JP4662419B2 - Method for separating and producing organic acids - Google Patents

Method for separating and producing organic acids Download PDF

Info

Publication number
JP4662419B2
JP4662419B2 JP2004113555A JP2004113555A JP4662419B2 JP 4662419 B2 JP4662419 B2 JP 4662419B2 JP 2004113555 A JP2004113555 A JP 2004113555A JP 2004113555 A JP2004113555 A JP 2004113555A JP 4662419 B2 JP4662419 B2 JP 4662419B2
Authority
JP
Japan
Prior art keywords
acid
aqueous solution
exchange resin
anion exchange
basic anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004113555A
Other languages
Japanese (ja)
Other versions
JP2005298367A (en
Inventor
実 山本
義和 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2004113555A priority Critical patent/JP4662419B2/en
Publication of JP2005298367A publication Critical patent/JP2005298367A/en
Application granted granted Critical
Publication of JP4662419B2 publication Critical patent/JP4662419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、少なくとも2種類以上の有機酸を含む水溶液から有用な有機酸を高純度かつ高収率で簡便に分離・精製して工業的に製造することが出来る製造方法に関する。
さらに詳しくはアミノ酸の製造法に関し、ストレッカー法で合成したアミノ酸の製造工程でアミノ酸ソーダ水溶液を弱酸性陽イオン交換樹脂で処理した後、不純物である有機酸すなわちイミノジカルボン酸を含む粗アミノ酸水溶液をさらにH/D比(樹脂層高/塔直径の値)が0.5から20の範囲内の樹脂塔に充填された弱塩基性陰イオン交換樹脂へ逆方向に通液処理することにより、アミノ酸を高純度かつ高収率で簡便に環境負荷を少なく工業的に製造するため利用することが出来る製造方法に関する。グリシンはアミノ酸の一種であり、医農薬合成原料、食品添加物、洗浄剤原料として広く使用されている有用な化合物である。
The present invention relates to a production method capable of industrially producing a useful organic acid from an aqueous solution containing at least two kinds of organic acids by simply separating and purifying the organic acid with high purity and high yield.
More specifically, with respect to the amino acid production method, after the amino acid soda aqueous solution is treated with a weakly acidic cation exchange resin in the amino acid production process synthesized by the Strecker method, a crude amino acid aqueous solution containing an organic acid, that is, an iminodicarboxylic acid as an impurity, is treated. Furthermore, by subjecting the H / D ratio (resin layer height / column diameter value) to a weakly basic anion exchange resin packed in a resin tower in the range of 0.5 to 20, the solution is passed through in the reverse direction, whereby an amino acid is obtained. It is related with the manufacturing method which can be utilized in order to manufacture industrially with high purity and a high yield simply and with little environmental impact. Glycine is a kind of amino acid and is a useful compound that is widely used as a raw material for pharmaceutical and agrochemical synthesis, food additives, and detergents.

有機酸の分離回収する方法には、陽イオン交換樹脂との接触処理に次いで目的とする有機酸を陰イオン交換樹脂に一旦吸着せしめた後、硫酸・塩酸などの鉱酸、または水酸化ナトリウムなどの強塩基性の水溶液で陰イオン交換樹脂から溶離することから、それぞれ鉱酸を含んだ有機酸ならびに有機酸のアルカリ金属塩として回収することになる(例えば、特許文献1参照)。
また目的とする有機酸を陰イオン交換樹脂に一旦吸着せしめた後、塩酸、硫酸などの鉱酸で陰イオン交換樹脂から溶離することから、鉱酸を含んだ回収液となる。溶離剤として水酸化ナトリウムなどの強塩基性の水溶液を用いた場合、回収を目的とする有機酸の水への溶解度が増して、晶析工程における回収が不利である。また、溶離剤として塩酸、硫酸などの鉱酸を用いた場合、溶離時に有機酸が析出する問題が懸念される(例えば、特許文献2参照)。
The organic acid is separated and recovered by first adsorbing the target organic acid on the anion exchange resin after the contact treatment with the cation exchange resin, and then a mineral acid such as sulfuric acid / hydrochloric acid, or sodium hydroxide, etc. Thus, it is recovered as an organic acid containing a mineral acid and an alkali metal salt of the organic acid (see, for example, Patent Document 1).
In addition, the target organic acid is once adsorbed on the anion exchange resin and then eluted from the anion exchange resin with a mineral acid such as hydrochloric acid or sulfuric acid, so that a recovery liquid containing the mineral acid is obtained. When a strongly basic aqueous solution such as sodium hydroxide is used as an eluent, the solubility of an organic acid intended for recovery in water increases, which is disadvantageous for recovery in the crystallization step. Further, when a mineral acid such as hydrochloric acid or sulfuric acid is used as an eluent, there is a concern that an organic acid is precipitated during elution (see, for example, Patent Document 2).

しかし、いずれも陰イオン交換樹脂に一旦吸着した目的の有機酸を別の有機酸で溶離して目的とする有機酸を回収する記載はない。
グリシンの製造方法に関しては従来、ホルムアルデヒド、シアン化水素、およびアンモニアを原料にシュトレッカー法にて一旦グリシノニトリルを合成し、これを苛性ソーダ等のアルカリで加水分解してグリシンソーダとアンモニアに変換し、これを硫酸で中和し晶析法で回収し製造されている(例えば、特許文献3、特許文献4、特許文献5、特許文献6参照)。
生成する硫酸ナトリウムはグリシンと溶解度が酷似しているため1段の晶析では十分回収できない。そのため高温で硫酸ナトリウムの一部を晶析し、次に低温でグリシンを晶析する操作を複数回繰り返す等の煩雑な操作が必要であった(例えば、特許文献7参照)。
However, there is no description of recovering the target organic acid by eluting the target organic acid once adsorbed on the anion exchange resin with another organic acid.
Regarding the production method of glycine, conventionally, glycinonitrile is once synthesized by the Strecker method using formaldehyde, hydrogen cyanide, and ammonia as raw materials, and this is hydrolyzed with an alkali such as caustic soda and converted to glycine soda and ammonia. Is produced by neutralizing with sulfuric acid and recovering by crystallization (see, for example, Patent Document 3, Patent Document 4, Patent Document 5, and Patent Document 6).
The generated sodium sulfate is very similar in solubility to glycine, so it cannot be sufficiently recovered by one-stage crystallization. Therefore, a complicated operation such as crystallization of a part of sodium sulfate at high temperature and then crystallization of glycine at low temperature is required several times (see, for example, Patent Document 7).

また、陽イオン交換樹脂を用いてグリシンソーダ水溶液のナトリウムイオンを陽イオン交換(脱塩)しグリシン水溶液を得る方法として弱酸性陽イオン交換樹脂を用いる方法(例えば、特許文献8参照)や強酸性陽イオン交換樹脂を用いる方法(例えば、特許文献9参照)が知られている。この場合用いた陽イオン交換樹脂は鉱酸で再生されることが記載されており、鉱酸のナトリウム塩が生成することになる。また、陽イオン交換樹脂を用いてグリシンソーダ水溶液のナトリウムイオンを陽イオン交換(脱塩)し、着色物質を含んだ粗グリシン水溶液を得た後に弱塩基性陰イオン交換樹脂もしくは中塩基性イオン交換樹脂で処理する方法(例えば、特許文献10参照)が記載されている。   In addition, as a method for obtaining a glycine aqueous solution by cation exchange (desalting) of sodium ions in a glycine soda aqueous solution using a cation exchange resin, a method using a weakly acidic cation exchange resin (for example, see Patent Document 8) or a strong acidity. A method using a cation exchange resin (for example, see Patent Document 9) is known. In this case, it is described that the cation exchange resin used is regenerated with a mineral acid, and a sodium salt of the mineral acid is produced. Cation exchange (desalting) of sodium ions in glycine soda aqueous solution using cation exchange resin to obtain crude glycine aqueous solution containing colored substances, followed by weak basic anion exchange resin or medium basic ion exchange A method of treating with a resin (for example, see Patent Document 10) is described.

得られるグリシンの純度(不純物の残存量)に関する記載は無いが、イオン交換樹脂へのグリシンの吸着損失が約0.2から1.5%の範囲で記載されている。得られるグリシンの純度は陰イオン交換の際、所定の有機酸(イミノジ酢酸、グリコール酸、ギ酸)の含有濃度、即ち有機酸が所定量漏洩する破過点に達したら通液を停止することで保たれる。この場合、有機酸吸着による破過点は陰イオン交換樹脂の飽和吸着点ではないので、陰イオン交換樹脂先端には有機酸が飽和吸着していないため未交換のイオン交換帯が存在し、このイオン交換帯には、OH型陰イオンの他にグリシンの陰イオンがイオン交換して陰イオン交換樹脂に吸着している。
このイオン交換帯をアルカリ金属塩で再生するとグリシンの陰イオンはイオン交換され再生液に同伴されるので、グリシンの回収損失となってしまう。
Although there is no description about the purity (residual amount of impurities) of the obtained glycine, the adsorption loss of glycine to the ion exchange resin is described in the range of about 0.2 to 1.5%. The purity of the glycine obtained is determined by stopping the flow of the liquid when it reaches the breakthrough point where a predetermined amount of organic acid (iminodiacetic acid, glycolic acid, formic acid) is contained during anion exchange, that is, a predetermined amount of organic acid leaks. Kept. In this case, since the breakthrough point due to organic acid adsorption is not the saturated adsorption point of the anion exchange resin, there is an unexchanged ion exchange zone at the tip of the anion exchange resin because the organic acid is not saturated and adsorbed. In the ion exchange zone, an anion of glycine is ion-exchanged and adsorbed on the anion exchange resin in addition to the OH type anion.
When this ion exchange zone is regenerated with an alkali metal salt, the anion of glycine is ion exchanged and entrained in the regenerating solution, resulting in a recovery loss of glycine.

特許第2850421号公報Japanese Patent No. 2850421 特表2002−505310号公報Japanese translation of PCT publication No. 2002-505310 特公昭43−29929号公報Japanese Patent Publication No.43-29929 特公昭59−28543号公報Japanese Patent Publication No.59-28543 特公昭51−24481号公報Japanese Patent Publication No. 51-24481 特公昭51−40044号公報Japanese Patent Publication No. 51-40044 特公昭57−53775号公報Japanese Patent Publication No.57-53775 特公昭29−8677号公報Japanese Examined Patent Publication No. 29-8679 特公平7−68191号公報Japanese Examined Patent Publication No. 7-68191 特公昭54−1686号公報Japanese Patent Publication No.54-1686

従来、弱塩基性陰イオン交換樹脂を利用した有機酸の分離製造において弱塩基性陰イオン交換樹脂に一部捕捉された目的の有機酸を樹脂再生により多大の回収損失を招いている問題があり、工業的製造を行ううえで廃棄物による環境負荷の観点から改善が必要とされる。
本発明は、少なくとも2種類以上の有機酸を含む水溶液から有用な有機酸を分離製造するにあたり、多大の有用な有機酸を損失すること無く、高純度かつ高収率に有用な有機酸の分離製造する方法を提供することを目的とするものである。
Conventionally, in the separation and production of organic acids using weakly basic anion exchange resins, there is a problem that the recovery of the desired organic acid partially captured by the weakly basic anion exchange resin causes a great recovery loss. In industrial production, improvements are required from the viewpoint of the environmental impact of waste.
In the present invention, when separating and producing a useful organic acid from an aqueous solution containing at least two or more kinds of organic acids, the separation of useful organic acids in high purity and high yield without losing a great deal of useful organic acids. The object is to provide a method of manufacturing.

本発明者は、上記課題を解決するために少なくとも2種類以上の有機酸を含む水溶液から目的とする有機酸を回収する方法であって、有機酸を含む水溶液をH/D比(樹脂層高/塔直径の値)が0.5から20の範囲内の樹脂塔に充填された弱塩基性陰イオン交換樹脂に接触処理して不純物とする有機酸をイオン交換して吸着させ、目的とする有機酸を含む水溶液を製造する工程と、さらに継続して該有機酸を含む水溶液を該弱塩基性陰イオン交換樹脂へ接触処理する際に基部から逆方向に通液して一部吸着している目的の有機酸を不純物の有機酸とイオン交換して脱離させる工程からなる一連のプロセスを特徴とする有機酸を分離回収する方法を利用して、不純物としてイミノジカルボン酸を含む粗アミノ酸水溶液からアミノ酸を製造するにあたり、多大の有用なアミノ酸を損失すること無く、有用な高純度アミノ酸の分離製造する方法を鋭意研究を重ねた結果、驚くべき事に不純物としてイミノジカルボン酸を含む粗アミノ酸水溶液をH/D比(樹脂層高/塔直径の値)が0.5から20の範囲内の樹脂塔に充填された弱塩基性陰イオン交換樹脂と接触処理させて不純物であるイミノジカルボン酸をイオン交換しアミノ酸水溶液を製造するイオン交換工程の後、さらに継続してイミノジカルボン酸を含む粗アミノ酸水溶液を該弱塩基性陰イオン交換樹脂に逆方向に通液して接触処理(破過点後の通液を継続して行う事を以下、「過破過通液」とする。)させて弱塩基性陰イオン交換樹脂に捕捉されたアミノ酸と不純物であるイミノジカルボン酸をイオン交換してアミノ酸を回収する工程を加えることで多大のアミノ酸を損失すること無く、イオン交換樹脂の交換基に不純物を短時間で飽和吸着することができて不純物の除去効率が優れ、さらには過破過通液時において致命的問題となる通液の圧力損失を低減できる。一般に通液において大きな圧力損失が生じると樹脂のブロッキング現象(団塊状態)による肩流れ通液、樹脂の破砕現象などの問題が起き、イオン交換樹脂塔の操作が出来なくなる。通液の圧力損失を低減できる事は、スムーズな通液操作ができ、高純度かつ高収率にアミノ酸を分離製造出来ることを見出し、本発明をなすに至った。   In order to solve the above-mentioned problems, the present inventor is a method for recovering a target organic acid from an aqueous solution containing at least two kinds of organic acids, wherein the aqueous solution containing organic acids is converted into an H / D ratio (resin layer height). / Tower diameter value) is subjected to contact treatment with a weakly basic anion exchange resin packed in a resin tower in the range of 0.5 to 20, and the organic acid as an impurity is ion-exchanged and adsorbed. In the process of producing an aqueous solution containing an organic acid, and when the aqueous solution containing the organic acid is further subjected to contact treatment with the weakly basic anion exchange resin, it is partially adsorbed through the base. A crude amino acid aqueous solution containing iminodicarboxylic acid as an impurity, using a method for separating and recovering an organic acid characterized by a series of processes comprising a step of ion-exchanging and desorbing a desired organic acid with an impurity organic acid Of amino acids from As a result of intensive research on methods for separating and producing useful high-purity amino acids without losing a great deal of useful amino acids, surprisingly, an aqueous solution of a crude amino acid containing iminodicarboxylic acid as an impurity was converted to an H / D ratio. The amino acid aqueous solution is obtained by ion-exchanging the iminodicarboxylic acid as an impurity by contact treatment with a weakly basic anion exchange resin packed in a resin tower (resin layer height / column diameter value) in the range of 0.5 to 20. After the ion-exchange process for producing the product, the aqueous solution of crude amino acid containing iminodicarboxylic acid is continuously passed through the weakly basic anion-exchange resin in the reverse direction, followed by contact treatment (continuous flow after the breakthrough point is continued). In the following, this is referred to as the “over-permeability liquid”.) The amino acid captured by the weakly basic anion exchange resin and the iminodicarboxylic acid as an impurity are ion-exchanged to recover the amino acid. By adding a step, impurities can be saturated and adsorbed on the exchange group of the ion exchange resin in a short time without losing a large amount of amino acids, and the removal efficiency of impurities is excellent. It can reduce the pressure loss of liquid flow which is a fatal problem. In general, when a large pressure loss occurs in liquid flow, problems such as shoulder flow liquid flow due to resin blocking phenomenon (nodular state), resin crushing phenomenon, etc. occur, making it impossible to operate the ion exchange resin tower. It was found that the ability to reduce the pressure loss of the liquid flow enabled a smooth liquid flow operation, and the amino acid could be separated and produced with high purity and high yield, thus leading to the present invention.

すなわち本発明は、下記1)から7)に記載の発明に係わる。
1)少なくとも2種類以上の有機酸を含む水溶液から目的とする有機酸を回収する方法であって、有機酸を含む水溶液をH/D比(樹脂層高/塔直径の値)が0.5から20の範囲内の樹脂塔に充填された弱塩基性陰イオン交換樹脂に接触処理して不純物とする有機酸をイオン交換して吸着させ、目的とする有機酸を含む水溶液を製造する工程と、さらに継続して該有機酸を含む水溶液を該弱塩基性陰イオン交換樹脂へ接触処理する際に基部から逆方向に通液して一部吸着している目的の有機酸を不純物の有機酸とイオン交換して脱離させる工程から、少なくとも2種類以上の有機酸において有機酸の組合せが、アミノ酸とイミノジカルボン酸であることを特徴とする有機酸を分離回収する方法。
2)少なくとも2種類以上の有機酸を含む水溶液がストレッカー法で合成されたアミノ酸を含む水溶液である請求項1記載の方法
That is, the present invention relates to the inventions described in 1) to 7) below.
1) A method of recovering a target organic acid from an aqueous solution containing at least two kinds of organic acids, wherein the aqueous solution containing organic acids has an H / D ratio (resin layer height / column diameter value) of 0.5. To a weakly basic anion exchange resin packed in a resin tower in the range of 20 to 20 to ion-exchange and adsorb an organic acid as an impurity to produce an aqueous solution containing the target organic acid; Further, when the aqueous solution containing the organic acid is further contact-treated with the weakly basic anion exchange resin, the target organic acid partially adsorbed by passing the solution in the reverse direction from the base is removed as an impurity organic acid. A method for separating and recovering an organic acid characterized in that the combination of the organic acid in at least two kinds of organic acids is an amino acid and an iminodicarboxylic acid, from the step of ion exchange and desorption.
2) The method according to claim 1, wherein the aqueous solution containing at least two kinds of organic acids is an aqueous solution containing an amino acid synthesized by a Strecker method .

3)イミノジカルボン酸を含む粗アミノ酸水溶液からアミノ酸を分離回収する一連のプロセスが、a)イミノジカルボン酸を含む粗アミノ酸水溶液をH/D比(樹脂層高/塔直径の値)が0.5から20の範囲内の樹脂塔に充填された弱塩基性陰イオン交換樹脂と接触処理させて不純物であるイミノジカルボン酸をイオン交換しアミノ酸水溶液を製造するイオン交換工程、b)さらに継続してイミノジカルボン酸を含む粗アミノ酸水溶液を該弱塩基性陰イオン交換樹脂に基部から逆方向に通液して接触処理させて該弱塩基性陰イオン交換樹脂に捕捉されたアミノ酸とイミノジカルボン酸をイオン交換してアミノ酸を回収する工程、c)該弱塩基性陰イオン交換樹脂に残存するアミノ酸含有水溶液を水で押し出し洗浄する工程、d)該弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を該弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂を再生する工程、f)該弱塩基性陰イオン交換樹脂に残存するイミノジカルボン酸のアルカリ金属塩含有水溶液を水で押し出し洗浄する工程からなる一連のプロセスであることを特徴とする1)又は2)に記載の方法。
4)アミノ酸がグリシン、アラニン、メチオニンであることを特徴とする1)〜3)のいずれかに記載の方法。
3) A series of processes for separating and recovering an amino acid from a crude amino acid solution containing iminodicarboxylic acid, a) H / D ratio (resin layer height / column diameter value) of the crude amino acid solution containing iminodicarboxylic acid is 0.5. An ion exchange step in which an amino acid aqueous solution is produced by ion-exchange of the iminodicarboxylic acid as an impurity by contact treatment with a weakly basic anion exchange resin packed in a resin tower in the range of 1 to 20, b) and further imino A crude aqueous amino acid solution containing dicarboxylic acid is passed through the weak basic anion exchange resin in the reverse direction from the base and contact treated to ion exchange the amino acid and iminodicarboxylic acid captured by the weak basic anion exchange resin. C) recovering the amino acid, c) extruding and washing the amino acid-containing aqueous solution remaining on the weakly basic anion exchange resin with water, d) the weakly basic A step of flushing the ion exchange resin with water from the base and back washing, e) a step of regenerating the weakly basic anion exchange resin by contacting the weakly basic anion exchange resin with an aqueous solution of an alkali metal hydroxide, f The method according to 1) or 2), which is a series of processes comprising a step of extruding and washing an alkali metal salt-containing aqueous solution of iminodicarboxylic acid remaining in the weakly basic anion exchange resin with water.
4) The method according to any one of 1) to 3), wherein the amino acid is glycine, alanine, or methionine.

5)不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液からグリシンを分離回収する一連のプロセスが、a)不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液をH/D比(樹脂層高/塔直径の値)が0.5から20の範囲内の樹脂塔に充填された弱塩基性陰イオン交換樹脂と接触処理させて不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換しグリシン水溶液を製造するイオン交換工程、b)さらに継続してイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を該弱塩基性陰イオン交換樹脂に基部から逆方向に通液して接触処理させて該弱塩基性陰イオン交換樹脂に捕捉されたグリシンと不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換してグリシンを回収する工程、c)該弱塩基性陰イオン交換樹脂に残存するグリシン含有水溶液を水で押し出し洗浄する工程、d)該弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を該弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたイミノジ酢酸、グリコール酸、ギ酸とイオン交換して該弱塩基性陰イオン交換樹脂を再生する工程、f)該弱塩基性陰イオン交換樹脂に残存するイミノジ酢酸、グリコール酸、ギ酸のアルカリ金属塩水溶液を水で押し出し洗浄する工程からなる一連のプロセスであることを特徴とする1)〜4)のいずれかに記載の方法。
6)アルカリ金属水酸化物のアルカリ金属がナトリウムである事を特徴とする3)〜5)のいずれかに記載の方法。
7)一連のプロセスを1塔または多塔の弱塩基性陰イオン交換樹脂で充填されたカラムを其々独立して一連のプロセスを実施することを特徴とする3)〜6)のいずれかに記載の方法。
5) A series of processes for separating and recovering glycine from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities, a) H / D ratio (resin) of the crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities (Immediately exchange the impurities iminodiacetic acid, glycolic acid, and formic acid by contact treatment with a weakly basic anion exchange resin packed in a resin tower in a range of 0.5 to 20). An ion exchange step for producing an aqueous glycine solution, and b) a continuous aqueous solution of crude glycine containing iminodiacetic acid, glycolic acid and formic acid through the weakly basic anion exchange resin in the reverse direction from the base to contact treatment. Glycine captured by the weakly basic anion exchange resin is ion-exchanged with impurities such as iminodiacetic acid, glycolic acid, and formic acid to recover glycine. C) a step of extruding and washing the glycine-containing aqueous solution remaining in the weakly basic anion exchange resin with water, d) a step of flushing the weakly basic anion exchange resin with water from the base portion, and e) alkali An aqueous solution of metal hydroxide is contacted with the weakly basic anion exchange resin and ion-exchanged with iminodiacetic acid, glycolic acid and formic acid captured by the weakly basic anion exchange resin, and the weakly basic anion exchange is performed. A series of processes comprising a step of regenerating a resin, and f) a step of extruding and washing an aqueous solution of an alkali metal salt of iminodiacetic acid, glycolic acid and formic acid remaining in the weakly basic anion exchange resin with water. The method according to any one of 1) to 4) .
6) The method according to any one of 3) to 5), wherein the alkali metal of the alkali metal hydroxide is sodium.
7) In any one of 3) to 6), the series of processes is independently performed on a column packed with one or more columns of weakly basic anion exchange resin. The method described.

本発明によれば従来、弱塩基性陰イオン交換樹脂を利用した有機酸の分離製造において弱塩基性陰イオン交換樹脂に一部捕捉された目的の有機酸を樹脂再生により多大の回収損失を招いていたが、H/D比(樹脂層高/塔直径の値)が0.5から20の範囲内の樹脂塔に充填された弱塩基性陰イオン交換樹脂に一部捕捉された目的の有機酸を不純物の有機酸で基部から逆方向に通液することにより脱離して目的とする有機酸を分離回収する方法を利用して、不純物としてイミノジカルボン酸を含む粗アミノ酸水溶液からアミノ酸を製造するにあたり、多大の有用なアミノ酸を損失すること無く、有用な高純度アミノ酸を分離製造することが出来る。   According to the present invention, the organic acid of interest partially captured by the weakly basic anion exchange resin in the separation and production of the organic acid using the weakly basic anion exchange resin conventionally causes a great recovery loss due to resin regeneration. However, the target organic partially trapped by the weakly basic anion exchange resin packed in the resin tower having an H / D ratio (value of resin layer height / column diameter) in the range of 0.5 to 20 An amino acid is produced from a crude amino acid aqueous solution containing an iminodicarboxylic acid as an impurity by utilizing a method of separating and recovering a target organic acid by removing the acid by passing the acid in the reverse direction from the base with an impurity organic acid. In this case, useful high-purity amino acids can be separated and produced without losing many useful amino acids.

本発明について、以下具体的に説明する。本発明に適用される少なくとも2種類以上の有機酸を含む水溶液は、ストレッカー法を代表とする化学合成法で得られたものが最も好ましいが、菌体の酵素反応または/もしくは菌体から精製した酵素ならびに固定化した酵素反応で得られた有機酸でもよい。
本発明で分離製造の対象となる有機酸は、アミノ基を有する弱塩基性陰イオン交換樹脂と目的とする有機酸ならびに不純物とする有機酸の間に相対的な親和性、有機酸のカルボキシル基との吸着能力および置換の際の遊離能力がそれぞれ異なる化合物である。このような有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸等の直鎖脂肪酸;シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、フマル酸、マレイン酸、フタル酸、イソフタル酸、テレフタル酸、イミノジ酢酸、イミノジプロピオン酸等のジカルボン酸;グリシン、アラニン、メチオニン、セリン、バリン、ロイシン、イソロイシン、トレオニン、システイン、シスチン、フェニルアラニン、グルタミン酸、アスパラギン酸等のアミノ酸;グリコール酸、乳酸、ヒドロキシアクリル酸、α−オキシ酪酸、グリセリン酸、タルトロン酸、リンゴ酸、酒石酸、クエン酸、サリチル酸、没食子酸、マンデル酸、トロバ酸、アスコルビン酸、グルコン酸等のオキシ酸;桂皮酸、安息香酸、フェニル酢酸、ニコチン酸、カイニン酸、ソルビン酸、ピロリドンカルボン酸、トリメリット酸等の芳香族又は複素環のポリカルボン酸などの中から挙げられる。
好ましくは、アミノ酸であるグリシン、アラニンである。特に好ましくは、グリシンとその副生成物であるイミノジ酢酸、グリコール酸、ギ酸から構成された有機酸の組合せが挙げられる。
The present invention will be specifically described below. The aqueous solution containing at least two kinds of organic acids applied to the present invention is most preferably obtained by a chemical synthesis method typified by the Strecker method, but it is purified from the enzymatic reaction of the bacterial cells and / or from the bacterial cells. The organic acid obtained by the enzyme reaction and the immobilized enzyme reaction may be sufficient.
The organic acid to be separated and produced in the present invention is a relative affinity between the weakly basic anion exchange resin having an amino group and the target organic acid and the organic acid as an impurity, the carboxyl group of the organic acid. These are compounds having different adsorption capacities and release capacities upon substitution. Examples of such organic acids include linear fatty acids such as formic acid, acetic acid, propionic acid, butyric acid, and valeric acid; oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, fumaric acid, maleic acid Dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, iminodiacetic acid, iminodipropionic acid; glycine, alanine, methionine, serine, valine, leucine, isoleucine, threonine, cysteine, cystine, phenylalanine, glutamic acid, aspartic acid, etc. Amino acids; oxyacids such as glycolic acid, lactic acid, hydroxyacrylic acid, α-oxybutyric acid, glyceric acid, tartronic acid, malic acid, tartaric acid, citric acid, salicylic acid, gallic acid, mandelic acid, trovic acid, ascorbic acid, gluconic acid Cinnamic acid, benzoic acid, phenylacetic acid, nico Phosphate, kainic acid, sorbic acid, pyrrolidone carboxylic acid, and from such polycarboxylic acids, aromatic or heterocyclic ring such as trimellitic acid.
Preferably, the amino acids are glycine and alanine. Particularly preferred is a combination of organic acids composed of glycine and its by-products, iminodiacetic acid, glycolic acid and formic acid.

本発明において使用される弱塩基性陰イオン交換樹脂は、樹脂基体、形状およびその製造方法は、一般には分子中に1級、2級または3級のアミノ基からなる官能基を有し、有機酸であるグリコール酸、ギ酸、イミノジ酢酸のカルボキシルイオンに対してグリシンを選択的に分離するには概有機酸に対してグリシンのイオン交換選択係数の小さな弱塩基性陰イオン交換樹脂が好ましい。弱塩基性陰イオン交換樹脂の例としては、商品名でアンバーライトIRA−96SB、IRA−67、XE583、XT6050RF(オルガノ(株)商標)、ダイヤイオンWA21、WA30(三菱化学(株) 商標)、レバチットMP−62、MP−64、VPOC−1065(バイエル(株) 商標)、ピュロライトA−100、A−103S、A−830、A−845(ピュロライト(株)商標)、ダウエックス66、MWA−1、WGR、WGR−2(ダウ・ケミカル(株)商標)等が挙げられる。交換基の形はOH型として使用する。
好ましくは、2級のアミノ基からなる官能基を有し、樹脂母体がスチレン系の弱塩基性陰イオン交換樹脂である。中でもアンバーライトIRA−96SBを用いると、驚くべきことにグリシンの回収効率が最も優れている。
The weakly basic anion exchange resin used in the present invention has a resin base, a shape, and a method for producing the resin base, generally having a functional group composed of a primary, secondary, or tertiary amino group in the molecule. In order to selectively separate glycine from the carboxyl ions of glycolic acid, formic acid and iminodiacetic acid, which are acids, weakly basic anion exchange resins having a small ion exchange selectivity coefficient of glycine with respect to organic acids are preferred. Examples of weakly basic anion exchange resins include Amberlite IRA-96SB, IRA-67, XE583, XT6050RF (trademark of Organo Corporation), Diaion WA21, WA30 (trademark of Mitsubishi Chemical Corporation), trade names, Levacit MP-62, MP-64, VPOC-1065 (trade name of Bayer Co., Ltd.), Purolite A-100, A-103S, A-830, A-845 (trademark of Purolite Co., Ltd.), Dowex 66, MWA- 1, WGR, WGR-2 (trademark of Dow Chemical Co., Ltd.) and the like. The form of the exchange group is used as OH type.
Preferably, the resin base is a styrenic weakly basic anion exchange resin having a functional group composed of a secondary amino group. Among them, when Amberlite IRA-96SB is used, the recovery efficiency of glycine is surprisingly excellent.

弱塩基性陰イオン交換樹脂処理において、円筒形の樹脂塔のH/D比(樹脂層高/塔直径の値)が0.5から20の範囲内でイオン交換樹脂を充填した樹脂塔が好ましい。さらに好ましくは、H/D比(樹脂層高/塔直径の値)が0.5から10の範囲内である。最も好ましくは、H/D比(樹脂層高/塔直径の値)が0.7から5の範囲内である。不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液の通液はもちろん、過破過通液時の圧力損失も低減する事ができ、しかもイオン交換による樹脂膨順に際して樹脂壊れの問題のリスクを低減することができる。H/D比が0.5より小さいと樹脂塔内への通液を均一にすることは難しく、樹脂のブロッキング現象が樹脂塔内のいたるところで置き易く、使用を重ねるごとに肩流れ状態が生じてしまう。また、H/D比が20より大きい(樹脂層高が樹脂塔径に比べて高すぎる)とイオン交換時の樹脂膨潤による急激な体積変化により、下層部で樹脂粒が互いに押し付けられて破砕を早める結果となる。   In the weakly basic anion exchange resin treatment, a resin tower filled with an ion exchange resin is preferable when the H / D ratio (resin layer height / column diameter value) of the cylindrical resin tower is in the range of 0.5 to 20. . More preferably, the H / D ratio (resin layer height / column diameter value) is in the range of 0.5 to 10. Most preferably, the H / D ratio (resin layer height / column diameter value) is in the range of 0.7 to 5. Not only can a crude glycine solution containing impurities such as iminodiacetic acid, glycolic acid, and formic acid pass through, but it can also reduce pressure loss during excessive breakthrough, and there is a risk of resin breakage during resin expansion by ion exchange. Can be reduced. If the H / D ratio is less than 0.5, it is difficult to make the liquid flow into the resin tower uniform, and the resin blocking phenomenon is easy to place everywhere in the resin tower, and a shoulder flow condition occurs with each use. End up. Also, if the H / D ratio is greater than 20 (the resin layer height is too high compared to the resin tower diameter), the resin particles are pressed against each other in the lower layer due to a sudden volume change due to resin swelling during ion exchange, causing crushing. The result will be faster.

また弱塩基性陰イオン交換樹脂処理は、不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液中のグリシン基の重量は33重量%以下で行われる。グリシン基の重量%は操作温度における飽和濃度以下であればよいが、33重量%を超える濃度にするためには、陰イオン交換樹脂を70℃以上に保温する必要があり、弱塩基性陰イオン交換樹脂の耐熱性の問題上好ましくない。なお、これらの樹脂を初めて使用する場合には、樹脂由来の不純物がグリシンに混入するのを防ぐため、樹脂の前処理と水洗を充分に行っておく必要がある。樹脂の使用量は、除去すべき不純物の種類と量によって変化するが、弱塩基性陰イオン交換樹脂処理での副生有機酸イオンのイオン交換においては、通常、処理するグリシン1kgに対し、樹脂1000〜5000ml、好ましくは1000〜3000mlの範囲である。   The weakly basic anion exchange resin treatment is carried out at a weight of 33% by weight or less in the crude glycine aqueous solution containing iminodiacetic acid, glycolic acid and formic acid as impurities. The weight% of glycine group may be equal to or lower than the saturation concentration at the operating temperature, but in order to obtain a concentration exceeding 33% by weight, it is necessary to keep the anion exchange resin at 70 ° C. or higher. This is not preferable because of the heat resistance problem of the exchange resin. In addition, when these resins are used for the first time, it is necessary to sufficiently perform resin pretreatment and water washing in order to prevent impurities derived from the resin from being mixed into glycine. The amount of resin used varies depending on the type and amount of impurities to be removed, but in the ion exchange of by-product organic acid ions in the weak basic anion exchange resin treatment, the resin is usually used for 1 kg of glycine to be treated. The range is 1000 to 5000 ml, preferably 1000 to 3000 ml.

本発明において、不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液からグリシンを分離回収する一連のプロセスが、a)不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液をH/D比(樹脂層高/塔直径の値)が0.5から20の範囲内の樹脂塔に充填された弱塩基性陰イオン交換樹脂と接触処理させて不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換しグリシン水溶液を製造するイオン交換工程、b)さらに継続してイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を弱塩基性陰イオン交換樹脂に基部から逆方向に通液して接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたグリシンと不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換してグリシンを回収する工程、c)弱塩基性陰イオン交換樹脂に残存するグリシン含有水溶液を水で押し出し洗浄する工程、d)弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたイミノジ酢酸、グリコール酸、ギ酸とイオン交換して該弱塩基性陰イオン交換樹脂を再生する工程、f)弱塩基性陰イオン交換樹脂に残存するイミノジ酢酸、グリコール酸、ギ酸のアルカリ金属塩水溶液を水で押し出し洗浄する工程からなる一連のプロセスで行われる。このプロセスの特徴は、工程b)で弱塩基性陰イオン交換樹脂に捕捉されたグリシンと不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換してグリシンを回収することにあり、工程b)ならびに工程c)で回収される液は弱塩基性陰イオン交換樹脂と接触処理にリサイクルされる。よって工程e)ならびに工程f)の廃液にグリシンの混入はほとんど見られず、一連のプロセスにおいてグリシンの回収損失が極めて少ない。さらにイオン交換樹脂の交換基に不純物を飽和吸着することができ不純物の除去効率が優れており、過破過通液時に障害となる圧力損失も低減できることである。   In the present invention, a series of processes for separating and recovering glycine from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities, a) H / D ratio of the crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities Impurities such as iminodiacetic acid, glycolic acid, and formic acid are ionized by contact treatment with a weakly basic anion exchange resin packed in a resin tower (resin layer height / column diameter value) in the range of 0.5 to 20. An ion exchange step of producing an aqueous solution of glycine by exchange; b) further continuously contacting the crude glycine aqueous solution containing iminodiacetic acid, glycolic acid and formic acid through a weakly basic anion exchange resin in the reverse direction from the base. The glycine trapped in the weakly basic anion exchange resin and the impurities iminodiacetic acid, glycolic acid, and formic acid are ion-exchanged to give glycine. C) a step of extruding and washing the glycine-containing aqueous solution remaining in the weakly basic anion exchange resin with water, d) a step of flushing the weakly basic anion exchange resin with water from the base, and e) alkali The weakly basic anion exchange resin is ion-exchanged with iminodiacetic acid, glycolic acid and formic acid, which is obtained by contacting the aqueous solution of metal hydroxide with the weakly basic anion exchange resin and trapped in the weakly basic anion exchange resin. And f) a series of processes comprising a step of extruding and washing an aqueous solution of an alkali metal salt of iminodiacetic acid, glycolic acid, and formic acid remaining in the weakly basic anion exchange resin with water. This process is characterized in that the glycine captured in the weakly basic anion exchange resin in step b) and the impurities iminodiacetic acid, glycolic acid, and formic acid are ion-exchanged to recover glycine. The liquid recovered in step c) is recycled to the weakly basic anion exchange resin and contact treatment. Therefore, almost no glycine is mixed in the waste liquid of step e) and step f), and the recovery loss of glycine is extremely small in a series of processes. Furthermore, the impurities can be saturated and adsorbed on the exchange group of the ion exchange resin, the impurity removal efficiency is excellent, and the pressure loss which becomes an obstacle at the time of excessive breakthrough liquid can be reduced.

本発明において、弱塩基性陰イオン交換樹脂の再生剤として使用されるのは、アルカリ金属水酸化物の水溶液である。好ましくはアルカリ金属がナトリウム、カリウムの水酸化物使用液である。より好ましくはナトリウムの水酸化物使用液である。このアルカリ金属水酸化物水溶液の濃度は、0.5Nから3Nの範囲であり、好ましくは1Nから2Nの範囲の濃度である。濃度が薄い場合は、再生剤の水量を多く必要とし、濃度が濃い場合は、再生時にイオン交換樹脂がダメージを受けやすい。
本発明において、不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液からグリシンを分離回収する一連のプロセスは、1塔または多塔のイオン交換カラムを其々独立して一連のプロセスを実施するバッチ式のプロセスでも良い。
In the present invention, an alkali metal hydroxide aqueous solution is used as a regenerant for the weakly basic anion exchange resin. Preferably, the alkali metal is a sodium or potassium hydroxide solution. More preferred is a sodium hydroxide solution. The concentration of the alkali metal hydroxide aqueous solution is in the range of 0.5N to 3N, preferably in the range of 1N to 2N. When the concentration is low, a large amount of water of the regenerant is required, and when the concentration is high, the ion exchange resin is easily damaged during regeneration.
In the present invention, a series of processes for separating and recovering glycine from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities is carried out independently for each of a single tower or a multi-column ion exchange column. A batch process may be used.

樹脂の処理温度は、一般には常温以上、好ましくは20〜90℃の範囲内で行われる。
樹脂処理の時間は、被処理液の濃度、イオン交換塔のサイズで異なるが、バッチ式の場合、通常1〜6hrの範囲、好ましくは1〜4hrの範囲である。連続式で処理する場合、樹脂塔への通液速度は液空間速度(L/L−樹脂/Hr)で1〜20の範囲、好ましくは5〜15の範囲である。
回収液の分析は、グリシン及びイミノジ酢酸はオルトフタルアルデヒドのポストカラム法高速アミノ酸分析法で行った。島津社製 Shim-pack Amino-Naカラム(6mm×100mm)を用い島津LC-10A島津LC-10A高速アミノ酸分析システムに島津社製の蛍光検出器にて検出した(以下、「OPA分析」とする)。グリコール酸、ギ酸は島津のpH緩衝化ポストカラム電気伝導度検出法で行った。島津社製 Shim-pack Amino-Naカラム(6mm×100mm)を用い島津社製ポンプLC-10ADをはじめとした島津LC-10A有機酸分析システムにて島津社製の電気伝導度検出器CDD-10Aにて検出した(以下、「有機酸分析」とする)。
次に、実施例および参考例によって本発明を説明する。
The treatment temperature of the resin is generally room temperature or higher, preferably 20 to 90 ° C.
The resin treatment time varies depending on the concentration of the liquid to be treated and the size of the ion exchange tower, but in the case of a batch type, it is usually in the range of 1 to 6 hr, preferably in the range of 1 to 4 hr. When processing by a continuous type, the liquid flow rate to a resin tower is the range of 1-20 by a liquid space velocity (L / L-resin / Hr), Preferably it is the range of 5-15.
The recovered liquid was analyzed by post-column high-speed amino acid analysis of orthophthalaldehyde for glycine and iminodiacetic acid. The Shimadzu LC-10A Shimadzu LC-10A high-speed amino acid analysis system was detected with a Shimadzu fluorescence detector using a Shimadzu Shim-pack Amino-Na column (6 mm × 100 mm) (hereinafter referred to as “OPA analysis”). ). Glycolic acid and formic acid were measured by Shimadzu pH buffered post-column conductivity detection method. Shimadzu's Shim-pack Amino-Na column (6mm x 100mm), Shimadzu LC-10A organic acid analysis system including Shimadzu pump LC-10AD, Shimadzu's electric conductivity detector CDD-10A (Hereinafter referred to as “organic acid analysis”).
Next, the present invention will be described with reference to examples and reference examples.

以下、実施例を挙げて本発明を説明する。なお、本発明は、その要旨を越えない限り、様々な変更、修飾などが可能である。
不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液の調整
一般的に公知なアミノ酸合成法であるストレッカー法で得られるグリシンソーダ水溶液を弱酸性陽イオン交換樹脂でナトリウムイオンをイオン交換処理して得られた粗グリシン水溶液(不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む)に相当する模擬液を試薬から調整した。グリシン濃度を11.1重量%、その他の不純物はそれぞれイミノジ酢酸が1.26重量%、グリコール酸が658重量ppm、ギ酸が321重量ppm、ナトリウムイオン量が21重量ppmとした。
Hereinafter, the present invention will be described with reference to examples. The present invention can be variously changed and modified without departing from the gist thereof.
Preparation of crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities A simulated solution corresponding to the obtained crude glycine aqueous solution (containing iminodiacetic acid, glycolic acid, and formic acid as impurities) was prepared from the reagent. The glycine concentration was 11.1 wt%, and other impurities were 1.26 wt% iminodiacetic acid, 658 wtppm glycolic acid, 321 wtppm formic acid, and 21 wtppm sodium ion.

[実施例1]
H/D比が1.0の樹脂塔、逆方向過破過通液によるバッチ式プロセス
上記調整した不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液620g(pH=3.6)を弱塩基性陰イオン交換樹脂アンバーライトIRA−96SB(商品名オルガノ(株))(OH型)100mlのH/D比(樹脂層高/塔直径の値)が1.0(樹脂層高:3.17cm、塔直径:3.17cm)に充填した樹脂塔にダウンフローで通液し、グリシン水溶液を得た。操作温度は40℃、通液の液空間速度は4.6(L/L−樹脂/Hr)で行った。有機酸であるイミノジ酢酸のイオン交換の状況は処理出口液の電導度及びpH測定結果からリアルタイムでモニタリングし、最終的にはOPA分析より決定した。該水溶液520mlを通液した時点で、樹脂塔基部から逆方向に70mlを過破過通液した。その後、通常のイオン交換運転操作に則り、水による残粗グリシン水溶液の押し出し操作をダウンフローで行った。操作温度は40℃、通液の液空間速度は4.6(L/L−樹脂/Hr)、通液量は100mlで行った。水置換の状況は処理出口液の電導度測定結果から確認した。その後、通常のイオン交換運転操作に則り、水による逆洗操作をアップフローで行った。操作温度は25℃、通液の液空間速度は4.6(L/L−樹脂/Hr)、通液量は100mlで行った。その後、通常のイオン交換運転操作に則り、1N−水酸化ナトリウム水溶液による樹脂再生操作を過剰量で行った操作温度は40℃、通液の液空間速度は4.6(L/L−樹脂/Hr)、通液量は150mlで行った。
イオン交換の状況は処理出口液の電導度及びpH測定結果からリアルタイムでモニタリングした。このようにして得られたグリシン水溶液についてOPA分析からグリシンは10.8重量%、不純物であるイミノジ酢酸は170重量ppm/グリシン基にまで抑えられたことが確認された。有機酸分析から不純物であるグリコール酸、ギ酸は、未検出を確認した。また、再生廃液中のグリシン濃度は、115重量ppmであった。グリシンの回収損失は、0.020%であった。通液ならびに過破過通液時の圧力損失を図1に示す。
[Example 1]
Batch type process with resin tower with H / D ratio of 1.0, reverse over-passage liquid 620 g (pH = 3.6) of crude glycine aqueous solution containing iminodiacetic acid, glycolic acid and formic acid as the adjusted impurities Basic anion exchange resin Amberlite IRA-96SB (trade name Organo Corp.) (OH type) 100 ml H / D ratio (resin layer height / column diameter value) is 1.0 (resin layer height: 3. A resin tower packed to 17 cm and a tower diameter of 3.17 cm was passed through a down flow to obtain an aqueous glycine solution. The operation temperature was 40 ° C., and the liquid space velocity of liquid passage was 4.6 (L / L-resin / Hr). The state of ion exchange of iminodiacetic acid, which is an organic acid, was monitored in real time from the conductivity and pH measurement results of the treatment outlet liquid, and finally determined by OPA analysis. When 520 ml of the aqueous solution was passed, 70 ml was passed through in the reverse direction from the resin tower base. Thereafter, in accordance with a normal ion exchange operation, an extrusion operation of the residual crude glycine aqueous solution with water was performed in a down flow. The operation temperature was 40 ° C., the liquid space velocity of liquid flow was 4.6 (L / L-resin / Hr), and the liquid flow volume was 100 ml. The state of water replacement was confirmed from the conductivity measurement result of the treatment outlet liquid. Thereafter, in accordance with a normal ion exchange operation, a backwash operation with water was performed in an upflow. The operation temperature was 25 ° C., the liquid space velocity of liquid flow was 4.6 (L / L-resin / Hr), and the liquid flow volume was 100 ml. Thereafter, in accordance with normal ion exchange operation, the resin regeneration operation with 1N-sodium hydroxide aqueous solution in an excessive amount was performed at an operating temperature of 40 ° C., and the liquid space velocity of liquid passing was 4.6 (L / L-resin / Hr), and the flow rate was 150 ml.
The state of ion exchange was monitored in real time from the conductivity and pH measurement results of the treatment outlet liquid. From the OPA analysis of the glycine aqueous solution thus obtained, it was confirmed that glycine was suppressed to 10.8% by weight, and the impurity iminodiacetic acid was suppressed to 170 ppm by weight / glycine group. From the organic acid analysis, it was confirmed that the impurities glycolic acid and formic acid were not detected. Further, the glycine concentration in the recycled waste liquid was 115 ppm by weight. The recovery loss of glycine was 0.020%. FIG. 1 shows the pressure loss during liquid passage and excessive breakthrough.

[比較例1]
H/D比が37.7の樹脂塔、順方向過破過通液によるバッチ式プロセス
粗グリシン水溶液による通液ならびに過破過通液の量を合わせて590mlを弱塩基性陰イオン交換樹脂アンバーライトIRA−96SB 100mlのH/D比(樹脂層高/塔直径の値)が37.7(樹脂層高:56.6cm、塔直径:1.5cm)に充填した樹脂塔にダウンフローで通液を行い、その他は実施例と同一条件にて、水による残グリシン水溶液の押し出し操作、水による逆洗浄操作、1N−水酸化ナトリウム水溶液による再生操作を順次行った。分析の結果、得られたグリシン水溶液中のイミノジ酢酸のイオン量は172重量ppm/グリシン基であった。また、再生廃液中のグリシン濃度は、1530重量ppmであった。グリシンの回収損失は、0.28%であった。
[Comparative Example 1]
Resin tower with H / D ratio of 37.7, batch-type process with forward overflowing liquid A total of 590 ml of weakly basic anion exchange resin amber combined with the flow of crude glycine aqueous solution and overflowing liquid Light IRA-96SB 100 ml H / D ratio (resin layer height / tower diameter value) of 37.7 (resin layer height: 56.6 cm, tower diameter: 1.5 cm) was passed through the resin tower by down flow. The remaining solution was subjected to the same operation as in the examples, and the water was discharged with a residual glycine aqueous solution, backwashed with water, and regenerated with a 1N aqueous sodium hydroxide solution. As a result of the analysis, the ion amount of iminodiacetic acid in the obtained aqueous glycine solution was 172 ppm by weight / glycine group. Further, the glycine concentration in the regeneration waste liquid was 1530 ppm by weight. The recovery loss of glycine was 0.28%.

[比較例2]
H/D比が1.0の樹脂塔、順方向過破過通液によるバッチ式プロセス
粗グリシン水溶液による通液ならびに過破過通液の量を合わせて590mlを弱塩基性陰イオン交換樹脂アンバーライトIRA−96SB 100mlのH/D比(樹脂層高/塔直径の値)が1.0(樹脂層高:3.17cm、塔直径:3.17cm)充填した樹脂塔にダウンフローで通液を行い、その他は実施例と同一条件にて、水による残グリシン水溶液の押し出し操作、水による逆洗浄操作、1N−水酸化ナトリウム水溶液による再生操作を順次行った。分析の結果、得られたグリシン水溶液中のイミノジ酢酸のイオン量は166重量ppm/グリシン基であった。また、再生廃液中のグリシン濃度は、1720重量ppmであった。グリシンの回収損失は、0.32%であった。
[Comparative Example 2]
Resin tower with H / D ratio of 1.0, batch-type process with forward breakthrough liquid A total of 590 ml of weak basic anion exchange resin amber is combined with the flow of crude glycine aqueous solution and the excess breakthrough liquid Light IRA-96SB 100 ml H / D ratio (resin layer height / tower diameter value) 1.0 (resin layer height: 3.17 cm, tower diameter: 3.17 cm) filled resin tower by downflow In the other conditions, the remaining glycine aqueous solution was pushed out with water, backwashed with water, and regenerated with 1N aqueous sodium hydroxide under the same conditions as in the examples. As a result of the analysis, the ion amount of iminodiacetic acid in the obtained aqueous glycine solution was 166 ppm by weight / glycine group. Further, the glycine concentration in the recycled waste liquid was 1720 ppm by weight. The recovery loss of glycine was 0.32%.

[比較例3]
H/D比が23.2の樹脂塔、逆方向過破過通液によるバッチ式プロセス
粗グリシン水溶液を弱塩基性陰イオン交換樹脂50mlのH/D比(樹脂層高/塔直径の値)が23.2(樹脂層高:32.5cm、塔直径:1.4cm)の樹脂塔にダウンフローで通液し、グリシン水溶液を得てその後逆方向に過破過通液をした。その他は実施例半分のスケールで操作温度、液空間速度は同一条件にて、水による残グリシン水溶液の押し出し操作、水による逆洗浄操作、1N−水酸化ナトリウム水溶液による再生操作を順次行った。通液ならびに過破過通液時の圧力損失を図2に示す。
[Comparative Example 3]
Resin tower with H / D ratio of 23.2, batch type process with reverse overpass liquid H / D ratio of 50 ml of weak basic anion exchange resin with crude glycine aqueous solution (value of resin layer height / tower diameter) Was passed through a resin tower of 23.2 (resin layer height: 32.5 cm, tower diameter: 1.4 cm) in a down flow to obtain an aqueous glycine solution, and then the solution was passed through in the reverse direction. Otherwise, the operation temperature and the liquid space velocity were the same as in the half of the example, and the extrusion operation of the residual glycine aqueous solution with water, the back washing operation with water, and the regeneration operation with 1N sodium hydroxide aqueous solution were sequentially performed. FIG. 2 shows the pressure loss at the time of liquid passage and excessive breakthrough.

本発明は、少なくと2種類以上の有機酸を含む水溶液から高純度な有機酸を分離製造するにあたり、多大の有用な有機酸を損失せず、有用な高純度かつ高収率に有機酸の分離製造する方法を提供することが出来る。この方法を利用して、不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液から有用な高純度グリシンを高収率に分離製造することが出来る。   In the present invention, a high-purity organic acid is separated and produced from an aqueous solution containing at least two kinds of organic acids. A separate manufacturing method can be provided. By using this method, useful high-purity glycine can be separated and produced in high yield from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities.

H/D比1、逆方向過破過通液によるバッチプロセスBatch process with H / D ratio 1, reverse overburden through liquid H/D比23、逆方向過破過通液によるバッチ式プロセスBatch process with H / D ratio of 23, reverse breakthrough liquid

Claims (7)

少なくとも2種類以上の有機酸を含む水溶液から目的とする有機酸を回収する方法であって、有機酸を含む水溶液をH/D比(樹脂層高/塔直径の値)が0.5から20の範囲内の樹脂塔に充填された弱塩基性陰イオン交換樹脂に接触処理して不純物とする有機酸をイオン交換して吸着させ、目的とする有機酸を含む水溶液を製造する工程と、さらに継続して該有機酸を含む水溶液を該弱塩基性陰イオン交換樹脂へ接触処理する際に基部から逆方向に通液して一部吸着している目的の有機酸を不純物の有機酸とイオン交換して脱離させる工程からなり、少なくとも2種類以上の有機酸において有機酸の組合せが、アミノ酸とイミノジカルボン酸であることを特徴とする有機酸を分離回収する方法。 A method for recovering a target organic acid from an aqueous solution containing at least two kinds of organic acids, wherein the aqueous solution containing organic acids has an H / D ratio (resin layer height / column diameter value) of 0.5 to 20 A step of contact treatment with a weakly basic anion exchange resin packed in a resin tower within the range of the above to adsorb and adsorb an organic acid as an impurity to produce an aqueous solution containing the target organic acid, and When the aqueous solution containing the organic acid is continuously contacted with the weakly basic anion exchange resin, the target organic acid partially adsorbed by passing the solution in the reverse direction from the base is ionized with the impurity organic acid and ions. A method for separating and recovering an organic acid comprising a step of exchanging and desorbing, wherein the combination of at least two kinds of organic acids is an amino acid and an iminodicarboxylic acid . 少なくとも2種類以上の有機酸を含む水溶液がストレッカー法で合成されたアミノ酸を含む水溶液である請求項1記載の方法。   The method according to claim 1, wherein the aqueous solution containing at least two kinds of organic acids is an aqueous solution containing an amino acid synthesized by a Strecker method. イミノジカルボン酸を含む粗アミノ酸水溶液からアミノ酸を分離回収する一連のプロセスが、a)イミノジカルボン酸を含む粗アミノ酸水溶液をH/D比(樹脂層高/塔直径の値)が0.5から20の範囲内の樹脂塔に充填された弱塩基性陰イオン交換樹脂と接触処理させて不純物であるイミノジカルボン酸をイオン交換しアミノ酸水溶液を製造するイオン交換工程、b)さらに継続してイミノジカルボン酸を含む粗アミノ酸水溶液を該弱塩基性陰イオン交換樹脂に基部から逆方向に通液して接触処理させて該弱塩基性陰イオン交換樹脂に捕捉されたアミノ酸とイミノジカルボン酸をイオン交換してアミノ酸を回収する工程、c)該弱塩基性陰イオン交換樹脂に残存するアミノ酸含有水溶液を水で押し出し洗浄する工程、d)該弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を該弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂を再生する工程、f)該弱塩基性陰イオン交換樹脂に残存するイミノジカルボン酸のアルカリ金属塩含有水溶液を水で押し出し洗浄する工程からなる一連のプロセスであることを特徴とする請求項1又は2に記載の方法。 A series of processes for separating and recovering an amino acid from a crude amino acid solution containing iminodicarboxylic acid is as follows. A) A crude amino acid solution containing iminodicarboxylic acid has an H / D ratio (resin layer height / column diameter value) of 0.5 to 20 An ion exchange step in which an amino acid aqueous solution is produced by ion-exchange of the iminodicarboxylic acid as an impurity by contact treatment with a weakly basic anion exchange resin packed in a resin tower within the range of b), and iminodicarboxylic acid continuously A crude amino acid aqueous solution containing lysate is passed through the weak base anion exchange resin in the reverse direction from the base and contact treated to ion-exchange the amino acid and iminodicarboxylic acid captured by the weak base anion exchange resin. A step of recovering the amino acid, c) a step of extruding and washing the amino acid-containing aqueous solution remaining in the weakly basic anion exchange resin with water, and d) the weakly basic anion A step of flowing back water into the base exchange resin and back-washing, e) a step of contacting the weak base anion exchange resin with an aqueous solution of alkali metal hydroxide to regenerate the weak base anion exchange resin, f 3. The method according to claim 1 or 2 , which is a series of processes comprising a step of extruding and washing an aqueous solution containing an alkali metal salt of iminodicarboxylic acid remaining in the weakly basic anion exchange resin with water. アミノ酸がグリシン、アラニン、メチオニンであることを特徴とする請求項1〜3のいずれかに記載の方法。 The method according to any one of claims 1 to 3 , wherein the amino acid is glycine, alanine or methionine. 不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液からグリシンを分離回収する一連のプロセスが、a)不純物としてイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液をH/D比(樹脂層高/塔直径の値)が0.5から20の範囲内の樹脂塔に充填された弱塩基性陰イオン交換樹脂と接触処理させて不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換しグリシン水溶液を製造するイオン交換工程、b)さらに継続してイミノジ酢酸、グリコール酸、ギ酸を含む粗グリシン水溶液を該弱塩基性陰イオン交換樹脂に基部から逆方向に通液して接触処理させて該弱塩基性陰イオン交換樹脂に捕捉されたグリシンと不純物であるイミノジ酢酸、グリコール酸、ギ酸をイオン交換してグリシンを回収する工程、c)該弱塩基性陰イオン交換樹脂に残存するグリシン含有水溶液を水で押し出し洗浄する工程、d)該弱塩基性陰イオン交換樹脂に基部から水を流し逆洗浄する工程、e)アルカリ金属水酸化物の水溶液を該弱塩基性陰イオン交換樹脂に接触処理させて弱塩基性陰イオン交換樹脂に捕捉されたイミノジ酢酸、グリコール酸、ギ酸とイオン交換して該弱塩基性陰イオン交換樹脂を再生する工程、f)該弱塩基性陰イオン交換樹脂に残存するイミノジ酢酸、グリコール酸、ギ酸のアルカリ金属塩水溶液を水で押し出し洗浄する工程からなる一連のプロセスであることを特徴とする請求項1〜4のいずれかに記載の方法。 A series of processes for separating and recovering glycine from a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities, a) H / D ratio of the crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid as impurities (resin layer height) Aqueous solution of glycine by ion-exchange of impurities such as iminodiacetic acid, glycolic acid and formic acid by contact treatment with a weakly basic anion exchange resin packed in a resin tower in the range of 0.5 to 20) B) Further, a crude glycine aqueous solution containing iminodiacetic acid, glycolic acid, and formic acid is continuously passed through the weakly basic anion exchange resin from the base in the reverse direction to cause contact treatment. Process to recover glycine by ion exchange of glycine trapped by basic anion exchange resin and impurities iminodiacetic acid, glycolic acid, formic acid c) a step of extruding and washing the glycine-containing aqueous solution remaining in the weakly basic anion exchange resin with water, d) a step of flushing the weakly basic anion exchange resin with water from the base and backwashing, and e) alkali metal water. The weakly basic anion exchange resin is ion-exchanged with iminodiacetic acid, glycolic acid, and formic acid, which is obtained by contacting the aqueous solution of the oxide with the weakly basic anion exchange resin and captured by the weakly basic anion exchange resin. A regenerating step, and f) a series of processes comprising a step of extruding and washing an aqueous solution of an alkali metal salt of iminodiacetic acid, glycolic acid and formic acid remaining in the weakly basic anion exchange resin with water. The method in any one of 1-4 . アルカリ金属水酸化物のアルカリ金属がナトリウムである事を特徴とする請求項3〜5のいずれかに記載の方法。 The method according to any one of claims 3 to 5, wherein the alkali metal of the alkali metal hydroxide is sodium. 一連のプロセスを1塔または多塔の弱塩基性陰イオン交換樹脂で充填されたカラムを其々独立して一連のプロセスを実施することを特徴とする請求項3〜6のいずれかに記載の方法。
According to any one of claims 3-6, characterized in that a column packed with a weakly basic anion exchange resin of 1 column or multi-column series of processes其and independently performing a series of processes Method.
JP2004113555A 2004-04-07 2004-04-07 Method for separating and producing organic acids Expired - Fee Related JP4662419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004113555A JP4662419B2 (en) 2004-04-07 2004-04-07 Method for separating and producing organic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004113555A JP4662419B2 (en) 2004-04-07 2004-04-07 Method for separating and producing organic acids

Publications (2)

Publication Number Publication Date
JP2005298367A JP2005298367A (en) 2005-10-27
JP4662419B2 true JP4662419B2 (en) 2011-03-30

Family

ID=35330350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004113555A Expired - Fee Related JP4662419B2 (en) 2004-04-07 2004-04-07 Method for separating and producing organic acids

Country Status (1)

Country Link
JP (1) JP4662419B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7191341B2 (en) * 2018-09-06 2022-12-19 日機装株式会社 Lactic acid removal method and lactic acid removal device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212829A (en) * 2002-01-15 2003-07-30 Asahi Kasei Corp Method for purifying glycine
JP2003221370A (en) * 2002-01-30 2003-08-05 Asahi Kasei Corp Method for manufacturing glycine and mineral acid alkali metal salt

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541686B1 (en) * 1969-02-21 1979-01-27
DE3425358A1 (en) * 1984-07-10 1986-02-20 Hoechst Ag, 6230 Frankfurt METHOD FOR ISOLATING WATER-SOLUBLE ACID COMPOUNDS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212829A (en) * 2002-01-15 2003-07-30 Asahi Kasei Corp Method for purifying glycine
JP2003221370A (en) * 2002-01-30 2003-08-05 Asahi Kasei Corp Method for manufacturing glycine and mineral acid alkali metal salt

Also Published As

Publication number Publication date
JP2005298367A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
JP4587694B2 (en) Method for separating and recovering amino acid and iminodicarboxylic acid
US9233906B2 (en) Purification of succinic acid from the fermentation broth containing ammonium succinate
CN102134189B (en) Process for the separation of organic and amino acids from fermentation broths
US5684190A (en) Recovery of amino acid
CA2321759A1 (en) Purification of organic acids using anion exchange chromatography
JP4662421B2 (en) Organic acid separation and production method
JP4662419B2 (en) Method for separating and producing organic acids
EP2881382B1 (en) Method for producing basic amino acid or basic amino acid salt
WO1992016490A1 (en) Processes for recovering citric acid
US3371112A (en) Purification of crude malic acid liquors
JP4662420B2 (en) Manufacturing method for separating and recovering amino acid and iminodicarboxylic acid
CN1125037C (en) Process for producing glutamic acid
CA2266453C (en) Method for manufacturing hydroxylamine
US3186952A (en) Recovery of vanadium and copper values from chemical process streams by ionexchange
JP3243891B2 (en) Purification method of pyruvate
JP2003221370A (en) Method for manufacturing glycine and mineral acid alkali metal salt
JPH11503146A (en) Method for producing monosodium glutamate
US20020016502A1 (en) Method for recovering amino acids
JP2003212829A (en) Method for purifying glycine
JPH1170000A (en) Apparatus for purifying sucrose syrup and regeneration of sucrose syrup purification apparatus
JPS6210927B2 (en)
CA2344702A1 (en) Method for manufacturing alkali metal or alkaline-earth metal formate
JPS60133602A (en) Process for refining saline water for electrolysis
JP2002001135A (en) Method for regenerating molasses refining apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

R150 Certificate of patent or registration of utility model

Ref document number: 4662419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees