film from polar angles and azimuth directions indicating minimum transmittance of light from the light source. The transmitted diffuse transmitted light is set so that the hue represented by the L * a * b * color system indicates −10 <a * <10, indicating that there is no coloring (achromatic color). It is preferable in that it is obtained and the display quality can be further improved.
[0026]
Moreover, in the liquid crystal device of the present invention having any one of the above-described configurations, the directional forward scattering film is incident on the directional forward scattering film from polar and azimuthal directions indicating minimum transmittance of light from the light source. In addition, the diffuse diffused light that has been transmitted is set such that the hue represented by the L * a * b * color system indicates −5 <a * <5. And more preferable.
[0027]
In order to solve the above-described problems, the present invention provides a liquid crystal device according to any one of the above-described configurations, wherein the ratio of the maximum transmittance Tmax and the minimum transmittance Tmin of the parallel-line transmitted light is set to (Tmax / Tmin). ) ≧ 2.
[0028]
By satisfying the relationship of (Tmax / Tmin) ≧ 2, sufficient scattering can be obtained at the time of incidence of light in the directional forward scattering film, so that the display is brighter than a liquid crystal device having a conventional isotropic forward scattering film. A clear (clear) display can be obtained. Further, by satisfying the relationship of (Tmax / Tmin) ≧ 2, the light from the light source is incident on the directional forward scattering film from the polar angle and azimuth direction indicating the minimum transmittance, and transmitted diffuse transmitted light is transmitted. The hue represented by the L * a * b * color system is particularly effective as a means for indicating b * <0, and more preferably satisfies the relationship of (Tmax / Tmin) ≧ 4. It is preferable in that the hue of the diffuse transmitted light can be b * <0, and the display quality can be further improved.
[0029]
In order to solve the above problems, in the liquid crystal device according to the present invention having any one of the above-described configurations, a liquid crystal driving electrode is provided on the liquid crystal layer side of the one substrate and the liquid crystal layer side of the other substrate. It is characterized by.
[0030]
According to such a liquid crystal device, it is possible to switch between display, non-display, and halftone display by controlling the alignment state of the liquid crystal by electrodes sandwiching the liquid crystal layer.
[0031]
In order to solve the above-described problems, the present invention may be the liquid crystal device of the present invention having any one of the above-described structures, in which a color filter is provided on one liquid crystal layer side of the pair of substrates.
[0032]
According to such a liquid crystal device, it is possible to perform color display by providing a color filter, and it has a clear color display with little display coloration or display blurring by adopting any of the previous structures. Is obtained.
[0033]
In the present invention, when the reflective layer has fine irregularities, the incident light is strongly scattered and guided to the reflective layer. Therefore, the glare sensation generated because the reflective layer has fine irregularities. Furthermore, since the reflected light from the reflective layer is not strongly scattered by the directional forward scattering film, a clear display with less display blur can be obtained.
[0034]
In order to solve the above-described problems, an electronic apparatus according to the present invention includes the liquid crystal device according to the present invention having any one of the above configurations as a display unit.
[0035]
By providing the above-described liquid crystal device of the present invention having an excellent display form, such an electronic device can be obtained that has a display form having a clear display with little display blur and coloring.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0037]
(First Embodiment of Liquid Crystal Device)
A liquid crystal panel according to a first embodiment of the liquid crystal device according to the present invention will be described below with reference to FIGS. FIG. 1 is a plan view showing a first embodiment in which the present invention is applied to a simple matrix type reflective liquid crystal panel, and FIG. 2 is a partial sectional view taken along line AA of the liquid crystal panel shown in FIG. FIG. 3 is an enlarged cross-sectional view of a color filter portion built in the liquid crystal display device. A liquid crystal display device (liquid crystal device) as a final product is configured by mounting auxiliary elements such as a liquid crystal driving IC and a support on the
[0038]
The
[0039]
The
[0040]
In the present embodiment, each
[0041]
In the present embodiment, the
[0042]
Such a
[0043]
On the other hand, the
[0044]
Next, the
[0045]
Next, the directional
[0046]
The directional
[0047]
Here, the directional
[0048]
First, as shown in FIG. 4, the directional
[0049]
In FIG. 4, it is assumed that incident light L <b> 1 from the light source K enters from the diagonally upper right rear side of the directional
[0050]
Here, in order to specify the direction of the incident light L1 to the directional
[0051]
In this state, for example, when the polar angle of the incident light L1 is 0 ° and the azimuth angle is 0 °, the incident light L1 enters the
[0052]
Next, the incident light L1 emitted from the light source installed on one side of the directional forward scattering film 18 (left side in FIG. 6A) is applied to the directional
[0053]
In addition, in the field of optics, a transmittance scale called “haze” is also generally known. However, haze is a value obtained by dividing diffuse transmittance by total light transmittance and expressing it in%. The definition of the concept is completely different from the parallel line transmittance used in the present embodiment.
[0054]
Next, when the maximum transmittance of the parallel line transmittance is marked using the previous polar angle θ and the azimuth angle φ, it is defined as Tmax (φ1, θ1), and the minimum transmittance of the parallel line transmittance is defined. Is defined as Tmin (φ2, θ2). In other words, due to the nature of the directional forward scattering film, the conditions for the maximum transmittance are the weakest conditions for scattering and the conditions for the minimum transmittance are the conditions for strongest scattering.
[0055]
For example, if the maximum transmittance is shown when the polar angle θ = 0 ° and the azimuth angle = 0 °, it is denoted as Tmax (0, 0). (This means that the parallel transmission along the normal direction of the directional forward scattering film is maximum. In other words, the scattering along the normal direction of the directional forward scattering film is the weakest. In addition, when the minimum transmittance is shown when the polar angle θ = 10 ° and the azimuth angle = 45 °, it is denoted as Tmin (10, 45), which means that the scattering in this direction is the strongest. .
