JP4660214B2 - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP4660214B2
JP4660214B2 JP2005018228A JP2005018228A JP4660214B2 JP 4660214 B2 JP4660214 B2 JP 4660214B2 JP 2005018228 A JP2005018228 A JP 2005018228A JP 2005018228 A JP2005018228 A JP 2005018228A JP 4660214 B2 JP4660214 B2 JP 4660214B2
Authority
JP
Japan
Prior art keywords
electrode
end connection
inner end
electrode lead
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005018228A
Other languages
Japanese (ja)
Other versions
JP2006210500A (en
Inventor
康志 根本
朋大 伊澤
Original Assignee
日本インター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本インター株式会社 filed Critical 日本インター株式会社
Priority to JP2005018228A priority Critical patent/JP4660214B2/en
Publication of JP2006210500A publication Critical patent/JP2006210500A/en
Application granted granted Critical
Publication of JP4660214B2 publication Critical patent/JP4660214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

本発明は、両端に電源からの電力線が接続される直列接続の両半導体スイッチング素子の互いの接続点から負荷への出力線を引き出した回路を有し、前記両半導体スイッチング素子が相補的に開閉制御されることにより、前記電源の電力を変換して前記負荷へ出力する電力用半導体装置に係り、特に大電力用途に適した配線構造を有するものに関する。   The present invention has a circuit in which an output line to a load is drawn from a connection point of two series-connected semiconductor switching elements in which power lines from a power source are connected to both ends, and both the semiconductor switching elements are complementarily opened and closed The present invention relates to a power semiconductor device that converts the power of the power source by being controlled and outputs the converted power to the load, and particularly relates to a device having a wiring structure suitable for high power use.

従来、電力用半導体装置において、より大電流をより高周波数で変換することが要求されるに伴なって増大する電力損失、発熱、破壊、ノイズによる誤動作等の諸問題を解決するために、配線インダクタンスの低減が一解決手法となっている(特許文献1〜5等)。
特許文献1段落0005には、インダクタンスをLとしたとき、−L(di/dt)なるサージ電圧が発生し、誤動作、破壊等を引き起こし得ることが記載されている。
半導体スイッチング素子としては、主にMOSFET、IGBTなどのトランジスタが用いられている。大電力用途の半導体装置としては、電動ホークリフトなどの3相モータ駆動回路が挙げられる。車両やリフトなどの電動機の高出力化、騒音対策等により 大電流を高周波数(ホークリフトにいては10kHz以上)で変換することが要求されている。
Conventionally, in order to solve various problems such as power loss, heat generation, destruction, malfunction due to noise, etc., which are increased as a larger current is required to be converted at a higher frequency in a power semiconductor device. Reduction of inductance is one solution (Patent Documents 1 to 5).
Patent Document 1 paragraph 0005 describes that when the inductance is L, a surge voltage of −L (di / dt) is generated, which may cause malfunction or destruction.
As semiconductor switching elements, transistors such as MOSFETs and IGBTs are mainly used. As a semiconductor device for high power use, there is a three-phase motor drive circuit such as an electric hawk lift. It is required to convert a large current at a high frequency (more than 10 kHz for a hawk lift) to increase the output of electric motors such as vehicles and lifts and to prevent noise.

互いの接続点に出力線が接続され両端に電力線が接続される直列両半導体スイッチング素子の回路は、特許文献1〜3に記載されている。
特許文献1においては、その図10に回路図が示され、その図1〜3等に装置外観図が示されている。特許文献1の図11に示されるように、3相モータの駆動回路においては、直列両半導体スイッチング素子の回路がu相、v相、w相に対応して3セット構成される。
特許文献1〜3記載の装置においては、電力線の高電位側をP、低電位側をN、出力線をUとして、これら3電極に対応する平板状の電極導出端子(電極を外部への導出する導体)が平行配置されている。
特許文献1記載の装置にあっては、電極導出端子の相互に平行に配置された部分は、半導体スイッチング素子の実装基板に対して垂直に縦置きされており、P,N電極導出端子が比較的近接して配置されている。
特許文献2記載の装置及び特許文献3図1記載の装置にあっては、電極導出端子の相互に平行に配置された部分は、絶縁物を介して積層配置され、かつ、半導体スイッチング素子の実装基板に対して平行に配置されており、P,U,N又はN,U,Pの順で3層が平積みされている。
Patent Documents 1 to 3 describe circuits of both series semiconductor switching elements in which an output line is connected to each other connection point and a power line is connected to both ends.
In Patent Document 1, a circuit diagram is shown in FIG. 10 and an external view of the apparatus is shown in FIGS. As shown in FIG. 11 of Patent Document 1, in the drive circuit of the three-phase motor, three sets of series semiconductor switching element circuits are configured corresponding to the u-phase, v-phase, and w-phase.
In the devices described in Patent Literatures 1 to 3, the high potential side of the power line is P, the low potential side is N, and the output line is U. The flat electrode lead-out terminals corresponding to these three electrodes (the electrodes are led out to the outside) Are arranged in parallel.
In the device described in Patent Document 1, the portions of the electrode lead-out terminals arranged in parallel to each other are vertically placed with respect to the mounting substrate of the semiconductor switching element, and the P and N electrode lead-out terminals are compared. Placed close to each other.
In the device described in Patent Document 2 and the device described in Patent Document 3 in FIG. 1, the portions of the electrode lead-out terminals arranged in parallel with each other are stacked via an insulator and mounted with a semiconductor switching element. Arranged in parallel to the substrate, three layers are stacked in the order of P, U, N or N, U, P.

ここで、ノイマンの定理より、長さl、半径a、誘磁率μの丸棒導線の自己インダクタンスLsは次式(1)で表され、中心軸間間隔dで平行する長さl、誘磁率μの2つの丸棒導線間に働く相互インダクタンスMは次式(2)で表される。

Figure 0004660214
また、インダクタンスLは、L=Ls±M ・・・(3)で表される。但し、同方向に電流が流れるときに+、逆方向に電流が流れるときに−である。 Here, according to Neumann's theorem, the self-inductance Ls of a round bar wire having a length l, a radius a, and an inductivity μ is expressed by the following equation (1): a length l parallel to the center axis distance d, an inductivity A mutual inductance M acting between two round bar conductors of μ is expressed by the following equation (2).
Figure 0004660214
The inductance L is expressed by L = Ls ± M (3). However, it is + when current flows in the same direction, and-when current flows in the opposite direction.

特許文献1段落0040には、互いに平行で短い方の端子幅の1/5倍以下の距離d隔てたE端子(同文献中符号5)、C端子(同文献中符号7)を流れる電流が逆向きであるため、負の相互インダクタンスが働き、両端子のインダクタンスを低減するように作用することが記載されている。ここで、E端子、C端子は、上記P,N電極導出端子に相当するものである(E端子がN、C端子がP)。
これは、電流が逆向きのため式(3)がL=Ls−Mとなり、0<M<2Lsであれば、Lが低減されるということを述べていると解される(但し、同文献においては、Mの有効範囲にまでは触れていない。)。
In Patent Document 1, paragraph 0040 flows through an E 2 terminal (reference numeral 5 in the same document) and a C 1 terminal (reference numeral 7 in the same document) that are parallel to each other and separated by a distance d that is 1/5 times the terminal width of the shorter one. It is described that since the current is in the opposite direction, a negative mutual inductance works and acts to reduce the inductance of both terminals. Here, the E 2 terminal and the C 1 terminal correspond to the P and N electrode lead-out terminals (the E 2 terminal is N and the C 1 terminal is P).
This is interpreted as stating that L is reduced if the equation (3) becomes L = Ls−M because the current is in the reverse direction, and 0 <M <2Ls (however, the same document) Does not touch the effective range of M).

特許文献2段落0006には、漏れ電流が無いと考えると、出力線Uに流れるのと同じ電流がP電力線又はN電力線のどちらかをU出力線と反対方向に流れるため、配線のインダクタンスが効果的に低減できることが記載されている。
これは、電流が逆向きのため式(3)がL=Ls−Mとなり、0<M<2Lsであれば、Lが低減されるということを述べていると解される(但し、同文献においては、Mの有効範囲にまでは触れていない。)。
In Patent Document 2, paragraph 0006, assuming that there is no leakage current, the same current that flows in the output line U flows in either the P power line or the N power line in the opposite direction to the U output line, so that the inductance of the wiring is effective. It is described that it can be reduced.
This is interpreted as stating that L is reduced if the equation (3) becomes L = Ls−M because the current is in the reverse direction, and 0 <M <2Ls (however, the same document) Does not touch the effective range of M).

特許文献3段落0016には、U電極を導出する電極バー(同文献中符号35)とP電極を導出する電極バー(同文献中符号36)及び、U電極を導出する電極バー(同文献中符号35)とN電極を導出する電極バー(同文献中符号37)との重なり合う部分で、スイッチングするときの電流が反対側に流れるため、そのときのインダクタンス値はほぼ0となることが記載されている。
これは、電流が逆向きのため式(3)がL=Ls−Mとなり、0<M<2Lsであれば、Lが低減されるということを述べていると解される(但し、同文献においては、Mの有効範囲にまでは触れていない。)。電流が逆向きでLsとMの値が等しければ、Lは0となる。
Patent Document 3 paragraph 0016 includes an electrode bar for deriving the U electrode (reference numeral 35 in the same document), an electrode bar for deriving the P electrode (reference numeral 36 in the same document), and an electrode bar for deriving the U electrode (in the same document). It is described that the current at the time of switching flows to the opposite side in the overlapping part of the electrode bar 35) and the electrode bar for deriving the N electrode (reference numeral 37 in the same document), so that the inductance value at that time is almost zero. ing.
This is interpreted as stating that L is reduced if the equation (3) becomes L = Ls−M because the current is in the reverse direction, and 0 <M <2Ls (however, the same document) Does not touch the effective range of M). If the current is reversed and the values of Ls and M are equal, L is 0.

また、特許文献1〜3記載の発明においては、P,U,Nの電極導出端子を幅広な平板状とすることにより、自己インダクタンスを低減することが意図されていると解される(特許文献1段落0043等)。
なお、式(1)は、丸棒導線に関するものであるが、式(1)中における半径aは導線の断面積に関するパラメータであるので、平板状導線においては、厚みと幅に置き換えて換算することができ、厚みが一定であれば、自己インダクタンスLsは、導線の幅の増大により減少する。
Further, in the inventions described in Patent Documents 1 to 3, it is understood that the self-inductance is intended to be reduced by forming the P, U, and N electrode lead-out terminals into a wide flat plate shape (Patent Documents). 1 paragraph 0043 etc.).
In addition, although Formula (1) is related with a round bar conducting wire, the radius a in Formula (1) is a parameter relating to the cross-sectional area of the conducting wire. If the thickness is constant, the self-inductance Ls decreases as the width of the conductor increases.

以上のように、特許文献1〜3記載の発明においては、共通して、幅広電極により自己インダクタンスLsを小さくするとともに、逆方向電流により相互インダクタンスMを打ち消すように作用させて相殺し、インダクタンスLを低減するという理論に基づくものと解される。
そして、インダクタンスLを低減することにより、サージ電圧−L(di/dt)を小さくして、破損を防止し、磁気的に作用するノイズを低減して誤動作を防止し、インダクタンス分のスイッチング損失を低減し、結果、発熱量の低減を図らんとするものと解される。
特許第3053298号公報 特開2001−332688号公報 特開2004−214452号公報 公報特開平11−177021号公報 特開平11−177018号公報
As described above, in the inventions described in Patent Documents 1 to 3, in common, the self-inductance Ls is reduced by the wide electrode, and canceling is performed by canceling the mutual inductance M by the reverse current. It is understood that it is based on the theory of reducing.
By reducing the inductance L, the surge voltage -L (di / dt) is reduced to prevent breakage, magnetically acting noise is reduced to prevent malfunction, and the switching loss corresponding to the inductance is reduced. As a result, it is understood that the amount of generated heat is reduced.
Japanese Patent No. 3053298 JP 2001-332688 A JP 2004-214452 A Japanese Patent Laid-Open No. 11-177021 JP-A-11-177018

特許文献1記載の3電極を回路基板に対して垂直配置した構成に対し、3電極を平積みにした3層配線を有する特許文献2,3記載の発明の方が、装置の薄型化等に有利である。   In contrast to the configuration in which the three electrodes described in Patent Document 1 are arranged vertically with respect to the circuit board, the inventions described in Patent Documents 2 and 3 having three-layer wirings in which the three electrodes are stacked flattened to reduce the thickness of the device. It is advantageous.

しかし、相互インダクタンスMの発生によるインダクタンスLの低減効果は、隣接する導線内に流れる電流が同時点で逆向きで、かつ、相互インダクタンスMの値が0<M<2Lsである場合に限られる。
3相モータ等の駆動動作の下、P,N,Uの3層配線のすべての部分で、すべての時に、電流を逆向きに流すことは不可能であり、相互インダクタンスMの値を相殺作用のある0<M<2Lsの範囲に収めるには、間隔dの範囲が限定され、インダクタンスの相殺効果を実効性の高いものにすることは難しい。0<M<2Lsの範囲に無い場合は、インダクタンスを強め合ってしまう。
また、特許文献2,3の発明においては、3層配線をP,U,Nの順で積層しているが、U電極は、P,U電極に対して2倍の周波数で電流が動くため、最も発熱量が大きくなりやすく、P,U電極の中間に挟むことによって、熱分散性、放熱性の上で不利となり、ノイズの影響が比較的大きくなる。
このような熱対策にとって不利な配置が強いられるため、熱設計的な利得を得ながらインダクタンスの相殺効果を実効あらしめることは難しい。また、ノイズ対策を優先した配置も制限される。
However, the effect of reducing the inductance L due to the generation of the mutual inductance M is limited to the case where the currents flowing in the adjacent conductors are opposite at the same point and the value of the mutual inductance M is 0 <M <2Ls.
Under the driving operation of a three-phase motor or the like, it is impossible to flow a current in all directions of the three-layer wiring of P, N, and U at all times, and the mutual inductance M value is canceled out. In order to be within the range of 0 <M <2Ls, it is difficult to make the inductance canceling effect highly effective because the range of the distance d is limited. If it is not in the range of 0 <M <2Ls, the inductances are strengthened.
In the inventions of Patent Documents 2 and 3, the three-layer wiring is laminated in the order of P, U, and N. However, the U electrode moves at a frequency twice that of the P and U electrodes. The amount of heat generation is most likely to increase, and sandwiching between the P and U electrodes is disadvantageous in terms of heat dispersibility and heat dissipation, and the influence of noise is relatively large.
Since such a disadvantageous arrangement for heat countermeasures is forced, it is difficult to effectively exhibit the inductance canceling effect while obtaining a thermal design gain. In addition, the arrangement giving priority to noise countermeasures is also limited.

上述したように特許文献1記載の3電極を回路基板に対して垂直配置した構成に対し、3電極を平積みにした3層配線を有する特許文献2,3記載の発明の方が、装置の薄型化等に有利である。
さらには、特許文献2記載の3つの電極導出端子を回路基板上に半導体素子と隣接させて設置した構成に対し、回路基板と間隔を空けて回路基板上空に配置した特許文献3の構成の方が、電極導出端子の配線幅拡大と装置小面積化に有利である。
As described above, the inventions described in Patent Documents 2 and 3 having the three-layer wiring in which the three electrodes are flatly stacked in contrast to the configuration in which the three electrodes described in Patent Document 1 are arranged vertically with respect to the circuit board, It is advantageous for thinning.
Furthermore, in contrast to the configuration in which the three electrode lead-out terminals described in Patent Document 2 are installed adjacent to the semiconductor element on the circuit board, the configuration in Patent Document 3 in which the circuit board is spaced apart from the circuit board is arranged. However, this is advantageous for increasing the wiring width of the electrode lead-out terminal and reducing the area of the device.

また、特許文献3記載の装置においては、電極導出端子(同公報中「電極バー」)の端部の回路基板方向に突出した枝部が半導体チップ表面の電極に直接接続されており、半導体チップ表面の電極にボンディングワイヤを接続する特許文献1,2記載の装置に比較して簡素となるものの、電極導出端子の寸法精度及び電極導出端子の一端を保持するケースの寸法精度が厳しく求められる。また、半導体チップを損傷しないように組立作業に慎重を要し、半導体チップへ負荷される組立応力、熱応力等が増大し、環境温度変化、ホークリフトに搭載される場合のように使用時に加わる振動等による装置故障が懸念される。
特許文献2記載の装置においては、ボンディングワイヤの一端を半導体チップ表面の電極にボンディングするが、他端が電極導出端子(同公報中「3層幅広電極」)にボンディングされるワイヤと、他端が回路基板上の導体パターンにボンディングされるワイヤとがあるため、電極導出端子の配置前にすべてのワイヤボンディングを実施できず、すなわち、回路基板単体での実装工程においてワイヤボンディングを済ませることができない。また、電極導出端子にボンディングワイヤが接続されるから、電極導出端子の寸法精度、配置精度、ワイヤのボンディング精度等がその分厳しく求められる。
特許文献1記載の装置においては、ボンディングワイヤの両端を半導体チップ又は回路基板上にボンディングするから、回路基板単体での実装工程においてワイヤボンディングを済ませることができ、電極導出端子に対し半導体チップへの直接接続やワイヤボンディングを考慮した精度は求められないものの、回路面積が増大する。回路面積が増大する上に、電極導出端子が回路面に垂直に立設されているから、装置が大型化する。
Further, in the apparatus described in Patent Document 3, the branch portion protruding in the circuit board direction at the end of the electrode lead-out terminal (“electrode bar” in the same publication) is directly connected to the electrode on the surface of the semiconductor chip. Although it is simpler than the devices described in Patent Documents 1 and 2 in which bonding wires are connected to the electrodes on the surface, the dimensional accuracy of the electrode lead-out terminal and the dimensional accuracy of the case that holds one end of the electrode lead-out terminal are strictly required. Also, careful assembly work is required so as not to damage the semiconductor chip. Assembling stress and thermal stress applied to the semiconductor chip increase, and environmental temperature changes and it is added during use as when mounted on a forklift. There is concern about equipment failure due to vibration or the like.
In the device described in Patent Document 2, one end of a bonding wire is bonded to an electrode on the surface of a semiconductor chip, and the other end is bonded to an electrode lead-out terminal (“3-layer wide electrode” in the same publication), and the other end Since there is a wire bonded to the conductor pattern on the circuit board, all wire bonding cannot be performed before the electrode lead-out terminals are arranged, that is, the wire bonding cannot be completed in the mounting process of the circuit board alone. . Further, since the bonding wire is connected to the electrode lead-out terminal, the dimensional accuracy, the placement accuracy, the wire bonding accuracy, etc. of the electrode lead-out terminal are strictly required.
In the apparatus described in Patent Document 1, since both ends of the bonding wire are bonded to the semiconductor chip or the circuit board, the wire bonding can be completed in the mounting process of the circuit board alone, and the electrode lead-out terminal is connected to the semiconductor chip. Although accuracy in consideration of direct connection and wire bonding is not required, the circuit area increases. In addition to an increase in circuit area, the electrode lead-out terminals are erected perpendicularly to the circuit surface, which increases the size of the device.

また、特許文献3記載の装置においては、特許文献3の図1に示されるように、電極導出端子(同公報中「電極バー」)の端部の回路基板方向に突出した枝部の下端が、半導体素子表面と平行になるように外側に折り曲げられており、半導体素子上空の空間は、3層配線の積層空間としては利用されていない。
さらに、特許文献3の図1に示されるように、P,N電極に対してU電極の取り出し方向が異なり、装置内部空間にて、U電極を取り出す電極導出端子が迂回しており、その分、3つの電極導出端子の配線幅が減少する。
したがって、特許文献3記載の装置においても、一定の装置内空間において、配線幅を拡大することに対し不利な構造が見られる。
In the device described in Patent Document 3, as shown in FIG. 1 of Patent Document 3, the lower end of the branch portion protruding in the circuit board direction at the end portion of the electrode lead-out terminal (“electrode bar” in the same publication) is The space above the semiconductor element is bent so as to be parallel to the surface of the semiconductor element, and the space above the semiconductor element is not used as a laminated space for the three-layer wiring.
Further, as shown in FIG. 1 of Patent Document 3, the lead-out direction of the U electrode is different from the P and N electrodes, and the electrode lead-out terminal for taking out the U electrode is detoured in the internal space of the device. The wiring width of the three electrode lead-out terminals decreases.
Therefore, the device described in Patent Document 3 also has a disadvantageous structure for enlarging the wiring width in a certain device space.

本発明は以上の従来技術における問題に鑑みてなされたものであって、薄型化、熱対策、ノイズ対策の点で電極導出端子の形状、配置が良好な電力用半導体装置を提供することを課題とする。
また、熱分散性、放熱性が高められ、配線抵抗、特に熱抵抗分が低下された電力用半導体装置を提供することを課題とする。
さらに、製造歩留まり良好で、使用時の環境に耐え、信頼性の高い電力用半導体装置を提供することを課題とする。
結果として、より大電流をより高周波数で変換することに耐えられる電力用半導体装置を提供することを課題とする。
The present invention has been made in view of the above-described problems in the prior art, and it is an object of the present invention to provide a power semiconductor device in which the shape and arrangement of electrode lead-out terminals are good in terms of thinning, thermal countermeasures, and noise countermeasures. And
It is another object of the present invention to provide a power semiconductor device in which heat dispersibility and heat dissipation are improved and wiring resistance, particularly heat resistance, is reduced.
It is another object of the present invention to provide a highly reliable power semiconductor device that has a good manufacturing yield, can withstand the environment during use, and has high reliability.
As a result, an object of the present invention is to provide a power semiconductor device that can withstand a larger current at a higher frequency.

以上の課題を解決するための請求項1記載の発明は、両端に電源からの電力線が接続される直列接続の両半導体スイッチング素子の互いの接続点から負荷への出力線を引き出した回路を有し、前記両半導体スイッチング素子が相補的に開閉制御されることにより、前記電源の電力を変換して前記負荷へ出力する電力用半導体装置であって、
前記電力線の高電位側をP、低電位側をN、前記出力線をUとして、P,N,Uの3電極に対応する3つの電極導出端子を有し、
前記3つの電極導出端子が、前記半導体スイッチング素子が実装される回路基板の上空で、前記回路基板に近い方からP,N,Uの順に間隔隔てて積層され、少なくともその積層部で前記回路基板と平行な平板状に形成されてなることを特徴とする電力用半導体装置である。
The invention described in claim 1 for solving the above-described problems has a circuit in which an output line to a load is drawn from a connection point between two series-connected semiconductor switching elements in which power lines from a power source are connected to both ends. The power semiconductor device that converts the power of the power source and outputs the power to the load by complementary open / close control of the semiconductor switching elements,
The high potential side of the power line is P, the low potential side is N, the output line is U, and there are three electrode lead-out terminals corresponding to three electrodes of P, N, U,
The three electrode lead-out terminals are stacked above the circuit board on which the semiconductor switching element is mounted, and are stacked at intervals in the order of P, N, U from the side closer to the circuit board, and at least in the stacked portion, the circuit board It is formed in a flat plate shape parallel to the power semiconductor device.

請求項1記載の発明によれば、電極導出端子が回路基板と平行に、回路基板に近い方からP,N,Uの順で積層配置されるので、P,N電極導出端子に対し2倍の周波数の電流が流れ最も発熱量が大きいU電極導出端子が3層のうち最上に配置されて、U電極導出端子を回路基板の裏面と反対側の装置表面側へ配置することができる。
これにより、最も発熱量が大きいU電極導出端子を回路基板から離れた装置表面側へ配置して熱の集中を防ぐことができるとともに、U電極導出端子の装置表面側からの放熱を促すことができ、放熱性が向上する。
U電極導出端子と回路基板の間には、比較的低温のP,N電極導出端子が介在するため、U電極導出端子から回路基板への輻射熱が防止できる。
また、P電極導出端子が回路基板に最も近接配置される。さらにN電極導出端子がP電極導出端子上に配置される。高電位のP電極導出端子、低電位のN電極導出端子は、ともに電位が比較的安定しており、従って、回路基板との間に磁界の変化を顕著にもたらすことなく、回路基板に対しノイズの影響を抑えることができる。ともにノイズ源となりやすい回路基板とU電極導出端子とは、P,N電極導出端子を介して離間されているので、相互にノイズの影響が抑えられる。
また、P,N,U3つの電極導出端子が積層する積層部は、回路基板と平行な平板状に形成され、回路基板の上空に配置されるから、装置薄型化、小型化に有利である。
以上のように、薄型化、熱対策、ノイズ対策の点で電極導出端子の形状、配置が良好であり、結果として、小型でも、より大電流をより高周波数で変換することに耐えられる。
According to the first aspect of the present invention, since the electrode lead-out terminals are arranged in the order of P, N, and U from the side close to the circuit board in parallel with the circuit board, the electrode lead-out terminals are doubled with respect to the P and N electrode lead-out terminals. The U electrode lead-out terminal that flows the current of the highest frequency and generates the largest amount of heat is placed at the top of the three layers, and the U electrode lead-out terminal can be placed on the device surface side opposite to the back surface of the circuit board.
As a result, the U electrode lead-out terminal having the largest heat generation amount can be arranged on the device surface side away from the circuit board to prevent heat concentration, and the heat radiation from the device surface side of the U electrode lead-out terminal can be promoted. And heat dissipation is improved.
Since a relatively low temperature P and N electrode lead-out terminal is interposed between the U electrode lead-out terminal and the circuit board, radiation heat from the U electrode lead-out terminal to the circuit board can be prevented.
Further, the P electrode lead-out terminal is disposed closest to the circuit board. Further, an N electrode lead-out terminal is disposed on the P electrode lead-out terminal. Both the high-potential P-electrode lead terminal and the low-potential N-electrode lead terminal are relatively stable in potential, and therefore, noise is not caused to the circuit board without causing a significant change in the magnetic field with the circuit board. The influence of can be suppressed. Since both the circuit board that is likely to be a noise source and the U electrode lead-out terminal are separated via the P and N electrode lead-out terminals, the influence of noise can be suppressed.
In addition, the laminated portion where the three electrode lead-out terminals P, N, and U are laminated is formed in a flat plate shape parallel to the circuit board, and is disposed above the circuit board, which is advantageous for reducing the thickness and size of the device.
As described above, the shape and arrangement of the electrode lead-out terminals are good in terms of thinning, heat countermeasures, and noise countermeasures. As a result, even with a small size, a larger current can be converted at a higher frequency.

請求項2記載の発明は、前記積層部が1又は2個以上の前記半導体スイッチング素子の上空に配置されてなることを特徴とする請求項1記載の電力用半導体装置である。   According to a second aspect of the present invention, in the power semiconductor device according to the first aspect, the stacked portion is disposed above one or more of the semiconductor switching elements.

請求項2に記載の発明によれば、P,N,U3つの電極導出端子の積層部が1又は2個以上の半導体スイッチング素子の上空に配置されているので、半導体スイッチング素子の上方空間をも利用して積層部の配線幅を広く形成することができる。
配線幅を広くとることにより電極導出端子の熱容量が増大され熱分散性が高められ、配線抵抗、特に熱抵抗分が低下される。結果として、より大電流をより高周波数で変換することに耐えられる。
U出力線が接続される両半導体スイッチング素子の一方は、P−U間に接続され、他方はU−N間に接続される。したがって、半導体スイッチング素子は最少で2個である。P−U間に接続される半導体スイッチング素子を複数並列に設けても良いし、U−N間に接続される半導体スイッチング素子を複数並列に設けてもよい。したがって、半導体スイッチング素子の総数は3個以上となる場合がある。その場合、積層部を3個以上の半導体スイッチング素子の上空に配置することもできる。
According to the second aspect of the present invention, since the stacked portion of the P, N, and U three electrode lead-out terminals is disposed above one or more semiconductor switching elements, the space above the semiconductor switching elements is also increased. By utilizing this, the wiring width of the laminated portion can be formed wide.
By increasing the wiring width, the heat capacity of the electrode lead-out terminal is increased, the heat dispersibility is improved, and the wiring resistance, particularly the thermal resistance component, is reduced. As a result, it can withstand higher currents at higher frequencies.
One of the semiconductor switching elements to which the U output line is connected is connected between P-U and the other is connected between U-N. Therefore, the minimum number of semiconductor switching elements is two. A plurality of semiconductor switching elements connected between P-U may be provided in parallel, or a plurality of semiconductor switching elements connected between U-N may be provided in parallel. Therefore, the total number of semiconductor switching elements may be 3 or more. In that case, the stacked portion can be disposed above three or more semiconductor switching elements.

請求項3記載の発明は、P,N,Uの各電極導出端子の外部配線が接続される外端接続部は、前記回路基板を垂直視したとき、前記回路基板の一辺に隣接してその外側に配置されており、前記積層部は前記一辺側からその対辺側へ延出するように形成されてなることを特徴とする請求項1又は請求項2記載の電力用半導体装置である。   According to a third aspect of the present invention, the outer end connecting portion to which the external wiring of each of the P, N, and U electrode lead-out terminals is connected is adjacent to one side of the circuit board when the circuit board is viewed vertically. 3. The power semiconductor device according to claim 1, wherein the power semiconductor device is disposed on an outer side, and the stacked portion is formed to extend from the one side to the opposite side.

請求項3記載の発明によれば、P,N,Uの各電極導出端子は、内部への延出方向と逆側に取り出されるので、迂回することはない。迂回配線がない分、限られた装置内部空間で、3つの電極導出端子の配線幅を大きく取れる。   According to the third aspect of the present invention, the P, N, and U electrode lead-out terminals are taken out in the direction opposite to the extending direction to the inside, so that they are not detoured. Since there is no detour wiring, the wiring width of the three electrode lead-out terminals can be increased in a limited device internal space.

請求項4記載の発明は、P,N,Uの各電極導出端子の前記回路基板に接続する内端接続部は、前記積層部の側縁から1又は2以上突出形成され、前記回路基板側に折り曲げられ、さらにそれより先で内側に折り曲がられてなる突起であることを特徴とする請求項1、請求項2又は請求項3記載の電力用半導体装置である。   According to a fourth aspect of the present invention, one or more inner end connection portions connected to the circuit board of the electrode lead-out terminals of P, N, and U are formed so as to protrude from the side edge of the laminated portion, and the circuit board side 4. The power semiconductor device according to claim 1, wherein the power semiconductor device is a protrusion that is bent inwardly and further bent inward before that.

請求項4記載の発明によれば、積層部の側縁から突出形成される突起状の内端接続部の下端が内折りに形成されるため、外折りとする場合に比較して、他の構造が同じとき、積層部の幅をより大きくとることができる。   According to invention of Claim 4, since the lower end of the protrusion-shaped inner end connection part which protrudes and is formed from the side edge of a lamination | stacking part is formed in an inner fold, compared with the case where it makes an outer fold, other When the structure is the same, the width of the stacked portion can be made larger.

請求項5記載の発明は、P,N,U各電極の内端接続部の内側に折り曲げられた下端部はそれぞれ前記回路基板上の導体パターンに接合され、
P−U間に接続される前記半導体スイッチング素子は、P電極の内端接続部が接合する導体パターンに接合され、
前記P−U間に接続される前記半導体スイッチング素子の表面主電極とU電極の内端接続部が接合する導体パターンとがボンディングワイヤを介して接続され、
U−N間に接続される前記半導体スイッチング素子は、U電極の内端接続部が接合する導体パターンに接合され、
前記U−N間に接続される前記半導体スイッチング素子の表面主電極とN電極の内端接続部が接合する導体パターンとがボンディングワイヤを介して接続されてなることを特徴とする請求項4記載の電力用半導体装置である。
In the invention according to claim 5, the lower ends bent inside the inner end connection portions of the P, N, and U electrodes are respectively joined to the conductor pattern on the circuit board,
The semiconductor switching element connected between P-U is joined to a conductor pattern to which the inner end connection portion of the P electrode is joined,
The surface main electrode of the semiconductor switching element connected between the P-U and the conductor pattern to which the inner end connection portion of the U electrode is connected via a bonding wire,
The semiconductor switching element connected between U and N is joined to a conductor pattern to which the inner end connection portion of the U electrode is joined,
5. The main surface electrode of the semiconductor switching element connected between the U and N and a conductor pattern to which an inner end connection portion of the N electrode is joined are connected via a bonding wire. This is a power semiconductor device.

請求項5記載の発明によれば、P,N,U各電極の内端接続部はそれぞれ回路基板上の導体パターンに接合される。これは、半田などの導電性の接合剤によって接合することができる。
そして、各電極導出端子は、回路基板上の導体パターンやボンディングワイヤを介して半導体スイッチング素子の電極と電気的に接続される。
したがって、回路基板単体での実装工程においてワイヤボンディングを済ませることができ、電極導出端子に対し半導体チップへの直接接続やワイヤボンディングを考慮した精度は求められず、歩留まり良く比較的容易に信頼性の高い製品を製造できる。ボンディングワイヤと、中継のボンディング領域を回路基板上に設ける分、回路面積が増大するが、回路面上方空間を電極導出端子の配置領域として有効に利用するので、電極導出端子をより幅広に形成しやすくなる。
According to the fifth aspect of the present invention, the inner end connecting portions of the P, N, and U electrodes are respectively joined to the conductor pattern on the circuit board. This can be bonded by a conductive bonding agent such as solder.
Each electrode lead-out terminal is electrically connected to the electrode of the semiconductor switching element via a conductor pattern or a bonding wire on the circuit board.
Therefore, wire bonding can be completed in the mounting process of the circuit board alone, and the accuracy in consideration of direct connection to the semiconductor chip and wire bonding is not required for the electrode lead-out terminal, and the yield is relatively easy and reliable. High product can be manufactured. The circuit area increases by providing the bonding wire and the relay bonding area on the circuit board, but the space above the circuit surface is effectively used as the arrangement area for the electrode lead-out terminal, so the electrode lead-out terminal is formed wider. It becomes easy.

請求項6記載の発明は、P,N,Uの各電極導出端子の外部配線が接続される外端接続部は前記回路基板の一辺に沿ってP,N,Uの順で異なる位置に配置され、
N電極の外端接続部は前記一辺に沿った前記積層部の形成範囲内に在り、
P電極の外端接続部及びU電極の外端接続部の全部又は一部は、前記一辺に沿った前記積層部の形成範囲外に在り、
P電極導出端子及びU電極導出端子には、前記一辺側の前記積層部の端部から前記一辺に沿った方向に前記範囲外まで突出し外端接続部に連結する部分が形成されていることを特徴とする請求項5記載の電力用半導体装置である。
According to a sixth aspect of the present invention, the outer end connection portions to which the external wirings of the P, N, and U electrode lead-out terminals are connected are arranged at different positions in the order of P, N, and U along one side of the circuit board. And
The outer end connection portion of the N electrode is within the formation range of the stacked portion along the one side,
All or part of the outer end connection portion of the P electrode and the outer end connection portion of the U electrode are outside the formation range of the stacked portion along the one side,
The P-electrode lead-out terminal and the U-electrode lead-out terminal have a portion that protrudes out of the range in the direction along the one side from the end of the stacked portion on the one side and is connected to the outer end connection portion. 6. The power semiconductor device according to claim 5, wherein the power semiconductor device is a power semiconductor device.

請求項6記載の発明によれば、まず、P,N,U各電極の外端接続部が回路基板の一辺に沿って異なる位置に配置されるため、外部配線の接続がしやすい。さらに、P電極の外端接続部及びU電極の外端接続部の全部又は一部は前記一辺に沿った積層部の形成範囲外に在るため、3つの外端接続部が広範囲に分散し、各外端接続部をそれぞれ大きくしても十分な間隔を取ることができ、外部配線の接続がしやすい。
さらに、P電極導出端子及びU電極導出端子には、前記一辺側の前記積層部の端部から前記一辺に沿った方向に前記範囲外まで突出し外端接続部に連結する部分が形成されている。そのため、P電極の外端接続部及びU電極の外端接続部の全部又は一部が前記一辺に沿った積層部の形成範囲外に在っても、この外端接続部に連結する部分で配線幅を狭小にすることがない。また、P電極導出端子及びU電極導出端子をN電極導出端子より容積的に大きくすることができる。
固体内の熱伝導としては、N電極導出端子はボンディングワイヤを介してしか半導体スイッチング素子から熱伝導しないが、P電極導出端子及びU電極導出端子は、ボンディングワイヤを介さず、回路上の導体パターンを介して半導体スイッチング素子から熱伝導するため、N電極導出端子より発熱量が大きい(上述したようにU電極導出端子は最も発熱量が大きい。)。
したがって、P電極導出端子及びU電極導出端子をN電極導出端子より大きくすることにより、N電極導出端子と同一又は小さくする場合に比較して、温度の不均衡を抑えることができる。
According to the sixth aspect of the invention, first, the outer end connecting portions of the P, N, and U electrodes are arranged at different positions along one side of the circuit board, so that the external wiring can be easily connected. Furthermore, since all or part of the outer end connection portion of the P electrode and the outer end connection portion of the U electrode are outside the formation range of the laminated portion along the one side, the three outer end connection portions are widely dispersed. Even if each outer end connection portion is enlarged, a sufficient interval can be secured, and external wiring can be easily connected.
Furthermore, the P electrode lead-out terminal and the U electrode lead-out terminal are formed with a portion that protrudes out of the range in the direction along the one side from the end of the laminated portion on the one side and is connected to the outer end connecting portion. . Therefore, even if all or part of the outer end connection portion of the P electrode and the outer end connection portion of the U electrode are outside the formation range of the laminated portion along the one side, the portion connected to the outer end connection portion The wiring width is not reduced. Further, the P electrode lead terminal and the U electrode lead terminal can be made larger in volume than the N electrode lead terminal.
As for heat conduction in the solid, the N electrode lead-out terminal conducts heat only from the semiconductor switching element through the bonding wire, but the P electrode lead-out terminal and the U electrode lead-out terminal do not go through the bonding wire, and the conductor pattern on the circuit. Therefore, the heat generation amount is larger than that of the N electrode lead terminal (as described above, the U electrode lead terminal has the largest heat generation amount).
Therefore, by making the P electrode lead-out terminal and the U electrode lead-out terminal larger than the N electrode lead-out terminal, temperature imbalance can be suppressed as compared with the case where it is the same or smaller than the N electrode lead-out terminal.

請求項7記載の発明は、P電極導出端子及びU電極導出端子の前記一辺に沿って自己の外端接続部から前記積層部へ至る部分に前記一辺に沿った折りが形成されていることを特徴とする請求項6記載の電力用半導体装置である。   According to a seventh aspect of the present invention, a fold along the one side is formed in a portion from the outer end connecting portion to the laminated portion along the one side of the P electrode lead terminal and the U electrode lead terminal. The power semiconductor device according to claim 6.

請求項7記載の発明によれば、前記一辺に沿った折りが入ることにより、限られたスペース内で外端接続部から積層部へ至る部分の断面積を大きくとることができ、電流と熱の集中を防ぐことができる。   According to the seventh aspect of the present invention, by folding along the one side, the cross-sectional area of the portion from the outer end connecting portion to the laminated portion can be increased within a limited space, and the current and heat can be increased. Can be prevented.

請求項8記載の発明は、P電極の内端接続部は前記積層部分を介して自己の外端接続部の逆側に形成されていることを特徴とする請求項6又は請求項7に記載の電力用半導体装置である。   The invention according to claim 8 is characterized in that the inner end connection portion of the P electrode is formed on the opposite side of its outer end connection portion through the laminated portion. This is a power semiconductor device.

同一側に内端接続部と外端接続部を形成すると、積層部を拡幅するに従い内端接続部及び外端接続部と逆側の端部の電流密度が低下する。これに対し、請求項8記載の発明によれば、P電極の内端接続部と外端接続部とが積層部を介して相互に逆側に配置されるため、積層部を拡幅しても電流の経路の偏在化が抑えられ、電極導出端子内の電流密度を不均一化することを防止できる。   When the inner end connecting portion and the outer end connecting portion are formed on the same side, the current density at the end opposite to the inner end connecting portion and the outer end connecting portion decreases as the laminated portion is widened. On the other hand, according to the invention described in claim 8, since the inner end connecting portion and the outer end connecting portion of the P electrode are arranged on the opposite sides of each other through the laminated portion, even if the laminated portion is widened, The uneven distribution of the current path can be suppressed, and the current density in the electrode lead-out terminal can be prevented from becoming non-uniform.

請求項9記載の発明は、N電極の内端接続部は前記積層部分を介してP電極の内端接続部の逆側に形成されていることを特徴とする請求項8記載の電力用半導体装置である。   The power semiconductor according to claim 9, wherein the inner end connection portion of the N electrode is formed on the opposite side of the inner end connection portion of the P electrode through the stacked portion. Device.

請求項9記載の発明によれば、P電極の内端接続部とN電極の内端接続部とが積層部を介して相互に逆側に配置されるため、P−U間に接続される半導体スイッチング素子の搭載領域と、U−N間に接続される半導体スイッチング素子の搭載領域とを積層部直下領域に境界を置いて分割配置したとき、左右対称的な最適配線構造を構成することができる。   According to the ninth aspect of the present invention, the inner end connecting portion of the P electrode and the inner end connecting portion of the N electrode are disposed on the opposite sides of each other through the stacked portion. When the mounting region of the semiconductor switching element and the mounting region of the semiconductor switching element connected between U and N are divided and arranged with the boundary immediately below the stacked portion, a symmetrical optimal wiring structure can be configured. it can.

請求項10記載の発明は、U電極の内端接続部は前記積層部分の両側に形成されており、
前記P−U間に接続される前記半導体スイッチング素子の表面主電極と前記ボンディングワイヤを介して接続される前記導体パターンに接合するU電極の内端接続部が、P電極の内端接続部と同じ側に形成され、
前記U−N間に接続される前記半導体スイッチング素子が接合された前記導体パターンに接合するU電極の内端接続部が、N電極の内端接続部と同じ側に形成されてなることを特徴とする請求項9記載の電力用半導体装置である。
In the invention according to claim 10, the inner end connection part of the U electrode is formed on both sides of the laminated part,
The inner end connection portion of the U electrode joined to the surface main electrode of the semiconductor switching element connected between the P-U and the conductor pattern connected via the bonding wire is an inner end connection portion of the P electrode. Formed on the same side,
The inner end connection portion of the U electrode joined to the conductor pattern to which the semiconductor switching element connected between U and N is joined is formed on the same side as the inner end connection portion of the N electrode. A power semiconductor device according to claim 9.

請求項10記載の発明によれば、P−U間に接続される半導体スイッチング素子の搭載領域と、U−N間に接続される半導体スイッチング素子の搭載領域とを積層部直下領域に境界を置いて分割配置したとき、U電極の内端接続部を最短で接続することができる。   According to the tenth aspect of the present invention, the mounting region of the semiconductor switching element connected between P-U and the mounting region of the semiconductor switching element connected between U-N are placed in the region immediately below the stacked portion. Thus, the inner end connection part of the U electrode can be connected in the shortest time.

請求項11記載の発明は、P電極の一つの内端接続部が前記積層部の先端側に位置し、P電極の内端接続部と同じ側に形成されたU電極の1又は2以上の内端接続部のすべては、前記先端側に位置するP電極の一つの内端接続部より前記積層部の基端側に位置することを特徴とする請求項10記載の電力用半導体装置である。   The invention according to claim 11 is characterized in that one inner end connecting portion of the P electrode is located on the tip side of the stacked portion and one or more of the U electrodes formed on the same side as the inner end connecting portion of the P electrode. 11. The power semiconductor device according to claim 10, wherein all of the inner end connection portions are located closer to the base end side of the stacked portion than one inner end connection portion of the P electrode located on the distal end side. .

請求項11記載の発明よれば、P−U間に接続される半導体スイッチング素子の表面主電極とボンディングワイヤを介して接続される導体パターンに接合するU電極の内端接続部よりも発熱量が大きくなりやすいP電極の内端接続部の少なくとも一つを、最も先端側に配置するので、積層部に配置されるP電極導出端子中において実質的な電流経路断面積をより大きくでき、より広く電流を分散することができて、電流や熱の集中を緩和することができる。
なお、半導体スイッチング素子と回路基板上の導体パターンを介して接続する内端接続部の方が、半導体スイッチング素子と回路基板上の導体パターン及びボンディングワイヤを介して接続する内端接続部より発熱量が大きくなる。発熱量が大きくなる電極導出端子中の実質的な電流経路断面積をより大きくすることが好ましい。
According to the eleventh aspect of the present invention, the amount of heat generated is larger than that of the inner end connection portion of the U electrode joined to the surface main electrode of the semiconductor switching element connected between P and U and the conductor pattern connected via the bonding wire. Since at least one of the inner end connection portions of the P electrode that tends to be large is disposed on the most distal side, the substantial current path cross-sectional area can be increased in the P electrode lead-out terminal disposed in the stacked portion, The current can be dispersed, and the concentration of current and heat can be reduced.
The inner end connection portion connected to the semiconductor switching element via the conductor pattern on the circuit board generates more heat than the inner end connection portion connected to the semiconductor switching element via the conductor pattern and bonding wire on the circuit board. Becomes larger. It is preferable to increase the substantial current path cross-sectional area in the electrode lead-out terminal where the heat generation amount is large.

請求項12記載の発明は、N電極の内端接続部と同じ側に形成されたU電極の一つの内端接続部が前記積層部の先端側に位置し、N電極の1又は2以上の内端接続部のすべては、前記先端側に位置するU電極の一つの内端接続部より前記積層部の基端側に位置することを特徴とする請求項10記載の電力用半導体装置である。   The invention according to claim 12 is characterized in that one inner end connection portion of the U electrode formed on the same side as the inner end connection portion of the N electrode is located on the tip side of the stacked portion, and one or more of the N electrodes are provided. 11. The power semiconductor device according to claim 10, wherein all of the inner end connection portions are located closer to the base end side of the stacked portion than one inner end connection portion of the U electrode located on the distal end side. .

請求項12記載の発明によれば、U−N間に接続される半導体スイッチング素子が接合された導体パターンに接合する発熱量が最も大きいU電極の内端接続部の少なくとも一つを、最も先端側に配置するので、積層部に配置されるU電極導出端子中において実質的な電流経路断面積をより大きくでき、より広く電流を分散することができて、電流や熱の集中を緩和することができる。   According to the twelfth aspect of the invention, at least one of the inner end connection portions of the U electrode that generates the largest amount of heat to be bonded to the conductor pattern to which the semiconductor switching element connected between U and N is bonded is the most distal end. Since it is arranged on the side, the substantial current path cross-sectional area can be increased in the U electrode lead-out terminal arranged in the laminated portion, the current can be spread more widely, and the concentration of current and heat can be reduced. Can do.

請求項13記載の発明は、P,N,U各電極の内端接続部は、それぞれ同一側縁に2以上ずつ、先端側と基端側に振り分けられて設けられていることを特徴とする請求項4から請求項12のうちいずれか一に記載の電力用半導体装置である。   The invention according to claim 13 is characterized in that the inner end connecting portions of the respective P, N, and U electrodes are provided on the same side edge so as to be distributed to the distal end side and the proximal end side. A power semiconductor device according to any one of claims 4 to 12.

請求項13記載の発明によれば、積層部から内端接続部、内端接続部から積層部への電流経路が必ず2以上、先端側と基端側に確保されるので、積層部に配置される各電極導出端子中において実質的な電流経路断面積をより大きくでき、より広く電流を分散することができて、電流や熱の集中を緩和することができる。   According to the thirteenth aspect of the present invention, since there are always two or more current paths from the laminated portion to the inner end connecting portion and from the inner end connected portion to the laminated portion, the distal end side and the proximal end side are secured. In each electrode lead-out terminal, the substantial current path cross-sectional area can be increased, the current can be more widely dispersed, and the concentration of current and heat can be reduced.

請求項14記載の発明は、前記回路基板の裏面に面を接触させる放熱板と、前記回路基板の周囲の前記放熱板の縁部に固定され前記回路基板を包囲する枠状の絶縁性ケースとを有し、前記3つの電極導出端子が前記絶縁性ケースに一部を埋没して保持されてなることを特徴とする請求項1から請求項13のうちいずれか一に記載の電力用半導体装置である。   The invention according to claim 14 is a heat sink that contacts the back surface of the circuit board, and a frame-like insulating case that is fixed to an edge of the heat sink around the circuit board and surrounds the circuit board. The power semiconductor device according to any one of claims 1 to 13, wherein the three electrode lead-out terminals are held by being partially buried in the insulating case. It is.

請求項14記載の発明によれば、放熱板により回路基板の裏面からの放熱性が良く、絶縁性ケースに3つの電極導出端子が埋没保持されているので、電極導出端子の保持性が良い。また、電極導出端子を絶縁性ケースの所定位置に埋没保持した後に、それにより一体化された絶縁性ケース及び電極導出端子を、回路基板が所定位置に固定された放熱板上に載置することによって、簡単、正確に回路基板上に各電極導出端子を配置することができ、さらに、半田熱処理等の必要な工程を経て各内端接続部と回路基板との接合を一括して処理することができる。   According to the fourteenth aspect of the present invention, the heat dissipation from the back surface of the circuit board is good by the heat radiating plate, and the three electrode lead-out terminals are buried and held in the insulating case. Also, after the electrode lead-out terminal is buried and held in a predetermined position of the insulating case, the insulating case integrated with the electrode lead-out terminal and the electrode lead-out terminal are placed on a heat sink with the circuit board fixed at the predetermined position. The electrode lead-out terminals can be arranged on the circuit board simply and accurately, and the joining of each inner end connection portion and the circuit board can be collectively processed through necessary processes such as solder heat treatment. Can do.

請求項15記載の発明は、前記3つの電極導出端子の相互間の間隔が絶縁材を介して保持されてなることを特徴とする請求項1から請求項14のうちいずれか一に記載の電力用半導体装置である。   According to a fifteenth aspect of the present invention, in the electric power according to any one of the first to fourteenth aspects, an interval between the three electrode lead-out terminals is held via an insulating material. Semiconductor device.

請求項15記載の発明は、電極導出端子の相互間の間隔が絶縁材を介して保持されるので、狭い間隔でも確実に絶縁し、一定の間隔に保持することができる。   According to the fifteenth aspect of the present invention, since the distance between the electrode lead-out terminals is held via the insulating material, it is possible to reliably insulate even at a narrow distance and hold it at a constant distance.

請求項16記載の発明は、前記半導体スイッチング素子はMOSFETであることを特徴とする請求項1から請求項15のうちいずれか一に記載の電力用半導体装置である。   According to a sixteenth aspect of the present invention, in the power semiconductor device according to any one of the first to fifteenth aspects, the semiconductor switching element is a MOSFET.

請求項16記載の発明によれば、MOSFETは、元来その構造中にダイオードを含んでいるので、通常、外付けのダイオード素子を設けなくても十分に耐えられる。   According to the sixteenth aspect of the present invention, since the MOSFET originally includes a diode in its structure, the MOSFET can normally withstand even without providing an external diode element.

上述したように本発明によれば、その電極導出端子の形状、配置により薄型化、熱対策、ノイズ対策が優れたものとなる。
特に、電極導出端子の幅を広くしやすく、電流密度の不均衡を抑えつつ電極導出端子中の実質的な電流経路断面積を大きく取ることができる。このように電極導出端子の断面積を効果的に大きくすることにより電極導出端子の熱容量が増大され熱分散性、放熱性が高められ、配線抵抗、特に熱抵抗分が低下するという効果がある。
3つの電極導出端子は積層構造を構成するので、部分的に相互インダクタンスによるインダクタンスの相殺作用を生ぜしめることもでき、また、電極導出端子を幅広とすることにより自己インダクタンスが減少し、自己インダクタンスの減少又は自己インダクタンスの減少と相互インダクタンスによるインダクタンスの相殺作用によりインダクタンスが低減されるという効果がある。
さらに本発明によれば、製造歩留まり良好で、使用時の環境に耐え、信頼性の高い電力用半導体装置が得られる。
結果として本発明によれば、小型でも、より大電流をより高周波数で変換することに耐えられるという効果がある。
As described above, according to the present invention, the shape and arrangement of the electrode lead-out terminals are excellent in thickness reduction, heat countermeasures, and noise countermeasures.
In particular, the width of the electrode lead-out terminal can be easily increased, and a substantial current path cross-sectional area in the electrode lead-out terminal can be increased while suppressing an imbalance in current density. By effectively increasing the cross-sectional area of the electrode lead-out terminal in this manner, the heat capacity of the electrode lead-out terminal is increased, heat dispersibility and heat dissipation are improved, and the wiring resistance, particularly the heat resistance, is reduced.
Since the three electrode lead-out terminals form a laminated structure, it is possible to partially cancel the inductance due to mutual inductance. Also, by widening the electrode lead-out terminals, the self-inductance is reduced and the self-inductance is reduced. There is an effect that the inductance is reduced by a reduction or self-inductance reduction and an inductance canceling action by mutual inductance.
Furthermore, according to the present invention, it is possible to obtain a power semiconductor device that has a good manufacturing yield, can withstand the environment during use, and has high reliability.
As a result, according to the present invention, even if it is small, there is an effect that it can withstand conversion of a larger current at a higher frequency.

以下に本発明の一実施の形態につき図面を参照して説明する。以下は本発明の一実施形態であって本発明を限定するものではない。
図1は、本実施形態の電力用半導体装置の平面図(一部透過)である。図2は、図1におけるA−A断面図である。図3は、図1におけるB−B断面図である。図4は、電極導出端子インサート型のケースの平面図(a)及び正面図(b)である。図5は、P電極導出端子の平面図である。図6は、N電極導出端子の平面図である。図7は、U電極導出端子の平面図である。図8は、P,N,Uの3電極導出端子及び絶縁材の分解斜視図である。図9は、回路基板(ボンディングワイヤ無し)の平面図である。図10は、本実施形態の電力用半導体装置の等価回路図である。図11は、3相モータの駆動回路の回路図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The following is one embodiment of the present invention and does not limit the present invention.
FIG. 1 is a plan view (partially transparent) of the power semiconductor device of this embodiment. 2 is a cross-sectional view taken along line AA in FIG. 3 is a cross-sectional view taken along the line BB in FIG. FIG. 4 is a plan view (a) and a front view (b) of an electrode lead-out terminal insert type case. FIG. 5 is a plan view of the P electrode lead-out terminal. FIG. 6 is a plan view of the N electrode lead-out terminal. FIG. 7 is a plan view of the U electrode lead-out terminal. FIG. 8 is an exploded perspective view of the three-electrode lead terminals P, N, and U and the insulating material. FIG. 9 is a plan view of a circuit board (without bonding wires). FIG. 10 is an equivalent circuit diagram of the power semiconductor device of this embodiment. FIG. 11 is a circuit diagram of a drive circuit for a three-phase motor.

図1〜3に示すように本実施形態の電力用半導体装置は、放熱板1と、2つの回路基板2H、2Lと、ケース3とが組立てられて構成され、図10に示す回路を構成する。   As shown in FIGS. 1 to 3, the power semiconductor device of the present embodiment is configured by assembling the heat radiating plate 1, the two circuit boards 2 </ b> H and 2 </ b> L, and the case 3 to form the circuit shown in FIG. 10. .

図4に示すようにケース3には、積層部11を構成するP,N,U各電極の電極導出端子4〜6及び制御用電極導出端子7H,7L,8H,8Lが保持されている。P,N,U各電極の電極導出端子4〜6及び制御用電極導出端子7、8は、銅板などの金属板をプレス成型して作製されるものであり、ニッケルめっき等が施される。ケース3は、樹脂成型品である。
図5及び図8(e)に示すように、P電極導出端子4は、平行平板部4aと、垂直平板部4bと、外端接続部4cと、2つの内端接続部4d,4eとに分けて捉えることができる。
図6及び図8(c)に示すように、N電極導出端子5は、平行平板部5aと、垂直平板部5bと、外端接続部5cと、2つの内端接続部5d,5eとに分けて捉えることができる。
図7及び図8(a)に示すように、U電極導出端子6は、平行平板部6aと、垂直平板部6bと、外端接続部6cと、4つの内端接続部6d〜6gとに分けて捉えることができる。
各平行平板部4a,5a,6aは、回路基板2H、2Lに平行に配置される平板状部分である。
各垂直平板部4b,5b,6bは、回路基板2H、2Lに対し垂直に配置され、図8に示すように各平行平板部4a,5a,6aの端部と外端接続部4c,5c,6cの端部とを連結する平板状部分である。
P電極の外端接続部4cは、電源の高電位側からの外部配線が接続される。N電極の外端接続部5cは、電源の低電位側からの外部配線が接続される。U電極の外端接続部6cには、3相モータなどの出力先の装置が接続される。
As shown in FIG. 4, the case 3 holds the electrode lead terminals 4 to 6 and the control electrode lead terminals 7H, 7L, 8H, and 8L of the P, N, and U electrodes that constitute the stacked portion 11. The electrode lead-out terminals 4 to 6 and the control electrode lead-out terminals 7 and 8 of the P, N, and U electrodes are produced by press-molding a metal plate such as a copper plate, and are subjected to nickel plating or the like. Case 3 is a resin molded product.
As shown in FIGS. 5 and 8 (e), the P electrode lead-out terminal 4 includes a parallel plate portion 4a, a vertical plate portion 4b, an outer end connection portion 4c, and two inner end connection portions 4d and 4e. Can be captured separately.
As shown in FIGS. 6 and 8 (c), the N electrode lead-out terminal 5 is connected to the parallel flat plate portion 5a, the vertical flat plate portion 5b, the outer end connection portion 5c, and the two inner end connection portions 5d and 5e. Can be captured separately.
As shown in FIGS. 7 and 8 (a), the U electrode lead-out terminal 6 includes a parallel plate portion 6a, a vertical plate portion 6b, an outer end connection portion 6c, and four inner end connection portions 6d to 6g. Can be captured separately.
Each parallel flat plate part 4a, 5a, 6a is a flat plate-like part arrange | positioned in parallel with the circuit boards 2H and 2L.
The vertical flat plate portions 4b, 5b, 6b are arranged perpendicular to the circuit boards 2H, 2L, and as shown in FIG. 8, the ends of the parallel flat plate portions 4a, 5a, 6a and the outer end connection portions 4c, 5c, It is a flat part which connects the edge part of 6c.
An external wiring from the high potential side of the power source is connected to the outer end connection portion 4c of the P electrode. The external connection from the low potential side of the power source is connected to the outer end connection portion 5c of the N electrode. An output destination device such as a three-phase motor is connected to the outer end connection portion 6c of the U electrode.

3つの外端接続部4c,5c,6cは、ケース3の上端面上に同一高さで配置される。各平行平板部4a,5a,6aは、回路基板2H、2Lに近い方からP,N,Uの順に間隔隔てて積層され、その間隔は、絶縁材9,10によって保持される。したがって、外端接続部4c,5c,6cと平行平板部4a,5a,6aとの高低差は、P,N,Uの順で大きい。
図8に示すように絶縁材9,10は、均一な厚さで断面L字状に形成されており、垂直平板部4b,5b,6bの相互間の間隔も絶縁材9,10によって保持される。
The three outer end connection portions 4 c, 5 c, 6 c are arranged on the upper end surface of the case 3 at the same height. The parallel plate portions 4a, 5a, and 6a are stacked at intervals in the order of P, N, and U from the side closer to the circuit boards 2H and 2L, and the intervals are held by the insulating materials 9 and 10. Therefore, the height difference between the outer end connection portions 4c, 5c, and 6c and the parallel plate portions 4a, 5a, and 6a is large in the order of P, N, and U.
As shown in FIG. 8, the insulating materials 9 and 10 are formed in an L-shaped section with a uniform thickness, and the distance between the vertical flat plate portions 4b, 5b and 6b is also held by the insulating materials 9 and 10. The

各平行平板部4a,5a,6aの先端は、同一位置に配置される。したがって、平行平板部の長さは、P,N,Uの順で長い。P,N,Uの3層は、N電極の平行平板部5aのほぼ全体において積層している。平行平板部5aの垂直平板部5bに近接する絶縁材10の厚み相当の範囲は積層部11から除かれる。
なお、3つの垂直平板部4b,5b,6bは、回路基板2H,2Lと平行な方向に部分的に積層している。
The tips of the parallel plate portions 4a, 5a, 6a are arranged at the same position. Therefore, the length of the parallel plate portion is longer in the order of P, N, and U. The three layers P, N, and U are stacked on almost the entire parallel plate portion 5a of the N electrode. A range corresponding to the thickness of the insulating material 10 adjacent to the vertical flat plate portion 5 b of the parallel flat plate portion 5 a is excluded from the laminated portion 11.
The three vertical flat plate portions 4b, 5b, and 6b are partially stacked in a direction parallel to the circuit boards 2H and 2L.

各外端接続部4c,5c,6cには、ケース3の縁に沿った同位置に揃うように、ボルト挿入孔4k,5k,6kがプレス形成時に空けられている。これらのボルト挿入孔4k,5k,6kに連通するナット23が1つずつ、計3つケース3に埋め込まれている。これらのボルト挿入孔4k,5k,6k及び3つのナット23は、外部配線の端部に設けたリング状の端子を外端接続部4c,5c,6cにボルト締めにより圧着接続するための構造である。   Bolt insertion holes 4k, 5k, and 6k are formed in the outer end connection portions 4c, 5c, and 6c at the same time along the edge of the case 3 during press forming. Three nuts 23 communicating with these bolt insertion holes 4k, 5k, and 6k, one by one, are embedded in the case 3 in total. These bolt insertion holes 4k, 5k, and 6k and the three nuts 23 have a structure for crimping and connecting a ring-shaped terminal provided at an end portion of the external wiring to the outer end connection portions 4c, 5c, and 6c by bolting. is there.

各内端接続部4d,4e,5d,5e,6d〜6gは、積層部11の側縁、すなわち、各平行平板部4a,5a,6aの側縁から同一面内で突出形成された突起状部分で、途中で回路基板2H、2L側に折り曲げられ、さらにそれより先で内側に折り曲がられて形成されている。
積層部11の片側に配置された4つの内端接続部4d,4e,6d,6eについては、先端側からP電極の先端側内端接続部4d、U電極の先端側内端接続部6d、U電極の基端側内端接続部6e、P電極の基端側内端接続部4eの順で配置されている。
積層部11の他の片側に配置された4つの内端接続部5d,5e,6f,6gについては、先端側からU電極の先端側内端接続部6f、N電極の先端側内端接続部5d、N電極の基端側内端接続部5e、U電極の基端側内端接続部6gの順で配置されている。
最も先端側の内端接続部4d,6fの先端側端面は、平行平板部4a、6aの先端、すなわち、積層部11の先端に一致する。
片側4つの内端接続部4d,4e,6d,6eは均等な間隔に配置されず、内端接続部6dと内端接続部6eとの間が相対的に大きく開くことによって、先端側内端接続部4d, 6dと基端側内端接続部4e,6eとが先端側と基端側に偏在するように配置されている。
同様に、他の片側4つの内端接続部5d,5e,6f,6gは均等な間隔に配置されず、内端接続部5dと内端接続部5eとの間が相対的に大きく開くことによって、先端側内端接続部5d, 6fと基端側内端接続部5e,6gとが先端側と基端側に偏在するように配置されている。
Each of the inner end connection portions 4d, 4e, 5d, 5e, 6d to 6g has a protruding shape that protrudes in the same plane from the side edge of the laminated portion 11, that is, the side edge of each of the parallel plate portions 4a, 5a, 6a. The part is formed by being bent to the circuit board 2H, 2L side in the middle and further bent to the inner side after that.
For the four inner end connection portions 4d, 4e, 6d, and 6e arranged on one side of the stacked portion 11, from the front end side, the P electrode front end side inner end connection portion 4d, the U electrode front end side inner end connection portion 6d, The base end side inner end connection portion 6e of the U electrode and the base end side inner end connection portion 4e of the P electrode are arranged in this order.
Regarding the four inner end connection portions 5d, 5e, 6f, and 6g arranged on the other side of the laminated portion 11, from the front end side, the front end side inner end connection portion 6f of the U electrode and the front end side inner end connection portion of the N electrode 5d, the base end side inner end connection portion 5e of the N electrode, and the base end side inner end connection portion 6g of the U electrode are arranged in this order.
The front end side end surfaces of the inner end connection portions 4d and 6f on the most front end side coincide with the front ends of the parallel plate portions 4a and 6a, that is, the front end of the stacked portion 11.
The four inner end connecting parts 4d, 4e, 6d, 6e on one side are not arranged at equal intervals, and the inner end connecting part 6d and the inner end connecting part 6e are opened relatively widely, so that The connection portions 4d and 6d and the proximal end inner end connection portions 4e and 6e are arranged so as to be unevenly distributed on the distal end side and the proximal end side.
Similarly, the other four inner end connecting portions 5d, 5e, 6f, 6g on the other side are not arranged at equal intervals, and the inner end connecting portion 5d and the inner end connecting portion 5e are opened relatively large. The distal end inner end connecting portions 5d and 6f and the proximal end inner end connecting portions 5e and 6g are arranged so as to be unevenly distributed on the distal end side and the proximal end side.

図4、図5等に示すように、P電極導出端子4の平行平板部4aの基端部は、積層部11の基端部より内端接続部4eの逆側に突出形成され、積層部11と同一幅の先端部より拡幅されている。この拡幅された平行平板部4aの基端部に同一幅で直角な折りを介して連続して垂直平板部4bが形成され、さらに垂直平板部4bの内端接続部4eと逆側の端部に直角な折りを介して外端接続部4cが連結されている。これら2回の折りが相互逆方向となることにより、P電極導出端子4は断面クランク状に形成されている。
内端接続部4eの逆側に平行平板部4aの基端部を拡幅したため、平行平板部4aの積層部11から突出する部分と内端接続部4eとが干渉せず、2つの内端接続部4d,4eの間隔を広く取りつつ、平行平板部4aの積層部11から突出する部分を大きく形成することができる。平行平板部4aの積層部11から突出する部分と垂直平板部4bとにより積層部11から外端接続部4cまでの電流経路の断面積が大きくとられている。
As shown in FIG. 4, FIG. 5, etc., the base end portion of the parallel plate portion 4a of the P electrode lead-out terminal 4 is formed so as to protrude from the base end portion of the laminated portion 11 to the opposite side of the inner end connecting portion 4e. 11 is widened from the tip portion having the same width as that of 11. A vertical flat plate portion 4b is continuously formed at the base end portion of the widened parallel flat plate portion 4a through a right-angle fold with the same width, and an end portion on the opposite side to the inner end connection portion 4e of the vertical flat plate portion 4b. The outer end connection portion 4c is coupled through a fold that is perpendicular to each other. The P electrode lead-out terminals 4 are formed in a cross-sectional crank shape by these two foldings being opposite to each other.
Since the base end portion of the parallel plate portion 4a is widened on the opposite side of the inner end connection portion 4e, the portion protruding from the laminated portion 11 of the parallel plate portion 4a and the inner end connection portion 4e do not interfere with each other, and two inner end connections are made. The part which protrudes from the lamination | stacking part 11 of the parallel plate part 4a can be formed large, keeping the space | interval of the parts 4d and 4e wide. The cross-sectional area of the current path from the laminated portion 11 to the outer end connection portion 4c is increased by the portion of the parallel flat plate portion 4a that protrudes from the laminated portion 11 and the vertical flat plate portion 4b.

図4、図6等に示すように、N電極導出端子5の平行平板部5aは全体として積層部11と同一幅で形成されている。平行平板部5aに同一幅で直角な折りを介して連続して垂直平板部5bが形成され、さらに垂直平板部5bの中央部に直角な折りを介して外端接続部5cが連結されている。これら2回の折りが相互逆方向となることにより、U電極導出端子5は断面クランク状に形成されている。   As shown in FIGS. 4 and 6, the parallel plate portion 5 a of the N electrode lead-out terminal 5 is formed to have the same width as the stacked portion 11 as a whole. A vertical flat plate portion 5b is continuously formed on the parallel flat plate portion 5a through a right-angle fold with the same width, and an outer end connection portion 5c is connected to a central portion of the vertical flat plate portion 5b through a right-angle fold. . The U-electrode lead-out terminals 5 are formed in a cross-sectional crank shape by these two foldings being in opposite directions.

図4、図7等に示すように、U電極導出端子6の平行平板部6aの基端部は、積層部11の基端部より内端接続部6gの逆側に突出形成され、積層部11と同一幅の先端部より拡幅されている。この拡幅された平行平板部6aの基端部に同一幅で直角な折りを介して連続して垂直平板部6bが形成され、さらに垂直平板部6bの内端接続部6gと逆側の端部に直角な折りを介して外端接続部6cが連結されている。これら2回の折りが相互逆方向となることにより、U電極導出端子6は断面クランク状に形成されている。
内端接続部6gの逆側に平行平板部6aを拡幅したため、平行平板部6aの積層部11から突出する部分と内端接続部6gとが干渉せず、2つの内端接続部6f, 6gの間隔を広く取りつつ、平行平板部6aの積層部11から突出する部分を大きく形成することができる。平行平板部6aの積層部11から突出する部分と垂直平板部6bとにより積層部11から外端接続部6cまでの電流経路の断面積が大きくとられている。
As shown in FIG. 4, FIG. 7, etc., the base end portion of the parallel flat plate portion 6a of the U electrode lead-out terminal 6 is formed so as to protrude from the base end portion of the laminated portion 11 to the opposite side of the inner end connecting portion 6g. 11 is widened from the tip portion having the same width as that of 11. A vertical flat plate portion 6b is continuously formed at the base end portion of the widened parallel flat plate portion 6a through a right-angle fold with the same width, and an end portion on the opposite side to the inner end connection portion 6g of the vertical flat plate portion 6b. The outer end connection portion 6c is coupled through a fold that is perpendicular to each other. The U-electrode lead-out terminal 6 is formed in a cross-sectional crank shape by these two foldings being opposite to each other.
Since the parallel flat plate portion 6a is widened on the opposite side of the inner end connection portion 6g, the portion protruding from the laminated portion 11 of the parallel plate portion 6a and the inner end connection portion 6g do not interfere with each other, and the two inner end connection portions 6f, 6g. The part which protrudes from the lamination | stacking part 11 of the parallel plate part 6a can be formed large, taking the space | interval of this wide. The cross-sectional area of the current path from the laminated portion 11 to the outer end connecting portion 6c is increased by the portion of the parallel flat plate portion 6a that protrudes from the laminated portion 11 and the vertical flat plate portion 6b.

図9に示すように、2つの回路基板2H、2Lは、同一の回路パターンを有するものである。回路基板2HはP−U間に接続されるもので、P−U間に接続されるMOSFET素子12Hが16個実装される。回路基板2LはU−N間に接続されるもので、U−N間に接続されるMOSFET素子12Lが16個実装される。
回路基板2H、2Lは、それぞれ絶縁基板13と絶縁基板13上の導体パターン14,15,16とを有する。導体パターン14は、MOSFET素子12H(12L)のゲート電極、導体パターン15は、MOSFET素子12H(12L)のソース電極, 導体パターン16は、MOSFET素子12H(12L)のドレイン電極と接続する。ゲート用導体パターン14の周りに、ソース用導体パターン15が環状に形成され、さらにソース用導体パターン15の周りに、ドレイン用導体パターン16が環状に形成された回路パターンを有する。
導体パターン14上には各MOSFET素子12H(12L)に対応した16個のゲート抵抗素子17H(17L)が付設されている。
MOSFET素子12H(12L)は、そのドレイン電極を有する裏面を導体パターン16に接合している。MOSFET素子12H(12L)のゲート電極、ソース電極はチップ表面に形成されており、図1の組立図に示すように、ボンディングワイヤ18を介して、導体パターン14,15にそれぞれ接続される。
As shown in FIG. 9, the two circuit boards 2H and 2L have the same circuit pattern. The circuit board 2H is connected between P-U, and 16 MOSFET elements 12H connected between P-U are mounted. The circuit board 2L is connected between U and N, and 16 MOSFET elements 12L connected between U and N are mounted.
The circuit boards 2H and 2L respectively have an insulating substrate 13 and conductor patterns 14, 15 and 16 on the insulating substrate 13. The conductor pattern 14 is connected to the gate electrode of the MOSFET element 12H (12L), the conductor pattern 15 is connected to the source electrode of the MOSFET element 12H (12L), and the conductor pattern 16 is connected to the drain electrode of the MOSFET element 12H (12L). A source conductor pattern 15 is formed in a ring shape around the gate conductor pattern 14, and a drain conductor pattern 16 is formed in a ring shape around the source conductor pattern 15.
On the conductor pattern 14, 16 gate resistance elements 17H (17L) corresponding to the respective MOSFET elements 12H (12L) are attached.
MOSFET element 12H (12L) has the back surface having the drain electrode bonded to conductor pattern 16. The gate electrode and the source electrode of the MOSFET element 12H (12L) are formed on the chip surface, and are connected to the conductor patterns 14 and 15 via bonding wires 18 as shown in the assembly diagram of FIG.

内端接続部の接続領域24を図9において囲み破線で示す。P電極導出端子4の内端接続部4d,4eは回路基板2H側のドレイン用導体パターン16に半田付けにより接合される。
U電極導出端子6の2つの内端接続部6d,6eは回路基板2H側のソース用導体パターン15に半田付けにより接合される。
制御用電極導出端子7Hは、回路基板2H側のゲート用導体パターン14に半田を介して接合される。制御用電極導出端子8Hは、回路基板2H側のソース用導体パターン15に半田付けにより接合される。
The connection region 24 of the inner end connection portion is shown by a surrounding broken line in FIG. Inner end connection portions 4d and 4e of the P electrode lead-out terminal 4 are joined to the drain conductor pattern 16 on the circuit board 2H side by soldering.
The two inner end connection portions 6d and 6e of the U electrode lead-out terminal 6 are joined to the source conductor pattern 15 on the circuit board 2H side by soldering.
The control electrode lead-out terminal 7H is joined to the gate conductor pattern 14 on the circuit board 2H side via solder. The control electrode lead-out terminal 8H is joined to the source conductor pattern 15 on the circuit board 2H side by soldering.

U電極導出端子6の他の2つの内端接続部6f,6gは回路基板2L側のドレイン用導体パターン16に半田付けにより接合される。
N電極導出端子5の内端接続部5d,5eは回路基板2L側のソース用導体パターン15に半田付けにより接合される。
制御用電極導出端子7Lは、回路基板2L側のソース用導体パターン15に半田付けにより接合される。制御用電極導出端子8Lは、回路基板2L側のゲート用導体パターン14に半田付けにより接合される。
The other two inner end connection portions 6f and 6g of the U electrode lead-out terminal 6 are joined to the drain conductor pattern 16 on the circuit board 2L side by soldering.
The inner end connection portions 5d and 5e of the N electrode lead-out terminal 5 are joined to the source conductor pattern 15 on the circuit board 2L side by soldering.
The control electrode lead-out terminal 7L is joined to the source conductor pattern 15 on the circuit board 2L side by soldering. The control electrode lead-out terminal 8L is joined to the gate conductor pattern 14 on the circuit board 2L side by soldering.

制御用電極導出端子7H,8Hは回路基板2H上に架設され、制御用電極導出端子7L,8Lは、回路基板2H,2L上に架設されるとともに、積層部11と立体交差している。
上記のような環状の導体パターン15,16を有する回路基板を利用しない場合は、ゲート用導体パターン、ソース用導体パターンを回路基板上で引き回し、制御用電極導出端子7H,7L,8H,8Lのケース3に保持される外端接続部付近にまで引き回し、上記の架設構造や交差構造を排しても良い。また、2枚の回路基板2H,2Lに相当する回路を一枚の回路基板に構成しても良い。一枚の回路基板にした方が導体パターンの引き回しの自由度は増す。
The control electrode lead-out terminals 7H and 8H are installed on the circuit board 2H, and the control electrode lead-out terminals 7L and 8L are provided on the circuit boards 2H and 2L and three-dimensionally intersect with the laminated portion 11.
When the circuit board having the annular conductor patterns 15 and 16 as described above is not used, the gate conductor pattern and the source conductor pattern are routed on the circuit board, and the control electrode lead terminals 7H, 7L, 8H, and 8L It may be routed to the vicinity of the outer end connection portion held by the case 3 to eliminate the above-mentioned erection structure and crossing structure. Further, a circuit corresponding to the two circuit boards 2H and 2L may be configured on a single circuit board. A single circuit board increases the degree of freedom in routing the conductor pattern.

制御用電極導出端子7Hの内端接続部は、比較的広い間隔を隔てた内端接続部6dと6eの間を通して回路基板2Hに落とされる。制御用電極導出端子7L,8Lの内端接続部は、比較的広い間隔を隔てた内端接続部5dと5eの間を通して回路基板2Lに落とされる。
電極導出端子4〜6の回路基板2L上空に位置する一側縁には、同一位置に凹部4h,5h,6hが形成されている。これにより、制御用電極導出端子7Lの内端接続部が電極導出端子4〜6に接触しないように回避されている。上記の架設構造や交差構造を排した場合は、このような凹部4h,5h,6hを設けずに、平行平板部4a,5a,6aをさらに幅広に形成することができる。
The inner end connection portion of the control electrode lead-out terminal 7H is dropped onto the circuit board 2H through the inner end connection portions 6d and 6e that are spaced apart by a relatively large distance. The inner end connection portions of the control electrode lead terminals 7L and 8L are dropped onto the circuit board 2L through the inner end connection portions 5d and 5e that are separated by a relatively wide distance.
Concave portions 4h, 5h, and 6h are formed at the same position on one side edge of the electrode lead-out terminals 4 to 6 located above the circuit board 2L. Thus, the inner end connecting portion of the control electrode lead-out terminal 7L is avoided from coming into contact with the electrode lead-out terminals 4-6. When the above-described installation structure or crossing structure is eliminated, the parallel plate portions 4a, 5a, 6a can be formed wider without providing the recesses 4h, 5h, 6h.

製造にあたって、絶縁材9,10は、電極導出端子の表面に樹脂を塗布する方法、予め形成したフィルム状の樹脂を電極導出端子の表面に貼付する方法などによって電極導出端子を積層する前に形成することが好ましい。
そのような方法によってP電極導出端子4とN電極導出端子5の合わせ面の一方に絶縁材9を形成した後に、P電極導出端子4とN電極導出端子5とを合わせる。一方、同様にしてN電極導出端子5とU電極導出端子6の合わせ面の一方に絶縁材10を形成した後に、N電極導出端子5とU電極導出端子6とを合わせ、結果的に3つの電極導出端子4〜6を3層に積層する。このように電極導出端子を積層する前に絶縁材9,10を設置する方法により絶縁材9,10を薄く形成することができる。装置薄型化のため、相互インダクタンスによるインダクタンスの相殺作用を図るために、絶縁材9,10の厚みとしては0.5(mm)程度が好ましい。この場合、上記方法によって絶縁材9,10を歩留まり良く形成することができる。
その後、ケース3を成型する成型型内に、ナット23、絶縁材9,10を挟持した3層の電極導出端子4〜6及び制御用電極導出端子7H,7L,8H,8Lを配置し、ケース3を樹脂成型する。
これにより、図4に示すように電極導出端子4〜6及び制御用電極導出端子7H,7L,8H,8Lは、ケース3の上端面に露出する外端接続部に隣接する一部を枠状のケース3に埋没させた態様でケース3に保持され固定される。電極導出端子4〜6については、垂直平板部4b,5b,6bのほぼ全部とこれに連続する平行平板部4a,5a,6aの基端側の一部とがケース3に埋没した状態で保持される。また、平行平板部4a,5a,6aの先端の一部も、ケース3の内壁に突出形成された保持部19に上下に挟まれる態様で保持される。
In manufacturing, the insulating materials 9 and 10 are formed before the electrode lead-out terminals are laminated by a method of applying a resin to the surface of the electrode lead-out terminal, a method of sticking a pre-formed film-like resin to the surface of the electrode lead-out terminal, or the like. It is preferable to do.
After the insulating material 9 is formed on one of the mating surfaces of the P electrode lead terminal 4 and the N electrode lead terminal 5 by such a method, the P electrode lead terminal 4 and the N electrode lead terminal 5 are matched. On the other hand, after the insulating material 10 is formed on one of the mating surfaces of the N electrode lead-out terminal 5 and the U electrode lead-out terminal 6 in the same manner, the N electrode lead-out terminal 5 and the U electrode lead-out terminal 6 are combined. The electrode lead terminals 4 to 6 are stacked in three layers. Thus, the insulating materials 9 and 10 can be formed thin by the method of installing the insulating materials 9 and 10 before laminating the electrode lead-out terminals. In order to reduce the thickness of the device, the thickness of the insulating materials 9 and 10 is preferably about 0.5 (mm) in order to cancel the inductance by mutual inductance. In this case, the insulating materials 9 and 10 can be formed with a high yield by the above method.
Thereafter, the three layers of electrode lead-out terminals 4 to 6 and the control electrode lead-out terminals 7H, 7L, 8H, and 8L sandwiching the nut 23, the insulating materials 9 and 10 are arranged in a mold for molding the case 3, and the case 3 is resin molded.
As a result, as shown in FIG. 4, the electrode lead-out terminals 4 to 6 and the control electrode lead-out terminals 7H, 7L, 8H, 8L are partly adjacent to the outer end connection part exposed on the upper end surface of the case 3 in a frame shape. It is held and fixed to the case 3 in a state of being buried in the case 3. The electrode lead-out terminals 4 to 6 are held in a state in which almost all of the vertical flat plate portions 4b, 5b, 6b and a part of the base end side of the parallel flat plate portions 4a, 5a, 6a continuous therewith are buried in the case 3. Is done. Further, part of the ends of the parallel flat plate portions 4 a, 5 a, 6 a are also held in a manner that they are sandwiched vertically by a holding portion 19 that is formed to protrude from the inner wall of the case 3.

次の方法により3つの電極導出端子4〜6を積層した後に、絶縁材9,10を形成することもできる。すなわち、ケース3を成型する成型型内に、ナット23、絶縁材9,10を挟持せず隙間を有した3層の電極導出端子4〜6及び制御用電極導出端子7H,7L,8H,8Lを配置し、ケース3を樹脂成型する。この樹脂成型時に、電極導出端子4〜6間の隙間に樹脂を充填し絶縁材9,10をケース3の一部として樹脂成型する。
この方法は、電極導出端子4〜6間の間隔を狭くすると樹脂充填が難しくなるため、絶縁材9,10を薄く形成することにはむかない。
しかし、ケース3と絶縁材9,10の形成工程が一括されるため工程は簡素化する。
したがって、絶縁材9,10を比較的厚く形成する場合に、樹脂充填に問題が生じないほど電極導出端子間に間隔がとれるときは有利に利用できる。
The insulating materials 9 and 10 can also be formed after the three electrode lead terminals 4 to 6 are stacked by the following method. That is, three layers of electrode lead-out terminals 4 to 6 and control electrode lead-out terminals 7H, 7L, 8H, and 8L without gaps between the nut 23 and the insulating materials 9 and 10 in the mold for molding the case 3 And the case 3 is resin-molded. At the time of this resin molding, the gap between the electrode lead-out terminals 4 to 6 is filled with resin, and the insulating materials 9 and 10 are molded as a part of the case 3.
In this method, if the interval between the electrode lead-out terminals 4 to 6 is narrowed, it becomes difficult to fill the resin. Therefore, it is difficult to form the insulating materials 9 and 10 thinly.
However, the process is simplified because the process of forming the case 3 and the insulating materials 9 and 10 is integrated.
Therefore, when the insulating materials 9 and 10 are formed to be relatively thick, the insulating materials 9 and 10 can be advantageously used when the distance between the electrode lead-out terminals is large enough to cause no problem in resin filling.

以上のようにして作製した電極導出端子インサート型のケース3と、ダイボンディング及びワイヤボンディング済みの回路基板2H,2Lを図1に示すように放熱板1上に配置する。回路基板2H,2Lはケース3に包囲される。ケース3は、回路基板2H,2L周囲の放熱板1の周縁部に合わさる。放熱板1と回路基板2H,2Lとの固定は、半田その他熱伝導性の良い接合材により行うことが好ましい。放熱板1とケース3との固定は、それぞれ4角に設けられた孔20,21にボルトを挿入してボルト、ナットで締結することにより行う。
なお、回路基板2H,2Lは、放熱板1をベースとして放熱板1上に被着形成したセラミック基板等の絶縁層及びさらにその上に形成した導体パターン層によりなる形成当初より放熱板と一体のものでも良い。
The electrode lead-out terminal insert type case 3 produced as described above and the circuit boards 2H and 2L after die bonding and wire bonding are arranged on the heat sink 1 as shown in FIG. The circuit boards 2H and 2L are surrounded by the case 3. The case 3 is fitted to the peripheral edge of the heat sink 1 around the circuit boards 2H and 2L. It is preferable to fix the heat radiating plate 1 and the circuit boards 2H and 2L with a bonding material having good thermal conductivity such as solder. The heat radiating plate 1 and the case 3 are fixed by inserting bolts into holes 20 and 21 provided at four corners and fastening them with bolts and nuts.
The circuit boards 2H and 2L are integrated with the heat sink from the beginning of the formation of an insulating layer such as a ceramic substrate deposited on the heat sink 1 with the heat sink 1 as a base and a conductor pattern layer formed thereon. Things can be used.

回路基板2H,2Lとケース3の配置を決め、各内端接続部と回路基板とを半田付けする。その後、図2、図3に示されるように、ケース3の上端開口部に樹脂製の蓋22を被せる。
すべての電極導出端子4〜6,7H,8H,7L,8Lの外端接続部は枠状のケース3の上端面に配置される。そのため、蓋22は電極導出端子に干渉せず容易に着脱可能である。蓋22を外せば、内部の検査、修理がしやすい。蓋22上に又は蓋22に代えて他の装置、例えば制御用電極導出端子7H,8H,7L,8Lに接続する制御回路基板などを配置できる。
The arrangement of the circuit boards 2H and 2L and the case 3 is determined, and each inner end connection portion and the circuit board are soldered. Thereafter, as shown in FIGS. 2 and 3, a resin lid 22 is placed on the upper end opening of the case 3.
The outer end connection portions of all the electrode lead terminals 4 to 6, 7 H, 8 H, 7 L, 8 L are arranged on the upper end surface of the frame-like case 3. Therefore, the lid 22 can be easily attached and detached without interfering with the electrode lead-out terminals. If the lid 22 is removed, the inside can be easily inspected and repaired. Other devices such as a control circuit board connected to the control electrode lead terminals 7H, 8H, 7L, and 8L can be arranged on the lid 22 or in place of the lid 22.

改めて図1の平面図を観察すると、P,N,Uの各電極導出端子4〜6の外端接続部4c,5c,6cは、回路基板2H,2Lの一辺に隣接してその外側に配置されており、積層部11は前記一辺側からその対辺側へ延出するように形成されている。外端接続部4c,5c,6cは前記一辺に沿って図面上右から左にP,N,Uの順で異なる位置に配置されている。
図2の断面図に示されるように、3つの外端接続部4c,5c,6cの外側端部は同一位置に揃えられており、3つの外端接続部4c,5c,6cはU,N,Pの順で長く形成されている。
各電極導出端子4〜6は、U,N,Pの順で内側に近い位置で、各外端接続部4c,5c,6cの内側端部から直角下方に曲がりケース3に没入し、3層に積層しつつ、ケース3の部材中においてU,N,Pの順で高い位置で直角内方に曲がり、回路基板2H,2Lと平行にケース3の内面から突出して反対側の保持部19まで渡るように延出形成されている。かかる構造により、積層部11がケース3のほぼ内寸相当の長さに形成されている。
図1に示されるように、中央側に配置される8個のMOSFET素子12H及び8個のMOSFET素子12Lの上空にも積層部11が配置され、積層部11は幅広に形成されている。
When the plan view of FIG. 1 is observed again, the outer end connection portions 4c, 5c, and 6c of the P, N, and U electrode lead-out terminals 4 to 6 are arranged adjacent to one side of the circuit boards 2H and 2L and outside thereof. The laminated portion 11 is formed so as to extend from the one side to the opposite side. The outer end connecting portions 4c, 5c, 6c are arranged at different positions in the order of P, N, U from right to left on the drawing along the one side.
As shown in the cross-sectional view of FIG. 2, the outer end portions of the three outer end connection portions 4c, 5c, 6c are aligned at the same position, and the three outer end connection portions 4c, 5c, 6c are U, N , P in order.
The electrode lead-out terminals 4 to 6 are bent in a right-angle downward direction from the inner ends of the outer end connection portions 4c, 5c, and 6c at a position close to the inner side in the order of U, N, and P, and are immersed in the case 3. Are bent inward at right angles in the order of U, N, and P in the order of the members of the case 3 and protrude from the inner surface of the case 3 in parallel with the circuit boards 2H and 2L to the holding portion 19 on the opposite side. It is extended and formed to cross. With such a structure, the laminated portion 11 is formed to have a length substantially equivalent to the inner dimension of the case 3.
As shown in FIG. 1, the laminated portion 11 is also arranged above the eight MOSFET elements 12H and the eight MOSFET elements 12L arranged on the center side, and the laminated portion 11 is formed wide.

本実施形態の電力用半導体装置を図11に示すような3相モータの駆動回路に用いる。本実施形態の電力用半導体装置がu相、v相、w相の3相に対応して3つ並列に接続される。
各相に対応した電力用半導体装置の制御用電極導出端子7H,7L,8H,8Lに図示しない制御回路からの制御信号線が接続され、この制御回路の制御によりMOSFET素子12HとMOSFET素子12Lとが交互にスイッチングする。周知のようにu相、v相、w相の各相に対応した電力用半導体装置は相互に120°ずれた位相で制御され、図11の回路全体で位相が120°ずれた3相の交流電流を3相モータMへ出力し、3相モータMを駆動する。
The power semiconductor device of the present embodiment is used in a drive circuit for a three-phase motor as shown in FIG. Three power semiconductor devices of this embodiment are connected in parallel corresponding to three phases of u phase, v phase, and w phase.
Control signal lines from a control circuit (not shown) are connected to control electrode lead terminals 7H, 7L, 8H, and 8L of the power semiconductor device corresponding to each phase, and the MOSFET circuit 12H and the MOSFET element 12L are controlled by the control circuit. Switch alternately. As is well known, the power semiconductor devices corresponding to each of the u-phase, v-phase, and w-phase are controlled with phases shifted from each other by 120 °, and the three-phase alternating current is shifted by 120 ° in the entire circuit of FIG. Current is output to the three-phase motor M, and the three-phase motor M is driven.

本実施形態に従った400〜600(A)/100,150(V)の定格容量を有する製品について内部インダクタンスを測定した。
各電極導出端子4〜6の板厚を1.5(mm)、絶縁材9,10の厚みを0.5(mm)とした。積層部11の幅は約29(mm)、長さは約61(mm)とし、1つの内端接続部の幅を4.4(mm)とした。その他は図1〜7に示すとおりのプロポーションのものを作製した。
LCZメータを用い、スイッチング周波数1kHz〜100kHzについてスイッチング時にかかるdi/dtの逆起電力から換算し以下の内部インダクタンスの値を得た。
P電極導出端子−U電極導出端子間は、15.30(nH)、U電極導出端子−N電極導出端子間は、6.80(nH)、P電極導出端子−N電極導出端子間は、22.10(nH)となり、周波数10〜12 kHzの高速運転に耐えられえる低インダクタンスを得た。
また、MOSFET素子の接合(junction)〜ケース(case)間の熱抵抗Rth(j〜c)を測定したところ、Rth(j〜c)=0.1(℃/W)となった。
また、MOSFET素子2H及び2Lをオンとして、P電極導出端子−N電極導出端子間に400(A)の直流電流を15分間通電したところ、P電極の外端接続部4cの表面温度及びN電極の外端接続部5cはともに74(℃)となった。
The internal inductance was measured for a product having a rated capacity of 400 to 600 (A) / 100,150 (V) according to the present embodiment.
The plate thickness of each electrode lead-out terminal 4-6 was 1.5 (mm), and the thickness of the insulating materials 9 and 10 was 0.5 (mm). The width of the laminated portion 11 was about 29 (mm), the length was about 61 (mm), and the width of one inner end connecting portion was 4.4 (mm). Others were produced with proportions as shown in FIGS.
Using an LCZ meter, the following internal inductance values were obtained by converting from the back electromotive force of di / dt applied at the switching frequency of 1 kHz to 100 kHz.
15.30 (nH) between the P electrode lead terminal and the U electrode lead terminal, 6.80 (nH) between the U electrode lead terminal and the N electrode lead terminal, and 22.10 (nH) between the P electrode lead terminal and the N electrode lead terminal Thus, a low inductance that can withstand high-speed operation at a frequency of 10 to 12 kHz was obtained.
Further, when the thermal resistance Rth (j to c) between the junction and the case of the MOSFET element was measured, Rth (j to c) = 0.1 (° C./W) was obtained.
Further, when the MOSFET elements 2H and 2L are turned on and a 400 (A) direct current is passed between the P electrode lead-out terminal and the N electrode lead-out terminal for 15 minutes, the surface temperature of the outer end connection portion 4c of the P electrode and the N electrode Both of the outer end connection portions 5c were 74 (° C.).

本発明は以上の実施形態に限定されるものではなく、半導体スイッチ素子はMOSFETに代えIGBT(絶縁ゲート型バイポーラトランジスタ)としてもよい。IGBTとする場合は、IGBTと並列に外付けのダイオード素子が必要となる。   The present invention is not limited to the above embodiment, and the semiconductor switch element may be an IGBT (Insulated Gate Bipolar Transistor) instead of the MOSFET. In the case of an IGBT, an external diode element is required in parallel with the IGBT.

本発明実施形態に係る電力用半導体装置の平面図(一部透過)である。1 is a plan view (partially transparent) of a power semiconductor device according to an embodiment of the present invention. 図1におけるA−A断面図である。It is AA sectional drawing in FIG. 図1におけるB−B断面図である。It is BB sectional drawing in FIG. 本発明実施形態に係る電極導出端子インサート型のケースの平面図(a)及び正面図(b)である。It is the top view (a) and front view (b) of the electrode lead-out terminal insert type case which concern on this invention embodiment. 本発明実施形態に係るP電極導出端子の平面図である。It is a top view of the P electrode derivation terminal concerning the embodiment of the present invention. 本発明実施形態に係るN電極導出端子の平面図である。It is a top view of the N electrode derivation terminal concerning the embodiment of the present invention. 本発明実施形態に係るU電極導出端子の平面図である。It is a top view of the U electrode derivation terminal concerning the embodiment of the present invention. 本発明実施形態に係るP,N,Uの3電極導出端子及び絶縁材の分解斜視図である。FIG. 3 is an exploded perspective view of a P, N, U three-electrode lead terminal and an insulating material according to an embodiment of the present invention. 本発明実施形態に係る回路基板(ボンディングワイヤ無し)の平面図である。1 is a plan view of a circuit board (without bonding wires) according to an embodiment of the present invention. 本発明実施形態の電力用半導体装置の等価回路図である。1 is an equivalent circuit diagram of a power semiconductor device according to an embodiment of the present invention. 3相モータの駆動回路の回路図である。It is a circuit diagram of the drive circuit of a three-phase motor.

符号の説明Explanation of symbols

1 放熱板
2H,2L 回路基板
3 ケース
4 P電極導出端子
5 N電極導出端子
6 U電極導出端子
4a,5a,6a 平行平板部
4b,5b,6b 垂直平板部
4c,5c,6c 外端接続部
4d,4e,5d,5e, 6d〜6g 内端接続部
7H,7L,8H,8L 制御用電極導出端子
9,10 絶縁材
11 積層部
12H,12L MOSFET素子
13 絶縁基板
14 ゲート用導体パターン
15 ソース用導体パターン
16 ドレイン用導体パターン
17H,17L ゲート抵抗素子
18 ボンディングワイヤ
20,21 孔
22 蓋
23 ナット
DESCRIPTION OF SYMBOLS 1 Heat sink 2H, 2L Circuit board 3 Case 4 P electrode derivation terminal 5 N electrode derivation terminal 6 U electrode derivation terminal 4a, 5a, 6a Parallel flat plate part 4b, 5b, 6b Vertical flat plate part 4c, 5c, 6c Outer end connection part 4d, 4e, 5d, 5e, 6d to 6g Inner end connection portion 7H, 7L, 8H, 8L Control electrode lead-out terminal 9, 10 Insulating material 11 Laminated portion 12H, 12L MOSFET element 13 Insulating substrate 14 Gate conductor pattern 15 Source Conductor pattern 16 Drain conductor pattern 17H, 17L Gate resistance element 18 Bonding wire 20, 21 Hole 22 Lid 23 Nut

Claims (16)

両端に電源からの電力線が接続される直列接続の両半導体スイッチング素子の互いの接続点から負荷への出力線を引き出した回路を有し、前記両半導体スイッチング素子が相補的に開閉制御されることにより、前記電源の電力を変換して前記負荷へ出力する電力用半導体装置であって、
前記電力線の高電位側をP、低電位側をN、前記出力線をUとして、P,N,Uの3電極に対応する3つの電極導出端子を有し、
前記3つの電極導出端子が、前記半導体スイッチング素子が実装される回路基板の上空で、前記回路基板に近い方からP,N,Uの順に間隔隔てて積層され、少なくともその積層部で前記回路基板と平行な平板状に形成されてなることを特徴とする電力用半導体装置。
It has a circuit in which output lines to the load are drawn from the mutual connection points of both series-connected semiconductor switching elements connected to power lines from the power supply at both ends, and both the semiconductor switching elements are complementarily controlled to open and close The power semiconductor device that converts the power of the power source and outputs the power to the load,
The high potential side of the power line is P, the low potential side is N, the output line is U, and there are three electrode lead-out terminals corresponding to three electrodes of P, N, U,
The three electrode lead-out terminals are stacked above the circuit board on which the semiconductor switching element is mounted, and are stacked at intervals in the order of P, N, U from the side closer to the circuit board, and at least in the stacked portion, the circuit board A power semiconductor device, characterized in that the power semiconductor device is formed in a flat plate shape parallel to the substrate.
前記積層部が1又は2個以上の前記半導体スイッチング素子の上空に配置されてなることを特徴とする請求項1記載の電力用半導体装置。 The power semiconductor device according to claim 1, wherein the stacked portion is disposed above one or more semiconductor switching elements. P,N,Uの各電極導出端子の外部配線が接続される外端接続部は、前記回路基板を垂直視したとき、前記回路基板の一辺に隣接してその外側に配置されており、前記積層部は前記一辺側からその対辺側へ延出するように形成されてなることを特徴とする請求項1又は請求項2記載の電力用半導体装置。 The outer end connection part to which the external wiring of each electrode lead-out terminal of P, N, U is connected is arranged on the outside adjacent to one side of the circuit board when the circuit board is viewed vertically, The power semiconductor device according to claim 1, wherein the stacked portion is formed so as to extend from the one side to the opposite side. P,N,Uの各電極導出端子の前記回路基板に接続する内端接続部は、前記積層部の側縁から1又は2以上突出形成され、前記回路基板側に折り曲げられ、さらにそれより先で内側に折り曲がられてなる突起であることを特徴とする請求項1、請求項2又は請求項3記載の電力用半導体装置。 One or more inner end connecting portions connected to the circuit board of the P, N, and U electrode lead-out terminals are formed so as to protrude from the side edge of the laminated portion, bend toward the circuit board side, and further. 4. The power semiconductor device according to claim 1, wherein the power semiconductor device is a projection bent inward. P,N,U各電極の内端接続部の内側に折り曲げられた下端部はそれぞれ前記回路基板上の導体パターンに接合され、
P−U間に接続される前記半導体スイッチング素子は、P電極の内端接続部が接合する導体パターンに接合され、
前記P−U間に接続される前記半導体スイッチング素子の表面主電極とU電極の内端接続部が接合する導体パターンとがボンディングワイヤを介して接続され、
U−N間に接続される前記半導体スイッチング素子は、U電極の内端接続部が接合する導体パターンに接合され、
前記U−N間に接続される前記半導体スイッチング素子の表面主電極とN電極の内端接続部が接合する導体パターンとがボンディングワイヤを介して接続されてなることを特徴とする請求項4記載の電力用半導体装置。
The lower end part bent inside the inner end connection part of each electrode of P, N, U is joined to the conductor pattern on the circuit board,
The semiconductor switching element connected between P-U is joined to a conductor pattern to which the inner end connection portion of the P electrode is joined,
The surface main electrode of the semiconductor switching element connected between the P-U and the conductor pattern to which the inner end connection portion of the U electrode is connected via a bonding wire,
The semiconductor switching element connected between U and N is joined to a conductor pattern to which the inner end connection portion of the U electrode is joined,
5. The main surface electrode of the semiconductor switching element connected between the U and N and a conductor pattern to which an inner end connection portion of the N electrode is joined are connected via a bonding wire. Power semiconductor devices.
P,N,Uの各電極導出端子の外部配線が接続される外端接続部は前記回路基板の一辺に沿ってP,N,Uの順で異なる位置に配置され、
N電極の外端接続部は前記一辺に沿った前記積層部の形成範囲内に在り、
P電極の外端接続部及びU電極の外端接続部の全部又は一部は、前記一辺に沿った前記積層部の形成範囲外に在り、
P電極導出端子及びU電極導出端子には、前記一辺側の前記積層部の端部から前記一辺に沿った方向に前記範囲外まで突出し外端接続部に連結する部分が形成されていることを特徴とする請求項5記載の電力用半導体装置。
Outer end connection portions to which external wirings of the electrode lead-out terminals of P, N, and U are connected are arranged at different positions in the order of P, N, and U along one side of the circuit board,
The outer end connection portion of the N electrode is within the formation range of the stacked portion along the one side,
All or part of the outer end connection portion of the P electrode and the outer end connection portion of the U electrode are outside the formation range of the stacked portion along the one side,
The P-electrode lead-out terminal and the U-electrode lead-out terminal have a portion that protrudes out of the range in the direction along the one side from the end of the stacked portion on the one side and is connected to the outer end connection portion. 6. The power semiconductor device according to claim 5, wherein:
P電極導出端子及びU電極導出端子の前記一辺に沿って自己の外端接続部から前記積層部へ至る部分に前記一辺に沿った折りが形成されていることを特徴とする請求項6記載の電力用半導体装置。 The fold along the one side is formed in a portion from the outer end connection portion to the laminated portion along the one side of the P electrode lead-out terminal and the U electrode lead-out terminal. Power semiconductor device. P電極の内端接続部は前記積層部分を介して自己の外端接続部の逆側に形成されていることを特徴とする請求項6又は請求項7に記載の電力用半導体装置。 8. The power semiconductor device according to claim 6, wherein an inner end connection portion of the P electrode is formed on the opposite side of the outer end connection portion of the P electrode through the stacked portion. N電極の内端接続部は前記積層部分を介してP電極の内端接続部の逆側に形成されていることを特徴とする請求項8記載の電力用半導体装置。 9. The power semiconductor device according to claim 8, wherein the inner end connecting portion of the N electrode is formed on the opposite side of the inner end connecting portion of the P electrode through the stacked portion. U電極の内端接続部は前記積層部分の両側に形成されており、
前記P−U間に接続される前記半導体スイッチング素子の表面主電極と前記ボンディングワイヤを介して接続される前記導体パターンに接合するU電極の内端接続部が、P電極の内端接続部と同じ側に形成され、
前記U−N間に接続される前記半導体スイッチング素子が接合された前記導体パターンに接合するU電極の内端接続部が、N電極の内端接続部と同じ側に形成されてなることを特徴とする請求項9記載の電力用半導体装置。
The inner end connection part of the U electrode is formed on both sides of the laminated part,
The inner end connection portion of the U electrode joined to the surface main electrode of the semiconductor switching element connected between the P-U and the conductor pattern connected via the bonding wire is an inner end connection portion of the P electrode. Formed on the same side,
The inner end connection portion of the U electrode joined to the conductor pattern to which the semiconductor switching element connected between U and N is joined is formed on the same side as the inner end connection portion of the N electrode. A power semiconductor device according to claim 9.
P電極の一つの内端接続部が前記積層部の先端側に位置し、P電極の内端接続部と同じ側に形成されたU電極の1又は2以上の内端接続部のすべては、前記先端側に位置するP電極の一つの内端接続部より前記積層部の基端側に位置することを特徴とする請求項10記載の電力用半導体装置。 One inner end connection part of the P electrode is located on the tip side of the laminated part, and one or more inner end connection parts of the U electrode formed on the same side as the inner end connection part of the P electrode are 11. The power semiconductor device according to claim 10, wherein the power semiconductor device is located closer to a proximal end side of the stacked portion than one inner end connection portion of the P electrode located on the distal end side. N電極の内端接続部と同じ側に形成されたU電極の一つの内端接続部が前記積層部の先端側に位置し、N電極の1又は2以上の内端接続部のすべては、前記先端側に位置するU電極の一つの内端接続部より前記積層部の基端側に位置することを特徴とする請求項10記載の電力用半導体装置。 One inner end connection portion of the U electrode formed on the same side as the inner end connection portion of the N electrode is located on the tip side of the stacked portion, and all of one or more inner end connection portions of the N electrode are 11. The power semiconductor device according to claim 10, wherein the power semiconductor device is located closer to the proximal end side of the stacked portion than one inner end connection portion of the U electrode located on the distal end side. P,N,U各電極の内端接続部は、それぞれ同一側縁に2以上ずつ、先端側と基端側に振り分けられて設けられていることを特徴とする請求項4から請求項12のうちいずれか一に記載の電力用半導体装置。 13. The inner end connecting portion of each of the P, N, and U electrodes is provided so as to be distributed to the distal end side and the proximal end side by two or more on the same side edge, respectively. The power semiconductor device according to any one of the above. 前記回路基板の裏面に面を接触させる放熱板と、前記回路基板の周囲の前記放熱板の縁部に固定され前記回路基板を包囲する枠状の絶縁性ケースとを有し、前記3つの電極導出端子が前記絶縁性ケースに一部を埋没して保持されてなることを特徴とする請求項1から請求項13のうちいずれか一に記載の電力用半導体装置。 A heat sink having a surface in contact with the back surface of the circuit board; and a frame-like insulating case that is fixed to an edge of the heat sink around the circuit board and surrounds the circuit board. 14. The power semiconductor device according to claim 1, wherein the lead-out terminal is held by being partially buried in the insulating case. 前記3つの電極導出端子の相互間の間隔が絶縁材を介して保持されてなることを特徴とする請求項1から請求項14のうちいずれか一に記載の電力用半導体装置。 The power semiconductor device according to claim 1, wherein an interval between the three electrode lead-out terminals is held via an insulating material. 前記半導体スイッチング素子はMOSFETであることを特徴とする請求項1から請求項15のうちいずれか一に記載の電力用半導体装置。 The power semiconductor device according to any one of claims 1 to 15, wherein the semiconductor switching element is a MOSFET.
JP2005018228A 2005-01-26 2005-01-26 Power semiconductor device Expired - Fee Related JP4660214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005018228A JP4660214B2 (en) 2005-01-26 2005-01-26 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005018228A JP4660214B2 (en) 2005-01-26 2005-01-26 Power semiconductor device

Publications (2)

Publication Number Publication Date
JP2006210500A JP2006210500A (en) 2006-08-10
JP4660214B2 true JP4660214B2 (en) 2011-03-30

Family

ID=36967024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005018228A Expired - Fee Related JP4660214B2 (en) 2005-01-26 2005-01-26 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP4660214B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9595500B2 (en) 2013-07-03 2017-03-14 Denso Corporation Semiconductor device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4695918B2 (en) * 2005-05-12 2011-06-08 株式会社京三製作所 Power module
JP5090063B2 (en) * 2007-05-28 2012-12-05 日本インター株式会社 Power semiconductor module
JP5123162B2 (en) * 2008-12-26 2013-01-16 日本インター株式会社 Power semiconductor device and manufacturing method thereof
WO2010131679A1 (en) * 2009-05-14 2010-11-18 ローム株式会社 Semiconductor device
JP5295933B2 (en) * 2009-11-17 2013-09-18 日本インター株式会社 Power semiconductor module
US9837380B2 (en) 2014-01-28 2017-12-05 Infineon Technologies Austria Ag Semiconductor device having multiple contact clips
JP6299388B2 (en) * 2014-04-25 2018-03-28 日産自動車株式会社 Semiconductor device and power conversion device using the same
JP6547354B2 (en) 2015-03-20 2019-07-24 富士電機株式会社 Semiconductor module and resin case
JP6300751B2 (en) * 2015-03-25 2018-03-28 三菱電機株式会社 Semiconductor device
JP2022144436A (en) 2021-03-19 2022-10-03 富士電機株式会社 Semiconductor device
JPWO2022202369A1 (en) * 2021-03-24 2022-09-29

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353298B2 (en) * 1986-12-10 1991-08-14 Allied Signal Inc
JPH0922973A (en) * 1995-07-07 1997-01-21 Mitsubishi Electric Corp Semiconductor device
JPH11177018A (en) * 1997-12-16 1999-07-02 Nippon Inter Electronics Corp Composite semiconductor device
JPH11177021A (en) * 1997-12-09 1999-07-02 Toyota Autom Loom Works Ltd Electrode structure for semiconductor switch
JP2001332688A (en) * 2000-05-25 2001-11-30 Nissan Motor Co Ltd Power wiring structure and semiconductor device
JP2003224243A (en) * 2002-01-30 2003-08-08 Toyota Industries Corp Semiconductor device
JP2004214452A (en) * 2003-01-06 2004-07-29 Fuji Electric Device Technology Co Ltd Semiconductor module for power and method for connecting to external electrode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053298B2 (en) * 1992-08-19 2000-06-19 株式会社東芝 Semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353298B2 (en) * 1986-12-10 1991-08-14 Allied Signal Inc
JPH0922973A (en) * 1995-07-07 1997-01-21 Mitsubishi Electric Corp Semiconductor device
JPH11177021A (en) * 1997-12-09 1999-07-02 Toyota Autom Loom Works Ltd Electrode structure for semiconductor switch
JPH11177018A (en) * 1997-12-16 1999-07-02 Nippon Inter Electronics Corp Composite semiconductor device
JP2001332688A (en) * 2000-05-25 2001-11-30 Nissan Motor Co Ltd Power wiring structure and semiconductor device
JP2003224243A (en) * 2002-01-30 2003-08-08 Toyota Industries Corp Semiconductor device
JP2004214452A (en) * 2003-01-06 2004-07-29 Fuji Electric Device Technology Co Ltd Semiconductor module for power and method for connecting to external electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9595500B2 (en) 2013-07-03 2017-03-14 Denso Corporation Semiconductor device

Also Published As

Publication number Publication date
JP2006210500A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4660214B2 (en) Power semiconductor device
US11018117B2 (en) Half-bridge module with coaxial arrangement of the DC terminals
JP7153649B2 (en) Power semiconductor modules with low gate path inductance
US8537550B2 (en) Wiring board and power conversion device
JP6665926B2 (en) Semiconductor device and method of manufacturing semiconductor device
US8031479B2 (en) Power converter apparatus
US8040707B2 (en) Power converter
WO2019021731A1 (en) Semiconductor module
JP6969501B2 (en) Semiconductor device
WO2020021843A1 (en) Semiconductor device
JP5285348B2 (en) Circuit equipment
JP5481104B2 (en) Semiconductor device
US20210407881A1 (en) Semiconductor device
CN110771027B (en) Power semiconductor device and power conversion device using the same
US8018730B2 (en) Power converter apparatus
JP4479365B2 (en) Semiconductor device
JP4246040B2 (en) Semiconductor device package
JP5062029B2 (en) Semiconductor device
US20170133316A1 (en) Semiconductor device with stacked terminals
JP6123722B2 (en) Semiconductor device
JP3922698B2 (en) Semiconductor device
WO2021014875A1 (en) Semiconductor device
JP7428679B2 (en) Power semiconductor devices and power conversion devices
WO2021015050A1 (en) Electric circuit device
JP2021180252A (en) Semiconductor device, bus bar, and power conversion apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4660214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees