JP4664024B2 - Chip resistor manufacturing method, collective substrate, and chip resistor - Google Patents

Chip resistor manufacturing method, collective substrate, and chip resistor Download PDF

Info

Publication number
JP4664024B2
JP4664024B2 JP2004254320A JP2004254320A JP4664024B2 JP 4664024 B2 JP4664024 B2 JP 4664024B2 JP 2004254320 A JP2004254320 A JP 2004254320A JP 2004254320 A JP2004254320 A JP 2004254320A JP 4664024 B2 JP4664024 B2 JP 4664024B2
Authority
JP
Japan
Prior art keywords
substrate
plating
chip resistor
collective
resistance film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004254320A
Other languages
Japanese (ja)
Other versions
JP2006073729A (en
Inventor
立樹 平野
修 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kamaya Electric Co Ltd
Original Assignee
Kamaya Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kamaya Electric Co Ltd filed Critical Kamaya Electric Co Ltd
Priority to JP2004254320A priority Critical patent/JP4664024B2/en
Publication of JP2006073729A publication Critical patent/JP2006073729A/en
Application granted granted Critical
Publication of JP4664024B2 publication Critical patent/JP4664024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、チップ抵抗器の製造方法、集合基板及びチップ抵抗器に関し、さらに詳細には、比較的小型で抵抗値が低く且つめっきにより抵抗膜が形成されるチップ抵抗器の製造方法と、その製造過程において得られる集合基板と、この集合基板から製造されるチップ抵抗器に関する。   The present invention relates to a method of manufacturing a chip resistor, a collective substrate, and a chip resistor, and more specifically, a method of manufacturing a chip resistor having a relatively small size, a low resistance value, and a resistance film formed by plating, and its The present invention relates to a collective substrate obtained in the manufacturing process and a chip resistor manufactured from the collective substrate.

チップ抵抗器を製造するための従来方法としては、例えば、特開平10−70001号公報(特許文献1)に記載されたものを挙げることができる。特許文献1に記載された製造方法では、分割される予定の複数の区画を縦横に有するシート状の集合絶縁基板を使用し、この集合基板における各区画に対し、(1)一対の表電極を基板の表面に形成し、(2)表電極間にAg-Pd系抵抗膜等による下地層を形成し、(3)この下地層上にめっきによる抵抗膜を形成し、(4)絶縁基板の裏面に一対の裏面電極を形成し、(5)めっき抵抗膜を覆う保護層を形成し、(6)集合基板を短冊状に分割した後に、(7)分割面に端面電極を形成し、(8)短冊状の絶縁基板を個々のチップ抵抗器サイズに分割し、(9)電極とめっき抵抗膜の露出している部分にめっき層を形成している。   As a conventional method for manufacturing a chip resistor, for example, a method described in JP-A-10-70001 (Patent Document 1) can be cited. In the manufacturing method described in Patent Document 1, a sheet-like collective insulating substrate having a plurality of sections to be divided vertically and horizontally is used, and (1) a pair of front electrodes is provided for each section in the collective substrate. Formed on the surface of the substrate, (2) a base layer made of Ag-Pd resistance film or the like is formed between the surface electrodes, (3) a resistance film is formed on the base layer by plating, and (4) the insulating substrate A pair of backside electrodes are formed on the backside, (5) a protective layer covering the plating resistance film is formed, (6) the aggregate substrate is divided into strips, and (7) end face electrodes are formed on the divided surfaces, 8) A strip-shaped insulating substrate is divided into individual chip resistor sizes, and (9) a plating layer is formed on the exposed portion of the electrode and plating resistance film.

ここで、図5は、以上のように形成されたチップ抵抗器の断面図であり、このチップ抵抗器50は、絶縁基板51の表裏にそれぞれ形成された各一対の表電極52及び裏電極53と、表面下地層54(下地抵抗膜)と、表面下地層54上のめっきによる表面めっき抵抗膜55と、表面保護層56と、端面電極57と、電極の露出面を覆う電極めっき層58とを有するものである。また図6は上記製造方法における(4)工程後の状態を示す断面図である。図6に示したように、従来のチップ抵抗器製造方法では、表面のみに表面下地層54と表面めっき抵抗膜55とを形成しているため、場合によっては、めっきの応力による基板反りAが発生することがあった。   Here, FIG. 5 is a cross-sectional view of the chip resistor formed as described above. The chip resistor 50 includes a pair of front electrode 52 and back electrode 53 formed on the front and back sides of the insulating substrate 51, respectively. A surface base layer 54 (base resistance film), a surface plating resistance film 55 by plating on the surface base layer 54, a surface protective layer 56, an end face electrode 57, and an electrode plating layer 58 covering the exposed surface of the electrode. It is what has. FIG. 6 is a cross-sectional view showing a state after the step (4) in the manufacturing method. As shown in FIG. 6, in the conventional chip resistor manufacturing method, since the surface underlayer 54 and the surface plating resistance film 55 are formed only on the surface, the substrate warp A due to the plating stress may occur depending on the case. It sometimes occurred.

なお、本出願人において公知技術を調査した結果、上記の特許文献1に加えて、下記の特許文献も見出された。特許文献1〜6には、抵抗膜がめっきにより形成されたチップ抵抗器が記載されており、特許文献7及び8には、抵抗膜が基板の表裏面に形成されたチップ抵抗器が記載されている。
特開平10−70001号公報 特開昭60−115201号公報 特開平06−120013号公報 特開平08−138902号公報 特開平09−320806号公報 特開2001−155901号公報 特開昭55−120101号公報 特開平11−191502号公報
In addition, as a result of investigating known techniques in the present applicant, in addition to the above-mentioned Patent Document 1, the following patent documents were also found. Patent Documents 1 to 6 describe a chip resistor in which a resistive film is formed by plating, and Patent Documents 7 and 8 describe a chip resistor in which a resistive film is formed on the front and back surfaces of a substrate. ing.
Japanese Patent Laid-Open No. 10-70001 JP 60-115201 A Japanese Patent Laid-Open No. 06-120013 Japanese Patent Laid-Open No. 08-138902 JP 09-320806 A JP 2001-155901 A JP-A-55-120101 Japanese Patent Laid-Open No. 11-191502

従来のチップ抵抗器のサイズは、例えば、5.0mm×2.5mm、3.2mm×1.6mm、3.2mm×2.5mmなどであり、このようなサイズのチップ抵抗器は多くの場合に厚さが0.5mm程度の基板が使用されている。このような厚さ0.5mm程度の集合基板は、たとえ、表面めっき抵抗膜が形成されても、めっき応力による基板反りが発生しない。   The size of the conventional chip resistor is, for example, 5.0 mm × 2.5 mm, 3.2 mm × 1.6 mm, 3.2 mm × 2.5 mm, and the chip resistor of such a size is often used. In addition, a substrate having a thickness of about 0.5 mm is used. Such an aggregate substrate having a thickness of about 0.5 mm does not cause substrate warpage due to plating stress even if a surface plating resistance film is formed.

しかしながら、電子機器の小型化や高密度実装化が進むに伴ない、チップ抵抗器の更なる小型化も要求されるようになっており、例えば、1.0mm×0.5mm程度のチップ抵抗器の基板厚さは0.25mm〜0.3mmであり、このように薄い基板に集合基板の状態でめっき抵抗膜を形成する場合には、めっき応力による基板反りが発生してしまう。   However, with the progress of miniaturization and high-density packaging of electronic devices, further miniaturization of chip resistors is required. For example, chip resistors of about 1.0 mm × 0.5 mm The thickness of the substrate is 0.25 mm to 0.3 mm. When the plating resistance film is formed on such a thin substrate in the state of the collective substrate, the substrate warp due to the plating stress occurs.

また絶縁基板に分割溝が設けられている場合には、基板反りが大きくなるうえ、別工程における処理で割れてしまう可能性もある。   Further, when the insulating substrate is provided with the dividing grooves, the warpage of the substrate is increased, and there is a possibility that the insulating substrate is cracked by processing in another process.

さらに、めっき抵抗膜を無電解めっき法により形成した場合には、無電解めっき液におけるめっき応力の調整が困難であるため、基板の反りが発生しやすい。一方、電気めっき法によりめっき抵抗膜を形成する場合には、めっき液におけるめっき応力の調整がなされているため、或る程度の基板反りは解消可能であるが、全てのめっき液におけるめっき応力の調整はなされていないため、使用する絶縁基板とのめっき応力の整合がとれていない場合や、チップ抵抗器の基板が薄い場合は絶縁基板の反りが発生してしまう。   Furthermore, when the plating resistance film is formed by an electroless plating method, it is difficult to adjust the plating stress in the electroless plating solution, and thus the substrate is likely to warp. On the other hand, when the plating resistance film is formed by electroplating, since the plating stress in the plating solution is adjusted, a certain amount of substrate warpage can be eliminated, but the plating stress in all plating solutions is reduced. Since the adjustment has not been made, if the plating stress is not matched with the insulating substrate to be used, or if the chip resistor substrate is thin, the insulating substrate is warped.

また、さらなる低抵抗化を目的として、めっき抵抗膜を厚く形成した場合や、めっき抵抗膜を複数層積層した場合にも、絶縁基板の反りを助長する原因となる。   Further, when the plating resistance film is formed thick for the purpose of further reducing the resistance, or when a plurality of plating resistance films are laminated, it causes a warpage of the insulating substrate.

本発明は、上記従来の問題を解決するものであり、その課題は、チップサイズが比較的小型で抵抗値が比較的低く、且つめっきにより抵抗膜が形成されるチップ抵抗器において、基板の反りや割れを防止することができるチップ抵抗器の製造方法、集合基板及びチップ抵抗器を提供することにある。   The present invention solves the above-mentioned conventional problems, and the problem is that in a chip resistor in which the chip size is relatively small, the resistance value is relatively low, and a resistance film is formed by plating, the substrate warps. Another object of the present invention is to provide a chip resistor manufacturing method, a collective substrate, and a chip resistor that can prevent cracking.

本発明の上記課題は下記の手段によって解決される。   The above-described problems of the present invention are solved by the following means.

(1)個々のチップ抵抗器となる区画を縦横に複数有する板厚が0.25mm〜0.3mmの薄い集合絶縁基板上に電極と抵抗膜を形成した後、各区画毎に分割することによりチップ抵抗器を得るチップ抵抗器の製造方法において、前記集合絶縁基板の表裏両面に形成された電極間に電流を流す導体となる下地層を形成する工程と、前記抵抗膜を前記下地層の表裏面にめっきにより表裏同時に形成する工程と、前記集合絶縁基板を短冊状に分割する工程と、前記短冊状基板の表裏面の抵抗膜を並列に導通する端面電極を形成する工程と、前記短冊状基板を個々のチップに分割する工程とを有するチップ抵抗器の製造方法。 (1) Chip resistors are formed by forming electrodes and a resistive film on a thin aggregated insulating substrate having a plurality of vertical and horizontal sections each serving as a chip resistor and having a thickness of 0.25 mm to 0.3 mm, and then dividing each section into individual sections. In the method of manufacturing a chip resistor to obtain a device, a step of forming a base layer serving as a conductor for passing a current between electrodes formed on the front and back surfaces of the collective insulating substrate; and the resistance film on the front and back surfaces of the base layer a step of sides simultaneously formed by plating, the step of dividing the pre-SL current if the insulating substrate into strips, forming an end surface electrode to conduct resistance film on the front and back surfaces of the strip-shaped substrate in parallel, the strip And a step of dividing the substrate into individual chips.

(2)無電解めっき法により前記抵抗膜を形成することを特徴とする請求項1に記載のチップ抵抗器の製造方法。 (2) A method of manufacturing a chip resistor according to claim 1, characterized in that to form a more the resistance film in an electroless plating method.

(3)個々のチップ抵抗器となる区画を縦横に複数有する0.25mm〜0.3mmのシート状の集合絶縁基板であって、該基板の表裏両面の電極間に電流を流す導体となる下地層上に、めっきにより該基板の表裏両面に同時に抵抗膜が形成されたものである集合基板。 (3) A sheet-like collective insulating substrate of 0.25 mm to 0.3 mm having a plurality of sections to be individual chip resistors vertically and horizontally, on a base layer serving as a conductor for passing a current between electrodes on both the front and back sides of the substrate In addition , a collective substrate in which resistance films are simultaneously formed on both the front and back surfaces of the substrate by plating.

(4)前記抵抗膜が、無電解めっきによる抵抗膜形成された請求項3に記載の集合基板。 (4) the resistive film is assembled board according to Motomeko 3 formed by resistive films by come electroless plating.

(5)上記(3)または(4)に記載の集合基板を使用し、前記集合基板を短冊状に分割することによって形成される分割面に、前記表裏面の抵抗膜を導通する端面電極を有し、前記短冊状の基板を個々に分割することにより形成されたチップ抵抗器。 (5) Using the collective substrate according to (3) or (4) above, an end face electrode that conducts the resistance film on the front and back surfaces is formed on a divided surface formed by dividing the collective substrate into strips. And a chip resistor formed by dividing the strip-shaped substrate individually.

上記(1)に記載のチップ抵抗器の製造方法では、めっきによる抵抗膜を集合基板の表裏両面同時に形成することにより、めっき応力を集合基板の表裏で相殺するので、チップ抵抗器の小型化に伴ない基板が薄くなっても、集合基板の反りを防止することができて、歩留まりを向上させることができる。また端面電極により表裏面のめっきによる抵抗膜を並列に接続する工程により、従来技術と比べて低抵抗のチップ抵抗器を製造することが可能になるとともに、同じ抵抗値を得る場合、従来技術と比較してめっきによる抵抗膜を薄くできるため、めっき時間の短縮が図れる。   In the method of manufacturing a chip resistor described in (1) above, the plating stress is offset on the front and back sides of the collective substrate by simultaneously forming a resistance film by plating on both the front and back sides of the collective substrate, thereby reducing the size of the chip resistor. Even if the substrate becomes thin, the warpage of the collective substrate can be prevented and the yield can be improved. Also, the process of connecting the resistance films by plating on the front and back surfaces in parallel with the end face electrodes makes it possible to manufacture a chip resistor having a lower resistance than the conventional technique, and when obtaining the same resistance value, In comparison, the resistance film by plating can be made thinner, so that the plating time can be shortened.

無電解めっき法で抵抗膜を形成する場合、従来方法ではめっき応力の調整が困難で集合基板はめっき応力を受けざるを得なかったが、上記(2)に記載のチップ抵抗器の製造方法では、めっき応力を集合基板の表裏で相殺し、集合基板の反りを防止することができる。一方、電気めっき法で抵抗膜を形成する場合には、めっき応力の調整が完全でなかったり、絶縁基板が薄くても、上記(2)の製造方法によれば、めっき応力を集合基板の表裏で相殺し、集合基板の反りを防止することができる。
また無電解めっき法による抵抗膜と電気めっき法による抵抗膜とを積層し、厚い抵抗膜を形成する場合であっても、上記(2)に記載のチップ抵抗器の製造方法によれば、集合基板の反りを防止することができる。このようにめっき抵抗膜を厚く形成することにより、比較的低い抵抗値のチップ抵抗器を製造することが可能であり、端面電極により並列に接続されている場合には、従来方法によるチップ抵抗器と比較して、所望の抵抗値を得るための表裏面それぞれのめっき抵抗膜を薄くできるため、めっき時間の短縮が可能である。
When the resistance film is formed by the electroless plating method, it is difficult to adjust the plating stress by the conventional method and the collective substrate has to be subjected to the plating stress. However, in the manufacturing method of the chip resistor described in (2) above, The plating stress can be offset between the front and back of the collective substrate to prevent the collective substrate from warping. On the other hand, when the resistance film is formed by the electroplating method, even if the adjustment of the plating stress is not complete or the insulating substrate is thin, according to the manufacturing method of (2) above, Therefore, the warpage of the collective substrate can be prevented.
Further, even when a resistive film formed by electroless plating and a resistive film formed by electroplating are stacked to form a thick resistive film, the chip resistor manufacturing method described in (2) above Warpage of the substrate can be prevented. By forming the plating resistance film thick in this way, it is possible to manufacture a chip resistor having a relatively low resistance value. When connected in parallel by the end face electrodes, the chip resistor according to the conventional method is used. Compared with, the plating resistance film on each of the front and back surfaces for obtaining a desired resistance value can be made thin, so that the plating time can be shortened.

上記(3)に記載の集合基板では、上記(1)の製造方法と同様な効果が得られる。
すなわち、めっきによる抵抗膜が表裏両面同時に形成されるので、めっき応力を相殺することが可能になり、チップ抵抗器の小型化に伴ない基板を薄くしても、基板の反りを防止することができて、チップ抵抗器製造時の歩留まりを向上させることができる。
In the collective substrate described in (3) above, the same effects as in the manufacturing method in (1) can be obtained.
That is, since the resistance film by plating is formed simultaneously on both the front and back surfaces, it becomes possible to cancel the plating stress, and even if the substrate is made thinner due to the downsizing of the chip resistor, the warpage of the substrate can be prevented. Thus, the yield at the time of manufacturing the chip resistor can be improved.

上記(4)に記載の集合基板では上記(2)と同様な効果が得られる。また上記(5)に記載のチップ抵抗器では、上記(1)又は(2)と同様な効果が得られる。   In the aggregate substrate described in (4) above, the same effect as in (2) above can be obtained. In the chip resistor described in (5) above, the same effect as in (1) or (2) can be obtained.

以下、図面を参照して本発明の実施の形態について説明するが、本発明は下記の実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments.

図1(a)〜(h)は本発明のチップ抵抗器の製造方法における各工程を示す断面図である。図1(a)はアルミナセラミック等からなる集合絶縁基板11Aであり、基板分割用の溝12を有するものである。チップ抵抗器の小型化により、集合絶縁基板は厚さが薄くなり、めっき応力による反りが生じ易くなる。すなわち、従来方法でチップ抵抗器を製造した場合には、チップ抵抗器のサイズが1005サイズ(1.0mm×0.5mm、基板厚さ0.25mm〜0.3mm)用の集合絶縁基板からめっき応力による反りで不具合の発生が増加する傾向があり、また図1(a)のように基板分割用の溝12を有する集合絶縁基板11Aは、さらに、めっき応力の影響を受け易いものであった。本発明は、これらの不具合を無くすべく為されたものである。   1A to 1H are cross-sectional views showing respective steps in the method for manufacturing a chip resistor of the present invention. FIG. 1A shows a collective insulating substrate 11A made of alumina ceramic or the like, and has a groove 12 for dividing the substrate. Due to the miniaturization of the chip resistor, the collective insulating substrate becomes thinner and easily warps due to plating stress. That is, when a chip resistor is manufactured by a conventional method, plating is performed from a collective insulating substrate having a chip resistor size of 1005 (1.0 mm × 0.5 mm, substrate thickness 0.25 mm to 0.3 mm). The occurrence of defects tends to increase due to warping due to stress, and the collective insulating substrate 11A having the substrate dividing grooves 12 as shown in FIG. 1A is more susceptible to plating stress. . The present invention has been made to eliminate these problems.

最初に、図1(b)に示したように、集合絶縁基板11Aの表裏両面に電極13を形成する。本工程において、表裏両面の電極13は、その有無や材質が特に上記形態に限定されるものではないが、例えば、下地層をPd−Ag系厚膜によって形成した場合、電極部の抵抗値低減のために、Ag系厚膜により形成することが効果的である。
なお、後の工程における下地層が、Pd−Ag系厚膜以外の材質である場合、表裏両面の電極13は、Ag系厚膜やその他材質の薄膜が使用可能であり、あるいは特開2001−155901号公報に記載されているように、めっき抵抗体の上面に重なるように形成することも可能である。
First, as shown in FIG. 1B, electrodes 13 are formed on both the front and back surfaces of the collective insulating substrate 11A. In this step, the presence / absence and material of the electrodes 13 on both the front and back surfaces are not particularly limited to the above forms. For example, when the base layer is formed of a Pd—Ag thick film, the resistance value of the electrode portion is reduced. Therefore, it is effective to form with an Ag-based thick film.
In the case the base layer in the later step, a material other than Pd-Ag-based thick film, both sides of the electrode 13, a thin film of Ag thick film and other materials can be used, Oh Rui Patent As described in Japanese Patent Application Laid-Open No. 2001-155901, it is also possible to form it so as to overlap the upper surface of the plating resistor.

次に、図1(c)に示したように、集合絶縁基板11Aの表裏両面に形成された電極13間に下地層14を形成する。本工程において、下地層14の材質は特に限定されるものではないが、例えば、Pd−Ag系厚膜を含む各種厚膜や、NiCrスパッタ膜などを含む各種薄膜、Pd活性化層等がある。下地層の作用としては、無電解めっきにより抵抗膜を形成する場合に、密着力を向上させるために必要であり、電気めっきにより抵抗膜を形成する場合、下地層が電流を流す導体となる。   Next, as shown in FIG. 1C, a base layer 14 is formed between the electrodes 13 formed on the front and back surfaces of the collective insulating substrate 11A. In this step, the material of the underlayer 14 is not particularly limited. For example, there are various thick films including a Pd—Ag thick film, various thin films including a NiCr sputtered film, a Pd activation layer, and the like. . The action of the underlayer is necessary to improve the adhesion when the resistance film is formed by electroless plating. When the resistance film is formed by electroplating, the underlayer serves as a conductor through which a current flows.

次に、集合絶縁基板11Aの表裏両面において、めっき抵抗膜を形成しない箇所にレジスト膜(図示せず)を形成する。   Next, a resist film (not shown) is formed on the front and back surfaces of the collective insulating substrate 11A at locations where the plating resistance film is not formed.

次に、図1(d)に示したように、集合絶縁基板11Aの表裏両面の下地層14上に、表裏同時にめっき抵抗膜15を形成する。本工程を終了した後の集合絶縁基板11Aの状態を示す断面図が図2である。本工程において、めっき抵抗膜15の材質は特に限定されるものではないが、例えば、Ni−W−P無電解めっきを使用すれば、抵抗値が低く、TCR(抵抗温度係数)が小さいチップ抵抗器を得ることができる。以上のように、めっき抵抗膜15を表裏同時に形成することにより、表裏面に作用するめっき応力は相殺される。また本工程により、従来の製造方法で発生していた障害、すなわち、集合絶縁基板11Aの反りは防止することが可能になった。
なお、表裏両面に形成するめっき抵抗膜15は、上記のNi−W−P無電解めっきの他に、Ni系やCu系などを含む各種金属や合金による無電解めっき、電気めっき、または無電解めっきと電気めっきとの組み合わせが使用可能である。例えば、Cu、Cu−Ni、Ni−P、Ni−Cu−P、Ni−Cr−P、Ni−Re−P、Ni−Bなどが使用可能である。
Next, as shown in FIG. 1 (d), the plating resistance film 15 is formed simultaneously on the front and back surfaces of the base layer 14 on both the front and back surfaces of the collective insulating substrate 11A. FIG. 2 is a cross-sectional view showing the state of the collective insulating substrate 11A after the completion of this step. In this step, the material of the plating resistance film 15 is not particularly limited. For example, if Ni-WP electroless plating is used, the chip resistance is low and the TCR (resistance temperature coefficient) is small. Can be obtained. As described above, the plating stress acting on the front and back surfaces is offset by forming the plating resistance film 15 simultaneously on the front and back surfaces. Further, this process makes it possible to prevent the trouble that has occurred in the conventional manufacturing method, that is, the warpage of the collective insulating substrate 11A.
In addition to the Ni-WP electroless plating described above, the plating resistance film 15 formed on both the front and back surfaces is electroless plating, electroplating, or electroless with various metals and alloys including Ni and Cu. A combination of plating and electroplating can be used. For example, Cu, Cu-Ni, Ni-P, Ni-Cu-P, Ni-Cr-P, Ni-Re-P, Ni-B, etc. can be used.

次に、集合絶縁基板11Aの表裏両面のレジスト膜(図示せず)を剥離除去する。   Next, the resist films (not shown) on both the front and back surfaces of the collective insulating substrate 11A are peeled and removed.

次に、図1(e)に示したように、表裏両面のめっき抵抗膜15の上に保護層16を形成する。この保護層16は、従来から知られているように、めっき抵抗膜15を保護するためのものであり、ガラスや樹脂により形成することができる。   Next, as shown in FIG. 1E, a protective layer 16 is formed on the plating resistance films 15 on both the front and back surfaces. As is conventionally known, the protective layer 16 is for protecting the plating resistance film 15 and can be formed of glass or resin.

次に、図1(f)に示したように、集合絶縁基板を短冊状に分割する。   Next, as shown in FIG. 1F, the collective insulating substrate is divided into strips.

次に、図1(g)に示したように、短冊状に分割した絶縁基板11Bの端面に、表裏両面のめっき抵抗膜を導通する端面電極18を形成する。このような端面電極18は、従来から知られているように、外部との接続を確保するためのものであり、その目的の他、表裏両面の抵抗体を並列に接続する機能を有するものである。   Next, as shown in FIG. 1 (g), the end face electrode 18 is formed on the end face of the insulating substrate 11B divided into strips to conduct the plating resistance films on both the front and back sides. As is known in the art, such an end face electrode 18 is for ensuring connection with the outside. In addition to its purpose, the end face electrode 18 has a function of connecting resistors on both the front and back sides in parallel. is there.

次に、短冊状の絶縁基板11Bを個々のチップ抵抗器20に分割する。   Next, the strip-shaped insulating substrate 11 </ b> B is divided into individual chip resistors 20.

次に、図1(h)に示したように、端面電極18とめっき抵抗膜15の露出部を覆う電極めっき層19を形成すれば、チップ抵抗器20が完成する。電極めっき層19は、従来から知られているように、例えば、NiめっきとSnめっきからなるめっき層、またはCuめっきとNiめっきとSnめっきからなるめっき層などを使用することができる。CuめっきとNiめっきとSnめっきから構成されるめっき層は、抵抗体の抵抗値が小さく、電極18の抵抗値の影響を最小限にするためにCuめっきが付加されたものである。
以上のように形成されたチップ抵抗器20について、さらに理解を容易にするために、図3にチップ抵抗器20の断面図を示した。なお、上記図1(a)〜(h)及び図2においては、各構成が比較的細かいため断面部分の斜線を省略し、図面理解の容易化を図り、図3及び図4では各構成が比較的大きいので断面部分に斜線を付した。
Next, as shown in FIG. 1H, the chip resistor 20 is completed by forming the electrode plating layer 19 that covers the exposed portions of the end face electrode 18 and the plating resistance film 15. As conventionally known, for example, a plating layer made of Ni plating and Sn plating, or a plating layer made of Cu plating, Ni plating, and Sn plating can be used as the electrode plating layer 19. A plating layer composed of Cu plating, Ni plating, and Sn plating has a small resistance value of the resistor, and Cu plating is added to minimize the influence of the resistance value of the electrode 18.
In order to facilitate understanding of the chip resistor 20 formed as described above, a cross-sectional view of the chip resistor 20 is shown in FIG. In FIGS. 1A to 1H and FIG. 2, since each configuration is relatively fine, the hatched cross section is omitted to facilitate the understanding of the drawings, and each configuration is illustrated in FIGS. 3 and 4. Since it is relatively large, the cross section is hatched.

次に、図4は異なる実施形態であるチップ抵抗器30の断面図であり、このチップ抵抗器30では、上記の図1(b)に示したような表裏電極13が設けられていない。
すなわち、チップ抵抗器30は、絶縁基板31の表裏両面に下地層32が形成され、それぞれの下地層32の上にめっき抵抗膜33が設けられ、両端面に端面電極34が形成され、めっき抵抗膜33の上に保護層35が設けられ、さらに、両側の端面電極34と露出しためっき抵抗膜33とを覆うために電極めっき層36が設けられたものである。このチップ抵抗器30においても、その製造工程では図1〜図3の実施形態と同様に、めっき抵抗膜33を表裏両面で同時に形成するものである。
Next, FIG. 4 is a cross-sectional view of a chip resistor 30 which is a different embodiment, and the chip resistor 30 is not provided with the front and back electrodes 13 as shown in FIG.
That is, the chip resistor 30 has a base layer 32 formed on both front and back surfaces of the insulating substrate 31, a plating resistance film 33 is provided on each base layer 32, end face electrodes 34 are formed on both end surfaces, and a plating resistance A protective layer 35 is provided on the film 33, and an electrode plating layer 36 is provided to cover the end face electrodes 34 on both sides and the exposed plating resistance film 33. In this chip resistor 30 as well, in the manufacturing process, the plating resistance film 33 is simultaneously formed on both the front and back surfaces as in the embodiment of FIGS.

[実施例]
本発明による効果を検証するため、1.0mm×0.5mmサイズのチップ抵抗器を形成するための集合絶縁基板を使用して実験した。この集合絶縁基板の厚さは0.28mmであり、表裏両面に分割のための溝を有する。下地抵抗膜として、Ag−Pd系メタルグレーズ系ペーストにより厚膜を形成し、めっき抵抗膜として、Ni―W―Pを無電解めっきにより形成した。集合絶縁基板の反りは、基板端部と基板中央との差を測定した。
比較例として実施した従来の製造方法では、3mm〜4mm程度の反りが発生したが、本発明の製造方法では、集合絶縁基板の反りは0.5mm以下に抑えられ、その効果を確認することができた。また従来の製造方法では、チップ抵抗器の抵抗値が40mΩ程度であったが、本発明の製造方法では、20mΩ〜30mΩ程度の抵抗値のチップ抵抗器が得られた。
また電気めっきによりめっき抵抗膜を形成した場合にも、本発明の製造方法では、同様に集合絶縁基板の反りが低減され、その効果を確認することができた。
[Example]
In order to verify the effect of the present invention, an experiment was conducted using a collective insulating substrate for forming a chip resistor having a size of 1.0 mm × 0.5 mm. The collective insulating substrate has a thickness of 0.28 mm, and has grooves for division on both the front and back surfaces. A thick film was formed as an underlying resistance film using an Ag—Pd metal glaze paste, and Ni—WP was formed as an plating resistance film by electroless plating. The warpage of the collective insulating substrate was measured by measuring the difference between the substrate edge and the substrate center.
In the conventional manufacturing method implemented as a comparative example, warpage of about 3 mm to 4 mm occurred, but in the manufacturing method of the present invention, the warpage of the collective insulating substrate can be suppressed to 0.5 mm or less, and its effect can be confirmed. did it. Moreover, in the conventional manufacturing method, the resistance value of the chip resistor was about 40 mΩ, but in the manufacturing method of the present invention, a chip resistor having a resistance value of about 20 mΩ to 30 mΩ was obtained.
Further, when the plating resistance film was formed by electroplating, the manufacturing method of the present invention similarly reduced the warpage of the collective insulating substrate, and confirmed its effect.

(a)〜(h)は本発明のチップ抵抗器の製造方法における各工程を示す断面図である。(A)-(h) is sectional drawing which shows each process in the manufacturing method of the chip resistor of this invention. 本発明によるチップ抵抗器の集合基板を示す断面図である。It is sectional drawing which shows the assembly board | substrate of the chip resistor by this invention. 本発明によるチップ抵抗器を示す断面図である。It is sectional drawing which shows the chip resistor by this invention. 図3とは異なる実施形態のチップ抵抗器を示す断面図である。It is sectional drawing which shows the chip resistor of embodiment different from FIG. 従来技術によるチップ抵抗器の集合基板を示す断面図である。It is sectional drawing which shows the aggregate substrate of the chip resistor by a prior art. 従来技術によるチップ抵抗器を示す断面図である。It is sectional drawing which shows the chip resistor by a prior art.

符号の説明Explanation of symbols

11A 集合絶縁基板
11B 短冊状の絶縁基板
13 表裏両面の電極
14 表裏両面の下地層
15 めっき抵抗膜
16 保護層
18 端面電極
19 電極めっき層
20 チップ抵抗器
30 チップ抵抗器
31 絶縁基板
32 下地層
33 めっき抵抗膜
34 端面電極
35 保護層
36 電極めっき層
DESCRIPTION OF SYMBOLS 11A Collective insulating board 11B Strip-shaped insulating board 13 Front and back both-side electrodes 14 Underlayer on both front and back sides 15 Plating resistance film 16 Protective layer 18 End surface electrode 19 Electrode plating layer 20 Chip resistor 30 Chip resistor 31 Insulating substrate 32 Underlayer 33 Plating resistance film 34 End face electrode 35 Protective layer 36 Electrode plating layer

Claims (5)

個々のチップ抵抗器となる区画を縦横に複数有する板厚が0.25mm〜0.3mmの薄い集合絶縁基板上に電極と抵抗膜を形成した後、各区画毎に分割することによりチップ抵抗器を得るチップ抵抗器の製造方法において、
前記集合絶縁基板の表裏両面に形成された電極間に電流を流す導体となる下地層を形成する工程と、
前記抵抗膜を前記下地層の表裏面にめっきにより表裏同時に形成する工程と、
記集合絶縁基板を短冊状に分割する工程と、
前記短冊状基板の表裏面の抵抗膜を並列に導通する端面電極を形成する工程と、
前記短冊状基板を個々のチップに分割する工程とを有するチップ抵抗器の製造方法。
An electrode and a resistance film are formed on a thin insulating substrate having a thickness of 0.25 mm to 0.3 mm having a plurality of sections to be individual chip resistors vertically and horizontally, and then divided into each section to obtain a chip resistor. In the manufacturing method of the chip resistor,
Forming a base layer serving as a conductor for passing a current between electrodes formed on both front and back surfaces of the collective insulating substrate;
Forming the resistance film on the front and back surfaces of the underlayer simultaneously by plating on the front and back surfaces; and
A step of dividing the pre-SL current if the insulating substrate into strips,
Forming an end face electrode that conducts the resistive films on the front and back surfaces of the strip-shaped substrate in parallel;
And a step of dividing the strip substrate into individual chips.
無電解めっき法により前記抵抗膜を形成することを特徴とする請求項1に記載のチップ抵抗器の製造方法。 Method for producing a chip resistor according to claim 1, characterized in that to form a more the resistance film in an electroless plating method. 個々のチップ抵抗器となる区画を縦横に複数有する0.25mm〜0.3mmのシート状の集合絶縁基板であって、該基板の表裏両面の電極間に電流を流す導体となる下地層上に、めっきにより該基板の表裏両面に同時に抵抗膜が形成されたものである集合基板。 A sheet-like collective insulating substrate of 0.25 mm to 0.3 mm having a plurality of sections to be individual chip resistors vertically and horizontally , plated on a base layer serving as a conductor for passing a current between electrodes on both sides of the substrate A collective substrate in which a resistance film is simultaneously formed on both the front and back surfaces of the substrate. 前記抵抗膜が、無電解めっきによる抵抗膜形成された請求項3に記載の集合基板。 Collective substrate according to the resistive film, Motomeko 3 formed of a resistance film by come electroless plating. 請求項3または請求項4に記載の集合基板を使用し、前記集合基板を短冊状に分割することによって形成される分割面に、前記表裏面の抵抗膜を導通する端面電極を有し、前記短冊状の基板を個々に分割することにより形成されたチップ抵抗器。   Use of the collective substrate according to claim 3 or claim 4, and having an end face electrode for conducting the resistance film on the front and back surfaces on a divided surface formed by dividing the collective substrate into strips, A chip resistor formed by dividing a strip-shaped substrate individually.
JP2004254320A 2004-09-01 2004-09-01 Chip resistor manufacturing method, collective substrate, and chip resistor Active JP4664024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004254320A JP4664024B2 (en) 2004-09-01 2004-09-01 Chip resistor manufacturing method, collective substrate, and chip resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254320A JP4664024B2 (en) 2004-09-01 2004-09-01 Chip resistor manufacturing method, collective substrate, and chip resistor

Publications (2)

Publication Number Publication Date
JP2006073729A JP2006073729A (en) 2006-03-16
JP4664024B2 true JP4664024B2 (en) 2011-04-06

Family

ID=36154036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254320A Active JP4664024B2 (en) 2004-09-01 2004-09-01 Chip resistor manufacturing method, collective substrate, and chip resistor

Country Status (1)

Country Link
JP (1) JP4664024B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI430293B (en) * 2006-08-10 2014-03-11 Kamaya Electric Co Ltd Production method of corner plate type chip resistor and corner plate type chip resistor
KR101141401B1 (en) * 2010-05-06 2012-05-03 삼성전기주식회사 Resistor of parallel structure and fabrication method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642466U (en) * 1987-06-22 1989-01-09
JPH05267022A (en) * 1992-03-19 1993-10-15 Hokuriku Toryo Kk Manufacture of resistor having disconnection function
JPH06120013A (en) * 1992-10-05 1994-04-28 Koa Corp Manufacture of electronic component
JPH10170348A (en) * 1996-12-04 1998-06-26 Murata Mfg Co Ltd Temperature sensor and its manufacture
JP2001044002A (en) * 1999-07-30 2001-02-16 Hokuriku Electric Ind Co Ltd Surface-mounted metal clad resistor and manufacture thereof
JP2001155901A (en) * 1999-11-29 2001-06-08 Matsushita Electric Ind Co Ltd Metal-film chip resistor and its manufacturing method
JP2003059720A (en) * 2001-08-08 2003-02-28 Murata Mfg Co Ltd Chip inductor and its manufacturing method
JP2004055666A (en) * 2002-07-17 2004-02-19 Canon Inc Substrate with flat coil, multilayer coil, method of manufacturing the same, and oscillating body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642466U (en) * 1987-06-22 1989-01-09
JPH05267022A (en) * 1992-03-19 1993-10-15 Hokuriku Toryo Kk Manufacture of resistor having disconnection function
JPH06120013A (en) * 1992-10-05 1994-04-28 Koa Corp Manufacture of electronic component
JPH10170348A (en) * 1996-12-04 1998-06-26 Murata Mfg Co Ltd Temperature sensor and its manufacture
JP2001044002A (en) * 1999-07-30 2001-02-16 Hokuriku Electric Ind Co Ltd Surface-mounted metal clad resistor and manufacture thereof
JP2001155901A (en) * 1999-11-29 2001-06-08 Matsushita Electric Ind Co Ltd Metal-film chip resistor and its manufacturing method
JP2003059720A (en) * 2001-08-08 2003-02-28 Murata Mfg Co Ltd Chip inductor and its manufacturing method
JP2004055666A (en) * 2002-07-17 2004-02-19 Canon Inc Substrate with flat coil, multilayer coil, method of manufacturing the same, and oscillating body

Also Published As

Publication number Publication date
JP2006073729A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
US10104776B2 (en) Chip resistor element
JP7382451B2 (en) chip resistor
US8389866B2 (en) Resin circuit board
WO2015162858A1 (en) Chip resistor and method for manufacturing same
JP2018074143A (en) Resistive element and resistive element assembly
JP4664024B2 (en) Chip resistor manufacturing method, collective substrate, and chip resistor
JP2014135427A (en) Chip resistor
JP5430121B2 (en) Wiring board and probe card using the same
JP2000306711A (en) Multiple chip resistor and production thereof
JP2836303B2 (en) Square chip resistor and method of manufacturing the same
JP4707890B2 (en) Chip resistor and manufacturing method thereof
JP3118509B2 (en) Chip resistor
JPH10125508A (en) Chip thermistor and its manufacture
JP3134067B2 (en) Low resistance chip resistor and method of manufacturing the same
JP2005268302A (en) Chip resistor and manufacturing method thereof
JP2007173281A (en) Method of manufacturing electronic component
JP3636190B2 (en) Resistor and manufacturing method thereof
JP2008244211A (en) Manufacturing method for thin-film chip resistor
JP2000138102A (en) Resistor and its manufacture
JP3772270B2 (en) Small electronic component manufacturing method and chip resistor
JP7209140B2 (en) chip resistor
JP2003272901A (en) Thick film resistor and its manufacturing method
JP4530024B2 (en) Resistor and manufacturing method thereof
JP2000188204A (en) Resistor and its manufacture
JP3608570B2 (en) Resistor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110106

R150 Certificate of patent or registration of utility model

Ref document number: 4664024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250