JP4032569B2 - Liquid crystal device and electronic device - Google Patents

Liquid crystal device and electronic device Download PDF

Info

Publication number
JP4032569B2
JP4032569B2 JP20363499A JP20363499A JP4032569B2 JP 4032569 B2 JP4032569 B2 JP 4032569B2 JP 20363499 A JP20363499 A JP 20363499A JP 20363499 A JP20363499 A JP 20363499A JP 4032569 B2 JP4032569 B2 JP 4032569B2
Authority
JP
Japan
Prior art keywords
liquid crystal
layer
alignment layer
crystal layer
alignment film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20363499A
Other languages
Japanese (ja)
Other versions
JP2001033784A (en
Inventor
強 前田
英司 岡本
治 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP20363499A priority Critical patent/JP4032569B2/en
Publication of JP2001033784A publication Critical patent/JP2001033784A/en
Application granted granted Critical
Publication of JP4032569B2 publication Critical patent/JP4032569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a device in which influences of a reflection plate having a rugged pattern on the electro-optic characteristics of a liquid crystal can be suppressed and defects in domains or the like are eliminated by forming an alignment layer having different film thickness for the projected part and for the recessed part of the reflection layer having a rugged pattern so that the film thickness of the alignment layer on the recessed part is larger than the film thickness of the alignment layer on the projecting part. SOLUTION: In this liquid crystal device, external light is transmitted through a polarizing plate, a phase difference plate, a color filter and a liquid crystal layer 202, then is reflected on a rugged reflection electrode 205, and then is exited again from the polarizing plate to the outside of the liquid crystal cell. The liquid crystal layer 202 is held between the alignment layer 201 on the upper substrate side and alignment layer 203 (204) on the lower substrate side (alignment layer 204 formed on the projecting part and alignment layer 203 formed on the recessed part). The rugged reflection electrode 205 is formed under the alignment layer 203 (204) on the lower substrate side. Thus, the alignment layer 204, 203 different in film thickness are formed on the projecting part and recessed part of the rugged reflection layer so that the film thickness of the alignment layer 203 on the recessed part is larger than that of the alignment layer 204 on the projecting part.

Description

【0001】
【発明の属する技術分野】
本発明は液晶装置に係り、特に、反射型カラー表示ができる液晶装置の構造及びこの液晶装置を用いた電子機器に関する。さらには、凸凹反射層を有する半透過反射型カラー液晶装置に関する。
【0002】
【従来の技術】
従来、反射型の液晶装置としては、2枚の透明基板の間に液晶層を封止してなる液晶セルの背面側に反射板を配置したものが多く利用されている。このような反射型の液晶装置においては、液晶層の種類や駆動方式などに応じて、液晶セルの前後に偏光板を配置したり、液晶装置の前面側のみに偏光板を配置したり、偏光板を全く必要としなかったりする場合がある。
【0003】
このような形式の反射型液晶装置においては、外光が前面側の透明基板を通して液晶層に入射し、裏面側の透明基板を透過して反射板にて反射された後、再び裏面側の透明基板、液晶層、前面側の透明基板を通過して視認される。この場合に、液晶層と反射板の反射面の間には裏面側の透明基板の厚さ分だけ間隔が生じるため、外光の入射角度によっては入射時において通過する液晶層の画素領域もしくはドット領域と、反射後に通過する液晶層の画素領域もしくはドット領域とが異なるので、いわゆる視差による表示のにじみやダブルイメージなどが発生するという問題点がある。
【0004】
上記のような問題点を解決する手法としては、特開平9−113893号公報に記載されているように、外光を反射させる反射板を液晶セルの内面に設けて、視差をなくすというものがある。ところが、特開平9−113893号公報に記載されている反射型の液晶装置においては、異なる屈折率を有する2種類の微小領域から構成される拡散板を液晶セルの前面に配置しているので、拡散板による表示のにじみ(ボケ)が発生するという問題点がある。この拡散板は反射板の鏡面感や金属感をなくし、外光の正反射方向でなくとも明るい表示を得るために用いているわけであるが、この拡散板による散乱のために、異なる各画素での異なる情報が人間の目で認識されるまでに混在してしまう。つまり、隣り合う画素で白表示と黒表示をそれぞれ行っていたとすると、拡散板のために、白表示と黒表示の境界がわかりにくくなり、表示がぼけてしまう。
【0005】
この問題点を解決するために、特開平9−258219号公報などで、反射板に凹凸を付与させ、反射機能と拡散機能を同時に反射板に持たせるという提案がされている。凸凹形状を有する反射板を形成することで、拡散板と鏡面反射板の距離をなくすことができ、表示のボケを抑えることが可能となる。
【0006】
【発明が解決しようとする課題】
ところが、反射板に凸凹形状を付与すると、液晶層の厚さが凸部と凹部で異なり、凸部と凹部で異なる電気光学特性となってしまう。これは、液晶層のリターデーション値R=Δnd(Δn:液晶の屈折率異方性、d:液晶層の厚さ)が凸部と凹部で異なるためである。また、凸凹のために液晶層に配向欠陥が発生してしまう。
【0007】
そこで本発明は上記問題点を解決するものであり、凸凹形状の反射板が液晶の電気光学特性に与える影響を極力抑え、ドメイン等の欠陥をなくした液晶装置を提供することにある。また、この液晶装置を用いた電子機器を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために本発明が講じた手段は、以下の通りである。
【0009】
本発明の液晶装置は、第1基板と第2基板との間に挟持された液晶層と、前記第2基板の前記液晶層側に設けられ、入射した光を散乱させる凸凹形状を表面に有する反射層と、該反射層の前記液晶層側に設けられた配向膜と、を備えた液晶装置において、前記凹凸形状の凹部における前記液晶層の厚さが、前記凹凸形状の凸部における前記液晶層の厚さより厚く設定されており、前記凹部における前記配向膜に対する前記液晶層の液晶分子の長軸がなすプレティルト角が、前記凸部におけるプレティルト角よりも大きくなるように前記凹部における前記配向膜の膜厚が、前記凸部における膜厚よりも厚く設定されていることを特徴とする。
また、本発明の液晶装置は、前記凹部におけるリタデーション値と前記凸部におけるリタデーション値の差を小さくするように、前記凹部と前記凸部とで前記配向膜に対する前記液晶層の液晶分子の長軸がなすプレティルト角が異なっていることを特徴とする。
【0010】
この手段によれば、凸部には薄い配向膜が形成され、凹部には厚い配向膜が形成されるので、配向膜が液晶に与える配向規制力が異なる。例えば、JSR株式会社製の可溶性ポリイミドAL3000シリーズを用いると、膜厚が厚くなるにつれてプレティルト角が高くなる。プレティルト角とは、ラビング配向処理を施したポリイミド塗布面に対して液晶分子の長軸がなす角度のことである。つまり、凸部では低いプレティルト角となり、凹部では高いプレティルト角が実現できる。もし、凸部と凹部でプレティルト角が同じ場合には液晶の複屈折性(Δn)と液晶層の厚さ(d)との積であるリターデーション値Δndは、凹部の方が大きくなってしまい、凸部と凹部で異なる電気光学特性を示してしまう。しかし、凸部のプレティルト角を低くし、凹部のプレティルト角を高くすることによって、液晶セルを正面から見たときのリターデーション値の差を小さくすることが可能になる。これは、プレティルト角が高いと液晶セルを正面から見たときの液晶の複屈折性(Δn)が小さくなるためである。
【0011】
本発明の他の効果は、凸凹形状が液晶の配向に与える影響を最小限にするというものである。凹部における配向膜の厚さを厚くすることによって、凸凹間の段差を小さくできる。
【0012】
また、本発明の液晶装置において、前記第1基板の前記液晶層と異なる側に偏光板を配置し、さらに前記偏光板と前記第1基板の間に少なくとも1枚の位相差板を配置することによって、コントラストが高く、不要な色付きのない表示を実現できる。
【0013】
また、本発明の液晶装置において、前記第1基板の前記液晶層側にカラーフィルタ層を設けることによって、反射型カラー表示が実現できる。
【0014】
本発明は、凸凹反射層を有する特開平11−109417号公報に記載されているような半透過反射型カラー液晶装置にも適用することができる。
【0015】
また、本発明の電子機器は、上記の液晶装置を搭載し、バッテリー駆動を主として使用される携帯型であることを特徴とする。
【0016】
この手段によれば、低消費電力で表示欠陥がない反射型または半透過反射型カラー液晶装置を搭載した携帯電子機器が実現できる。この電子機器は、屋外など、使用環境によらず、常に高画質の表示を行うことができる。
【0017】
【発明の実施の形態】
次に、添付図面を参照して本発明に係る実施形態について説明する。
【0018】
(第1実施形態)
図1は本発明に係る液晶装置の第1実施形態の構造を示す概略縦断面図である。この実施形態は基本的に単純マトリクス型の液晶表示装置に関するものであるが、同様の構成によりアクティブマトリクス型の装置や他のセグメント型の装置、その他の液晶装置にも適用することは可能である。
【0019】
この実施形態では、2枚の基板104、107の間に液晶層105が枠状のシール材106によって封止されて、液晶セルが形成されている。液晶層105は、80度のツイスト角を持つネマチック液晶で構成されている。上側の透明基板104の内面上にはカラーフィルタ108が形成され、このカラーフィルタには、R(赤)、G(緑)、B(青)の3色の着色層が所定パターンで配列されている。カラーフィルタの表面上には透明な保護膜109が被覆されており、この保護膜109の表面上に複数のストライプ状の透明電極110がITOなどにより形成されている。透明電極110の表面上には配向膜が形成され、所定方向にラビング処理が施されている。また、上側の透明基板104の外面上に偏光板101、位相差板2枚102、103が配置されている。
【0020】
一方、下側基板107の内面上には、上記カラーフィルタの着色層毎に形成されたストライプ状の反射電極112が上記透明電極110と交差するように複数配列されている。MIM素子やTFT素子を備えたアクティブマトリクス型の装置である場合には、各反射電極112は矩形状に形成され、アクティブ素子を介して配線に接続される。この反射電極112はCrやAl、Agなどを主成分とする金属膜により形成され、その表面は透明基板104の側から入射する光を反射する反射面となっている。この反射電極112の下地はアクリル系の感光性樹脂によって段差平均が約0.5μmのランダムな凸凹形状が形成されている。このため、反射電極112は鏡面状態ではなく、広角に光を反射することが可能となっている。なお、反射電極112の下地に凸凹形状を構成する方法は感光性のアクリル樹脂を使用する以外に、フッ酸を含む溶液を用いて下側基板であるガラス基板自身に直接凸凹を付与する方法などがある。反射電極112の表面上には配向膜113が形成される。この配向膜113には、JSR株式会社製の可溶性ポリイミドを用いた。配向膜113の膜厚は、反射電極112の凸部で約10nm、凹部で約100nmとした。
【0021】
表示方法について簡単に説明をする。外光は図1における偏光板101、位相差板2枚102、103、カラーフィルタ109をそれぞれ透過し、液晶層105を通過後、凸凹反射電極112によって反射され、再び偏光板101から液晶セルの外へ出射される。このとき、液晶層105への印加電圧によって明状態と暗状態、及びその中間の明るさを制御する。凸凹反射電極112は反射光を広角に反射させ、外光の正反射方向以外でも明るい表示を認識することができるようにする効果がある。
【0022】
図2は、図1における配向膜111、113と液晶層105、凸凹形状をした反射電極113の部分を拡大したものである。図2における液晶層202は上基板側の配向膜201と下基板側の配向膜203、204(凸部に形成された配向膜204、凹部に形成された配向膜203)の間にあり、下側基板の配向膜203、204の下にさらに凸凹形状をした反射電極205が形成されている。凸凹反射電極205の平均的な段差を「H」、凸部に形成された配向膜204の膜厚を「A」、凹部に形成された配向膜203の膜厚を「B」、凸部の液晶層の厚さを「d」、凹部の液晶層の厚さを「d」、凸部に形成された配向膜204近傍の液晶分子206のプレティルト角を「θ」、凹部に形成された配向膜203近傍の液晶分子207のプレティルト角を「θ」と定義する。また、凸部の液晶層における平均的、つまりバルクのプレティルト角を「θAM」、凹部の液晶層における平均的、つまりバルクのプレティルト角を「θBM」と定義する。液晶分子長軸方向の屈折率をn‖、短軸方向の屈折率をn⊥と定義すると、プレティルト角θの屈折率異方性Δn(θ)は、
【0023】
【数1】

Figure 0004032569
【0024】
のように示すことができる。本実施形態では、凸凹反射電極205の平均的な段差H=0.5μm、凸部に形成された配向膜204の膜厚A=10nm、凹部に形成された配向膜203の膜厚B=100nmとし、液晶層の厚さはd=3μm、d=3.41μmとした。上側配向膜201近傍のプレティルト角を5.1度とし、さらに、θ=1.2度、θ=7.9度、θAM=3.0度、θBM=7.0度とした。使用したネマティック液晶の屈折率は、n‖=1.60、n⊥=1.53である。凸部上の液晶層のリターデーション値をR、凹部上の液晶層のリターデーション値をRとすると、R=0.209μm、R=0.235μmとなる。凸部と凹部のリターデーションの差は、約0.026μmである。もし、凸部と凹部の配向膜が同じ厚み(50nm)で、凸凹反射電極205近傍のプレティルト角が凸部と凹部ともに同じ値(5.0度)ならば、R=0.212μm、R=0.240μmとなり、凸部と凹部のリターデーションの差は、約0.028μmとなってしまう。
【0025】
以上のように、凸凹形状を有する反射電極の凸部と凹部に異なる膜厚の配向膜を形成し、凹部における配向膜の膜厚が凸部における配向膜の膜厚よりも厚くすることによって、液晶の電気光学特性に影響を及ぼすリターデーション値の差を小さくすることができた。また、凸部における液晶層の厚さと凹部における液晶層の厚さの差を小さくすることができたので、ドメイン等の欠陥をなくすことができた。
【0026】
本実施形態では、カラーフィルタ108の保護の目的で保護膜109を用いたが、TFTアクティブマトリクス液晶装置ではカラーフィルタ上の透明電極のパターニングが不要なので、省くことも可能である。
【0027】
本実施形態に用いるカラーフィルタの着色層について述べる。各実施形態においては、反射型表示を行う場合、入射光が一旦カラーフィルタのいずれかの着色層を透過した後、液晶層を通過して反射電極によって反射され、再び同じ着色層を透過してから放出される。したがって、通常の透過型の液晶装置とはことなり、光はカラーフィルタを二回通過することになるため、通常の透過型カラーフィルタでは表示が暗くなる。そこで、本実施形態では、カラーフィルタのR、G、Bの各着色層の可視領域における最低透過率が30〜50%になるように淡色化して形成している。着色層の淡色化は、着色層の膜厚を薄くしたり、着色層に混合する顔料若しくは染料の濃度を低くしたりすることによってなされる。
【0028】
本実施形態では、凸凹反射層自体を反射電極として用いたが、凸凹反射層上にITOなどの透明電極を形成して電極機能と反射機能を分離しても構わない。この場合においても、凸部と凹部が存在すれば、本発明は適用可能である。
【0029】
(第2実施形態)
本発明の電子機器の例を3つ示す。本発明の液晶装置は、反射型または半透過反射型なので、様々な環境下で用いられ、しかも低消費電力が必要とされる携帯機器に適している。例えば、図3(a)は携帯電話であり、(b)はウォッチであり、(c)は携帯情報機器である。本発明の液晶装置は凸凹形状を有する反射電極による表示のムラや欠陥などがなく表示品質が高いので、高精細な表示を必要とする場合には最適である。近年、情報量の増大と情報インフラの整備によって、携帯の頻度が高い電子機器が数多く製造・販売されている。このような電子機器の表示部には本発明の液晶装置は最適であり、特にカラー表示が必要な時には非常に発色のよい表示を可能にする。
【0030】
【発明の効果】
以上説明したように本発明によれば、凸凹形状を有した反射層が液晶の電気光学特性に及ぼす欠陥(明るさムラ、コントラストムラ、不要な色付き)、さらに液晶配向に及ぼす欠陥(ディスクリネーション発生、ドメインムラ)などを抑えることができる。
【図面の簡単な説明】
【図1】本発明に係る液晶装置の第1実施形態の概略構造を示す概略縦断面図である。
【図2】第1実施形態を説明するための詳細図である。
【図3】本発明に係る液晶装置を搭載した電子機器の例を示す図である。
【符号の説明】
101 偏光板
102、103 位相差板
104 上側基板
105、202 液晶層
106 シール剤
107 下側基板
108 カラーフィルタ
109 保護膜
110 透明電極
111、113、201 配向膜
112、205 凸凹反射電極
203 凹部上の配向膜
204 凸部上の配向膜
206 凸部近傍の液晶分子
207 凹部近傍の液晶分子
A 凸部上の配向膜の厚さ
B 凹部上の配向膜の厚さ
H 凸凹反射電極の段差
凸部における液晶層の厚さ
凹部における液晶層の厚さ
θ 凸部近傍の液晶分子のプレティルト角
θ 凹部近傍の液晶分子のプレティルト角[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal device, and more particularly, to a structure of a liquid crystal device capable of reflective color display and an electronic apparatus using the liquid crystal device. Furthermore, the present invention relates to a transflective color liquid crystal device having an uneven reflective layer.
[0002]
[Prior art]
Conventionally, as a reflection type liquid crystal device, a liquid crystal device in which a reflection plate is disposed on the back side of a liquid crystal cell in which a liquid crystal layer is sealed between two transparent substrates is widely used. In such a reflective liquid crystal device, a polarizing plate is arranged before and after the liquid crystal cell, or a polarizing plate is arranged only on the front side of the liquid crystal device, depending on the type of liquid crystal layer and the driving method. You may not need any boards at all.
[0003]
In such a type of reflective liquid crystal device, external light enters the liquid crystal layer through the transparent substrate on the front side, passes through the transparent substrate on the back side and is reflected by the reflective plate, and then becomes transparent on the back side again. Visible through the substrate, the liquid crystal layer, and the transparent substrate on the front side. In this case, since a gap is formed between the liquid crystal layer and the reflecting surface of the reflecting plate by the thickness of the transparent substrate on the back side, depending on the incident angle of external light, the pixel region or dot of the liquid crystal layer that passes at the time of incidence Since the area is different from the pixel area or the dot area of the liquid crystal layer that passes after reflection, there is a problem that display blur due to so-called parallax or a double image occurs.
[0004]
As a technique for solving the above problems, as described in JP-A-9-113893, a reflection plate that reflects external light is provided on the inner surface of the liquid crystal cell to eliminate parallax. is there. However, in the reflection type liquid crystal device described in JP-A-9-113893, a diffusion plate composed of two kinds of micro regions having different refractive indexes is disposed on the front surface of the liquid crystal cell. There is a problem that blurring of display due to the diffusion plate occurs. This diffuser plate is used to eliminate the specular feeling and metal feeling of the reflector, and to obtain a bright display even if it is not in the regular reflection direction of external light. Different information in the world will be mixed until it is recognized by human eyes. In other words, if white display and black display are performed by adjacent pixels, the boundary between the white display and the black display becomes difficult to understand due to the diffusion plate, and the display is blurred.
[0005]
In order to solve this problem, Japanese Patent Application Laid-Open No. 9-258219 proposes that the reflecting plate is provided with irregularities so that the reflecting plate has a reflecting function and a diffusing function at the same time. By forming the reflecting plate having an uneven shape, the distance between the diffusing plate and the specular reflecting plate can be eliminated, and display blurring can be suppressed.
[0006]
[Problems to be solved by the invention]
However, when the reflector is provided with an uneven shape, the thickness of the liquid crystal layer is different between the convex portion and the concave portion, and the electro-optical characteristics are different between the convex portion and the concave portion. This is because the retardation value R = Δnd of the liquid crystal layer (Δn: refractive index anisotropy of liquid crystal, d: thickness of the liquid crystal layer) differs between the convex portion and the concave portion. Further, alignment defects occur in the liquid crystal layer due to the unevenness.
[0007]
Accordingly, the present invention is to solve the above-mentioned problems, and to provide a liquid crystal device that suppresses the influence of the uneven reflector on the electro-optical characteristics of the liquid crystal as much as possible and eliminates defects such as domains. Another object is to provide an electronic device using the liquid crystal device.
[0008]
[Means for Solving the Problems]
Means taken by the present invention to solve the above problems are as follows.
[0009]
The liquid crystal device of the present invention has a liquid crystal layer sandwiched between a first substrate and a second substrate, and an uneven shape provided on the liquid crystal layer side of the second substrate for scattering incident light on the surface. In a liquid crystal device including a reflective layer and an alignment film provided on the liquid crystal layer side of the reflective layer, the liquid crystal layer in the concave-convex concave portion has a thickness that is the liquid crystal in the concave-convex convex portion. The alignment film in the recess is set to be thicker than the layer, and the pretilt angle formed by the major axis of the liquid crystal molecules of the liquid crystal layer with respect to the alignment film in the recess is larger than the pretilt angle in the protrusion. Is set to be thicker than the film thickness of the convex portion.
In the liquid crystal device of the present invention, the major axis of the liquid crystal molecules of the liquid crystal layer with respect to the alignment film is formed between the concave portion and the convex portion so as to reduce the difference between the retardation value in the concave portion and the retardation value in the convex portion. The pretilt angle made by is different.
[0010]
According to this means, since the thin alignment film is formed on the convex portion and the thick alignment film is formed on the concave portion, the alignment regulating force applied to the liquid crystal by the alignment film is different. For example, when the soluble polyimide AL3000 series manufactured by JSR Corporation is used, the pretilt angle increases as the film thickness increases. The pretilt angle is an angle formed by a major axis of liquid crystal molecules with respect to a polyimide coated surface subjected to rubbing alignment treatment. That is, a low pretilt angle can be realized in the convex portion, and a high pretilt angle can be realized in the concave portion. If the pretilt angle is the same between the convex part and the concave part, the retardation value Δnd, which is the product of the birefringence (Δn) of the liquid crystal and the thickness (d) of the liquid crystal layer, becomes larger in the concave part. The electro-optical characteristics that are different between the convex portion and the concave portion are exhibited. However, by lowering the pretilt angle of the convex part and increasing the pretilt angle of the concave part, it is possible to reduce the difference in retardation value when the liquid crystal cell is viewed from the front. This is because when the pretilt angle is high, the birefringence (Δn) of the liquid crystal when the liquid crystal cell is viewed from the front becomes small.
[0011]
Another effect of the present invention is to minimize the influence of the uneven shape on the alignment of the liquid crystal. By increasing the thickness of the alignment film in the concave portion, the step between the concave and convex portions can be reduced.
[0012]
In the liquid crystal device of the present invention, a polarizing plate is disposed on a different side of the first substrate from the liquid crystal layer, and at least one retardation plate is disposed between the polarizing plate and the first substrate. Therefore, a display with high contrast and no unnecessary color can be realized.
[0013]
In the liquid crystal device of the present invention, a reflective color display can be realized by providing a color filter layer on the liquid crystal layer side of the first substrate.
[0014]
The present invention can also be applied to a transflective color liquid crystal device as described in JP-A-11-109417 having an uneven reflection layer.
[0015]
In addition, an electronic apparatus according to the present invention is characterized in that the above-described liquid crystal device is mounted and is a portable type mainly used for battery driving.
[0016]
According to this means, a portable electronic device equipped with a reflective or transflective color liquid crystal device with low power consumption and no display defects can be realized. This electronic device can always display high-quality images regardless of the usage environment such as outdoors.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments according to the present invention will be described with reference to the accompanying drawings.
[0018]
(First embodiment)
FIG. 1 is a schematic longitudinal sectional view showing the structure of a liquid crystal device according to a first embodiment of the present invention. This embodiment basically relates to a simple matrix type liquid crystal display device, but can be applied to an active matrix type device, other segment type devices, and other liquid crystal devices with the same configuration. .
[0019]
In this embodiment, the liquid crystal layer 105 is sealed between two substrates 104 and 107 by a frame-shaped sealing material 106 to form a liquid crystal cell. The liquid crystal layer 105 is composed of nematic liquid crystal having a twist angle of 80 degrees. A color filter 108 is formed on the inner surface of the upper transparent substrate 104, and three color layers of R (red), G (green), and B (blue) are arranged in a predetermined pattern on the color filter. Yes. A transparent protective film 109 is coated on the surface of the color filter, and a plurality of striped transparent electrodes 110 are formed of ITO or the like on the surface of the protective film 109. An alignment film is formed on the surface of the transparent electrode 110 and is rubbed in a predetermined direction. A polarizing plate 101 and two retardation plates 102 and 103 are arranged on the outer surface of the upper transparent substrate 104.
[0020]
On the other hand, on the inner surface of the lower substrate 107, a plurality of stripe-shaped reflective electrodes 112 formed for each colored layer of the color filter are arranged so as to intersect the transparent electrode 110. In the case of an active matrix type device including an MIM element and a TFT element, each reflective electrode 112 is formed in a rectangular shape and connected to a wiring via the active element. The reflective electrode 112 is formed of a metal film mainly composed of Cr, Al, Ag or the like, and its surface is a reflective surface that reflects light incident from the transparent substrate 104 side. The base of the reflective electrode 112 is formed of a random uneven shape having an average step difference of about 0.5 μm by an acrylic photosensitive resin. For this reason, the reflective electrode 112 can reflect light in a wide angle rather than in a mirror state. In addition, the method of forming an uneven shape on the base of the reflective electrode 112 is a method of directly applying unevenness to the glass substrate itself, which is the lower substrate, using a solution containing hydrofluoric acid, in addition to using a photosensitive acrylic resin. There is. An alignment film 113 is formed on the surface of the reflective electrode 112. For this alignment film 113, a soluble polyimide manufactured by JSR Corporation was used. The thickness of the alignment film 113 was about 10 nm at the convex portion of the reflective electrode 112 and about 100 nm at the concave portion.
[0021]
The display method will be briefly described. External light passes through the polarizing plate 101, the two retardation plates 102 and 103, and the color filter 109 in FIG. 1, passes through the liquid crystal layer 105, is reflected by the uneven reflective electrode 112, and is again reflected from the polarizing plate 101 to the liquid crystal cell. It is emitted outside. At this time, the bright state, the dark state, and the intermediate brightness are controlled by the voltage applied to the liquid crystal layer 105. The uneven reflection electrode 112 has an effect of reflecting the reflected light at a wide angle so that a bright display can be recognized even in a direction other than the regular reflection direction of the external light.
[0022]
FIG. 2 is an enlarged view of the alignment films 111 and 113, the liquid crystal layer 105, and the reflective electrode 113 having an uneven shape in FIG. The liquid crystal layer 202 in FIG. 2 is located between the alignment film 201 on the upper substrate side and the alignment films 203 and 204 on the lower substrate side (the alignment film 204 formed on the convex portion and the alignment film 203 formed on the concave portion). A reflective electrode 205 having an uneven shape is formed under the alignment films 203 and 204 on the side substrate. The average level difference of the convex / concave reflective electrode 205 is “H”, the film thickness of the alignment film 204 formed on the convex part is “A”, the film thickness of the alignment film 203 formed on the concave part is “B”, The thickness of the liquid crystal layer is “d A ”, the thickness of the liquid crystal layer in the concave portion is “d B ”, the pretilt angle of the liquid crystal molecules 206 in the vicinity of the alignment film 204 formed in the convex portion is “θ A ”, and the concave portion is formed. The pretilt angle of the liquid crystal molecules 207 near the alignment film 203 is defined as “θ B ”. Further, an average, that is, a bulk pretilt angle in the convex liquid crystal layer is defined as “θ AM ”, and an average, that is, a bulk pretilt angle in the concave liquid crystal layer is defined as “θ BM ”. When the refractive index in the major axis direction of the liquid crystal molecule is defined as n‖ and the refractive index in the minor axis direction is defined as n⊥, the refractive index anisotropy Δn (θ) of the pretilt angle θ is
[0023]
[Expression 1]
Figure 0004032569
[0024]
It can be shown as follows. In the present embodiment, the average step H of the uneven reflective electrode 205 is 0.5 μm, the film thickness A of the alignment film 204 formed on the protrusion is 10 nm, and the film thickness B of the alignment film 203 formed on the recess is 100 nm. And the thickness of the liquid crystal layer was d A = 3 μm and d B = 3.41 μm. The pretilt angle in the vicinity of the upper alignment film 201 was set to 5.1 degrees, and θ A = 1.2 degrees, θ B = 7.9 degrees, θ AM = 3.0 degrees, and θ BM = 7.0 degrees. . The refractive index of the nematic liquid crystal used is n‖ = 1.60 and n⊥ = 1.53. Retardation value R A of the liquid crystal layer on the convex portion, the retardation value of the liquid crystal layer on the recessed portion when the R B, R A = 0.209μm, the R B = 0.235μm. The difference in retardation between the convex part and the concave part is about 0.026 μm. If the alignment films of the convex and concave portions have the same thickness (50 nm) and the pretilt angle near the convex and concave reflective electrode 205 is the same value (5.0 degrees) for both the convex and concave portions, R A = 0.212 μm, R B = 0.240 μm, and the difference in retardation between the convex portion and the concave portion is about 0.028 μm.
[0025]
As described above, by forming alignment films having different film thicknesses on the convex and concave portions of the reflective electrode having an uneven shape, the film thickness of the alignment film in the concave portions is larger than the film thickness of the alignment film in the convex portions. The difference in retardation value affecting the electro-optical properties of the liquid crystal could be reduced. In addition, since the difference between the thickness of the liquid crystal layer at the convex portion and the thickness of the liquid crystal layer at the concave portion can be reduced, defects such as domains can be eliminated.
[0026]
In this embodiment, the protective film 109 is used for the purpose of protecting the color filter 108. However, since the TFT active matrix liquid crystal device does not require patterning of the transparent electrode on the color filter, it can be omitted.
[0027]
The colored layer of the color filter used in this embodiment will be described. In each embodiment, when performing a reflective display, incident light once passes through one of the colored layers of the color filter, then passes through the liquid crystal layer, is reflected by the reflective electrode, and passes through the same colored layer again. Released from. Therefore, unlike a normal transmission type liquid crystal device, light passes through the color filter twice, so that the display becomes dark with the normal transmission type color filter. Therefore, in the present embodiment, the color filter is formed so as to be lightly colored so that the minimum transmittance in the visible region of each of the R, G, and B colored layers of the color filter is 30 to 50%. The colored layer is lightened by reducing the thickness of the colored layer or reducing the concentration of the pigment or dye mixed in the colored layer.
[0028]
In the present embodiment, the uneven reflection layer itself is used as a reflection electrode, but a transparent electrode such as ITO may be formed on the uneven reflection layer to separate the electrode function and the reflection function. Even in this case, the present invention is applicable as long as there are convex portions and concave portions.
[0029]
(Second Embodiment)
Three examples of the electronic apparatus of the present invention are shown. Since the liquid crystal device of the present invention is a reflective type or a transflective type, the liquid crystal device is suitable for portable devices that are used in various environments and require low power consumption. For example, FIG. 3A shows a mobile phone, FIG. 3B shows a watch, and FIG. 3C shows a portable information device. The liquid crystal device of the present invention is optimal when high-definition display is required because there is no display unevenness or defect due to the reflective electrode having an uneven shape and the display quality is high. In recent years, due to the increase in the amount of information and the development of information infrastructure, many electronic devices that are frequently carried are manufactured and sold. The liquid crystal device of the present invention is most suitable for the display portion of such an electronic device, and enables display with very good color development especially when color display is required.
[0030]
【The invention's effect】
As described above, according to the present invention, the defects (brightness unevenness, contrast unevenness, unnecessary coloration) that the reflective layer having an uneven shape affects the electro-optical characteristics of the liquid crystal, and the defects (disclination) that affect the liquid crystal alignment. Occurrence, domain unevenness) and the like can be suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing a schematic structure of a first embodiment of a liquid crystal device according to the present invention.
FIG. 2 is a detailed view for explaining the first embodiment.
FIG. 3 is a diagram showing an example of an electronic apparatus equipped with a liquid crystal device according to the present invention.
[Explanation of symbols]
101 Polarizing plate 102, 103 Retardation plate 104 Upper substrate 105, 202 Liquid crystal layer 106 Sealant 107 Lower substrate 108 Color filter 109 Protective film 110 Transparent electrodes 111, 113, 201 Alignment films 112, 205 Uneven reflection electrode 203 On depression step d a convex thickness H irregularities reflective electrode of the alignment film on the thickness B recess of the alignment film on the liquid crystal molecules a convex portion of the liquid crystal molecules 207 recess near the alignment film 206 protrusions vicinity of the alignment film 204 protrusions The thickness of the liquid crystal layer at the portion d B The thickness of the liquid crystal layer at the recess B θ The pretilt angle of the liquid crystal molecules near the protrusion A θ The pretilt angle of the liquid crystal molecules near the recess B

Claims (3)

第1基板と第2基板との間に挟持された液晶層と、前記第2基板の前記液晶層側に設けられ、入射した光を散乱させる凸凹形状を表面に有する反射層と、該反射層の前記液晶層側に設けられた配向膜と、を備えた液晶装置において、
前記凹凸形状の凹部における前記液晶層の厚さが、前記凹凸形状の凸部における前記液晶層の厚さより厚く設定されており、前記凹部における前記配向膜に対する前記液晶層の液晶分子の長軸がなすプレティルト角が、前記凸部におけるプレティルト角よりも大きくなるように前記凹部における前記配向膜の膜厚が、前記凸部における膜厚よりも厚く設定されていることを特徴とする液晶装置。
A liquid crystal layer sandwiched between the first substrate and the second substrate; a reflective layer provided on the liquid crystal layer side of the second substrate and having an uneven surface for scattering incident light; and the reflective layer An alignment film provided on the liquid crystal layer side of the liquid crystal device,
The thickness of the liquid crystal layer in the concave-convex concave portion is set to be greater than the thickness of the liquid crystal layer in the concave-convex convex portion, and the major axis of the liquid crystal molecules of the liquid crystal layer with respect to the alignment film in the concave portion is The liquid crystal device according to claim 1, wherein a thickness of the alignment film in the concave portion is set to be larger than a thickness of the convex portion so that a pretilt angle formed is larger than a pretilt angle in the convex portion .
前記凹部におけるリタデーション値と前記凸部におけるリタデーション値の差を小さくするように、前記凹部と前記凸部とで前記配向膜に対する前記液晶層の液晶分子の長軸がなすプレティルト角が異なっていることを特徴とする請求項1記載の液晶装置。  The pretilt angle formed by the major axis of the liquid crystal molecules of the liquid crystal layer with respect to the alignment film is different between the concave portion and the convex portion so as to reduce the difference between the retardation value at the concave portion and the retardation value at the convex portion. The liquid crystal device according to claim 1. 請求項1又は2に記載の液晶装置を搭載し、バッテリー駆動を主として使用される電子機器。  3. An electronic device on which the liquid crystal device according to claim 1 or 2 is mounted and used mainly for battery driving.
JP20363499A 1999-07-16 1999-07-16 Liquid crystal device and electronic device Expired - Fee Related JP4032569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20363499A JP4032569B2 (en) 1999-07-16 1999-07-16 Liquid crystal device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20363499A JP4032569B2 (en) 1999-07-16 1999-07-16 Liquid crystal device and electronic device

Publications (2)

Publication Number Publication Date
JP2001033784A JP2001033784A (en) 2001-02-09
JP4032569B2 true JP4032569B2 (en) 2008-01-16

Family

ID=16477306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20363499A Expired - Fee Related JP4032569B2 (en) 1999-07-16 1999-07-16 Liquid crystal device and electronic device

Country Status (1)

Country Link
JP (1) JP4032569B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6738119B2 (en) * 2000-09-30 2004-05-18 Lg.Philips Lcd Co., Ltd. Liquid crystal display and method for manufacturing the same
TW574566B (en) * 2001-10-31 2004-02-01 Optrex Kk Liquid crystal display element
JP2008090279A (en) 2006-09-04 2008-04-17 Epson Imaging Devices Corp Liquid crystal display and electronic apparatus

Also Published As

Publication number Publication date
JP2001033784A (en) 2001-02-09

Similar Documents

Publication Publication Date Title
JP3575024B2 (en) Reflective color liquid crystal device and electronic equipment using the same
JP3744342B2 (en) Liquid crystal device and electronic device
JP3335130B2 (en) Liquid crystal display
JP3692445B2 (en) Liquid crystal device and electronic device
JP2002333622A (en) Reflection and transmission common type color liquid crystal display device
JPH11237623A (en) Liquid crystal device and electronic appliance
JP4032569B2 (en) Liquid crystal device and electronic device
JP3407641B2 (en) Liquid crystal devices and electronic equipment
JP3800865B2 (en) Liquid crystal device and electronic device
JP3890826B2 (en) Liquid crystal device and electronic device
JP3379427B2 (en) Liquid crystal devices and electronic equipment
JP3716844B2 (en) Liquid crystal device and electronic device
JP3570419B2 (en) Liquid crystal device, substrate for active matrix type device, and electronic equipment
JP3603810B2 (en) Liquid crystal devices and electronic equipment
JPH10239681A (en) Liquid crystal display device and electronic equipment equipped with the same
JP3491161B2 (en) Liquid crystal device
JP2000111912A (en) Reflection type liquid crystal display device
JP4285467B2 (en) Liquid crystal device and electronic device
JP3617520B2 (en) Liquid crystal device
JP3472926B2 (en) Liquid crystal device
JP4032661B2 (en) Liquid crystal device and electronic device
JP3721824B2 (en) Reflective liquid crystal device and electronic apparatus
JP3472927B2 (en) Liquid crystal device
JP3219388B2 (en) Reflective liquid crystal display
JP4042758B2 (en) Liquid crystal device and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees