JP4662420B2 - Manufacturing method for separating and recovering amino acid and iminodicarboxylic acid - Google Patents

Manufacturing method for separating and recovering amino acid and iminodicarboxylic acid Download PDF

Info

Publication number
JP4662420B2
JP4662420B2 JP2004113556A JP2004113556A JP4662420B2 JP 4662420 B2 JP4662420 B2 JP 4662420B2 JP 2004113556 A JP2004113556 A JP 2004113556A JP 2004113556 A JP2004113556 A JP 2004113556A JP 4662420 B2 JP4662420 B2 JP 4662420B2
Authority
JP
Japan
Prior art keywords
acid
exchange resin
anion exchange
basic anion
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004113556A
Other languages
Japanese (ja)
Other versions
JP2005298368A (en
Inventor
実 山本
義和 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004113556A priority Critical patent/JP4662420B2/en
Publication of JP2005298368A publication Critical patent/JP2005298368A/en
Application granted granted Critical
Publication of JP4662420B2 publication Critical patent/JP4662420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、アミノ酸とイミノジカルボン酸を含む水溶液からアミノ酸の回収損失が極めて少なく、有用なアミノ酸とイミノジカルボン酸をそれぞれ高純度で簡便に分離・精製して工業的に製造することが出来る製造方法に関する。
さらに詳しくはアミノ酸であるグリシンの製造法に関し、ストレッカー法で合成したグリシンの製造工程でグリシンソーダ水溶液を弱酸性陽イオン交換樹脂で処理した後、グリシン及びイミノジ酢酸を含む水溶液をさらに弱塩基性陰イオン交換樹脂で処理することにより、有用なグリシンの回収損失が極めて少なく、グリシンとイミノジ酢酸をそれぞれ高純度で簡便に分離・精製して工業的に製造することが出来る製造方法に関する。グリシンはアミノ酸の一種であり、医農薬合成原料、食品添加物、洗浄剤原料として広く使用されている有用な化合物である。
また金属表面処理剤、キレート試薬、医農薬合成原料の用途に有用であるイミノジ酢酸の製造方法に関する。
INDUSTRIAL APPLICABILITY The present invention provides a production method in which an amino acid and iminodicarboxylic acid are recovered from an aqueous solution containing an amino acid and iminodicarboxylic acid, and the industrial amino acid and iminodicarboxylic acid can be industrially produced by separating and purifying useful amino acid and iminodicarboxylic acid with high purity. About.
More specifically, regarding the method for producing glycine, which is an amino acid, after an aqueous glycine soda solution is treated with a weakly acidic cation exchange resin in the production process of glycine synthesized by the Strecker method, an aqueous solution containing glycine and iminodiacetic acid is further weakly basic. The present invention relates to a production method which can be industrially produced by treating with an anion exchange resin with very little recovery loss of useful glycine and easily separating and purifying glycine and iminodiacetic acid at high purity. Glycine is a kind of amino acid and is a useful compound that is widely used as a raw material for pharmaceutical and agrochemical synthesis, food additives, and detergents.
The present invention also relates to a method for producing iminodiacetic acid which is useful for metal surface treatment agents, chelating reagents, and medical and agrochemical synthetic raw materials.

アミノ酸、例えばグリシンまたはアラニンの製造方法に関しては従来、アミノ酸に対応するアミノニトリル(グリシンの場合はグリシノニトリル、アラニンの場合はアミノプロピオニトリル)をストレッカー法にて一旦合成し、これを苛性ソーダ等のアルカリで加水分解して対応するアミノ酸のアルカリ金属塩とアンモニアに変換し、これを硫酸で中和し分別晶析法で回収し製造されている(例えば、特許文献1、特許文献2、特許文献3、特許文献4参照)。
具体的にグリシンとイミノジ酢酸を分離回収するにあたって、硫酸ナトリウムや塩化ナトリウムなどの無機塩は、グリシンと溶解度が酷似しているため1段の晶析では十分回収できない。そのためpHの調整を煩雑に行って無機塩の一部を晶析、イミノジ酢酸の一部を晶析、グリシンの晶析と一連の煩雑な操作を行う方法(例えば、特許文献5、特許文献6、特許文献7参照)、高温で硫酸ナトリウムの一部を晶析し、次に低温でグリシンを晶析する操作を複数回繰り返す方法(例えば、特許文献8参照)があり、いずれも操作が煩雑で生産性の低いものであった。
As for the production method of amino acids such as glycine or alanine, conventionally, an amino nitrile (glycinonitrile in the case of glycine, aminopropionitrile in the case of alanine) corresponding to the amino acid is once synthesized by the Strecker method, and this is added to caustic soda. It is hydrolyzed with an alkali such as an alkali metal salt of the corresponding amino acid and ammonia, and this is neutralized with sulfuric acid and recovered by fractional crystallization (for example, Patent Document 1, Patent Document 2, (See Patent Document 3 and Patent Document 4).
Specifically, when separating and recovering glycine and iminodiacetic acid, inorganic salts such as sodium sulfate and sodium chloride are very similar in solubility to glycine and cannot be sufficiently recovered by one-stage crystallization. For this reason, a method of performing a series of complicated operations such as crystallization of glycine by crystallization of part of an inorganic salt, crystallization of a part of iminodiacetic acid by complicated pH adjustment (for example, Patent Document 5 and Patent Document 6). , Patent Document 7), and a method of crystallizing a part of sodium sulfate at high temperature and then crystallization of glycine at low temperature (for example, refer to Patent Document 8), both of which are complicated. The productivity was low.

またグリシンを銅塩として晶析回収する方法があるが、さらに銅を除去するのに煩雑な操作が必要となる。(例えば、特許文献9参照)
またイオン交換膜電気透析法を利用した方法では、高純度なグリシン液は得られるが、排出液にグリシンが透過してしまい、イミノジ酢酸の多価イオンだけを選択的に透過させる膜が開発されていないため工業的には利用できない。(例えば、特許文献10参照)
またH型の強酸性陽イオン交換樹脂にアミノ酸を吸着させその後分離させる方法(例えば、特許文献11参照)があるが、実験室的には行われるものの大量のアミノ酸を吸着させるには大量のイオン交換樹脂を必要としてしまう。塩型の強酸性陽イオン交換樹脂を用いてクロマト分離する方法(例えば、特許文献12参照)があるが、工業的規模における大量の被処理液を連続的に処理するのは困難であり、相当数のイオン交換処理塔を必要としてしまう。
Further, there is a method in which glycine is crystallized and recovered as a copper salt, but a complicated operation is required to further remove copper. (For example, see Patent Document 9)
In the method using ion exchange membrane electrodialysis, a high-purity glycine solution is obtained, but glycine permeates into the effluent, and a membrane that selectively permeates only polyvalent ions of iminodiacetic acid has been developed. It cannot be used industrially. (For example, see Patent Document 10)
Further, there is a method in which amino acids are adsorbed on an H-type strongly acidic cation exchange resin and then separated (see, for example, Patent Document 11). An exchange resin is required. Although there is a method of chromatographic separation using a salt-type strongly acidic cation exchange resin (see, for example, Patent Document 12), it is difficult to continuously process a large amount of liquid to be treated on an industrial scale. A number of ion exchange towers are required.

いずれの方法においてもグリシンとイミノジ酢酸を同時に高純度かつ高収率で分離回収に関する記載は見られない
また、陽イオン交換樹脂を用いてグリシンソーダ水溶液のナトリウムイオンを陽イオン交換(脱塩)し、着色物質を含んだ粗グリシン水溶液を得た後に弱塩基性陰イオン交換樹脂もしくは中塩基性イオン交換樹脂で処理する方法(例えば、特許文献13参照)が記載されている。
得られるグリシンの純度(不純物の残存量)に関する記載は無いが、イオン交換樹脂へのグリシンの吸着損失が約0.2から1.5%の範囲で記載されている。得られるグリシンの純度は陰イオン交換の際、所定の有機酸(イミノジ酢酸、グリコール酸、ギ酸)の含有濃度、即ち有機酸が所定量漏洩する破過点に達したら通液を停止することで保たれる。この場合、有機酸吸着による破過点は陰イオン交換樹脂の飽和吸着点ではないので、陰イオン交換樹脂先端には有機酸が飽和吸着していないため未交換のイオン交換帯が存在し、このイオン交換帯には、OH型陰イオンの他にグリシンの陰イオンがイオン交換して陰イオン交換樹脂に吸着している。
In any of the methods, there is no description regarding separation and recovery of glycine and iminodiacetic acid at high purity and high yield at the same time. Cation exchange (desalting) of sodium ions in glycine soda aqueous solution using cation exchange resin is not possible. And a method of treating with a weakly basic anion exchange resin or a medium basic ion exchange resin after obtaining a crude glycine aqueous solution containing a coloring substance (for example, see Patent Document 13).
Although there is no description about the purity (residual amount of impurities) of the obtained glycine, the adsorption loss of glycine to the ion exchange resin is described in the range of about 0.2 to 1.5%. The purity of the glycine obtained is determined by stopping the flow of the liquid when it reaches the breakthrough point where a predetermined amount of organic acid (iminodiacetic acid, glycolic acid, formic acid) is contained during anion exchange, that is, a predetermined amount of organic acid leaks. Kept. In this case, since the breakthrough point due to organic acid adsorption is not the saturated adsorption point of the anion exchange resin, there is an unexchanged ion exchange zone at the tip of the anion exchange resin because the organic acid is not saturated and adsorbed. In the ion exchange zone, an anion of glycine is ion-exchanged and adsorbed on the anion exchange resin in addition to the OH type anion.

このイオン交換帯をアルカリ金属塩で再生するとグリシンの陰イオンはイオン交換され再生液に同伴されるので、グリシンの回収損失となってしまう。さらに回収液には多量のイミノジ酢酸が含まれており、イミノジ酢酸を製造するにあたってグリシンが不純物として混入する恐れが容易に考えられるため、さらに複雑な操作工程が必要となる。
このように従来の陰イオン交換法では多大の有用なグリシンとイミノジ酢酸を損失し、廃棄物により環境負荷が増加し、工業的に実施するうえで満足できるものではなかった。
When this ion exchange zone is regenerated with an alkali metal salt, the anion of glycine is ion exchanged and entrained in the regeneration solution, resulting in a recovery loss of glycine. Furthermore, since a large amount of iminodiacetic acid is contained in the recovered liquid and there is a possibility that glycine is mixed as an impurity when producing iminodiacetic acid, a more complicated operation process is required.
Thus, in the conventional anion exchange method, a lot of useful glycine and iminodiacetic acid are lost, and the environmental load increases due to waste, which is not satisfactory for industrial implementation.

特公昭43−29929号公報Japanese Patent Publication No.43-29929 特公昭59−28543号公報Japanese Patent Publication No.59-28543 特公昭51−24481号公報Japanese Patent Publication No. 51-24481 特公昭51−40044号公報Japanese Patent Publication No. 51-40044 特公昭58−8383号公報Japanese Patent Publication No.58-8383 特許第1179351号公報Japanese Patent No. 1179351 特開昭52−118421号公報Japanese Patent Laid-Open No. 52-118421 特公昭57−53775号公報Japanese Patent Publication No.57-53775 特開昭59−118747号公報JP 59-118747 A 特開昭51−34114号公報JP 51-34114 A 特開昭58−210027号公報JP-A-58-210027 特開平2−215746号公報JP-A-2-215746 特公昭54−1686号公報Japanese Patent Publication No.54-1686

従来、弱塩基性陰イオン交換樹脂を利用したアミノ酸とイミノジカルボン酸の分離製造において弱塩基性陰イオン交換樹脂に一部捕捉されたアミノ酸のためアルカリ金属水酸化物の水溶液によるクロマト分離/樹脂再生すると回収するイミノジカルボン酸ソーダ水溶液中に多大のアミノ酸が混在して、さらに複雑な操作工程が必要となる。
本発明は、アミノ酸とイミノジカルボン酸を含む水溶液から有用なアミノ酸とイミノジカルボン酸をそれぞれ高純度かつ高収率で簡便に分離・精製して工業的に製造することが出来る製造方法を提供することを目的とするものである。
Chromatographic separation / resin regeneration using aqueous solutions of alkali metal hydroxides for amino acids partially captured by weakly basic anion exchange resins in the conventional separation and production of amino acids and iminodicarboxylic acids using weakly basic anion exchange resins Then, a large amount of amino acids are mixed in the recovered aqueous solution of iminodicarboxylic acid soda, and a more complicated operation process is required.
The present invention provides a production method capable of industrially producing a useful amino acid and iminodicarboxylic acid from an aqueous solution containing the amino acid and iminodicarboxylic acid by simply separating and purifying each of the useful amino acid and iminodicarboxylic acid in high purity and high yield. It is intended.

本発明者は、上記課題を解決するためにイミノジカルボン酸を含む粗アミノ酸水溶液からアミノ酸とイミノジカルボン酸をそれぞれ分離回収する一連のプロセスが、a)イミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂と接触処理させて副生成物であるイミノジカルボン酸をイオン交換しアミノ酸水溶液を製造するイオン交換工程、b)さらに継続してイミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたアミノ酸とイミノジカルボン酸をイオン交換してアミノ酸を回収する工程、c)弱塩基性陰イオン交換樹脂に残存するアミノ酸含有水溶液を水で押し出し洗浄する工程、d)弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたイミノジカルボン酸をクロマト分離することによりイミノジカルボン酸のアルカリ金属塩水溶液を製造すると同時に弱塩基性陰イオン交換樹脂を再生する工程、f)弱塩基性陰イオン交換樹脂に残存するイミノジカルボン酸のアルカリ金属塩含有水溶液を水で押し出し洗浄する工程からなる一連のプロセスであることを特徴とするアミノ酸とイミノジカルボン酸を分離回収する製造方法を鋭意研究を重ねた結果、驚くべき事にイミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂と接触処理させて副生成物であるイミノジカルボン酸をイオン交換しアミノ酸水溶液を製造するイオン交換の後、さらに継続してイミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂に接触処理(破過点後の通液を以下、「過破過通液」とする。)させて弱塩基性陰イオン交換樹脂に捕捉されたアミノ酸とイミノジイミノジカルボン酸をイオン交換してアミノ酸を回収する工程を加えることで、多大のアミノ酸を損失すること無く、さらにはイオン交換樹脂の交換基に副生成物を飽和吸着することができ副生成物の除去効率が優れていることから高純度かつ高収率にアミノ酸を分離製造出来ることを見出し、しかもその後水洗浄工程、逆洗浄工程を経て、アルカリ金属水酸化物の水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂を再生すると同時に弱塩基性陰イオン交換樹脂に捕捉されたイミノジカルボン酸をクロマト分離することによりイミノジカルボン酸のアルカリ金属塩水溶液を高純度に分離製造出来ることを見出し、本発明をなすに至った。   In order to solve the above problems, the present inventor has a series of processes for separating and recovering an amino acid and iminodicarboxylic acid from a crude amino acid solution containing iminodicarboxylic acid. An ion exchange step in which an amino acid aqueous solution is produced by ion-exchange of iminodicarboxylic acid as a by-product by contact treatment with an anion exchange resin; b) further, a weakly basic anion containing a crude amino acid aqueous solution containing iminodicarboxylic acid. A step of recovering the amino acid by ion-exchange of the amino acid captured by the weakly basic anion exchange resin and the iminodicarboxylic acid, and c) recovering the amino acid-containing aqueous solution remaining in the weakly basic anion exchange resin. A process of extruding and washing with water, d) a process of backwashing with weakly basic anion exchange resin by flowing water from the base. E) Alkali metal salt of iminodicarboxylic acid by subjecting aqueous solution of alkali metal hydroxide to weakly basic anion exchange resin to chromatographic separation of iminodicarboxylic acid captured by weakly basic anion exchange resin A series of processes comprising a step of regenerating a weakly basic anion exchange resin simultaneously with the production of an aqueous solution, and f) a step of extruding and washing the aqueous solution containing an alkali metal salt of iminodicarboxylic acid remaining in the weakly basic anion exchange resin with water. As a result of extensive research on a production method for separating and recovering amino acids and iminodicarboxylic acids characterized by the fact that, surprisingly, a crude amino acid solution containing iminodicarboxylic acids was contacted with a weakly basic anion exchange resin. After ion exchange to produce an amino acid aqueous solution by ion exchange of iminodicarboxylic acid as a by-product, Then, the aqueous solution of the crude amino acid containing iminodicarboxylic acid is contacted with a weakly basic anion exchange resin (the liquid flow after the breakthrough point is hereinafter referred to as the “overflow breakthrough liquid”). By adding a step of recovering amino acids by ion exchange of amino acids captured by anion exchange resin and iminodiiminodicarboxylic acid, there is no loss of a large amount of amino acids. It was found that amino acids can be separated and produced in high purity and high yield due to the ability to adsorb saturated products and have excellent byproduct removal efficiency. Iminodicarboxylic acid trapped in weakly basic anion exchange resin by regenerating weakly basic anion exchange resin by contacting aqueous solution of hydroxide with weakly basic anion exchange resin It has been found that an aqueous solution of an alkali metal salt of iminodicarboxylic acid can be separated and produced with high purity by chromatographic separation of the product, and the present invention has been made.

すなわち本発明は、下記1)から7)に記載の発明に係わる。
1)イミノジカルボン酸を含む粗アミノ酸水溶液からアミノ酸とイミノジカルボン酸をそれぞれ分離回収する一連のプロセスが、a)イミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂と接触処理させて副生成物であるイミノジカルボン酸をイオン交換しアミノ酸水溶液を製造するイオン交換工程、b)弱塩基性陰イオン交換樹脂の破過後にさらに継続してイミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたアミノ酸とイミノジカルボン酸をイオン交換してアミノ酸を回収する工程、c)弱塩基性陰イオン交換樹脂に残存するアミノ酸含有水溶液を水で押し出し洗浄する工程、d)弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたイミノジカルボン酸をクロマト分離することによりイミノジカルボン酸のアルカリ金属塩水溶液を製造すると同時に弱塩基性陰イオン交換樹脂を再生する工程、f)弱塩基性陰イオン交換樹脂に残存するイミノジカルボン酸のアルカリ金属塩含有水溶液を水で押し出し洗浄する工程からなり、イミノジカルボン酸を含む粗アミノ酸水溶液がストレッカー法で合成されたアミノ酸を含む水溶液であることを特徴とするアミノ酸とイミノジカルボン酸を分離回収する製造方法。
That is, the present invention relates to the inventions described in 1) to 7) below.
1) A series of processes for separating and recovering amino acid and iminodicarboxylic acid from a crude amino acid solution containing iminodicarboxylic acid, respectively, a) Contacting the crude amino acid solution containing iminodicarboxylic acid with a weakly basic anion exchange resin An ion exchange step in which the product iminodicarboxylic acid is ion-exchanged to produce an amino acid aqueous solution; b) the crude amino acid aqueous solution containing iminodicarboxylic acid is further weakly anionized after breaking through the weakly basic anion exchange resin. A step of recovering the amino acid by ion-exchange of the amino acid and iminodicarboxylic acid which have been contact-treated with the ion-exchange resin and captured by the weakly basic anion-exchange resin; c) an amino acid-containing aqueous solution remaining in the weakly basic anion-exchange resin A step of extruding and washing with water, d) reverse washing by pouring water from the base into a weakly basic anion exchange resin E) Alkali metal of iminodicarboxylic acid by chromatographic separation of iminodicarboxylic acid captured by weakly basic anion exchange resin by contacting aqueous solution of alkali metal hydroxide with weakly basic anion exchange resin A step of regenerating the weakly basic anion exchange resin simultaneously with the production of the salt aqueous solution, and f) a step of extruding and washing the aqueous solution containing the alkali metal salt of iminodicarboxylic acid remaining in the weakly basic anion exchange resin with water. A method for separating and recovering an amino acid and iminodicarboxylic acid, wherein the crude amino acid aqueous solution containing a dicarboxylic acid is an aqueous solution containing an amino acid synthesized by a Strecker method.

2)アミノ酸がグリシン、アラニン、メチオニンであることを特徴とする1)に記載の方法。
3)イミノジカルボン酸が、イミノジ酢酸、イミノジプロピオン酸、イミノジ−4−メチルチオ酪酸である事を特徴とする1)または2)に記載の方法。
4)アミノ酸とイミノジカルボン酸の組合せがグリシンとイミノジ酢酸であり、粗アミノ酸水溶液が副生成物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液である事を特徴とする1)ないし3)のいずれかに記載の方法。
5)アルカリ金属水酸化物のアルカリ金属がナトリウムである事を特徴とする1)に記載の方法。
2) The method according to 1), wherein the amino acid is glycine, alanine, or methionine.
3) The method according to 1) or 2), wherein the iminodicarboxylic acid is iminodiacetic acid, iminodipropionic acid, or iminodi-4-methylthiobutyric acid.
4) a combination of amino acids and iminodicarboxylic acid is glycine and iminodiacetic acid, crude aqueous amino acid solution is iminodiacetic acid, glycolic acid as a by-product, 1, characterized in that a crude glycine aqueous solution containing formic acid) to 3) of The method according to any one.
5) The method according to 1), wherein the alkali metal of the alkali metal hydroxide is sodium.

6)副生成物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液からグリシンとイミノジ酢酸をそれぞれ分離回収する一連のプロセスが、a)副生成物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を弱塩基性陰イオン交換樹脂と接触処理させて副生成物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換しグリシン水溶液を製造するイオン交換工程、b)弱塩基性陰イオン交換樹脂の破過後にさらに継続してイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたグリシンと副生成物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換してグリシンを回収する工程、c)弱塩基性陰イオン交換樹脂に残存するグリシン含有水溶液を水で押し出し洗浄する工程、d)弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたイミノジ酢酸、グリコール酸、ギ酸とイオン交換してイミノジ酢酸をクロマト分離することによりイミノジ酢酸のアルカリ金属塩水溶液を製造すると同時に弱塩基性陰イオン交換樹脂を再生する工程、f)弱塩基性陰イオン交換樹脂に残存するイミノジ酢酸、グリコール酸、ギ酸のアルカリ金属塩水溶液を水で押し出し洗浄する工程からなる一連のプロセスであるグリシンとイミノジ酢酸を分離回収する製造方法を特徴とする1)〜5)のいずれかに記載の方法。
7)一連のプロセスを1塔または多塔の弱塩基性陰イオン交換樹脂で充填されたカラムを其々独立して一連のプロセスを実施することを特徴とする1)〜6)のいずれかに記載の方法。
6) A series of processes for separating and recovering glycine and iminodiacetic acid from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as by-products, respectively, a) Crude glycine containing iminodiacetic acid, glycolic acid, and formic acid as by-products An ion exchange step in which an aqueous solution is contacted with a weakly basic anion exchange resin to ion-exchange iminodiacetic acid, glycolic acid and formic acid as by-products to produce an aqueous glycine solution; b) breakage of the weakly basic anion exchange resin The glycine trapped in the weakly basic anion exchange resin by the crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid was subsequently contacted with the weakly basic anion exchange resin, and iminodi, which is a by-product. Step of recovering glycine by ion exchange of acetic acid, glycolic acid, formic acid, c) remaining in weakly basic anion exchange resin A step of extruding and washing a glycine-containing aqueous solution with water, d) a step of flushing the weakly basic anion exchange resin with water from the base and backwashing, and e) an aqueous solution of an alkali metal hydroxide to the weakly basic anion exchange resin. An aqueous solution of alkali metal salt of iminodiacetic acid is prepared by ion-exchange with iminodiacetic acid, glycolic acid, formic acid and chromatographic separation of iminodiacetic acid captured by weakly basic anion exchange resin. Glycine and iminodiacetic acid, which is a series of processes comprising a step of regenerating an ion exchange resin, and a step of extruding and washing an aqueous solution of an alkali metal salt of iminodiacetic acid, glycolic acid, and formic acid remaining in a weakly basic anion exchange resin with water. 6. The method according to any one of 1) to 5), wherein the method is a production method for separating and recovering the product.
7) In any one of 1) to 6), the series of processes is independently performed on a column packed with one column or a multi-column weakly basic anion exchange resin. The method described.

本発明は、イミノジカルボン酸を含む粗アミノ酸水溶液からアミノ酸とイミノジカルボン酸をそれぞれ高純度かつ高収率で簡便に分離・精製して工業的に製造することが出来る。   INDUSTRIAL APPLICABILITY The present invention can be industrially produced by easily separating and purifying an amino acid and iminodicarboxylic acid from a crude amino acid aqueous solution containing iminodicarboxylic acid with high purity and high yield, respectively.

本発明について、以下具体的に説明する。本発明に適用されるイミノジカルボン酸を含む粗アミノ酸水溶液は、ストレッカー法を代表とする化学合成法で得られたものが最も好ましいが、菌体の酵素反応または/もしくは菌体から精製した酵素ならびに固定化した酵素反応で得られた該水溶液でもよい。
本発明で分離製造の対象となるアミノ酸は、アミノ基を有する弱塩基性陰イオン交換樹脂とアミノ酸ならびに副生成物とするイミノジカルボン酸の間に相対的な親和性、アミノ酸並びにイミノジカルボン酸のカルボキシル基との吸着能力および置換の際の遊離能力がそれぞれ異なる化合物である。このようなアミノ酸としては、例えば、グリシン、アラニン、メチオニン、セリン、バリン、ロイシン、イソロイシン、トレオニン、システイン、シスチン、フェニルアラニン、グルタミン酸、アスパラギン酸等が挙げられる。イミノジカルボン酸としては、イミノジ酢酸、イミノジプロピオン酸、イミノジ−4−メチルチオ酪酸などが挙げられる。
好ましくは、グリシン、アラニン、メチオニンである。特に好ましくは、グリシンとその副生成物であるイミノジ酢酸、グリコール酸、ギ酸から構成された粗グリシン水溶液が挙げられる。
The present invention will be specifically described below. The crude amino acid aqueous solution containing iminodicarboxylic acid applied to the present invention is most preferably obtained by a chemical synthesis method typified by the Strecker method, but the enzyme reaction of the bacterial cell and / or the enzyme purified from the bacterial cell In addition, the aqueous solution obtained by immobilized enzyme reaction may be used.
The amino acids to be separated and produced in the present invention are the relative affinity between the weakly basic anion exchange resin having an amino group and the amino acid and the iminodicarboxylic acid as a by-product, the amino acid and the carboxyl of the iminodicarboxylic acid. These compounds have different adsorption capacities with groups and liberation capacities upon substitution. Examples of such amino acids include glycine, alanine, methionine, serine, valine, leucine, isoleucine, threonine, cysteine, cystine, phenylalanine, glutamic acid, aspartic acid and the like. Examples of iminodicarboxylic acid include iminodiacetic acid, iminodipropionic acid, iminodi-4-methylthiobutyric acid, and the like.
Preferred are glycine, alanine and methionine. Particularly preferred is a crude glycine aqueous solution composed of glycine and its by-products, iminodiacetic acid, glycolic acid, and formic acid.

本発明において使用される弱塩基性陰イオン交換樹脂は、樹脂基体、形状およびその製造方法は、一般には、分子中に1級、2級または3級のアミノ基からなる官能基を有し、グリコール酸、ギ酸、イミノジ酢酸のカルボキシルイオンに対してグリシンを選択的に分離するには概有機酸に対してグリシンのイオン交換選択係数の小さな弱塩基性陰イオン交換樹脂が好ましい。弱塩基性陰イオン交換樹脂の例としては、商品名でアンバーライトIRA−96SB、IRA−67、XE583、XT6050RF(オルガノ(株)商標)、ダイヤイオンWA21、WA30(三菱化学(株) 商標)、レバチットMP−62、MP−64、VPOC−1065(バイエル(株) 商標)、ピュロライトA−100、A−103S、A−830、A−845(ピュロライト(株)商標)、ダウエックス66、MWA−1、WGR、WGR−2(ダウ・ケミカル(株)商標)等が挙げられる。交換基の形はOH型として使用する。
好ましくは、2級のアミノ基からなる官能基を有し、樹脂母体がスチレン系の弱塩基性陰イオン交換樹脂である。中でもアンバーライトIRA−96SBを用いると、驚くべきことにグリシンの回収効率が最も優れている。
The weakly basic anion exchange resin used in the present invention has a resin base, a shape, and a production method thereof generally having a functional group composed of a primary, secondary, or tertiary amino group in the molecule. In order to selectively separate glycine from the carboxyl ions of glycolic acid, formic acid and iminodiacetic acid, a weakly basic anion exchange resin having a small ion exchange selectivity coefficient of glycine relative to the organic acid is preferred. Examples of weakly basic anion exchange resins include Amberlite IRA-96SB, IRA-67, XE583, XT6050RF (trademark of Organo Corporation), Diaion WA21, WA30 (trademark of Mitsubishi Chemical Corporation), trade names, Levacit MP-62, MP-64, VPOC-1065 (trade name of Bayer Co., Ltd.), Purolite A-100, A-103S, A-830, A-845 (trademark of Purolite Co., Ltd.), Dowex 66, MWA- 1, WGR, WGR-2 (trademark of Dow Chemical Co., Ltd.) and the like. The form of the exchange group is used as OH type.
Preferably, the resin base is a styrenic weakly basic anion exchange resin having a functional group composed of a secondary amino group. Among them, when Amberlite IRA-96SB is used, the recovery efficiency of glycine is surprisingly excellent.

弱塩基性陰イオン交換樹脂処理は、副生成物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液中のグリシン基の重量は33重量%以下で行われる。グリシン基の重量%は操作温度における飽和濃度以下であればよいが、33重量%を超える濃度にするためには、陰イオン交換樹脂を70℃以上に保温する必要があり、弱塩基性陰イオン交換樹脂の耐熱性の問題上好ましくない。なお、これらの樹脂を初めて使用する場合には、樹脂由来の不純物がグリシンに混入するのを防ぐため、樹脂の前処理と水洗を充分に行っておく必要がある。樹脂の使用量は、除去すべき不純物の種類と量によって変化するが、弱塩基性陰イオン交換樹脂処理での副生有機酸イオンのイオン交換においては、通常、処理するグリシン1kgに対し、樹脂1000〜5000ml、好ましくは1000〜3000mlの範囲である。   The weakly basic anion exchange resin treatment is carried out at a weight of 33% by weight or less in the crude glycine aqueous solution containing iminodiacetic acid, glycolic acid and formic acid as by-products. The weight% of glycine group may be equal to or lower than the saturation concentration at the operating temperature, but in order to obtain a concentration exceeding 33% by weight, it is necessary to keep the anion exchange resin at 70 ° C. or higher. This is not preferable because of the heat resistance problem of the exchange resin. In addition, when these resins are used for the first time, it is necessary to sufficiently perform resin pretreatment and water washing in order to prevent impurities derived from the resin from being mixed into glycine. The amount of resin used varies depending on the type and amount of impurities to be removed, but in the ion exchange of by-product organic acid ions in the weak basic anion exchange resin treatment, the resin is usually used for 1 kg of glycine to be treated. The range is 1000 to 5000 ml, preferably 1000 to 3000 ml.

本発明において、弱塩基性陰イオン交換樹脂の再生剤として使用されるのは、アルカリ金属水酸化物の水溶液である。好ましくはアルカリ金属がナトリウム、カリウムの水酸化物使用液である。より好ましくはナトリウムの水酸化物使用液である。このアルカリ金属水酸化物水溶液の濃度は、0.5Nから3Nの範囲であり、好ましくは1Nから2Nの範囲の濃度である。濃度が薄い場合は、再生剤の水量を多く必要とし、濃度が濃い場合は、再生時にイオン交換樹脂がダメージを受けやすい。   In the present invention, an alkali metal hydroxide aqueous solution is used as a regenerant for the weakly basic anion exchange resin. Preferably, the alkali metal is a sodium or potassium hydroxide solution. More preferred is a sodium hydroxide solution. The concentration of the alkali metal hydroxide aqueous solution is in the range of 0.5N to 3N, preferably in the range of 1N to 2N. When the concentration is low, a large amount of water of the regenerant is required, and when the concentration is high, the ion exchange resin is easily damaged during regeneration.

本発明において、副生成物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液からグリシンを分離回収する一連のプロセスが、a)副生成物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を弱塩基性陰イオン交換樹脂と接触処理させて副生成物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換しグリシン水溶液を製造するイオン交換工程、b)さらに継続してイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたグリシンと副生成物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換してグリシンを回収する工程、c)弱塩基性陰イオン交換樹脂に残存するグリシン含有水溶液を水で押し出し洗浄する工程、d)弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたイミノジ酢酸、グリコール酸、ギ酸とイオン交換してイミノジ酢酸をクロマト分離することによりイミノジ酢酸のアルカリ金属塩水溶液を製造すると同時に弱塩基性陰イオン交換樹脂を再生する工程、f)弱塩基性陰イオン交換樹脂に残存するイミノジ酢酸、グリコール酸、ギ酸のアルカリ金属塩水溶液を水で押し出し洗浄する工程からなる一連のプロセスで行われる。このプロセスの特徴は、工程b)で弱塩基性陰イオン交換樹脂に捕捉されたグリシンと副生成物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換してグリシンを回収することにあり、工程b)ならびに工程c)で回収される液は弱塩基性陰イオン交換樹脂との接触処理にリサイクルされる。さらに工程e)で弱塩基性陰イオン交換樹脂に捕捉されたイミノジ酢酸をアルカリ金属水酸化物の水溶液でクロマト分離することにより製造するイミノジ酢酸のアルカリ金属塩水溶液中、ならびに工程f)の廃液にグリシンの混入はほとんど見られない。従って、一連のプロセスにおいてグリシンの回収損失が極めて少なく、グリシンとイミノジ酢酸のナトリウム塩をそれぞれ高純度で製造できる。さらにイオン交換樹脂の交換基に副生成物であるイミノジ酢酸、グリコール酸、ギ酸を飽和吸着することができ副生成物の除去効率が優れている。これらの特長は、本プロセスを工業的に実施する場合、極めて有利である。   In the present invention, a series of processes for separating and recovering glycine from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as by-products includes: a) A crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as by-products. An ion exchange step of producing a glycine aqueous solution by ion-exchange of iminodiacetic acid, glycolic acid and formic acid, which are by-products by contact treatment with a weakly basic anion exchange resin, b) and further continuing iminodiacetic acid, glycolic acid, formic acid The crude glycine aqueous solution containing glycine is contacted with a weakly basic anion exchange resin, and glycine captured by the weakly basic anion exchange resin and the by-products iminodiacetic acid, glycolic acid, and formic acid are ion-exchanged. Recovering step, c) glycine-containing aqueous solution remaining in the weakly basic anion exchange resin is extruded and washed with water. D) a step of flowing water from the base into the weakly basic anion exchange resin and back-washing; e) a weakly basic anion exchange solution by contacting an aqueous solution of alkali metal hydroxide with the weakly basic anion exchange resin; A step of producing an aqueous solution of an alkali metal salt of iminodiacetic acid by ion-exchange with iminodiacetic acid, glycolic acid and formic acid trapped in the resin to regenerate a weakly basic anion exchange resin, and f) This is carried out by a series of processes comprising a step of extruding and washing an aqueous solution of an alkali metal salt of iminodiacetic acid, glycolic acid and formic acid remaining in the weakly basic anion exchange resin with water. This process is characterized in that glycine is recovered by ion-exchange of glycine trapped in the weakly basic anion exchange resin in step b) and by-products iminodiacetic acid, glycolic acid, and formic acid. ) And the liquid recovered in step c) are recycled to the contact treatment with the weakly basic anion exchange resin. Further, the iminodiacetic acid captured by the weakly basic anion exchange resin in step e) is chromatographed with an aqueous solution of an alkali metal hydroxide in an aqueous solution of an alkali metal salt of iminodiacetic acid, and in the waste liquid of step f). There is almost no glycine contamination. Therefore, the recovery loss of glycine is extremely small in a series of processes, and sodium salts of glycine and iminodiacetic acid can be produced with high purity. Furthermore, iminodiacetic acid, glycolic acid, and formic acid, which are by-products, can be saturated and adsorbed on the exchange group of the ion-exchange resin, and the by-product removal efficiency is excellent. These features are extremely advantageous when the process is carried out industrially.

本発明において、副生成物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液からグリシンを分離回収する一連のプロセスは、1塔または多塔のイオン交換カラムを其々独立して一連のプロセスを実施するバッチ式のプロセスでも良い。
樹脂の処理温度は、一般には常温以上、好ましくは20〜90℃の範囲内で行われる。
樹脂処理の時間は、被処理液の濃度、イオン交換塔のサイズで異なるが、バッチ式の場合、通常1〜6hrの範囲、好ましくは1〜4hrの範囲である。連続式で処理する場合、樹脂塔への通液速度は液空間速度(L/L−樹脂/Hr)で1〜20の範囲、好ましくは5〜15の範囲である。
In the present invention, a series of processes for separating and recovering glycine from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as by-products is a series of independent processes for one or multiple towers of ion exchange columns. It may be a batch process.
The treatment temperature of the resin is generally room temperature or higher, preferably 20 to 90 ° C.
The resin treatment time varies depending on the concentration of the liquid to be treated and the size of the ion exchange tower, but in the case of a batch type, it is usually in the range of 1 to 6 hr, preferably in the range of 1 to 4 hr. When processing by a continuous type, the liquid flow rate to a resin tower is the range of 1-20 by a liquid space velocity (L / L-resin / Hr), Preferably it is the range of 5-15.

回収液の分析は、グリシン及びイミノジ酢酸はオルトフタルアルデヒドのポストカラム法高速アミノ酸分析法で行った。島津社製 Shim-pack Amino-Naカラム(6mm×100mm)を用い島津LC-10A島津LC-10A高速アミノ酸分析システムに島津社製の蛍光検出器にて検出した(以下、「OPA分析」とする)。グリコール酸、ギ酸は島津のpH緩衝化ポストカラム電気伝導度検出法で行った。島津社製 Shim-pack Amino-Naカラム(6mm×100mm)を用い島津社製ポンプLC-10ADをはじめとした島津LC-10A有機酸分析システムにて島津社製の電気伝導度検出器CDD-10Aにて検出した(以下、「有機酸分析」とする)。
次に、実施例および参考例によって本発明を説明する。
The recovered liquid was analyzed by post-column high-speed amino acid analysis of orthophthalaldehyde for glycine and iminodiacetic acid. The Shimadzu LC-10A Shimadzu LC-10A high-speed amino acid analysis system was detected with a Shimadzu fluorescence detector using a Shimadzu Shim-pack Amino-Na column (6 mm × 100 mm) (hereinafter referred to as “OPA analysis”). ). Glycolic acid and formic acid were measured by Shimadzu pH buffered post-column conductivity detection method. Shimadzu's Shim-pack Amino-Na column (6mm x 100mm), Shimadzu LC-10A organic acid analysis system including Shimadzu pump LC-10AD, Shimadzu's electric conductivity detector CDD-10A (Hereinafter referred to as “organic acid analysis”).
Next, the present invention will be described with reference to examples and reference examples.

以下、実施例を挙げて本発明を説明する。なお、本発明は、その要旨を越えない限り、様々な変更、修飾などが可能である。   Hereinafter, the present invention will be described with reference to examples. The present invention can be variously changed and modified without departing from the gist thereof.

[実施例1]
バッチ式プロセスによる通液
一般的に公知なアミノ酸合成法であるストレッカー法で得られる粗グリシン水溶液(副生成物としてイミノジ酢酸、グリコール酸、ギ酸を含む)に相当する模擬液を試薬から調整した。グリシン濃度を11.1重量%、その他の副生成物はそれぞれイミノジ酢酸が1.26重量%、グリコール酸が658重量ppm、ギ酸が321重量ppm、ナトリウムイオン量が21重量ppmとした。この調整した粗グリシン水溶液730g(pH=3.6)を弱塩基性陰イオン交換樹脂アンバーライトIRA96SB(商品名オルガノ(株))(OH型)100mlを充填した樹脂塔にダウンフローで通液し、グリシン水溶液を得た。操作温度は40℃、通液の液空間速度は4.6(L/L/Hr)で行った。有機酸であるイミノジ酢酸のイオン交換の状況は処理出口液の電導度及びpH測定結果からリアルタイムでモニタリングし、最終的にはOPA分析より決定した。該水溶液650ml流した時点でpH=6.3を観測し、該弱塩基性陰イオン交換樹脂の過破過を確認したが、そのまま該水溶液を流し続け、最終的に700mlを流した時点で該操作を終了した。(実験後のOPA分析より、520ml流した時点からイミノジ酢酸の漏出は始まっていたことが判明し、結局粗グリシン水溶液での過破過通液を180mlで行ったことになる。)
[Example 1]
Solution flow by batch process A simulated solution corresponding to a crude glycine aqueous solution (including iminodiacetic acid, glycolic acid, and formic acid as by-products) obtained by the Strecker method, which is a generally known amino acid synthesis method, was prepared from reagents. . The glycine concentration was 11.1 wt%, and other by-products were 1.26 wt% iminodiacetic acid, 658 wtppm glycolic acid, 321 wtppm formic acid, and 21 wtppm sodium ion. 730 g (pH = 3.6) of this prepared crude glycine aqueous solution was passed through a resin tower packed with 100 ml of a weakly basic anion exchange resin Amberlite IRA96SB (trade name Organo Co., Ltd.) (OH type) in a down flow. A glycine aqueous solution was obtained. The operation temperature was 40 ° C., and the liquid space velocity of liquid flow was 4.6 (L / L / Hr). The state of ion exchange of iminodiacetic acid, which is an organic acid, was monitored in real time from the conductivity and pH measurement results of the treatment outlet liquid, and finally determined by OPA analysis. When 650 ml of the aqueous solution was flowed, pH = 6.3 was observed, and it was confirmed that the weakly basic anion exchange resin was overbroken. However, when the aqueous solution was continued to flow, 700 ml was finally poured. The operation has ended. (The OPA analysis after the experiment revealed that the leakage of iminodiacetic acid had started at the time when 520 ml was flowed, and as a result, the breakthrough solution with the crude glycine aqueous solution was carried out at 180 ml.)

その後、通常のイオン交換運転操作に則り、水による残粗グリシン水溶液の押し出し操作をダウンフローで行った。操作温度は40℃、通液の液空間速度は4.6(L/L/Hr)、通液量は100mlで行った。水置換の状況は処理出口液の電導度測定結果から確認した。その後、通常のイオン交換運転操作に則り、水による逆洗操作をアップフローで行った。操作温度は25℃、通液の液空間速度は4.6(L/L/Hr)、通液量は100mlで行った。次に、1N−水酸化ナトリウム水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたイミノジ酢酸とイオン交換してイミノジ酢酸をクロマト分離し、85mlのイミノジ酢酸ソーダ水溶液を回収すると同時に樹脂再生操作を過剰量で行った。操作温度は40℃、通液の液空間速度は4.6(L/L/Hr)、通液量は150mlで行った。   Thereafter, in accordance with a normal ion exchange operation, an extrusion operation of the residual crude glycine aqueous solution with water was performed in a down flow. The operation temperature was 40 ° C., the liquid space velocity of liquid flow was 4.6 (L / L / Hr), and the liquid flow volume was 100 ml. The state of water replacement was confirmed from the conductivity measurement result of the treatment outlet liquid. Thereafter, in accordance with a normal ion exchange operation, a backwash operation with water was performed in an upflow. The operation temperature was 25 ° C., the liquid space velocity of liquid flow was 4.6 (L / L / Hr), and the liquid flow volume was 100 ml. Next, 1N-sodium hydroxide aqueous solution is contact-treated with a weakly basic anion exchange resin, ion exchanged with iminodiacetic acid captured by the weakly basic anion exchange resin, and chromatographic separation of iminodiacetic acid is performed. At the same time as recovering the aqueous sodium acetate solution, the resin regeneration operation was carried out in excess. The operation temperature was 40 ° C., the liquid space velocity of liquid flow was 4.6 (L / L / Hr), and the liquid flow volume was 150 ml.

イオン交換の状況は処理出口液の電導度及びpH測定結果からリアルタイムでモニタリングした。このようにして得られたグリシン水溶液についてOPA分析からグリシンは10.8重量%、副生成物であるイミノジ酢酸は174重量ppm/グリシン基にまで抑えられたことが確認された。有機酸分析から副生成物であるグリコール酸、ギ酸は、未検出を確認した。また、得られたイミノジ酢酸のナトリウム塩水溶液中のイミノジ酢酸は5.4重量%、グリシン濃度は194重量ppmであった。グリコール酸、ギ酸の濃度はそれぞれ604重量ppm、106重量ppmであった。グリシンの回収損失は、0.021%であった。イミノジ酢酸の回収率は98%であった。   The state of ion exchange was monitored in real time from the conductivity and pH measurement results of the treatment outlet liquid. From the OPA analysis of the glycine aqueous solution thus obtained, it was confirmed that glycine was suppressed to 10.8 wt% and iminodiacetic acid as a by-product was suppressed to 174 wt ppm / glycine group. From the organic acid analysis, it was confirmed that by-products such as glycolic acid and formic acid were not detected. Moreover, iminodiacetic acid in the obtained sodium salt aqueous solution of iminodiacetic acid was 5.4% by weight, and the glycine concentration was 194 ppm by weight. The concentrations of glycolic acid and formic acid were 604 ppm by weight and 106 ppm by weight, respectively. The recovery loss of glycine was 0.021%. The recovery rate of iminodiacetic acid was 98%.

[比較例1]
副生成物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液による過破過通液非実施条件
粗グリシン水溶液による過破過通液効果を明確にするため、粗グリシン水溶液通液量を460mlで止めて、次の過破過通液を行わず、その他は実施例1と同一条件にて、水による残グリシン水溶液の押し出し操作、水による逆洗浄操作、1N−水酸化ナトリウム水溶液によるクロマト分離/再生操作を順次行った。分析の結果、得られたグリシン水溶液中のイミノジ酢酸のイオン量は177重量ppm/グリシン基、ギ酸、グリコール酸は未検出であった。しかし得られたイミノジ酢酸ソーダ水溶液81ml中のイミノジ酢酸は5.6重量%、グリシン濃度は3540重量ppmとグリシンの混入が多く見られた。グリシンの回収損失は、0.39%であった。
[Comparative Example 1]
Conditions for non-breakthrough passage through a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as by-products In order to clarify the effect of overburst passage through the crude glycine aqueous solution, the amount of the crude glycine aqueous solution passed through was 460 ml. In the same manner as in Example 1 except that the subsequent overburst and permeation liquid is not used, and the remaining glycine aqueous solution is extruded with water, backwashed with water, and chromatographic separation with 1N aqueous sodium hydroxide solution / Reproduction operations were performed sequentially. As a result of analysis, the ion amount of iminodiacetic acid in the obtained aqueous glycine solution was 177 wt ppm / glycine group, formic acid, and glycolic acid were not detected. However, in 81 ml of the resulting aqueous sodium iminodiacetate solution, 5.6% by weight of iminodiacetic acid and 3540 ppm by weight of glycine were frequently mixed. The recovery loss of glycine was 0.39%.

本発明は、イミノジカルボン酸を含む粗アミノ酸水溶液からアミノ酸の回収損失が極めて少なく、アミノ酸とイミノジカルボン酸のアルカリ金属塩をそれぞれ高純度で簡便に分離・精製して工業的に製造する方法を提供することができる。   The present invention provides a method for industrially producing amino acid and iminodicarboxylic acid by separating and purifying each of the amino acid and iminodicarboxylic acid alkali metal salts in high purity and easily, with very little recovery loss of amino acids from the crude amino acid aqueous solution containing iminodicarboxylic acid. can do.

過破過通液後、ギ酸通液によるイミノジ酢酸のクロマト分離。Chromatographic separation of iminodiacetic acid by passing through formic acid after passing through.

Claims (7)

イミノジカルボン酸を含む粗アミノ酸水溶液からアミノ酸とイミノジカルボン酸をそれぞれ分離回収する一連のプロセスが、a)イミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂と接触処理させて副生成物であるイミノジカルボン酸をイオン交換しアミノ酸水溶液を製造するイオン交換工程、b)弱塩基性陰イオン交換樹脂の破過後にさらに継続してイミノジカルボン酸を含む粗アミノ酸水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたアミノ酸とイミノジカルボン酸をイオン交換してアミノ酸を回収する工程、c)弱塩基性陰イオン交換樹脂に残存するアミノ酸含有水溶液を水で押し出し洗浄する工程、d)弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたイミノジカルボン酸をクロマト分離することによりイミノジカルボン酸のアルカリ金属塩水溶液を製造すると同時に弱塩基性陰イオン交換樹脂を再生する工程、f)弱塩基性陰イオン交換樹脂に残存するイミノジカルボン酸のアルカリ金属塩含有水溶液を水で押し出し洗浄する工程からなり、イミノジカルボン酸を含む粗アミノ酸水溶液がストレッカー法で合成されたアミノ酸を含む水溶液であることを特徴とするアミノ酸とイミノジカルボン酸を分離回収する製造方法。 A series of processes for separating and recovering amino acid and iminodicarboxylic acid from a crude amino acid solution containing iminodicarboxylic acid, respectively. A) Contacting the crude amino acid solution containing iminodicarboxylic acid with a weakly basic anion exchange resin to produce a by-product An ion exchange step of producing an amino acid aqueous solution by ion exchange of the iminodicarboxylic acid, and b) a weak basic anion exchange of the crude amino acid aqueous solution containing the iminodicarboxylic acid after the weak basic anion exchange resin is broken through. A step of recovering the amino acid by ion-exchange of the amino acid captured by the weakly basic anion exchange resin with the resin and iminodicarboxylic acid and c) recovering the amino acid remaining in the weakly basic anion exchange resin with water D) a step of extruding and washing with d) a step of washing back with weakly basic anion exchange resin by flowing water from the base. e) An aqueous solution of an alkali metal salt of iminodicarboxylic acid by subjecting an aqueous solution of an alkali metal hydroxide to contact with a weakly basic anion exchange resin and chromatographic separation of the iminodicarboxylic acid captured by the weakly basic anion exchange resin. And f) regenerating the weakly basic anion exchange resin, and f) washing the aqueous solution containing an alkali metal salt of iminodicarboxylic acid remaining in the weakly basic anion exchange resin with water. A method for separating and recovering an amino acid and iminodicarboxylic acid, wherein the crude amino acid aqueous solution containing an amino acid is an aqueous solution containing an amino acid synthesized by a Strecker method. アミノ酸がグリシン、アラニン、メチオニンであることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the amino acid is glycine, alanine or methionine. イミノジカルボン酸が、イミノジ酢酸、イミノジプロピオン酸、イミノジ−4−メチルチオ酪酸である事を特徴とする請求項1または請求項2に記載の方法。   The method according to claim 1 or 2, wherein the iminodicarboxylic acid is iminodiacetic acid, iminodipropionic acid, or iminodi-4-methylthiobutyric acid. アミノ酸とイミノジカルボン酸の組合せがグリシンとイミノジ酢酸であり、粗アミノ酸水溶液が副生成物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液である事を特徴とする請求項1〜3のいずれかに記載の方法。   The combination of amino acid and iminodicarboxylic acid is glycine and iminodiacetic acid, and the crude amino acid aqueous solution is a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid and formic acid as by-products. The method described in 1. アルカリ金属水酸化物のアルカリ金属がナトリウムである事を特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the alkali metal of the alkali metal hydroxide is sodium. 副生成物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液からグリシンとイミノジ酢酸をそれぞれ分離回収する一連のプロセスが、a)副生成物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を弱塩基性陰イオン交換樹脂と接触処理させて副生成物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換しグリシン水溶液を製造するイオン交換工程、b)弱塩基性陰イオン交換樹脂の破過後にさらに継続してイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたグリシンと副生成物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換してグリシンを回収する工程、c)弱塩基性陰イオン交換樹脂に残存するグリシン含有水溶液を水で押し出し洗浄する工程、d)弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたイミノジ酢酸、グリコール酸、ギ酸とイオン交換してイミノジ酢酸をクロマト分離することによりイミノジ酢酸のアルカリ金属塩水溶液を製造すると同時に弱塩基性陰イオン交換樹脂を再生する工程、f)弱塩基性陰イオン交換樹脂に残存するイミノジ酢酸、グリコール酸、ギ酸のアルカリ金属塩水溶液を水で押し出し洗浄する工程からなる一連のプロセスであるグリシンとイミノジ酢酸を分離回収する製造方法を特徴とする請求項1〜5のいずれかに記載の方法。 A series of processes for separating and recovering glycine and iminodiacetic acid from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid and formic acid as by-products, respectively, a) A crude glycine aqueous solution containing iminodiacetic acid, glycolic acid and formic acid as byproducts An ion exchange step of producing a glycine aqueous solution by ion exchange of iminodiacetic acid, glycolic acid and formic acid, which are by-products by contact treatment with a weakly basic anion exchange resin , b) after breakthrough of the weakly basic anion exchange resin Furthermore, glycine captured by the weakly basic anion exchange resin by continuously treating the crude glycine aqueous solution containing iminodiacetic acid, glycolic acid and formic acid with the weakly basic anion exchange resin, and iminodiacetic acid as a by-product, Step of recovering glycine by ion exchange of glycolic acid and formic acid, c) remaining in weakly basic anion exchange resin A step of extruding and washing a lysine-containing aqueous solution with water, d) a step of washing the base with a weakly basic anion exchange resin and backwashing, e) contacting an aqueous solution of an alkali metal hydroxide with the weakly basic anion exchange resin An aqueous alkali metal salt solution of iminodiacetic acid is prepared by ion-exchange with iminodiacetic acid, glycolic acid, formic acid, and iminodiacetic acid, which is captured by a weakly basic anion exchange resin. A step of regenerating the exchange resin, and f) glycine and iminodiacetic acid, which are a series of processes comprising a step of extruding and washing an aqueous solution of an alkali metal salt of iminodiacetic acid, glycolic acid and formic acid remaining in the weakly basic anion exchange resin with water. The method according to any one of claims 1 to 5, wherein the method is a separation and recovery method. 一連のプロセスを1塔または多塔の弱塩基性陰イオン交換樹脂で充填されたカラムを其々独立して一連のプロセスを実施することを特徴とする請求項1〜6のいずれかに記載の方法。   The series of processes is carried out independently on columns packed with one or more towers of weakly basic anion exchange resin, respectively. Method.
JP2004113556A 2004-04-07 2004-04-07 Manufacturing method for separating and recovering amino acid and iminodicarboxylic acid Expired - Lifetime JP4662420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113556A JP4662420B2 (en) 2004-04-07 2004-04-07 Manufacturing method for separating and recovering amino acid and iminodicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113556A JP4662420B2 (en) 2004-04-07 2004-04-07 Manufacturing method for separating and recovering amino acid and iminodicarboxylic acid

Publications (2)

Publication Number Publication Date
JP2005298368A JP2005298368A (en) 2005-10-27
JP4662420B2 true JP4662420B2 (en) 2011-03-30

Family

ID=35330351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113556A Expired - Lifetime JP4662420B2 (en) 2004-04-07 2004-04-07 Manufacturing method for separating and recovering amino acid and iminodicarboxylic acid

Country Status (1)

Country Link
JP (1) JP4662420B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662421B2 (en) * 2004-04-07 2011-03-30 旭化成ケミカルズ株式会社 Organic acid separation and production method
CN106748932B (en) * 2016-12-20 2019-03-22 山东新和成氨基酸有限公司 A kind of post-processing approach and device preparing methionine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212829A (en) * 2002-01-15 2003-07-30 Asahi Kasei Corp Method for purifying glycine
JP2003221370A (en) * 2002-01-30 2003-08-05 Asahi Kasei Corp Method for manufacturing glycine and mineral acid alkali metal salt
JP2005298369A (en) * 2004-04-07 2005-10-27 Asahi Kasei Chemicals Corp Method for separating and producing organic acid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212829A (en) * 2002-01-15 2003-07-30 Asahi Kasei Corp Method for purifying glycine
JP2003221370A (en) * 2002-01-30 2003-08-05 Asahi Kasei Corp Method for manufacturing glycine and mineral acid alkali metal salt
JP2005298369A (en) * 2004-04-07 2005-10-27 Asahi Kasei Chemicals Corp Method for separating and producing organic acid

Also Published As

Publication number Publication date
JP2005298368A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4587694B2 (en) Method for separating and recovering amino acid and iminodicarboxylic acid
EP2918574A1 (en) Purification of succinic acid from the fermentation broth containing ammonium succinate
US5723662A (en) Process for preparing a particularly pure glycolic acid
JP4662421B2 (en) Organic acid separation and production method
EP2881382B1 (en) Method for producing basic amino acid or basic amino acid salt
JP4662420B2 (en) Manufacturing method for separating and recovering amino acid and iminodicarboxylic acid
RU2478578C2 (en) Method of treating water stream from fischer-tropsch reaction using ion-exchange resin
CN112174856A (en) Purification production process of organic sulfonic acid
JP2000070933A (en) Production of pure water
CN1125037C (en) Process for producing glutamic acid
JP4662419B2 (en) Method for separating and producing organic acids
JP3243891B2 (en) Purification method of pyruvate
JP2003221370A (en) Method for manufacturing glycine and mineral acid alkali metal salt
US5907059A (en) Process for the preparation of monosodium glutamate
RU2223946C1 (en) Method for preparing l-lysine
JP2003212829A (en) Method for purifying glycine
JPS6251145B2 (en)
JPH02215746A (en) Method for separating and recovering glycine
JPH0488184A (en) Method for preventing accumulation of chlorate in aqueous solution of chlorinated alkali
JPH03279352A (en) Method for removing cyanogen in amino acid solution
JP2002020356A (en) Method for producing ethylenediamine-n-n'-disuccinic acid or its salt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

R150 Certificate of patent or registration of utility model

Ref document number: 4662420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350