[0056]
Based on the above definition, each characteristic of the directional
[0057]
As described above, in the directional
[0058]
Therefore, in other words, as shown in FIG. 2, in the reflective liquid crystal display device, it is considered that the ambient light with respect to the
[0059]
That is, in the present embodiment, when the incident light L1 passes through the directional
[0060]
Here, FIG. 6B shows a cross-sectional structure of the directional
[0061]
As shown in FIG. 6B, the cross-sectional structure model of the directional
[0062]
In order to satisfy such a relationship, the relationship between the azimuth angles φ1 and φ2 is most preferably φ1 = φ2 ± 180 °. This means that φ2 is the incident angle direction and φ1 is the viewing direction, and these angles differ by 180 ° when applied in an actual liquid crystal device. In this case, the light incident on the liquid crystal device is strongly scattered at the time of incidence, and the light reflected by the
[0063]
Next, it is preferable that the value of (Tmax / Tmin) satisfies the relationship of (Tmax / Tmin) ≧ 2. With this relationship, sufficient scattering can be obtained at the time of incidence, and a bright and sharp reflective display can be obtained. Further, by satisfying this relationship, it is possible to realize a reflective display that is brighter than when a conventionally known isotropic scattering film is used.
[0064]
Further, by satisfying the relationship of (Tmax / Tmin) ≧ 2, the diffused transmitted light that is incident on the directional
[0065]
The diffuse transmitted light LT having such a hue of b * <0 (blue white) has a yellow color (the hue represented by the L * a * b * color system indicates b *> 0). Even after being reflected by the
[0066]
Further, when the diffuse transmitted light LT has a hue represented by the L * a * b * color system indicating −6 <b * <0, an uncolored (achromatic) display is obtained, and the display quality is improved. Is preferable in that it can be further improved. In order for the diffuse transmitted light LT to exhibit such characteristics, the hue of the parallel line transmitted light L3 may satisfy the relationship of 10 ≦ b *.
[0067]
Further, when the diffuse transmitted light LT has a hue represented by the L * a * b * color system of −10 <a * <10, a display with no coloring (achromatic color) is obtained, and the display quality Is preferable in that it can be further improved.
[0068]
Next, when the polar angles θ1 and θ2 are individually viewed, in order to obtain a brighter display than the isotropic scattering film, the range of −40 ° ≦ θ1 <0 °, 0 ° <θ2 ≦ 40 °, It is preferable that the range is −30 ° ≦ θ1 ≦ −10 ° and 10 ° ≦ θ2 ≦ 30 °.
[0069]
Next, when the parallel line transmittance in the normal direction of the directional
[0070]
Next, when the azimuth angle φ of the directional forward scattering film is defined as a range of φ1 ± 60 ° (φ2 ± 60 °), the maximum of the parallel line transmittance is always taken at θ1, and the minimum of the parallel line transmittance is taken at θ2. It is preferable to take a value and set the ratio between the maximum value and the minimum value to 1.5 or more. If it has such a feature, it is possible to scatter light up to ± 60 ° not only in one direction of φ2 but also in an azimuth angle, so it is easy to cope with each environment. Bright display can be realized.
[0071]
Next, when the polar angle θ in the direction orthogonal to the azimuth angle φ1 indicating the maximum transmittance and the azimuth angle φ2 indicating the minimum transmittance is changed from −40 ° to + 40 °, the parallel line transmittance is directed in this range. If the transmittance is equal to or higher than the transmittance of the normal forward scattering film in the normal direction, a sharp display without blurring of display can be obtained even when the liquid crystal device is observed from the lateral direction. That is, it is preferable to satisfy the relationship of T (0,0) ≦ T (φ1 ± 90, θ) and satisfy the relationship of T (0,0) ≦ T (φ2 ± 90, θ).
[0072]
Next, when the polar angle θ is in the range of −60 ° ≦ θ ≦ + 60 °, the parallel line transmittance T (φ, θ) is 2% or more and preferably 50% or less. That is, it is preferable to satisfy the relationship of 2% ≦ T (φ, θ) ≦ 50%, but −60 ° ≦ θ ≦ + 60 °. With such a relationship, it is possible to obtain a bright and sharp display with no blurring of display.
[0073]
(Second Embodiment of Liquid Crystal Device)
FIG. 7 is a partial cross-sectional view showing a
[0074]
The
[0075]
The
[0076]
Also in the structure of the second embodiment, the directional
[0077]
In the
[0078]
In the present embodiment, the
[0079]
(Third embodiment of liquid crystal device)
FIG. 8 is a cross-sectional view showing a
[0080]
The
[0081]
The
[0082]
In the case of using a liquid crystal display device as a transmission type, the
[0083]
The semi-transmissive
[0084]
The liquid crystal device according to the third embodiment takes a transmissive liquid crystal display form when using light transmitted from a
[0085]
In the first, second, and third embodiments described so far, the example in which the present invention is applied to the simple matrix reflective liquid crystal display device has been described. However, the present invention is not limited to a two-terminal switching element or 3 Of course, the present invention may be applied to an active matrix reflective liquid crystal display device or a transflective liquid crystal display device having a terminal type switching element.
[0086]
When applied to these active matrix liquid crystal display devices, a common electrode is provided on one substrate side instead of the striped electrodes shown in FIGS. 2, 7, and 8, and a large number of pixels are provided on the other substrate side. An electrode is provided for each pixel, and each pixel electrode is individually driven by a thin film transistor that is a three-terminal switching element. A TFT (thin film transistor) drive type structure, a striped electrode is provided on one substrate side, and the other Needless to say, the present invention can be applied to a liquid crystal display device of a two-terminal type linear element driving type in which a pixel electrode is provided for each pixel on the substrate side, and these pixel electrodes are individually driven by a thin film diode that is a two-terminal type linear element. In any of these types of liquid crystal display devices, the present invention allows incident light to be incident on a directional forward scattering film from the polar angle and azimuth direction indicating the minimum transmittance, and transmitted and diffused. The directivity scattering film set so that the hue represented by the L * a * b * color system of b * <0 can be applied only by disposing the scattering film in the specific direction described above on the liquid crystal panel. Therefore, it has the characteristic that it can be applied to various types of liquid crystal display devices very easily.
[0087]
(Embodiment of electronic device)
Next, a specific example of an electronic device including any one of the
[0088]
FIG. 9A is a perspective view showing an example of a mobile phone.
[0089]
In FIG. 9A,
[0090]
FIG. 9B is a perspective view illustrating an example of a portable information processing apparatus such as a word processor or a personal computer.
[0091]
In FIG. 9B,
[0092]
FIG. 9C is a perspective view showing an example of a wristwatch type electronic device.
[0093]
In FIG. 9C,
[0094]
Each of the electronic devices shown in FIGS. 9A to 9C includes a liquid crystal display unit using any one of the
[0095]
【Example】
“Test Example 1”
The transmission type was also tested for transmittance using a directional forward scattering film created by hologram technology.
[0096]
Light is incident from the light source of the (halogen) lamp (installed at a
[0097]
Fig. 3 shows the result of measuring the parallel line transmittance (%) for each polar angle by adjusting the polar angle θ of the light source (incident angle of incident light with respect to the normal of the directional forward scattering film) within a range of ± 60 °. 10 shows. As for the azimuth angle, 0 °, + 30 °, + 60 °, + 90 °, + 180 ° (all in the clockwise direction shown in FIG. 4), −30 °, −60 °, −90 ° (all in FIG. 4). All the data in the counterclockwise direction shown in Fig. 10 were measured and collectively shown in Fig. 10.
[0098]
From the results shown in FIG. 10, the measurement results at 0 ° and 180 ° are exactly the same curve, and the relationship between the maximum transmittance Tmax and the minimum transmittance Tmin of parallel-line transmitted light is (Tmax / Tmin) ≈50. : 6≈8.33, indicating a value exceeding 2 that is desired in the present invention.
[0099]
Next, FIG. 11 shows the result of a similar transmittance measurement test using another directional forward scattering film created by the transmission type hologram technology, and the directivity created by another transmission type hologram technology. The result of the same transmittance measurement test using the forward scattering film is shown in FIG.
[0100]
Looking at the characteristics shown in FIG. 11, the relationship between the maximum transmittance Tmax and the minimum transmittance Tmin of parallel-line transmitted light is (Tmax / Tmin) ≈12: 3≈4, which exceeds 2 as desired in the present invention. The value is shown.
[0101]
Looking at the characteristics shown in FIG. 12, the relationship between the maximum transmittance Tmax and the minimum transmittance Tmin of parallel-line transmitted light is (Tmax / Tmin) ≈52: 26≈2, which is 2 which is the value desired in the present invention. showed that.
[0102]
Also, in any of the example directional forward scattering films shown in FIGS. 10, 11, and 12, it is clear that the maximum and minimum values exist at substantially the same angle in the range of ± 60 °. It was. For example, from the results shown in FIG. 10, when the local maximum is −30 °, the local minimum is + 23 °, and from the results shown in FIG. 11, the local maximum is when the local angle is −20 °. In the case of a polar angle of + 18 °, the results shown in FIG. 12 show that the maximum value is a polar angle of −30 ° and the minimum value is a polar angle of + 25 °.
[0103]
Next, in the directional forward scattering films of the examples shown in FIGS. 10, 11 and 12, when φ is ± 90 °, the transmittance is lowest when the polar angle θ is 0 in any example. In other words, it was also found that scattering at the time of incidence is strong (a lot of diffuse transmitted light).
[0104]
Moreover, in the directional front scattering film of the example shown in FIG. 10, FIG. 11, FIG. 12, it is also clear that the transmittances under all conditions are all in the range of 2 to 50%.
[0105]
Next, when the polar angle θ was fixed and the azimuth angle φ was changed, in other words, when only the directional forward scattering film was rotated in the horizontal plane, the transmittance of the directional forward scattering film was measured. The results are shown in FIG.
[0106]
According to the results shown in FIG. 13, under the condition of θ = 0 °, the light is incident in the normal direction of the directional forward scattering film, but shows a substantially constant transmittance, θ = −20 °, − In the case of 40 ° and −60 °, the azimuth angle is in the range of 0 ± 90 °, and the transmittance has a convex maximum curve upward, and in the case of θ = + 20 °, + 40 °, + 60 °, the azimuth angle is 0 ±. In the range of 90 °, the transmittance showed a tendency to show a curve having a minimum convex on the lower side (concave on the upper side). From this, it was clearly shown that the directional forward scattering film used in the present example exhibits maximum and minimum transmittances according to the polar angle and the azimuth angle.
[0107]
13 is analyzed, the azimuth angle φ is within ± 30 ° at the negative polar angle θ (−20 °, −40 °, −60 °), that is, φ = −30 ° to In the range of + 30 °, the maximum transmittance is suppressed within 5%, and the azimuth angle φ is within ± 30 ° at the positive polar angle θ (+ 20 °, + 40 °, + 60 °), that is, φ = In the range of −30 ° to + 30 °, the minimum value of the transmittance is suppressed within 5%.
[0108]
FIG. 14 shows the relationship between polar angle and transmittance for each azimuth angle in a sample of a liquid crystal device formed using a conventional isotropic forward scattering film (trade name: IDS-16K, manufactured by Dai Nippon Printing Co., Ltd.). Shows the measurement results. In the test, the same liquid crystal device as in the previous first test example was used, and the directional forward scattering film (anisotropic forward film) was changed to the isotropic scattering film used this time, and the measurement was made.
[0109]
From the results shown in FIG. 14, the transmittance of parallel-line transmitted light hardly changes at any azimuth, almost overlaps with one curve, and the polar angle is + region with the maximum when the polar angle is 0 °. It is clear that even if it is changed to a region, it changes only about several percent. From this result, it is clear that the effect of the present invention cannot be obtained even when an isotropic front scattering film is used in a liquid crystal device.
[0110]
"Test Example 2"
Next, a reflective color liquid crystal using a directional forward scattering film (which satisfies the relationship of (Tmax / Tmin) ≈12: 3≈4) when the polar angle θ1 and the polar angle θ2 in the previous test are variously changed. The brightness of the display device was compared in an office with a fluorescent lamp. As the brightness, a reflective color liquid crystal display device using a conventional isotropic forward scattering film (a reflective color liquid crystal display device using an isotropic scattering film used for the measurement shown in FIG. 14) and In comparison, Table 1 below shows the results that were recognized brighter than the conventional reflective color liquid crystal display device, ◯, equivalent ones, and dark ones.
[0111]
"Table 1"
θ1 (°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2 (°) 0 0 0 0 0 0 0 0 0
Evaluation result × × × × × △ △ △ ×
θ1 (°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2 (°) 10 10 10 10 10 10 10 10 10
Evaluation result × × × × △ ○ ○ ○ ×
θ1 (°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2 (°) 20 20 20 20 20 20 20 20 20
Evaluation result × × × × △ ○ ○ ○ ×
θ1 (°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2 (°) 30 30 30 30 30 30 30 30 30
Evaluation result × × × × △ ○ ○ ○ ×
θ1 (°) -80 -70 -60 -50 -40 -30 -20 -10 0
θ2 (°) 40 40 40 40 40 40 40 40 20
Evaluation result × × × × × △ △ △ ×
As is apparent from the measurement results shown in Table 1, the polar angle θ1 when the parallel-line transmitted light is maximized (when the diffusely transmitted light is minimized) is in the range of −40 ° ≦ θ1 ≦ 0 °, 0 ° If the range is ≦ θ2 ≦ 40 °, the same level of brightness as that of the conventional product can be ensured. If the range is −30 ° ≦ θ1 ≦ −10 °, and the range of 10 ° ≦ θ2 ≦ 30 ° is greater than that of the conventional product. It can be seen that a liquid crystal display device having excellent brightness can be obtained.
[0112]
“Test Example 3”
A directional forward scattering film is prepared in which the parallel line transmittance T (0, 0) in the normal direction of the directional forward scattering film is changed to various values, and the brightness of a liquid crystal display device including the directional forward scattering film is improved. This was compared in offices under fluorescent lighting. The compared conventional product is the same as that used in the previous test example. Table 2 below shows the results that were recognized brighter than the reflective type color liquid crystal display device using the conventional isotropic forward scattering film, ◯ for the equivalent, Δ for the equivalent, and × for the dark.
[0113]
"Table 2"
T (0.0) 3% 5% 10% 20% 30% 40% 50% 60%
Evaluation result △ ○ ○ ○ ○ ○ △ ×
As is apparent from the results shown in Table 2, if 3% ≦ T (0,0) ≦ 60%, more preferably 5% ≦ T (0,0) ≦ 40%, the actual usage environment It is apparent that a brighter reflective color liquid crystal display device can be provided.
[0114]
Next, from the results shown in FIG. 10, FIG. 11, and FIG. 12, when the azimuth angle φ of the directional forward scattering film is defined in the range of φ1 ± 60 ° and φ2 ± 60 °, the parallel transmittance is always in θ1. It is also clear that the maximum (in other words, the minimum of diffuse transmittance) is shown, and the minimum of parallel line transmittance (in other words, the maximum of diffuse transmittance) is shown at θ2.
[0115]
“Test Example 4”
Next, a number of directional forward scattering films prepared by transmission type hologram technology are prepared, and the brightness of the reflection type color display device when the value of (Tmax / Tmin) is adjusted to various values is compared with the prior art. Table 3 below shows the result of comparison with a liquid crystal display device using a product isotropic scattering film. ◎ if it was recognized more than twice as bright as the conventional liquid crystal display device, ○ if it was recognized brighter than the conventional product, △ if it was equivalent, × if it was dark.
[0116]
"Table 3"
From the results shown in Table 3, it is clear that recognition was particularly bright when the ratio between the minimum value and maximum value of the parallel line transmittance described above was 2 or more.
[0117]
"Test Example 5"
In the directional forward scattering film, the azimuth angle when the parallel line transmittance is the minimum value (in other words, the diffuse transmittance is the maximum value) or the parallel line transmittance is the maximum value (in other words, the diffuse transmittance is the minimum value) is φ2 or Assuming φ1, the ratio between the maximum value and the minimum value of the transmitted light characteristics measured by changing the polar angle θ in the range of φ2 ± 60 ° and φ1 ± 60 ° was measured. By changing this ratio, the brightness of the reflection type color liquid crystal display device was compared in an office under a fluorescent lamp. The compared conventional product is the same as that used in the previous test example. Table 4 below shows those that could be recognized brighter than the reflective type color liquid crystal display device using the conventional isotropic forward scattering film, ◯ for the equivalent, Δ for the dark, and × for the dark.
[0118]
From the results shown in Table 4, it was revealed that the maximum / minimum value is preferably 1.5 or more. That is, when the azimuth angle φ of the directional forward scattering film is defined in the range of φ1 ± 60 ° and φ2 ± 60 °, it is clear that the ratio between the minimum value and the maximum value of the parallel line transmittance is 1.5 or more. It is.
[0119]
"Test Example 6"
In the directional forward scattering film, when the polar angle θ is set to −60 ° ≦ θ ≦ + 60 °, the maximum value and the minimum value of the parallel-line transmittance T are changed to change the brightness of the reflective color liquid crystal display device to fluorescence. Comparisons were made in offices with lights on. The compared conventional product is the same as that used in the previous test example. Table 5 below shows the results that were recognized brighter than the reflection type color liquid crystal display device using the conventional isotropic forward scattering film, ◯ for the equivalent, Δ for the equivalent, and × for the dark.
[0120]
"Table 5"
Minimum transmittance Tmin 1% 1% 1% 1% 1% 1%
Evaluation result × × △ △ △ ×
Evaluation result × ○ ○ ○ ○ ○
Evaluation result △ 〇 〇 〇 〇
Evaluation result △ 〇 〇 〇 △
Evaluation result × ○ ○ △ △ ×
Evaluation result × △ △ × × ×
Evaluation result × × × × × ×
From the results shown in Table 5, it can be seen that the maximum value / minimum value ≧ 2 is satisfied and the transmittance of 2% or more and 50% or less is necessary.
[0121]
"Test Example 7"
Using a directional forward scattering film having characteristics as shown in FIG. 11 (the relationship between the maximum transmittance Tmax and the minimum transmittance Tmin of parallel-line transmitted light satisfies (Tmax / Tmin) ≈12: 3≈4). The reflection spectral characteristics were investigated.
[0122]
As shown in FIG. 15, the reflection spectral characteristic here is a directional forward scattering exhibiting the characteristic of a rectangular shape in plan view of (50 × 40) mm on the upper surface of the
[0123]
For comparison, the spectroscope reflects the reflected light when light is incident from the light source K in the same manner as in the above method on a laminate in which a conventional isotropic forward scattering film is disposed instead of the directional forward scattering film. Was used to investigate the relationship between wavelength and reflection intensity. The results are shown in FIG. In FIG. 16, (2) is the reflection spectral characteristic of the comparative example provided with the isotropic forward scattering film.
[0124]
FIG. 16 shows that the conventional isotropic forward scattering film has a reflection intensity peak on the long wavelength side exceeding 650 nm and the reflected light is yellowish or orange (L * a * b * color) It can be seen that the hue represented by the system is b *> 0). On the other hand, the film using the directional forward scattering film of the example has a peak of reflection intensity on the short wavelength side near 500 nm, and the reflected light in the normal direction has a blue color (L * a * b * It can be seen that the hue represented by the color system is b * <0).
[0125]
"Test Example 8"
A number of directional forward scattering films exhibiting characteristics as shown in FIG. 11 (the relationship between the maximum transmittance Tmax and the minimum transmittance Tmin of parallel-line transmitted light satisfies (Tmax / Tmin) ≈12: 3≈4). The transmission spectroscopic characteristics were investigated by using this.
[0126]
The transmission spectral characteristic here is a directional forward scattering film (directivity of the example) showing the characteristic of a rectangular shape in plan view of (50 × 40) mm on the upper surface of the
[0127]
From FIGS. 17A and 17B, the films using the directional forward scattering films of the examples all have a peak of parallel line transmitted light on the long wavelength side exceeding 650 nm, and the parallel line transmitted light is yellowish or orange. I understand. When there is a reflective layer, the parallel transmitted light is regularly reflected, and it can be seen that the regular reflection direction is yellow or orange. When observing a liquid crystal display device, an observer usually observes the display from a direction deviated from the regular reflection direction, so if the display is observed with reflected light having a blue color shifted from the regular reflection direction, It is considered that the display quality can be improved without the display appearing yellowish. "Test Example 9"
A number of directional forward scattering films exhibiting characteristics as shown in FIG. 11 (the relationship between the maximum transmittance Tmax and the minimum transmittance Tmin of parallel-line transmitted light satisfies (Tmax / Tmin) ≈12: 3≈4). Used to measure the hue.
[0128]
The hue measurement here uses a device similar to that shown in FIG. 15, and a directional forward scattering film having an Al reflective layer on the lower surface and a rectangular shape in plan view of (50 × 40) mm on the upper surface of the
[0129]
From FIG. 18, the directional forward scattering film of the example uses b *> 6 for the reflected light near 25 degrees in the specular reflection direction, particularly in the range of 20 to 40 degrees. The hue of reflected light is b *> 4, and it can be seen that it is yellowish. On the other hand, it can be seen that the hues of the reflected light in the range of the light receiving angle of 0 to 17 degrees all show b * <0. When observing a liquid crystal display device, the observer usually observes the display from a direction deviated from the regular reflection direction, and therefore, the direction deviated from the regular reflection, particularly in the normal direction (light receiving
[0130]
"Test Example 10"
A number of directional forward scattering films exhibiting characteristics as shown in FIG. 11 (the relationship between the maximum transmittance Tmax and the minimum transmittance Tmin of parallel-line transmitted light satisfies (Tmax / Tmin) ≈12: 3≈4). Many were prepared and the hue was measured.
[0131]
The hue measurement here uses the same apparatus as in FIG. 15, and the directivity showing the above-mentioned characteristics of a rectangular shape in plan view of (50 × 40) mm on the upper surface of the
[0132]
A number of liquid crystal panels similar to those in FIG. 2 were prepared except that no directional forward scattering film was provided, and the hue was measured in the same manner as in the above method. The results are shown in FIG.
[0133]
It can be seen from FIG. 19 that the hue of the liquid crystal panel is b *> 0 and is yellowish. Further, the hues of the reflected light of the directional forward scattering films of the examples are all b * <0 and are bluish, particularly in the range of −6 <b * <0 and −10 <a * <10. It can be seen that the hue is within. Therefore, if the liquid crystal panel is provided with the directional forward scattering film of such an embodiment, the diffuse transmitted light incident on and transmitted through the directional forward scattering film is L * a * b * color system. The hue represented is b * <0, and the diffusely transmitted light that is strongly scattered upon incidence exhibits a blue system. Therefore, the diffuse transmitted light of such a blue system (hue is b * <0) has a yellow color. Even after being reflected by the reflective layer inside the liquid crystal panel (the hue represented by the L * a * b * color system indicates b *> 0), the color is bluish white (the hue is b * <0) When the display is observed with this blue-based reflected light (hue is b * <0), the hue is near the origin in FIG. 19 (both a * and b * are near 0), in other words, the hue Will be offset, and the display will not appear to be colored, thus providing a clear display form and improving display quality. It can be seen.
[0134]
Further, when the directional forward scattering film is disposed on the liquid crystal panel, the incident light side in the case of the polar angle and the azimuth angle indicating the minimum transmittance (when the diffuse transmitted light is the strongest angle) is set to the daylighting side of the liquid crystal panel. Thus, if the incident light side in the case of the polar angle and azimuth angle indicating the maximum transmittance (when the diffuse transmitted light is the weakest angle) is set to the observation direction side of the liquid crystal panel, the hue is b *. The amount of diffuse transmitted light of <0 is increased, the influence on display blur (blur) and display coloration are small, and a clear display form with less display blur (blur) and color change can be obtained.
[0135]
【The invention's effect】
As described above, according to the liquid crystal device of the present invention, in the reflective or transflective liquid crystal display device provided with the directional forward scattering film, the incident light side in the case of the polar angle and the azimuth angle indicating the minimum transmittance. The directional forward scattering film on the liquid crystal panel so that the incident light side in the polar angle and azimuth angle indicating the maximum transmittance is on the observation direction side of the liquid crystal panel By arranging, the azimuth angle φ2 when showing the minimum transmittance of parallel line transmitted light is the incident angle direction, and the azimuth angle φ1 when showing the maximum transmittance of parallel line transmitted light is the observer direction. In the case of a liquid crystal display device having a directional forward scattering film arranged in this way, light incident on the directional forward scattering film is strongly scattered at the time of incidence, but is reflected by a reflective layer inside the liquid crystal panel. Since the amount of light scattered when passing through the directional front scattering film later is reduced, there is little influence on display blur (blur), and a clear display form with less display blur (blur) can be obtained.
[0136]
Further, in the reflective or transflective liquid crystal display device having the directional forward scattering film arranged as described above, the directional forward scattering film is a polar angle that shows the minimum transmittance of light from the light source. And the diffusive transmitted light that is incident and transmitted through the directional forward scattering film from the azimuth angle direction is set so that the hue represented by the L * a * b * color system indicates b * <0. Since the diffusely transmitted light that is strongly scattered upon incidence exhibits a blue white color, such a blue white color (hue is b * <0) diffused light is transmitted through a polarizing plate, an alignment film, a transparent electrode, and an insulating film. After being reflected by the reflective layer inside the liquid crystal panel, most of the structural members such as the protective film are yellow (the hue represented by the L * a * b * color system indicates b *> 0). Is also bluish white (hue is b * <0). When observing the display by light, a state in which hue offset, obtained display without coloring (achromatic), thus sharp display form is obtained, the display quality can be improved.
[0137]
Furthermore, if the electronic apparatus has the liquid crystal device having the above-described various structures, it is possible to provide an electronic apparatus that can display sharp, high-quality images without blurring or coloring of the display. .
[Brief description of the drawings]
FIG. 1 is a plan view of a liquid crystal panel according to a first embodiment of the present invention.
2 is a schematic partial cross-sectional view taken along line AA of the liquid crystal panel shown in FIG.
FIG. 3 is an enlarged cross-sectional view showing a color filter portion of the liquid crystal panel shown in FIG.
FIG. 4 is an explanatory diagram showing a positional relationship among a directional forward scattering film, a light source, a light receiving unit, a polar angle, an azimuth angle, and parallel-line transmitted light.
FIG. 5 is an explanatory diagram showing a positional relationship among a directional forward scattering film, a light source, and a light receiving unit.
FIG. 6A is an explanatory diagram showing the relationship between incident light, parallel-line transmitted light, diffuse transmitted light, and backscattered light and forward scattered light with respect to the directional forward scattering film, and FIG. It is explanatory drawing which shows the relationship between an example of the cross-section of a property front scattering film, and incident light and reflected light.
FIG. 7 is a cross-sectional view of a liquid crystal panel according to a second embodiment of the present invention.
FIG. 8 is a cross-sectional view of a liquid crystal panel according to a third embodiment of the present invention.
FIGS. 9A and 9B show application examples of the electronic device of the present invention, in which FIG. 9A is a perspective view showing a portable telephone, FIG. 9B is a perspective view showing an example of a portable information processing apparatus, and FIG. FIG. 9C is a perspective view showing an example of a wristwatch type electronic device.
FIG. 10 is a diagram illustrating a result of measurement of a first example of a relationship between polar angle and transmittance measured in each example for each azimuth angle.
FIG. 11 is a result of measuring a second example of the relationship between the polar angle and the transmittance measured in each example for each azimuth angle, and the ratio between the minimum value and the maximum value of the parallel line transmittance is 4. It is a figure which shows the measurement result in a case.
FIG. 12 is a result of measuring a third example of the relationship between the polar angle and the transmittance measured in each example for each azimuth, and the ratio between the minimum value and the maximum value of the parallel line transmittance is 2; It is a figure which shows the measurement result in a case.
FIG. 13 is a diagram showing the results of measuring the relationship between the azimuth angle and the transmittance measured in each example for each polar angle.
FIG. 14 is a diagram showing the results of measuring the relationship between polar angle and transmittance measured in a comparative example for each azimuth angle.
FIG. 15 is an explanatory diagram of a method of measuring reflection spectral characteristics in a test example.
FIG. 16 is a diagram showing reflection spectral characteristics when incident light is incident at −30 degrees and reflected light is received at a light receiving angle of 0 degrees in an example and a comparative example.
FIG. 17 is a diagram showing the transmission spectral characteristics of parallel transmitted light when incident light is incident at −30 degrees in the example.
FIG. 18 is a diagram illustrating a relationship between a reception angle of reflected light and a hue when incident light is incident at −25 degrees in an example.
FIG. 19 is a diagram showing reflected light of a directional forward scattering film of Example and a hue of a liquid crystal panel.
FIG. 20 shows a conventional reflective liquid crystal device. FIG. 20 (a) is a schematic cross-sectional view showing an example of a reflective liquid crystal device provided with a scattering film, and FIG. 20 (b) is an internal diffusion plate. 1 is a schematic cross-sectional view showing an example of a reflective liquid crystal device provided.
[Explanation of symbols]
θ ... polar angle,
φ ... azimuth,
K ... light source,
J: Light receiving part,
LT: Diffuse transmitted light,
L3 ... Parallel line transmitted light,
Tmax (φ1, θ1) ... maximum transmittance,
Tmin (φ2, θ2) ... minimum transmittance,
10, 40, 50 ... Liquid crystal panel,
15 ... Liquid crystal layer,
17, 28, 28 '... substrate,
18: Directional forward scattering film,
20 Color filter layer,
23, 35 ... electrode layer,
31 ... reflective layer,
52 ... a transflective layer,
200 ... mobile phone body,
300 ... portable information processing device,
400: A wristwatch type electronic device.
Claims (9)
前記指向性前方散乱フィルムに対してその一面側に配置した光源から光を入射し、前記指向性前方散乱フィルムの他面側に配置した受光部において、前記指向性前方散乱フィルムを透過した全透過光のうち、拡散透過光を除いた平行線透過光を観測した際、
前記指向性前方散乱フィルムの法線に対する入射光の入射角度を極角θnと定義し、前記指向性前方散乱フィルムの面内方向の入射光角度を方位角φmと定義し、平行線透過光の最大透過率をTmax(φ1,θ1)と定義し、平行線透過光の最小透過率をTmin(φ2,θ2)と定義した場合、最小透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの採光側になるように、最大透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの観察方向側になるように、前記指向性前方散乱フィルムを前記液晶パネルに配置してなり、
前記指向性前方散乱フィルムは、所定の角度を有して斜め方向に層状に交互に屈折率の異なる層が配置され、観察方向をφ1、入射角方向をφ2とした時、φ1=φ2±180°の関係を基にしてその角度から±10°の範囲内であり、
前記平行線透過光の最大透過率Tmaxと最小透過率Tminの比は、(Tmax/Tmin)≧2の関係を満たし、
さらに前記指向性前方散乱フィルムは、前記光源からの光を最小透過率を示す極角と方位角方向から前記指向性前方散乱フィルムに入射し、透過した拡散透過光が、L*a*b*表色系で表される色相がb*<0を示すように設定されたことを特徴とする液晶装置。A pair of substrates, a liquid crystal layer sandwiched between the substrates, a reflective layer provided on the liquid crystal layer side of the one substrate, and directivity provided on the opposite side of the liquid crystal layer side of the other substrate A liquid crystal panel including a front scattering film;
Light is incident from a light source arranged on one side of the directional forward scattering film, and is totally transmitted through the directional forward scattering film in a light receiving unit arranged on the other side of the directional forward scattering film. When observing parallel-line transmitted light excluding diffused transmitted light,
The incident angle of incident light with respect to the normal of the directional forward scattering film is defined as a polar angle θn, the incident light angle in the in-plane direction of the directional forward scattering film is defined as an azimuth angle φm, and When the maximum transmittance is defined as Tmax (φ1, θ1) and the minimum transmittance of parallel-line transmitted light is defined as Tmin (φ2, θ2), the incident light side in the case of polar angles and azimuths indicating the minimum transmittance The directional forward scattering film is placed on the liquid crystal panel so that the incident light side in the case of the polar angle and the azimuth angle indicating the maximum transmittance is on the observation direction side of the liquid crystal panel. Placed on the panel,
In the directional forward scattering film, layers having different refractive indexes are alternately arranged in a slanting direction with a predetermined angle, and when the observation direction is φ1 and the incident angle direction is φ2, φ1 = φ2 ± 180 Within the range of ± 10 ° from the angle based on the relationship of °,
The ratio of the maximum transmittance Tmax and the minimum transmittance Tmin of the parallel-line transmitted light satisfies the relationship of (Tmax / Tmin) ≧ 2,
Further, the directional forward scattering film is incident on the directional forward scattering film from the polar angle and azimuth direction indicating the minimum transmittance of the light from the light source, and the transmitted diffuse transmitted light is L * a * b *. A liquid crystal device, wherein a hue represented by a color system is set so as to indicate b * <0.
前記指向性前方散乱フィルムに対してその一面側に配置した光源から光を入射し、前記指向性前方散乱フィルムの他面側に配置した受光部において、前記指向性前方散乱フィルムを透過した全透過光のうち、拡散透過光を除いた平行線透過光を観測した際、
前記指向性前方散乱フィルムの法線に対する入射光の入射角度を極角θnと定義し、前記指向性前方散乱フィルムの面内方向の入射光角度を方位角φmと定義し、平行線透過光の最大透過率をTmax(φ1,θ1)と定義し、平行線透過光の最小透過率をTmin(φ2,θ2)と定義した場合、最小透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの採光側になるように、最大透過率を示す極角と方位角の場合の入射光側を前記液晶パネルの観察方向側になるように、前記指向性前方散乱フィルムを前記液晶パネルに配置してなり、
前記指向性前方散乱フィルムは、所定の角度を有して斜め方向に層状に交互に屈折率の異なる層が配置され、観察方向をφ1、入射角方向をφ2とした時、φ1=φ2±180°の関係を基にしてその角度から±10°の範囲内であり、
前記平行線透過光の最大透過率Tmaxと最小透過率Tminの比は、(Tmax/Tmin)≧2の関係を満たし、
さらに前記指向性前方散乱フィルムは、前記光源からの光を最小透過率を示す極角と方位角方向から前記指向性前方散乱フィルムに入射し、透過した拡散透過光が、L*a*b*表色系で表される色相がb*<0を示すように設定されたことを特徴とする液晶装置。A pair of substrates, a liquid crystal layer sandwiched between these substrates, a transflective layer provided on the liquid crystal layer side of the one substrate, and a side opposite to the liquid crystal layer side of the other substrate A liquid crystal panel having a directional forward scattering film;
Light is incident from a light source arranged on one side of the directional forward scattering film, and is totally transmitted through the directional forward scattering film in a light receiving unit arranged on the other side of the directional forward scattering film. When observing parallel-line transmitted light excluding diffused transmitted light,
The incident angle of incident light with respect to the normal of the directional forward scattering film is defined as a polar angle θn, the incident light angle in the in-plane direction of the directional forward scattering film is defined as an azimuth angle φm, and When the maximum transmittance is defined as Tmax (φ1, θ1) and the minimum transmittance of parallel-line transmitted light is defined as Tmin (φ2, θ2), the incident light side in the case of polar angles and azimuths indicating the minimum transmittance The directional forward scattering film is placed on the liquid crystal panel so that the incident light side in the case of the polar angle and the azimuth angle indicating the maximum transmittance is on the observation direction side of the liquid crystal panel. Placed on the panel,
In the directional forward scattering film, layers having different refractive indexes are alternately arranged in a slanting direction with a predetermined angle, and when the observation direction is φ1 and the incident angle direction is φ2, φ1 = φ2 ± 180 Within the range of ± 10 ° from the angle based on the relationship of °,
The ratio of the maximum transmittance Tmax and the minimum transmittance Tmin of the parallel-line transmitted light satisfies the relationship of (Tmax / Tmin) ≧ 2,
Further, the directional forward scattering film is incident on the directional forward scattering film from the polar angle and azimuth direction indicating the minimum transmittance of the light from the light source, and the transmitted diffuse transmitted light is L * a * b *. A liquid crystal device, wherein a hue represented by a color system is set so as to indicate b * <0.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001111816A JP4068815B2 (en) | 2000-12-13 | 2001-04-10 | Liquid crystal device and electronic device |
US10/114,066 US6678026B2 (en) | 2001-04-10 | 2002-04-03 | Liquid crystal device and electronic apparatus |
KR10-2002-0019013A KR100429728B1 (en) | 2001-04-10 | 2002-04-08 | Liquid crystal device and electronic apparatus |
TW091106996A TW554219B (en) | 2001-04-10 | 2002-04-08 | Liquid crystal device |
CNB021060991A CN1194248C (en) | 2001-04-10 | 2002-04-08 | Liquid crystal device and electronic machine |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000379274 | 2000-12-13 | ||
JP2000-379274 | 2000-12-13 | ||
JP2001111816A JP4068815B2 (en) | 2000-12-13 | 2001-04-10 | Liquid crystal device and electronic device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003363486A Division JP2004078249A (en) | 2000-12-13 | 2003-10-23 | Liquid crystal device and electronic apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002244134A JP2002244134A (en) | 2002-08-28 |
JP4068815B2 true JP4068815B2 (en) | 2008-03-26 |
Family
ID=26605776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001111816A Expired - Lifetime JP4068815B2 (en) | 2000-12-13 | 2001-04-10 | Liquid crystal device and electronic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4068815B2 (en) |
-
2001
- 2001-04-10 JP JP2001111816A patent/JP4068815B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002244134A (en) | 2002-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6678026B2 (en) | Liquid crystal device and electronic apparatus | |
KR100374446B1 (en) | Reflection liquid crystal display and reflection liquid crystal display provided with built-in touch panel and comprising the same | |
JP3575024B2 (en) | Reflective color liquid crystal device and electronic equipment using the same | |
US6501521B2 (en) | Transmission/reflection type color liquid crystal display device | |
TW548450B (en) | Liquid crystal apparatus and electronic machine | |
US6912028B2 (en) | Liquid crystal display device with improved viewing angle properly and portable electronic apparatus using the same | |
JPH11281970A (en) | Reflection type liquid crystal display element | |
JPH103078A (en) | Reflection type liquid crystal device, and electronic device using it | |
JP3474167B2 (en) | Liquid crystal display | |
JP3723511B2 (en) | Reflective / transmissive color liquid crystal display | |
JP4153674B2 (en) | Liquid crystal device and electronic device | |
JP3435113B2 (en) | Liquid crystal display | |
JP4068815B2 (en) | Liquid crystal device and electronic device | |
JP4665388B2 (en) | Liquid crystal device and electronic device | |
JP4032661B2 (en) | Liquid crystal device and electronic device | |
JP2004078249A (en) | Liquid crystal device and electronic apparatus | |
JP3931199B2 (en) | Reflective / transmissive color liquid crystal display | |
JP2002182191A (en) | Electrooptic device and electronic equipment | |
JP3379427B2 (en) | Liquid crystal devices and electronic equipment | |
JP2003057631A (en) | Liquid crystal device and electronic machine | |
JP3931201B2 (en) | Reflective / transmissive color liquid crystal display | |
JP2002090723A (en) | Liquid crystal device and electronic instrument | |
JP2004126606A (en) | Liquid crystal apparatus and electronic equipment | |
JP2002244119A (en) | Liquid crystal device and electronic apparatus | |
JP3760675B2 (en) | Liquid crystal device and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051004 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060306 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060314 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20061013 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4068815 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140118 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |