JP4662421B2 - Organic acid separation and production method - Google Patents

Organic acid separation and production method Download PDF

Info

Publication number
JP4662421B2
JP4662421B2 JP2004113557A JP2004113557A JP4662421B2 JP 4662421 B2 JP4662421 B2 JP 4662421B2 JP 2004113557 A JP2004113557 A JP 2004113557A JP 2004113557 A JP2004113557 A JP 2004113557A JP 4662421 B2 JP4662421 B2 JP 4662421B2
Authority
JP
Japan
Prior art keywords
acid
exchange resin
anion exchange
aqueous solution
basic anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004113557A
Other languages
Japanese (ja)
Other versions
JP2005298369A (en
Inventor
実 山本
義和 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004113557A priority Critical patent/JP4662421B2/en
Publication of JP2005298369A publication Critical patent/JP2005298369A/en
Application granted granted Critical
Publication of JP4662421B2 publication Critical patent/JP4662421B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、少なくとも2種類以上の有機酸を含む水溶液から有用な有機酸を高純度かつ高収率で簡便に分離・精製して工業的に製造することが出来る製造方法に関する。
さらに詳しくはアミノ酸の製造法に関し、ストレッカー法で合成したアミノ酸の製造工程でアミノ酸ソーダ水溶液を弱酸性陽イオン交換樹脂で処理した後、不純物である有機酸すなわちイミノジカルボン酸を含む粗アミノ酸水溶液をさらに弱塩基性陰イオン交換樹脂で処理することにより、アミノ酸を高純度かつ高収率で簡便に環境負荷を少なく工業的に製造するため利用することが出来る製造方法に関する。アミノ酸の一種であるグリシンは、医農薬合成原料、食品添加物、洗浄剤原料として広く使用されている有用な化合物である。
The present invention relates to a production method capable of industrially producing a useful organic acid from an aqueous solution containing at least two kinds of organic acids by simply separating and purifying the organic acid with high purity and high yield.
More specifically, with respect to the amino acid production method, an amino acid soda aqueous solution is treated with a weakly acidic cation exchange resin in an amino acid production process synthesized by a Strecker method, and then a crude amino acid aqueous solution containing an organic acid, i.e., iminodicarboxylic acid, as an impurity. Furthermore, the present invention relates to a production method that can be used for industrial production of amino acids with high purity and high yield and with low environmental impact by treating with a weakly basic anion exchange resin. Glycine, a kind of amino acid, is a useful compound that is widely used as a raw material for pharmaceutical and agrochemical synthesis, food additives, and cleaning agents.

有機酸の分離回収する方法には、陽イオン交換樹脂との接触処理に次いで目的とする有機酸を陰イオン交換樹脂に一旦吸着せしめた後、硫酸・塩酸などの鉱酸、または水酸化ナトリウムなどの強塩基性の水溶液で陰イオン交換樹脂から溶離することから、それぞれ鉱酸を含んだ有機酸ならびに有機酸のアルカリ金属塩として回収することになる(例えば、特許文献1参照)。
また目的とする有機酸を陰イオン交換樹脂に一旦吸着せしめた後、塩酸、硫酸などの鉱酸で陰イオン交換樹脂から溶離することから、鉱酸を含んだ回収液となる。溶離剤として水酸化ナトリウムなどの強塩基性の水溶液を用いた場合、回収を目的とする有機酸の水への溶解度が増して、晶析工程における回収が不利である。また、溶離剤として塩酸、硫酸などの鉱酸を用いた場合、溶離時に有機酸が析出する問題が懸念される(例えば、特許文献2参照)。
The organic acid is separated and recovered by first adsorbing the target organic acid on the anion exchange resin after the contact treatment with the cation exchange resin, and then a mineral acid such as sulfuric acid / hydrochloric acid, or sodium hydroxide, etc. Thus, it is recovered as an organic acid containing a mineral acid and an alkali metal salt of the organic acid (see, for example, Patent Document 1).
In addition, the target organic acid is once adsorbed on the anion exchange resin and then eluted from the anion exchange resin with a mineral acid such as hydrochloric acid or sulfuric acid, so that a recovery liquid containing the mineral acid is obtained. When a strongly basic aqueous solution such as sodium hydroxide is used as an eluent, the solubility of an organic acid intended for recovery in water increases, which is disadvantageous for recovery in the crystallization step. Further, when a mineral acid such as hydrochloric acid or sulfuric acid is used as an eluent, there is a concern that an organic acid is precipitated during elution (see, for example, Patent Document 2).

しかし、いずれも陰イオン交換樹脂に一旦吸着した目的の有機酸を別の有機酸で溶離して目的とする有機酸を回収する記載はない。
アミノ酸の一つであるグリシンの製造方法に関しては従来、ホルムアルデヒド、シアン化水素、およびアンモニアを原料にシュトレッカー法にて一旦グリシノニトリルを合成し、これを苛性ソーダ等のアルカリで加水分解してグリシンソーダとアンモニアに変換し、これを硫酸で中和し晶析法で回収し製造されている(例えば、特許文献3、特許文献4、特許文献5、特許文献6参照)。
生成する硫酸ナトリウムはグリシンと溶解度が酷似しているため1段の晶析では十分回収できない。そのため高温で硫酸ナトリウムの一部を晶析し、次に低温でグリシンを晶析する操作を複数回繰り返す等の煩雑な操作が必要であった(例えば、特許文献7参照)。
However, there is no description of recovering the target organic acid by eluting the target organic acid once adsorbed on the anion exchange resin with another organic acid.
Regarding the production method of glycine, which is one of the amino acids, conventionally, glycinonitrile is once synthesized by the Strecker method using formaldehyde, hydrogen cyanide, and ammonia as raw materials, and this is hydrolyzed with an alkali such as caustic soda and glycine soda. It is converted to ammonia, neutralized with sulfuric acid, and recovered and produced by a crystallization method (see, for example, Patent Document 3, Patent Document 4, Patent Document 5, and Patent Document 6).
The generated sodium sulfate is very similar in solubility to glycine, so it cannot be sufficiently recovered by one-stage crystallization. Therefore, a complicated operation such as crystallization of a part of sodium sulfate at high temperature and then crystallization of glycine at low temperature is required several times (see, for example, Patent Document 7).

また、陽イオン交換樹脂を用いてグリシンソーダ水溶液のナトリウムイオンを陽イオン交換(脱塩)しグリシン水溶液を得る方法として弱酸性陽イオン交換樹脂を用いる方法(例えば、特許文献8参照)や強酸性陽イオン交換樹脂を用いる方法(例えば、特許文献9参照)が知られている。この場合用いた陽イオン交換樹脂は鉱酸で再生されることが記載されており、鉱酸のナトリウム塩が生成することになる。また、陽イオン交換樹脂を用いてグリシンソーダ水溶液のナトリウムイオンを陽イオン交換(脱塩)し、着色物質を含んだ粗グリシン水溶液を得た後に弱塩基性陰イオン交換樹脂もしくは中塩基性イオン交換樹脂で処理する方法(例えば、特許文献10参照)が記載されている。   In addition, as a method for obtaining a glycine aqueous solution by cation exchange (desalting) of sodium ions in a glycine soda aqueous solution using a cation exchange resin, a method using a weakly acidic cation exchange resin (for example, see Patent Document 8) or a strong acidity. A method using a cation exchange resin (for example, see Patent Document 9) is known. In this case, it is described that the cation exchange resin used is regenerated with a mineral acid, and a sodium salt of the mineral acid is produced. Cation exchange (desalting) of sodium ions in glycine soda aqueous solution using cation exchange resin to obtain crude glycine aqueous solution containing colored substances, followed by weak basic anion exchange resin or medium basic ion exchange A method of treating with a resin (for example, see Patent Document 10) is described.

得られるグリシンの純度(不純物の残存量)に関する記載は無いが、イオン交換樹脂へのグリシンの吸着損失が約0.2から1.5%の範囲で記載されている。得られるグリシンの純度は陰イオン交換の際、所定の有機酸(イミノジ酢酸、グリコール酸、ギ酸)の含有濃度、即ち不純物である有機酸が所定量漏洩する破過点に達したら通液を停止することで保たれる。この場合、有機酸吸着による破過点は陰イオン交換樹脂の飽和吸着点ではないので、陰イオン交換樹脂先端には有機酸が飽和吸着していないため未交換のイオン交換帯が存在し、このイオン交換帯には、OH型陰イオンの他にグリシンの陰イオンがイオン交換して陰イオン交換樹脂に吸着している。
このイオン交換帯をアルカリ金属塩で再生するとグリシンの陰イオンはイオン交換され再生液に同伴されるので、グリシンの回収損失となってしまう。
Although there is no description about the purity (residual amount of impurities) of the obtained glycine, the adsorption loss of glycine to the ion exchange resin is described in the range of about 0.2 to 1.5%. The purity of the glycine obtained is stopped when the anion exchange reaches the breakthrough point where the specified concentration of organic acid (iminodiacetic acid, glycolic acid, formic acid), that is, the organic acid as an impurity, leaks a predetermined amount. It is kept by doing. In this case, since the breakthrough point due to organic acid adsorption is not the saturated adsorption point of the anion exchange resin, there is an unexchanged ion exchange zone at the tip of the anion exchange resin because the organic acid is not saturated and adsorbed. In the ion exchange zone, an anion of glycine is ion-exchanged and adsorbed on the anion exchange resin in addition to the OH type anion.
When this ion exchange zone is regenerated with an alkali metal salt, the anion of glycine is ion exchanged and entrained in the regeneration solution, resulting in a recovery loss of glycine.

特許第2850421号公報Japanese Patent No. 2850421 特表2002−505310号公報Japanese translation of PCT publication No. 2002-505310 特公昭43−29929号公報Japanese Patent Publication No.43-29929 特公昭59−28543号公報Japanese Patent Publication No.59-28543 特公昭51−24481号公報Japanese Patent Publication No. 51-24481 特公昭51−40044号公報Japanese Patent Publication No. 51-40044 特公昭57−53775号公報Japanese Patent Publication No.57-53775 特公昭29−8677号公報Japanese Examined Patent Publication No. 29-8679 特公平7−68191号公報Japanese Examined Patent Publication No. 7-68191 特公昭54−1686号公報Japanese Patent Publication No.54-1686

従来、弱塩基性陰イオン交換樹脂を利用した有機酸の分離製造において弱塩基性陰イオン交換樹脂に一部捕捉された目的の有機酸を樹脂再生により多大の回収損失を招いている問題があり、工業的製造を行ううえで廃棄物による環境負荷の観点から改善が必要とされる。
本発明は、少なくとも2種類以上の有機酸を含む水溶液から有用な有機酸を分離製造するにあたり、多大の有用な有機酸を損失すること無く、高純度かつ高収率に有用な有機酸の分離製造する方法を提供することを目的とするものである。
Conventionally, in the separation and production of organic acids using weakly basic anion exchange resins, there is a problem that the recovery of the desired organic acid partially captured by the weakly basic anion exchange resin causes a great recovery loss. In industrial production, improvements are required from the viewpoint of the environmental impact of waste.
In the present invention, when separating and producing a useful organic acid from an aqueous solution containing at least two or more kinds of organic acids, the separation of useful organic acids in high purity and high yield without losing a great deal of useful organic acids. The object is to provide a method of manufacturing.

本発明者は、上記課題を解決するために少なくとも2種類以上の有機酸を含む水溶液から目的とする有機酸を回収する方法であって、該有機酸を含む水溶液を弱塩基性陰イオン交換樹脂に接触処理して不純物とする有機酸をイオン交換して吸着させ、目的とする有機酸を含む水溶液を製造する工程と、さらに継続して該有機酸を含む水溶液を弱塩基性陰イオン交換樹脂に接触処理して一部イオン交換して吸着している目的の有機酸を不純物の有機酸とイオン交換して脱離させる工程を含むことを特徴とする有機酸を分離回収する方法を利用して、不純物としてイミノジカルボン酸を含む粗アミノ酸水溶液からアミノ酸を製造するにあたり、多大の有用なアミノ酸を損失すること無く、有用な高純度アミノ酸の分離製造する方法を鋭意研究を重ねた結果、驚くべき事に不純物としてイミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂と接触処理させて不純物であるイミノジカルボン酸をイオン交換して吸着させ、アミノ酸水溶液を製造するイオン交換工程の後、さらに継続してイミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂に接触処理(破過点後の通液を継続して行う事を以下、「過破過通液」とする。)させて弱塩基性陰イオン交換樹脂に一部捕捉されたアミノ酸と不純物であるイミノジカルボン酸をイオン交換してアミノ酸を回収する工程を加えることで多大のアミノ酸を損失すること無く、さらにはイオン交換樹脂の交換基に不純物を飽和吸着することができ不純物の除去効率が優れていることから高純度かつ高収率にアミノ酸を分離製造出来ることを見出し、本発明をなすに至った。   In order to solve the above problems, the present inventor is a method for recovering a target organic acid from an aqueous solution containing at least two kinds of organic acids, and the aqueous solution containing the organic acid is weakly anion exchange resin. A step of producing an aqueous solution containing the target organic acid by ion-exchanging and adsorbing the organic acid as an impurity by contact treatment with the aqueous solution, and a weakly basic anion exchange resin containing the aqueous solution containing the organic acid. Using a method for separating and recovering an organic acid, characterized in that it comprises a step of desorbing a target organic acid adsorbed by partial ion exchange with an impurity organic acid after contact treatment Therefore, when producing amino acids from crude amino acid aqueous solutions containing iminodicarboxylic acid as an impurity, we will intensively study methods for separating and producing useful high-purity amino acids without losing a great deal of useful amino acids. As a result, surprisingly, the amino acid aqueous solution containing an iminodicarboxylic acid as an impurity is contact-treated with a weakly basic anion exchange resin, and the impurity iminodicarboxylic acid is ion-exchanged and adsorbed to produce an amino acid aqueous solution. After the exchange step, the crude amino acid aqueous solution containing iminodicarboxylic acid is further contacted with a weakly basic anion exchange resin (hereinafter referred to as “continuous breakthrough”). A large amount of amino acids are lost by adding a step of recovering amino acids by ion-exchange of the amino acid partially captured by the weakly basic anion exchange resin and the iminodicarboxylic acid as an impurity. In addition, the impurities can be saturated and adsorbed on the exchange group of the ion exchange resin, and the removal efficiency of the impurities is excellent, so the amino acid has high purity and high yield. It found to be able to separate production, leading to completion of the present invention.

すなわち本発明は、下記1)から9)に記載の発明に係わる。
1)少なくとも2種類以上の有機酸を含む水溶液から目的とする有機酸を回収する方法であって、該有機酸を含む水溶液を弱塩基性陰イオン交換樹脂に接触処理して不純物とする有機酸をイオン交換して吸着させ、目的とする有機酸を含む水溶液を製造する工程と、弱塩基性陰イオン交換樹脂の破過後、さらに継続して該有機酸を含む水溶液を弱塩基性陰イオン交換樹脂に接触処理して一部イオン交換して吸着している目的の有機酸を不純物の有機酸とイオン交換して脱離させる工程を含み、少なくとも2種類以上の有機酸において有機酸の組合せが、アミノ酸とイミノジカルボン酸であることを特徴とする有機酸を分離回収する方法。
2)少なくとも2種類以上の有機酸を含む水溶液がストレッカー法で合成されたアミノ酸を含む水溶液である1)記載の方法
That is, the present invention relates to the inventions described in 1) to 9) below.
1) A method for recovering a target organic acid from an aqueous solution containing at least two kinds of organic acids, wherein the aqueous solution containing the organic acid is contacted with a weakly basic anion exchange resin to produce impurities. A process of producing an aqueous solution containing the desired organic acid by ion exchange, and after the breakthrough of the weakly basic anion exchange resin, the aqueous solution containing the organic acid is further subjected to weakly basic anion exchange. Including a step of desorbing the target organic acid adsorbed by subjecting the resin to a partial ion exchange by ion exchange with an impurity organic acid, and a combination of organic acids in at least two kinds of organic acids. A method for separating and recovering an organic acid characterized by being an amino acid and an iminodicarboxylic acid .
2) The method according to 1), wherein the aqueous solution containing at least two kinds of organic acids is an aqueous solution containing an amino acid synthesized by a Strecker method .

3)イミノジカルボン酸を含む粗アミノ酸水溶液からアミノ酸を分離回収する一連のプロセスが、a)イミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂と接触処理させて不純物であるイミノジカルボン酸をイオン交換しアミノ酸水溶液を製造するイオン交換工程、b)弱塩基性陰イオン交換樹脂の破過後、さらに継続してイミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたアミノ酸とイミノジカルボン酸をイオン交換してアミノ酸を回収する工程、c)弱塩基性陰イオン交換樹脂に残存するアミノ酸含有水溶液を水で押し出し洗浄する工程、d)弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂を再生する工程、f)弱塩基性陰イオン交換樹脂に残存するイミノジカルボン酸のアルカリ金属塩含有水溶液を水で押し出し洗浄する工程からなる一連のプロセスであることを特徴とする1)又は2)に記載の方法。
4)アミノ酸がグリシン、アラニン、メチオニンであることを特徴とする1)〜3)のいずれかに記載の方法。
3) A series of processes for separating and recovering an amino acid from a crude amino acid solution containing iminodicarboxylic acid, a) Iminodicarboxylic acid which is an impurity by contacting the crude amino acid solution containing iminodicarboxylic acid with a weakly basic anion exchange resin An ion exchange step of producing an amino acid aqueous solution by ion-exchange, and b) after breaking through the weakly basic anion exchange resin, the crude amino acid aqueous solution containing iminodicarboxylic acid is further contacted with the weakly basic anion exchange resin. A step of recovering the amino acid by ion-exchange of the amino acid and the iminodicarboxylic acid captured by the weakly basic anion exchange resin, and c) a step of extruding and washing the aqueous solution containing the amino acid remaining in the weakly basic anion exchange resin with water. , D) a step of flowing back water into the weakly basic anion exchange resin and back-washing, e) alkali metal hydroxide A step of contacting the aqueous solution with a weakly basic anion exchange resin to regenerate the weakly basic anion exchange resin, f) an aqueous solution containing an alkali metal salt of iminodicarboxylic acid remaining in the weakly basic anion exchange resin with water The method according to 1) or 2), which is a series of processes comprising a step of extrusion cleaning.
4) The method according to any one of 1) to 3), wherein the amino acid is glycine, alanine, or methionine.

5)不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液からグリシンを分離回収する一連のプロセスが、a)不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を弱塩基性陰イオン交換樹脂と接触処理させて不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換しグリシン水溶液を製造するイオン交換工程、b)弱塩基性陰イオン交換樹脂の破過後、さらに継続してイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたグリシンと不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換してグリシンを回収する工程、c)弱塩基性陰イオン交換樹脂に残存するグリシン含有水溶液を水で押し出し洗浄する工程、d)弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたイミノジ酢酸、グリコール酸、ギ酸とイオン交換して弱塩基性陰イオン交換樹脂を再生する工程、f)弱塩基性陰イオン交換樹脂に残存するイミノジ酢酸、グリコール酸、ギ酸のアルカリ金属塩水溶液を水で押し出し洗浄する工程からなる一連のプロセスであることを特徴とする1)〜4)のいずれかに記載の方法。
5) A series of processes for separating and recovering glycine from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid and formic acid as impurities. A) Weak basic anion exchange of a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid and formic acid as impurities An ion exchange step of producing an aqueous glycine solution by ion exchange of impurities such as iminodiacetic acid, glycolic acid, and formic acid by contact treatment with the resin; b) after the weakly basic anion exchange resin breakthrough, and continuing further iminodiacetic acid, glycol The crude glycine aqueous solution containing acid and formic acid is contact-treated with a weakly basic anion exchange resin, and glycine trapped by the weakly basic anion exchange resin is ion-exchanged with impurities such as iminodiacetic acid, glycolic acid, and formic acid, and glycine C) pressing the glycine-containing aqueous solution remaining in the weakly basic anion exchange resin with water. A step of washing out and washing, d) a step of flowing back water into the weakly basic anion exchange resin and backwashing, and e) a weakly basic anion exchange resin by contacting the aqueous solution of the alkali metal hydroxide with the weakly basic anion exchange resin. A step of regenerating a weakly basic anion exchange resin by ion exchange with iminodiacetic acid, glycolic acid and formic acid trapped in the anion exchange resin, f) iminodiacetic acid, glycolic acid remaining in the weakly basic anion exchange resin, 5. The method according to any one of 1) to 4), which is a series of processes comprising a step of extruding and washing an alkali metal salt aqueous solution of formic acid with water.

6)アルカリ金属水酸化物のアルカリ金属がナトリウムである事を特徴とする3)〜5)のいずれかに記載の方法。
7)一連のプロセスを1塔または多塔の弱塩基性陰イオン交換樹脂で充填されたカラムを其々独立して一連のプロセスを実施することを特徴とする3)〜6)のいずれかに記載の方法。
8)一連のプロセスをA塔とB塔の少なくとも2塔の弱塩基性陰イオン交換樹脂で充填されたカラムを直列につなぎ、(1)不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液をA塔の上部にフィードしA塔の下部よりグリシン水溶液を回収する、(2)A塔の下部から不純物であるイミノジ酢酸が流出したらA塔の下部とB塔の上部を繋ぎB塔の下部よりグリシン水溶液を回収しA塔は不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液のフィードを続ける処理をする、(3)A塔の下部から弱塩基性陰イオン交換樹脂に捕捉されていたグリシンがイミノジ酢酸とイオン交換されて流出しなくなったらA塔の下部とB塔の上部を切り離しB塔の上部に不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液をフィードしB塔の下部よりグリシンを回収する、切り離したA塔は再生工程を実施する、次に(2)と(3)の工程をA塔とB塔を交換して実施し、以上を繰り返すことで連続的にグリシンを製造することを特徴とする3)〜7)のいずれかに記載の方法。
6) The method according to any one of 3) to 5), wherein the alkali metal of the alkali metal hydroxide is sodium.
7) In any one of 3) to 6), the series of processes is independently performed on a column packed with one or more columns of weakly basic anion exchange resin. The method described.
8) A series of processes was connected in series to a column filled with at least two weakly basic anion exchange resins, Tower A and Tower B, and (1) Crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities Is fed to the upper part of the A tower and the aqueous glycine solution is recovered from the lower part of the A tower. (2) When iminodiacetic acid as an impurity flows out from the lower part of the A tower, the lower part of the A tower is connected to the upper part of the B tower. The glycine aqueous solution is further recovered, and the A tower is processed to continue feeding the crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities. (3) Captured by the weakly basic anion exchange resin from the lower part of the A tower. When glycine was ion-exchanged with iminodiacetic acid and stopped flowing out, the lower part of tower A and the upper part of tower B were separated, and iminodiacetic acid, glycolic acid, A crude glycine aqueous solution containing an acid is fed to recover glycine from the lower part of the B tower. The separated A tower carries out a regeneration process, and then the steps (2) and (3) are exchanged between the A tower and the B tower. The method according to any one of 3) to 7) , wherein the glycine is continuously produced by repeating the steps described above.

本発明によれば従来、弱塩基性陰イオン交換樹脂を利用した有機酸の分離製造において弱塩基性陰イオン交換樹脂に一部捕捉された目的の有機酸を樹脂再生により多大の回収損失を招いていたが、弱塩基性陰イオン交換樹脂に一部捕捉された目的の有機酸を不純物の有機酸で溶離して目的とする有機酸を分離回収する方法を利用して、不純物としてイミノジカルボン酸を含む粗アミノ酸水溶液からアミノ酸を製造するにあたり、多大の有用なアミノ酸を損失すること無く、有用な高純度アミノ酸を分離製造することが出来る。   According to the present invention, the organic acid of interest partially captured by the weakly basic anion exchange resin in the separation and production of the organic acid using the weakly basic anion exchange resin conventionally causes a great recovery loss due to resin regeneration. However, the target organic acid partially captured by the weakly basic anion exchange resin is eluted with the impurity organic acid to separate and recover the target organic acid, and the iminodicarboxylic acid is used as the impurity. In producing an amino acid from a crude amino acid aqueous solution containing, a useful high-purity amino acid can be separated and produced without losing a great amount of useful amino acids.

本発明について、以下具体的に説明する。本発明に適用される少なくとも2種類以上の有機酸を含む水溶液は、ストレッカー法を代表とする化学合成法で得られたものが最も好ましいが、菌体の酵素反応または/もしくは菌体から精製した酵素ならびに固定化した酵素反応で得られた有機酸でもよい。
本発明で分離製造の対象となる有機酸は、アミノ基を有する弱塩基性陰イオン交換樹脂と目的とする有機酸ならびに不純物とする有機酸の間に相対的な親和性、有機酸のカルボキシル基との吸着能力および置換の際の遊離能力がそれぞれ異なる化合物である。
このような有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸等の直鎖脂肪酸;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、フマル酸、マレイン酸、フタル酸、イソフタル酸、テレフタル酸、イミノジ酢酸、イミノジプロピオン酸等のジカルボン酸;グリシン、アラニン、メチオニン、セリン、バリン、ロイシン、イソロイシン、トレオニン、システイン、シスチン、フェニルアラニン、グルタミン酸、アスパラギン酸等のアミノ酸;グリコール酸、乳酸、ヒドロキシアクリル酸、α−オキシ酪酸、グリセリン酸、タルトロン酸、リンゴ酸、酒石酸、クエン酸、サリチル酸、没食子酸、マンデル酸、トロバ酸、アスコルビン酸、グルコン酸等のオキシ酸;桂皮酸、安息香酸、フェニル酢酸、ニコチン酸、カイニン酸、ソルビン酸、ピロリドンカルボン酸、トリメリット酸等の芳香族又は複素環のポリカルボン酸などの中から挙げられる。
好ましくは、アミノ酸であるグリシン、アラニンである。特に好ましくは、グリシンとその副生成物であるイミノジ酢酸、グリコール酸、ギ酸から構成された有機酸の組合せが挙げられる。
The present invention will be specifically described below. The aqueous solution containing at least two kinds of organic acids applied to the present invention is most preferably obtained by a chemical synthesis method typified by the Strecker method, but it is purified from the enzymatic reaction of the bacterial cells and / or from the bacterial cells. The organic acid obtained by the enzyme reaction and the immobilized enzyme reaction may be sufficient.
The organic acid to be separated and produced in the present invention is a relative affinity between the weakly basic anion exchange resin having an amino group and the target organic acid and the organic acid as an impurity, the carboxyl group of the organic acid. These are compounds having different adsorption capacities and release capacities upon substitution.
Examples of such organic acids include linear fatty acids such as formic acid, acetic acid, propionic acid, butyric acid, and valeric acid; oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, fumaric acid, maleic acid Dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, iminodiacetic acid, iminodipropionic acid; glycine, alanine, methionine, serine, valine, leucine, isoleucine, threonine, cysteine, cystine, phenylalanine, glutamic acid, aspartic acid, etc. Amino acids; oxyacids such as glycolic acid, lactic acid, hydroxyacrylic acid, α-oxybutyric acid, glyceric acid, tartronic acid, malic acid, tartaric acid, citric acid, salicylic acid, gallic acid, mandelic acid, trovic acid, ascorbic acid, gluconic acid Cinnamic acid, benzoic acid, phenylacetic acid, nico Phosphate, kainic acid, sorbic acid, pyrrolidone carboxylic acid, and from such polycarboxylic acids, aromatic or heterocyclic ring such as trimellitic acid.
Preferably, the amino acids are glycine and alanine. Particularly preferred is a combination of organic acids composed of glycine and its by-products, iminodiacetic acid, glycolic acid and formic acid.

本発明において使用される弱塩基性陰イオン交換樹脂は、樹脂基体、形状およびその製造方法は、一般には分子中に1級、2級または3級のアミノ基からなる官能基を有し、有機酸であるグリコール酸、ギ酸、イミノジ酢酸のカルボキシルイオンに対してグリシンを選択的に分離するには概有機酸に対してグリシンのイオン交換選択係数の小さな弱塩基性陰イオン交換樹脂が好ましい。弱塩基性陰イオン交換樹脂の例としては、商品名でアンバーライトIRA−96SB、IRA−67、XE583、XT6050RF(オルガノ(株)商標)、ダイヤイオンWA21、WA30(三菱化学(株) 商標)、レバチットMP−62、MP−64、VPOC−1065(バイエル(株) 商標)、ピュロライトA−100、A−103S、A−830、A−845(ピュロライト(株)商標)、ダウエックス66、MWA−1、WGR、WGR−2(ダウ・ケミカル(株)商標)等が挙げられる。交換基の形はOH型として使用する。
好ましくは、2級のアミノ基からなる官能基を有し、樹脂母体がスチレン系の弱塩基性陰イオン交換樹脂である。中でもアンバーライトIRA−96SBを用いると、驚くべきことにグリシンの回収効率が最も優れている。
The weakly basic anion exchange resin used in the present invention has a resin base, a shape, and a method for producing the resin base, generally having a functional group composed of a primary, secondary, or tertiary amino group in the molecule. In order to selectively separate glycine from the carboxyl ions of glycolic acid, formic acid and iminodiacetic acid, which are acids, weakly basic anion exchange resins having a small ion exchange selectivity coefficient of glycine with respect to organic acids are preferred. Examples of weakly basic anion exchange resins include Amberlite IRA-96SB, IRA-67, XE583, XT6050RF (trademark of Organo Corporation), Diaion WA21, WA30 (trademark of Mitsubishi Chemical Corporation), trade names, Levacit MP-62, MP-64, VPOC-1065 (trade name of Bayer Co., Ltd.), Purolite A-100, A-103S, A-830, A-845 (trademark of Purolite Co., Ltd.), Dowex 66, MWA- 1, WGR, WGR-2 (trademark of Dow Chemical Co., Ltd.) and the like. The form of the exchange group is used as OH type.
Preferably, the resin base is a styrenic weakly basic anion exchange resin having a functional group composed of a secondary amino group. Among them, when Amberlite IRA-96SB is used, the recovery efficiency of glycine is surprisingly excellent.

弱塩基性陰イオン交換樹脂処理は、不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液中のグリシン基の重量は33重量%以下で行われる。グリシン基の重量%は操作温度における飽和濃度以下であればよいが、33重量%を超える濃度にするためには、陰イオン交換樹脂を70℃以上に保温する必要があり、弱塩基性陰イオン交換樹脂の耐熱性の問題上好ましくない。なお、これらの樹脂を初めて使用する場合には、樹脂由来の不純物がグリシンに混入するのを防ぐため、樹脂の前処理と水洗を充分に行っておく必要がある。樹脂の使用量は、不純物の種類と量によって変化するが、弱塩基性陰イオン交換樹脂処理での副生有機酸イオンのイオン交換においては、通常、処理するグリシン1kgに対し、樹脂1000〜5000ml、好ましくは1000〜3000mlの範囲である。   The weakly basic anion exchange resin treatment is carried out at a weight of 33% by weight or less in the crude glycine aqueous solution containing iminodiacetic acid, glycolic acid and formic acid as impurities. The weight% of glycine group may be equal to or lower than the saturation concentration at the operating temperature, but in order to obtain a concentration exceeding 33% by weight, it is necessary to keep the anion exchange resin at 70 ° C. or higher. This is not preferable because of the heat resistance problem of the exchange resin. In addition, when these resins are used for the first time, it is necessary to sufficiently perform resin pretreatment and water washing in order to prevent impurities derived from the resin from being mixed into glycine. The amount of resin used varies depending on the type and amount of impurities, but in ion exchange of by-product organic acid ions in weakly basic anion exchange resin treatment, usually 1000 to 5000 ml of resin per 1 kg of glycine to be treated. The range is preferably 1000 to 3000 ml.

本発明において、不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液からグリシンを分離回収する一連のプロセスが、a)不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を弱塩基性陰イオン交換樹脂と接触処理させて不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換しグリシン水溶液を製造するイオン交換工程、b)さらに継続してイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたグリシンと不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換してグリシンを回収する工程、c)弱塩基性陰イオン交換樹脂に残存するグリシン含有水溶液を水で押し出し洗浄する工程、d)弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたイミノジ酢酸、グリコール酸、ギ酸とイオン交換して該弱塩基性陰イオン交換樹脂を再生する工程、f)弱塩基性陰イオン交換樹脂に残存するイミノジ酢酸、グリコール酸、ギ酸のアルカリ金属塩水溶液を水で押し出し洗浄する工程からなる一連のプロセスで行われる。このプロセスの特徴は、工程b)で弱塩基性陰イオン交換樹脂に捕捉されたグリシンと粗グリシン水溶液の不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換してグリシンを回収することにあり、工程b)ならびに工程c)で回収される液は弱塩基性陰イオン交換樹脂との接触処理のためにリサイクルされる。よって工程e)ならびに工程f)の廃液にグリシンの混入はほとんど見られず、一連のプロセスにおいてグリシンの回収損失が極めて少ない。さらにイオン交換樹脂の交換基に不純物であるイミノジ酢酸、グリコール酸、ギ酸を飽和吸着することができ不純物の除去効率が優れていることである。   In the present invention, a series of processes for separating and recovering glycine from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities includes: a) removing a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities as a weakly basic anion. An ion exchange step in which an iminodiacetic acid, glycolic acid, and formic acid, which are impurities, are ion-exchanged to produce an aqueous glycine solution by contact treatment with an ion exchange resin; and b) a crude aqueous glycine solution containing iminodiacetic acid, glycolic acid, and formic acid. A step of recovering glycine by ion-exchange of glycine trapped in the weakly basic anion exchange resin with the weakly basic anion exchange resin and iminodiacetic acid, glycolic acid and formic acid as impurities, c) a weak base A step of extruding and washing the glycine-containing aqueous solution remaining in the cationic anion exchange resin with water, d A process of flowing back water from the base to the weakly basic anion exchange resin and back-washing. E) An alkali metal hydroxide aqueous solution is contacted with the weakly basic anion exchange resin and trapped by the weakly basic anion exchange resin. A step of regenerating the weakly basic anion exchange resin by ion exchange with iminodiacetic acid, glycolic acid and formic acid, and f) an aqueous alkali metal salt solution of iminodiacetic acid, glycolic acid and formic acid remaining in the weakly basic anion exchange resin. It is carried out by a series of processes comprising a step of extruding and washing with water. This process is characterized in that glycine is recovered by ion-exchange of glycine trapped in the weakly basic anion exchange resin in step b) and iminodiacetic acid, glycolic acid, and formic acid, which are impurities in the crude glycine aqueous solution, The liquid recovered in step b) and step c) is recycled for contact treatment with the weakly basic anion exchange resin. Therefore, almost no glycine is mixed in the waste liquid of step e) and step f), and the recovery loss of glycine is extremely small in a series of processes. Furthermore, impurities such as iminodiacetic acid, glycolic acid and formic acid can be saturated and adsorbed on the exchange group of the ion exchange resin, and the impurity removal efficiency is excellent.

本発明において、弱塩基性陰イオン交換樹脂の再生剤として使用されるのは、アルカリ金属水酸化物の水溶液である。好ましくはアルカリ金属がナトリウム、カリウムの水酸化物使用液である。より好ましくはナトリウムの水酸化物使用液である。このアルカリ金属水酸化物水溶液の濃度は、0.5Nから3Nの範囲であり、好ましくは1Nから2Nの範囲の濃度である。濃度が薄い場合は、再生剤の水量を多く必要とし、濃度が濃い場合は、再生時にイオン交換樹脂がダメージを受けやすい。   In the present invention, an alkali metal hydroxide aqueous solution is used as a regenerant for the weakly basic anion exchange resin. Preferably, the alkali metal is a sodium or potassium hydroxide solution. More preferred is a sodium hydroxide solution. The concentration of the alkali metal hydroxide aqueous solution is in the range of 0.5N to 3N, preferably in the range of 1N to 2N. When the concentration is low, a large amount of water of the regenerant is required, and when the concentration is high, the ion exchange resin is easily damaged during regeneration.

本発明において、不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液からグリシンを分離回収する一連のプロセスは、1塔または多塔のイオン交換カラムを其々独立して一連のプロセスを実施するバッチ式のプロセスでも良い。または、不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液からグリシンを分離回収する一連のプロセスは、A塔とB塔の少なくとも2塔のイオン交換カラムを直列につなぎ、1)不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液をA塔の上部にフィードしA塔の下部よりグリシン水溶液を回収する、2)A塔の下部から不純物であるイミノジ酢酸が流出したらA塔の下部とB塔の上部を繋ぎB塔の下部よりグリシン水溶液を回収しA塔は不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液のフィードを続ける処理をする、3)A塔の下部から弱塩基性陰イオン交換樹脂に捕捉されていたグリシンがイミノジ酢酸とイオン交換されて流出しなくなったらA塔の下部とB塔の上部を切り離しB塔の上部に不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液をフィードしB塔の下部よりグリシンを回収する、切り離したA塔は再生工程を実施する、次に2)と3)の工程をA塔とB塔を交換して実施し、以上を繰り返す連続式のプロセスで行っても良い。   In the present invention, a series of processes for separating and recovering glycine from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities is carried out independently for each of a single tower or a multi-column ion exchange column. A batch process may be used. Alternatively, a series of processes for separating and recovering glycine from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities can be performed by connecting at least two ion exchange columns of tower A and tower B in series. A crude glycine aqueous solution containing acetic acid, glycolic acid and formic acid is fed to the upper part of the A tower, and the glycine aqueous solution is recovered from the lower part of the A tower. 2) When iminodiacetic acid as an impurity flows out from the lower part of the A tower, The upper part of the B tower is connected and the glycine aqueous solution is recovered from the lower part of the B tower, and the A tower is continuously fed with a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid and formic acid as impurities. 3) Weak base from the lower part of the A tower When the glycine trapped in the cationic anion exchange resin is ion-exchanged with iminodiacetic acid and no longer flows out, A crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as an impurity is fed to the upper part of the B tower and the glycine is recovered from the lower part of the B tower. Steps 3 and 3) may be performed by exchanging the tower A and the tower B, and the above process may be repeated.

樹脂の処理温度は、一般には常温以上、好ましくは20〜90℃の範囲内で行われる。
樹脂処理の時間は、被処理液の濃度、イオン交換塔のサイズで異なるが、バッチ式の場合、通常1〜6hrの範囲、好ましくは1〜4hrの範囲である。連続式で処理する場合、樹脂塔への通液速度は液空間速度(L/L−樹脂/Hr)で1〜20の範囲、好ましくは5〜15の範囲である。
回収液の分析は、グリシン、アラニン、イミノジ酢酸及びイミノジプロピオン酸はオルトフタルアルデヒドのポストカラム法高速アミノ酸分析法で行った。島津社製 Shim-pack Amino-Naカラム(6mm×100mm)を用い島津LC-10A島津LC-10A高速アミノ酸分析システムに島津社製の蛍光検出器にて検出した(以下、「OPA分析」とする)。グリコール酸、乳酸、ギ酸及び酢酸は島津のpH緩衝化ポストカラム電気伝導度検出法で行った。島津社製 Shim-pack Amino-Naカラム(6mm×100mm)を用い島津社製ポンプLC-10ADをはじめとした島津LC-10A有機酸分析システムにて島津社製の電気伝導度検出器CDD-10Aにて検出した(以下、「有機酸分析」とする)。
次に、実施例および参考例によって本発明を説明する。
The treatment temperature of the resin is generally room temperature or higher, preferably 20 to 90 ° C.
The resin treatment time varies depending on the concentration of the liquid to be treated and the size of the ion exchange tower, but in the case of a batch type, it is usually in the range of 1 to 6 hr, preferably in the range of 1 to 4 hr. When processing by a continuous type, the liquid flow rate to a resin tower is the range of 1-20 by a liquid space velocity (L / L-resin / Hr), Preferably it is the range of 5-15.
The recovered solution was analyzed by post-column high-speed amino acid analysis of orthophthalaldehyde for glycine, alanine, iminodiacetic acid and iminodipropionic acid. The Shimadzu LC-10A Shimadzu LC-10A high-speed amino acid analysis system was detected with a Shimadzu fluorescence detector using a Shimadzu Shim-pack Amino-Na column (6 mm × 100 mm) (hereinafter referred to as “OPA analysis”). ). Glycolic acid, lactic acid, formic acid and acetic acid were measured by Shimadzu pH buffered post-column conductivity detection method. Shimadzu's Shim-pack Amino-Na column (6mm x 100mm), Shimadzu LC-10A organic acid analysis system including Shimadzu pump LC-10AD, Shimadzu's electric conductivity detector CDD-10A (Hereinafter referred to as “organic acid analysis”).
Next, the present invention will be described with reference to examples and reference examples.

以下、実施例を挙げて本発明を説明する。なお、本発明は、その要旨を越えない限り、様々な変更、修飾などが可能である。   Hereinafter, the present invention will be described with reference to examples. The present invention can be variously changed and modified without departing from the gist thereof.

[実施例1]
バッチ式プロセスによる通液
一般的に公知なアミノ酸合成法であるストレッカー法で得られるグリシンソーダ水溶液を弱酸性陽イオン交換樹脂でナトリウムイオンをイオン交換処理して得られた粗グリシン水溶液(不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む)に相当する模擬液を試薬から調整した。グリシン濃度を11.1重量%、その他の不純物はそれぞれイミノジ酢酸が1.26重量%、グリコール酸が658重量ppm、ギ酸が321重量ppm、ナトリウムイオン量が21重量ppmとした。この調整した粗グリシン水溶液730g(pH=3.6)を弱塩基性陰イオン交換樹脂アンバーライトIRA−96SB(商品名オルガノ(株))(OH型)100mlを充填した樹脂塔にダウンフローで通液し、グリシン水溶液を得た。操作温度は40℃、通液の液空間速度は4.6(L/L−樹脂/Hr)で行った。有機酸であるイミノジ酢酸のイオン交換の状況は処理出口液の電導度及びpH測定結果からリアルタイムでモニタリングし、最終的にはOPA分析より決定した。該水溶液650ml流した時点でpH=6.3を観測し、該弱塩基性陰イオン交換樹脂の過破過を確認したが、そのまま該水溶液を流し続け、最終的に700mlを流した時点で該操作を終了した。(実験後のOPA分析より、520ml流した時点からイミノジ酢酸の漏出は始まっていたことが判明し、結局粗グリシン水溶液での過破過通液を180mlで行ったことになる。)
[Example 1]
Liquid flow through batch process Crude glycine aqueous solution (as impurities) obtained by ion exchange treatment of sodium ion with weakly acidic cation exchange resin from aqueous solution of glycine soda obtained by Strecker method, which is a generally known amino acid synthesis method A simulated solution corresponding to iminodiacetic acid, glycolic acid and formic acid) was prepared from the reagents. The glycine concentration was 11.1 wt%, and other impurities were 1.26 wt% iminodiacetic acid, 658 wtppm glycolic acid, 321 wtppm formic acid, and 21 wtppm sodium ion. 730 g (pH = 3.6) of this prepared crude glycine aqueous solution was passed through a resin tower packed with 100 ml of a weakly basic anion exchange resin Amberlite IRA-96SB (trade name Organo Co., Ltd.) (OH type) by downflow. To obtain an aqueous glycine solution. The operation temperature was 40 ° C., and the liquid space velocity of liquid passage was 4.6 (L / L-resin / Hr). The state of ion exchange of iminodiacetic acid, which is an organic acid, was monitored in real time from the conductivity and pH measurement results of the treatment outlet liquid, and finally determined by OPA analysis. When 650 ml of the aqueous solution was flowed, pH = 6.3 was observed, and it was confirmed that the weakly basic anion exchange resin was overbroken. However, when the aqueous solution was continued to flow, 700 ml was finally poured. The operation has ended. (The OPA analysis after the experiment revealed that the leakage of iminodiacetic acid had started at the time when 520 ml was flowed, and as a result, the breakthrough solution with the crude glycine aqueous solution was carried out at 180 ml.)

その後、通常のイオン交換運転操作に則り、水による残粗グリシン水溶液の押し出し操作をダウンフローで行った。操作温度は40℃、通液の液空間速度は4.6(L/L−樹脂/Hr)、通液量は100mlで行った。水置換の状況は処理出口液の電導度測定結果から確認した。その後、通常のイオン交換運転操作に則り、水による逆洗操作をアップフローで行った。操作温度は25℃、通液の液空間速度は4.6(L/L−樹脂/Hr)、通液量は100mlで行った。その後、通常のイオン交換運転操作に則り、1N−水酸化ナトリウム水溶液による樹脂再生操作を過剰量で行った操作温度は40℃、通液の液空間速度は4.6(L/L−樹脂/Hr)、通液量は150mlで行った。
イオン交換の状況は処理出口液の電導度及びpH測定結果からリアルタイムでモニタリングした。このようにして得られたグリシン水溶液についてOPA分析からグリシンは10.8重量%、不純物であるイミノジ酢酸は175重量ppm/グリシン基にまで抑えられたことが確認された。有機酸分析から不純物であるグリコール酸、ギ酸は、未検出を確認した。また、再生廃液中のグリシン濃度は、132重量ppmであった。グリシンの回収損失は、0.022%であった。
Thereafter, in accordance with a normal ion exchange operation, an extrusion operation of the residual crude glycine aqueous solution with water was performed in a down flow. The operation temperature was 40 ° C., the liquid space velocity of liquid flow was 4.6 (L / L-resin / Hr), and the liquid flow volume was 100 ml. The state of water replacement was confirmed from the conductivity measurement result of the treatment outlet liquid. Thereafter, in accordance with a normal ion exchange operation, a backwash operation with water was performed in an upflow. The operation temperature was 25 ° C., the liquid space velocity of liquid flow was 4.6 (L / L-resin / Hr), and the liquid flow volume was 100 ml. Thereafter, in accordance with normal ion exchange operation, the resin regeneration operation with 1N-sodium hydroxide aqueous solution in an excessive amount was performed at an operating temperature of 40 ° C., and the liquid space velocity of liquid passing was 4.6 (L / L-resin / Hr), and the flow rate was 150 ml.
The state of ion exchange was monitored in real time from the conductivity and pH measurement results of the treatment outlet liquid. From the OPA analysis of the glycine aqueous solution thus obtained, it was confirmed that glycine was suppressed to 10.8 wt% and the impurity iminodiacetic acid was suppressed to 175 wt ppm / glycine group. From the organic acid analysis, it was confirmed that the impurities glycolic acid and formic acid were not detected. Further, the glycine concentration in the recycling waste liquid was 132 ppm by weight. The recovery loss of glycine was 0.022%.

[実施例2〜4]
樹脂種の影響を実施例1の条件を基に確認した。ただし、樹脂により交換容量が異なるため、通液量およびグリシン液の回収量は異なる。それらの結果を表1に示す。
[Examples 2 to 4]
The influence of the resin type was confirmed based on the conditions of Example 1. However, since the exchange capacity varies depending on the resin, the flow rate and the recovery amount of the glycine solution are different. The results are shown in Table 1.

[実施例5]
連続式プロセスによる通液
弱塩基性陰イオン交換樹脂アンバーライトIRA−96SB(商品名オルガノ(株))(OH型)100mlを充填した樹脂塔3塔(A、B、C)を直列に接続したシステムに実施例1と同様の11.1重量%粗グリシン水溶液(pH=3.6)をダウンフローで通液した。樹脂塔A頭部への通液(4.6L/L−樹脂/Hr 70min)を実施してグリシン水溶液を回収し、引き続き過破過通液(4.6L/L−樹脂/Hr 25min)を実施し、通液をB塔頭部へ切り替える。過破過通液の終了したA塔は、粗グリシン液押し出し(4.6L/L−樹脂/Hr 15min)、逆洗(4.6L/L−樹脂/Hr 15min)、再生(4.6L/L−樹脂/Hr 20min)、1N−水酸化ナトリウム水溶液を押し出し(4.6L/L−樹脂/Hr 15min)の一連のプロセスを実施した。B塔、C塔についてもA塔と同様のプロセスを順次実施し、最終的に2サイクル運転した。プロセスのタイムチャートを表2に示す。また、その結果を表3に示す。なお、OPA分析及び有機酸分析の条件は実施例1と同様である。
[Example 5]
Liquid flow by continuous process Three resin towers (A, B, C) packed with 100 ml of weakly basic anion exchange resin Amberlite IRA-96SB (trade name Organo Co., Ltd.) (OH type) were connected in series. A 11.1 wt% crude glycine aqueous solution (pH = 3.6) as in Example 1 was passed through the system in a down flow. Liquid passing through the resin tower A head (4.6 L / L-resin / Hr 70 min) was carried out to recover the aqueous glycine solution, followed by overbreaking liquid passing through (4.6 L / L-resin / Hr 25 min). Implement and switch the liquid flow to the B tower head. The tower A, which has passed through the breakthrough liquid, is extruded with a crude glycine solution (4.6 L / L-resin / Hr 15 min), backwashed (4.6 L / L-resin / Hr 15 min), regenerated (4.6 L / L-resin / Hr 20 min), 1N-aqueous sodium hydroxide solution was extruded (4.6 L / L-resin / Hr 15 min). For the B column and the C column, the same process as that of the A column was sequentially carried out, and finally the operation was performed for two cycles. Table 2 shows the process time chart. The results are shown in Table 3. The conditions for OPA analysis and organic acid analysis are the same as in Example 1.

[実施例6]
バッチ式プロセスによる通液
一般的に公知なアミノ酸合成法であるストレッカー法で得られる粗アラニンソーダ水溶液を弱酸性陽イオン交換樹脂でナトリウムイオンをイオン交換処理して除去し、アラニン濃度が11.1重量%、その他の副生成物はそれぞれイミノジプロピオン酸が1.73重量%、乳酸が762重量ppm、酢酸が338重量ppm、ナトリウムイオン量が17重量ppmの粗アラニン水溶液を得た。この粗アラニン水溶液660g(pH=3.6)を実施例1と同様に最終的に630mlを流した時点で該操作を終了した。(実験後のOPA分析より、470ml流した時点からイミノジプロピオン酸の漏出は始まっていたことが判明し、結局粗アラニン水溶液での過破過通液を160mlで行ったことになる。) その後は、実施例1と同一条件にて水による残アラニン水溶液の押し出し操作、水による逆洗浄操作、1N−水酸化ナトリウム水溶液による再生操作を順次行った。
分析の結果、得られたアラニン水溶液についてアラニンは10.8重量%、イミノジプロピオン酸は181重量ppm/アラニン基、乳酸、酢酸は未検出であった。また、再生廃液中のアラニン濃度は、156重量ppmであった。アラニンの回収損失は、0.024%であった。
[Example 6]
Solution flow through a batch process A crude alanine soda aqueous solution obtained by the Strecker method, which is a generally known amino acid synthesis method, is removed by ion exchange treatment of sodium ions with a weakly acidic cation exchange resin, and the alanine concentration is 11. A crude alanine aqueous solution containing 1% by weight and other by-products of 1.73% by weight of iminodipropionic acid, 762% by weight of lactic acid, 338% by weight of acetic acid, and 17% by weight of sodium ions was obtained. The operation was terminated when 630 ml of this crude alanine aqueous solution (pH = 3.6) was finally poured in the same manner as in Example 1. (From the OPA analysis after the experiment, it was found that the leakage of iminodipropionic acid had started from the time when 470 ml was flowed, and as a result, the breakthrough solution was passed through with a crude alanine aqueous solution at 160 ml.) In the same manner as in Example 1, the operation of pushing out the residual alanine aqueous solution with water, the back washing operation with water, and the regeneration operation with 1N aqueous sodium hydroxide solution were sequentially performed.
As a result of analysis, alanine was 10.8 wt%, iminodipropionic acid was 181 ppm by weight / alanine group, and lactic acid and acetic acid were not detected in the obtained alanine aqueous solution. Further, the alanine concentration in the recycled waste liquid was 156 ppm by weight. The recovery loss of alanine was 0.024%.

Figure 0004662421
Figure 0004662421

Figure 0004662421
Figure 0004662421

Figure 0004662421
Figure 0004662421

[比較例1]
不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液による過破過通液非実施条件
粗グリシン水溶液による過破過通液効果を明確にするため、粗グリシン水溶液通液量を520mlで止めて、次の過破過通液を行わず、その他は実施例1と同一条件にて、水による残グリシン水溶液の押し出し操作、水による逆洗浄操作、1N−水酸化ナトリウム水溶液による再生操作を順次行った。分析の結果、得られたグリシン水溶液中のイミノジ酢酸のイオン量は196重量ppm/グリシン基であった。また、再生廃液中のグリシン濃度は、2040重量ppmであった。グリシンの回収損失は、0.38%であった。
[Comparative Example 1]
Conditions for non-breakthrough passage through a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities In order to clarify the effect of overburst passage through a crude glycine aqueous solution, the flow rate of the crude glycine aqueous solution was stopped at 520 ml Then, without performing the next excessive breakthrough liquid, the remaining glycine aqueous solution was extruded with water, backwashed with water, and regenerated with 1N sodium hydroxide aqueous solution in the same manner as in Example 1 It was. As a result of the analysis, the ion amount of iminodiacetic acid in the obtained aqueous glycine solution was 196 ppm by weight / glycine group. Further, the glycine concentration in the recycled waste liquid was 2040 ppm by weight. The recovery loss of glycine was 0.38%.

本発明は、少なくと2種類以上の有機酸を含む水溶液から高純度な有機酸を分離製造するにあたり、多大の有用な有機酸を損失せず、有用な高純度かつ高収率に有機酸の分離製造する方法を提供することが出来る。この方法を利用して、不純物としてイミノジカルボン酸を含む粗アミノ酸水溶液から有用な高純度アミノ酸を高収率に分離製造することが出来る。   In the present invention, a high-purity organic acid is separated and produced from an aqueous solution containing at least two kinds of organic acids. A separate manufacturing method can be provided. By using this method, a useful high-purity amino acid can be separated and produced in a high yield from a crude amino acid aqueous solution containing iminodicarboxylic acid as an impurity.

Claims (8)

少なくとも2種類以上の有機酸を含む水溶液から目的とする有機酸を回収する方法であって、該有機酸を含む水溶液を弱塩基性陰イオン交換樹脂に接触処理して不純物とする有機酸をイオン交換して吸着させ、目的とする有機酸を含む水溶液を製造する工程と、弱塩基性陰イオン交換樹脂の破過後、さらに継続して該有機酸を含む水溶液を弱塩基性陰イオン交換樹脂に接触処理して一部イオン交換して吸着している目的の有機酸を不純物の有機酸とイオン交換して脱離させる工程を含み、少なくとも2種類以上の有機酸において有機酸の組合せが、アミノ酸とイミノジカルボン酸であることを特徴とする有機酸を分離回収する方法。 A method for recovering a target organic acid from an aqueous solution containing at least two or more kinds of organic acids, wherein the aqueous solution containing the organic acid is contacted with a weakly basic anion exchange resin to form an ion as an impurity. The step of producing an aqueous solution containing the target organic acid by exchanging and adsorbing, and after breaking through the weakly basic anion exchange resin, the aqueous solution containing the organic acid is continuously converted into a weakly basic anion exchange resin. Including a step of desorbing the target organic acid adsorbed by partial ion exchange by contact treatment and ion exchange with an impurity organic acid, wherein the combination of at least two kinds of organic acids is an amino acid And an iminodicarboxylic acid, and a method for separating and recovering an organic acid. 少なくとも2種類以上の有機酸を含む水溶液がストレッカー法で合成されたアミノ酸を含む水溶液である請求項1に記載の方法。   The method according to claim 1, wherein the aqueous solution containing at least two kinds of organic acids is an aqueous solution containing an amino acid synthesized by a Strecker method. イミノジカルボン酸を含む粗アミノ酸水溶液からアミノ酸を分離回収する一連のプロセスが、a)イミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂と接触処理させて不純物であるイミノジカルボン酸をイオン交換しアミノ酸水溶液を製造するイオン交換工程、b)弱塩基性陰イオン交換樹脂の破過後、さらに継続してイミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたアミノ酸とイミノジカルボン酸をイオン交換してアミノ酸を回収する工程、c)弱塩基性陰イオン交換樹脂に残存するアミノ酸含有水溶液を水で押し出し洗浄する工程、d)弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂を再生する工程、f)弱塩基性陰イオン交換樹脂に残存するイミノジカルボン酸のアルカリ金属塩含有水溶液を水で押し出し洗浄する工程からなる一連のプロセスであることを特徴とする請求項1又は2に記載の方法。 A series of processes for separating and recovering amino acids from a crude amino acid solution containing iminodicarboxylic acid is performed by a) treating the crude amino acid solution containing iminodicarboxylic acid with a weakly basic anion exchange resin to ionize iminodicarboxylic acid as an impurity. An ion exchange step for producing an amino acid aqueous solution by exchange; b) after passing through the weak basic anion exchange resin, the crude amino acid aqueous solution containing iminodicarboxylic acid is further contacted with the weak basic anion exchange resin to weaken it. A step of recovering the amino acid by ion-exchange of the amino acid and iminodicarboxylic acid trapped by the basic anion exchange resin, c) a step of washing the amino acid-containing aqueous solution remaining on the weak basic anion exchange resin with water, and d. ) A step of flowing back water into a weakly basic anion exchange resin and back-washing; e) water of alkali metal hydroxide A step of contacting the liquid with a weakly basic anion exchange resin to regenerate the weakly basic anion exchange resin, f) an aqueous solution containing an alkali metal salt of iminodicarboxylic acid remaining in the weakly basic anion exchange resin with water 3. A method according to claim 1 or 2, characterized in that it is a series of processes consisting of extrusion cleaning. アミノ酸がグリシン、アラニン、メチオニンであることを特徴とする請求項1〜3のいずれかに記載の方法。 The method according to any one of claims 1 to 3 , wherein the amino acid is glycine, alanine or methionine. 不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液からグリシンを分離回収する一連のプロセスが、a)不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を弱塩基性陰イオン交換樹脂と接触処理させて不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換しグリシン水溶液を製造するイオン交換工程、b)弱塩基性陰イオン交換樹脂の破過後もさらに継続してイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたグリシンと不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換してグリシンを回収する工程、c)弱塩基性陰イオン交換樹脂に残存するグリシン含有水溶液を水で押し出し洗浄する工程、d)弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたイミノジ酢酸、グリコール酸、ギ酸とイオン交換して弱塩基性陰イオン交換樹脂を再生する工程、f)弱塩基性陰イオン交換樹脂に残存するイミノジ酢酸、グリコール酸、ギ酸のアルカリ金属塩水溶液を水で押し出し洗浄する工程からなる一連のプロセスであることを特徴とする請求項1〜4のいずれかに記載の方法。 A series of processes for separating and recovering glycine from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities includes: a) a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities as a weakly basic anion exchange resin An ion exchange step of producing an aqueous glycine solution by ion-exchange of impurities such as iminodiacetic acid, glycolic acid, and formic acid, b) after the breakthrough of weakly basic anion exchange resin, iminodiacetic acid, glycolic acid, The crude glycine aqueous solution containing formic acid is contacted with a weakly basic anion exchange resin, and glycine captured by the weakly basic anion exchange resin is ion-exchanged with the impurities iminodiacetic acid, glycolic acid, and formic acid to recover glycine. C) Extruding the aqueous solution containing glycine remaining in the weakly basic anion exchange resin with water A step of washing, d) a step of backwashing the base with water flowing through the weakly basic anion exchange resin, and e) a weakly basic anion exchange resin by contacting the aqueous solution of alkali metal hydroxide with the weakly basic anion exchange resin. A step of regenerating weakly basic anion exchange resin by ion exchange with iminodiacetic acid, glycolic acid and formic acid trapped in the ion exchange resin, f) iminodiacetic acid, glycolic acid and formic acid remaining in the weakly basic anion exchange resin The method according to any one of claims 1 to 4, which is a series of processes comprising a step of extruding and washing an aqueous alkali metal salt solution with water. アルカリ金属水酸化物のアルカリ金属がナトリウムである事を特徴とする請求項3〜5のいずれかに記載の方法。 The method according to any one of claims 3 to 5, wherein the alkali metal of the alkali metal hydroxide is sodium. 一連のプロセスを1塔または多塔の弱塩基性陰イオン交換樹脂で充填されたカラムを其々独立して一連のプロセスを実施することを特徴とする請求項3〜6のいずれかに記載の方法。 According to any one of claims 3-6, characterized in that a column packed with a weakly basic anion exchange resin of 1 column or multi-column series of processes其and independently performing a series of processes Method. 一連のプロセスをA塔とB塔の少なくとも2塔の弱塩基性陰イオン交換樹脂で充填されたカラムを直列につなぎ、(1)不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液をA塔の上部にフィードしA塔の下部よりグリシン水溶液を回収する、(2)A塔の下部から不純物であるイミノジ酢酸が流出したらA塔の下部とB塔の上部を繋ぎB塔の下部よりグリシン水溶液を回収しA塔は不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液のフィードを続ける処理をする、(3)A塔の下部から弱塩基性陰イオン交換樹脂に捕捉されていたグリシンがイミノジ酢酸とイオン交換されて流出しなくなったらA塔の下部とB塔の上部を切り離しB塔の上部に不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液をフィードしB塔の下部よりグリシンを回収する、切り離したA塔は再生工程を実施する、次に(2)と(3)の工程をA塔とB塔を交換して実施し、以上を繰り返すことで連続的にグリシンを製造することを特徴とする請求項3〜7のいずれかに記載の方法。 A series of processes was connected in series to a column filled with at least two weakly basic anion exchange resins, Tower A and Tower B. (1) A crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities was Feed to the upper part of the tower and recover the glycine aqueous solution from the lower part of the A tower. (2) When iminodiacetic acid as an impurity flows out from the lower part of the A tower, connect the lower part of the A tower and the upper part of the B tower and connect the glycine from the lower part of the B tower. The aqueous solution is recovered, and the tower A is treated to continue feeding the crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities. (3) Glycine captured by the weakly basic anion exchange resin from the lower part of the tower A Is exchanged with iminodiacetic acid and no longer flows out, the lower part of tower A and the upper part of tower B are separated and iminodiacetic acid, glycolic acid, formic acid as impurities in the upper part of tower B The crude glycine aqueous solution is fed and glycine is recovered from the lower part of the B tower. The separated A tower is subjected to the regeneration process, and then the steps (2) and (3) are performed by exchanging the A tower and the B tower. And the method in any one of Claims 3-7 which manufactures glycine continuously by repeating the above.
JP2004113557A 2004-04-07 2004-04-07 Organic acid separation and production method Expired - Lifetime JP4662421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113557A JP4662421B2 (en) 2004-04-07 2004-04-07 Organic acid separation and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113557A JP4662421B2 (en) 2004-04-07 2004-04-07 Organic acid separation and production method

Publications (2)

Publication Number Publication Date
JP2005298369A JP2005298369A (en) 2005-10-27
JP4662421B2 true JP4662421B2 (en) 2011-03-30

Family

ID=35330352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113557A Expired - Lifetime JP4662421B2 (en) 2004-04-07 2004-04-07 Organic acid separation and production method

Country Status (1)

Country Link
JP (1) JP4662421B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662420B2 (en) * 2004-04-07 2011-03-30 旭化成ケミカルズ株式会社 Manufacturing method for separating and recovering amino acid and iminodicarboxylic acid
JPWO2008001837A1 (en) * 2006-06-28 2009-11-26 協和発酵バイオ株式会社 Oligopeptide purification method
DE102011007790A1 (en) * 2011-04-20 2012-10-25 Wacker Chemie Ag Process for the purification of L-cysteine
JP6088267B2 (en) * 2013-01-30 2017-03-01 オルガノ株式会社 NMP purification system
JP6088266B2 (en) * 2013-01-30 2017-03-01 オルガノ株式会社 NMP purification system
JP6327668B2 (en) * 2014-11-14 2018-05-23 株式会社日本触媒 High purity glycine salt and glycine, and method for producing the same
KR20190092950A (en) * 2018-01-31 2019-08-08 씨제이제일제당 (주) Method for Preparing Natural L-cysteine Hydrochloride Hydrate Crystals by Continuous Chromatography

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212829A (en) * 2002-01-15 2003-07-30 Asahi Kasei Corp Method for purifying glycine
JP2003221370A (en) * 2002-01-30 2003-08-05 Asahi Kasei Corp Method for manufacturing glycine and mineral acid alkali metal salt
JP2005298368A (en) * 2004-04-07 2005-10-27 Asahi Kasei Chemicals Corp Method for separating and recovering amino acid and iminodicarboxylic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212829A (en) * 2002-01-15 2003-07-30 Asahi Kasei Corp Method for purifying glycine
JP2003221370A (en) * 2002-01-30 2003-08-05 Asahi Kasei Corp Method for manufacturing glycine and mineral acid alkali metal salt
JP2005298368A (en) * 2004-04-07 2005-10-27 Asahi Kasei Chemicals Corp Method for separating and recovering amino acid and iminodicarboxylic acid

Also Published As

Publication number Publication date
JP2005298369A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4587694B2 (en) Method for separating and recovering amino acid and iminodicarboxylic acid
US9233906B2 (en) Purification of succinic acid from the fermentation broth containing ammonium succinate
CN102134189B (en) Process for the separation of organic and amino acids from fermentation broths
EP0618185A1 (en) Process for the removal of corrosion metal contaminants from liquid compositions
JP2013516180A5 (en)
EP1059975A4 (en) Purification of organic acids using anion exchange chromatography
US5574180A (en) Process for recovering phytic acid, lactic acid or inositol
JP4662421B2 (en) Organic acid separation and production method
JP4662419B2 (en) Method for separating and producing organic acids
JP4662420B2 (en) Manufacturing method for separating and recovering amino acid and iminodicarboxylic acid
JP2008280430A (en) Preparation method of hyaluronic acid
CN1125037C (en) Process for producing glutamic acid
JP2003221370A (en) Method for manufacturing glycine and mineral acid alkali metal salt
JP3243891B2 (en) Purification method of pyruvate
JPH11503146A (en) Method for producing monosodium glutamate
JP2003212829A (en) Method for purifying glycine
JP4075336B2 (en) Method for reforming crude alcohol
JP4280119B2 (en) Method for producing iopamidol
JPS6210927B2 (en)
JPH0545299B2 (en)
KR100264714B1 (en) Recovery of lactic acid
JPS6251145B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

R150 Certificate of patent or registration of utility model

Ref document number: 4662421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350