JP4658311B2 - Lithium aluminosilicate ceramics - Google Patents
Lithium aluminosilicate ceramics Download PDFInfo
- Publication number
- JP4658311B2 JP4658311B2 JP2000371627A JP2000371627A JP4658311B2 JP 4658311 B2 JP4658311 B2 JP 4658311B2 JP 2000371627 A JP2000371627 A JP 2000371627A JP 2000371627 A JP2000371627 A JP 2000371627A JP 4658311 B2 JP4658311 B2 JP 4658311B2
- Authority
- JP
- Japan
- Prior art keywords
- thermal expansion
- mass
- young
- modulus
- specific gravity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、精密機器用部品に適したリチウムアルミノシリケート系セラミックスに関する。
【0002】
【従来の技術】
精密機器用部品としては、軽量で、熱的な寸法変化が少なく、変形しにくいという特徴からアルミナや窒化珪素などのセラミックスが広く用いられている。
【0003】
また、低熱膨張材料として、コージェライトやリチウムアルミノシリケート(以降、LASと表記。)がよく知られている。コージェライト系焼結体は特公昭57−3629号、特開平2−229760号等に示されるようにコージェライト粉末あるいはコージェライトを形成するMgO、Al2O3、SiO2粉末を配合・合成して、これに焼結助剤として希土類酸化物やCaO、SiO2、MgOなどを添加し、所定形状に成形後、1000〜1400℃の温度で焼成することによって得られる。
【0004】
LAS系焼結体で特にβ−スポジュメンは一般式LiAlSi2O6で表され、特公昭53−9605号、特公昭56−164070号等に示されるように天然原料を使用して、所定形状に成形後、1100〜1400℃で焼成することによって作製される。
【0005】
このβ−スポジュメンは、比重2.0〜2.4と低く、熱膨張率は室温〜800℃で0.3〜2.7×10−6/℃、室温付近では0〜0.2×10−6/℃と低いものである。LAS系焼結体の熱膨張率の低さは、結晶軸方向の異方性によるものとそれに伴うマイ
クロクラックの存在がその要因とされる。マイクロクラックは、結晶軸方向の異方性が大きいほどよく見られ、マイクロクラックを抑制する方法は、マイクロクラック発生の臨界粒径を見極め、臨界粒径内で磁器結晶を制御することとされる。
【0006】
【発明が解決しようとする課題】
精密機器用部品として、一般に用いられてきたアルミナ、窒化珪素などのセラミックスの比重は、アルミナが3.8、窒化珪素が3.0と金属に比べ低いものの、機器の軽量化、振動抑制のためにより軽量材が必要とされてきている。また、熱膨張率は、0〜20℃でアルミナが約5.0×10−6/℃、窒化珪素が約1.5×10−6/℃であるが、精密機器の熱変形を軽減するために、より低熱膨張材が必要とされてきている。精密機器用部品として望まれる材料の特性は、低比重、低熱膨張、高剛性であるが、上記アルミナ、窒化珪素は、これを満足することができなかった。
【0007】
一方、低熱膨張材料として知られるコージェライトは、比重2.6〜2.7と低いものの、ヤング率が70〜90GPaと小さいため、精密機器用部品として用いる場合、たわみによる変形や部材の固有振動数低下に伴う共振発生等の問題があった。
【0008】
これに対して、最近の報告では希土類酸化物を焼結助剤とするコージェライト系セラミックスは、比重2.7、熱膨張率−0.1〜0.1×10−6/℃、ヤング率130〜140GPaを有するものがあり、変形対策や固有振動数の向上に期待されている(特開平11−255557号公報参照)。しかし、焼結助剤として用いる希土類酸化物はそれ自体高価であるため、原料単価が比較的高くなるという問題があった。
【0009】
一方、LAS系セラミックスの1種であるβ−スポジュメン、ペタライトは、比重2.0〜2.4と低く、熱膨張率は室温〜800℃で0.3〜2.7×10−6/℃、室温付近では0〜0.2×10−6/℃と低いものの、ヤング率は60〜80GPaと剛性の低い材料である。また、この材料は結晶軸方向の異方性が大きく、焼結時の粒成長に伴い、クラックが発生するため欠陥のない焼結体を得ることは難しいという課題があった。
【0010】
本発明は軽量で低熱膨張を有するとともに、焼結後、クラックの発生することのない、しかも剛性の高いセラミックスを提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明は、低熱膨張材料の中でも特に比重の低いLAS系焼結体で特に熱膨張率が低いβ−ユークリプタイト材料を用い、微細な結晶組織の状態で緻密化することでマイクロクラック発生を抑え、低熱膨張特性を有し、かつ比較的剛性の高い材料を得るようにした。
【0012】
即ち、本発明のリチウムアルミノシリケート系セラミックスは、化学式LiAlSiO4で表されるβ−ユークリプタイト90〜99質量%と酸化イットリウム10〜1質量%の焼結体からなり、ヤング率が108〜119GPaであり、測定温度0〜20℃での熱膨張率が−1.1〜−0.3×10−6/℃であることを特徴とする。
【0013】
また、本発明のリチウムアルミノシリケート系セラミックスは、化学式LiAlSiO4で表されるβ−ユークリプタイト80〜90質量%と酸化チタニウム20〜1質量%の焼結体からなり、ヤング率が122〜128GPaであり、測定温度0〜20℃での熱膨張率が−0.4〜0.4×10−6/℃であることを特徴とする。
【0014】
【発明の実施の形態】
本発明の軽量低熱膨張セラミックスは、軽量低熱膨張特性を有するLAS系焼結体で特にβ−ユークリプタイトとして知られる化学式LiAlSiO4で表される複合酸化物を
主成分とし、焼結助剤として酸化イットリウム(Y2O3)を1〜10質量%含有させた焼結体からなるものである。酸化イットリウムが、1質量%未満では粒成長が伴わず、β−ユークリプタイトが緻密化しない。また、添加量が10質量%を超えると助剤過多により焼成温度幅が狭まるため緻密なβ−ユークリプタイトを得ることが難しくなる。
【0015】
また、焼結助剤として上記酸化イットリウムにかえて、酸化チタニウム(TiO2)を1〜20質量%含有させることもできる。この系においては、添加量が1質量%未満では粒成長により、マイクロクラックが発生するようになり、添加量が20質量%を超えると助剤過多により焼成温度幅が狭まるため緻密なβ−ユークリプタイトを得ることが難しくなる。低熱膨張特性を有し、かつ剛性を高めるため、本発明において、酸化チタニウム(TiO 2 )の添加量は10〜20質量%とする。
【0016】
また、上記、主成分を成すβ−ユ−クリプタイトを作製するには、質量比率でLi2O:Al2O3:SiO2=12.5:40.5:47に処方した原料粉末を用いる。各成分の増減により結晶中にムライト生成や、クリストバライト生成が見られるようになり、その結果、熱膨張率が増加するため、質量比率のバラツキは各成分とも、上記質量比率の±0.5%以内に抑える必要がある。
【0017】
アルコキシド法にて上記組成比率で処方された平均粒径5〜7μmのLAS原料粉末100に対して、比表面積8〜9m2/g、平均粒径0.8〜0.9μmの酸化イットリウムを所定量添加する。配合の後、振動ミル等を使用して、平均粒径1μm未満となるように粉砕混合し、所定形状に成形後、大気雰囲気下で1190〜1210℃で熱処理を行うことにより、比重2.35〜2.5、熱膨張率は測定温度0〜20℃で−1.1〜−0.3×10−6/℃、ヤング率108〜119GPa、平均結晶粒径1.3〜1.7μmとなるセラミックスを得ることが出来る。
【0018】
または、アルコキシド法にて上記組成比率で処方された平均粒径5〜7μmのLAS原料粉末100に対して、比表面積7〜8m2/g、平均粒径0.9〜1.0μmの酸化チタニウムを所定量添加する。配合の後、振動ミル等を使用して、平均粒径1μm未満となるように粉砕混合し、所定形状に成形後、大気雰囲気下で1175〜1224℃で熱処理を行うことにより、比重2.44〜2.55、熱膨張率は測定温度0〜20℃で−0.4〜0.4×10−6/℃、ヤング率122〜128GPa、平均結晶粒径1.3〜2.2μmとなるセラミックスを得ることが出来る。
【0019】
以上の仕様にて得られた本発明の軽量低熱膨張セラミックスは、比重2.35〜2.55と小さく、低熱膨張材料群の中ではヤング率108〜119GPaまたは122〜128GPaと高く、また、アルミナ、窒化珪素と比較して熱膨張率は測定温度0〜20℃で−1.1〜−0.3×10−6/℃または−0.4〜0.4×10−6/℃と熱膨張が0に近く、軽量低熱膨張特性を有することを特徴とする。
【0020】
本発明のリチウムアルミノシリケート系セラミックスは、上記特徴を生かし、精密機器用部品として用いることにより、温度変化に対して寸法安定性に優れ、変形・振動の影響を極めて少なくすることができる。
【0021】
【実施例】
実施例1
平均粒径5.5μmのβ−ユークリプタイトに対して、比表面積8.8m2/g、平均粒径0.9μmの酸化イットリウム原料粉末を0.5〜15質量%の仕様で配合し、振動ミルにより72時間混合し、粉砕粒度をそれぞれ平均粒径0.9μmとした。造粒後、乾式プレス成形により抗折試験片形状に製作した。得られた各条件毎の試験片を表1に記した焼成温度にて大気雰囲気下で熱処理しセラミックス磁器を製作し評価を行った。なお、緻密な磁器が得られたか否かについて、判定欄に○×で示した。また、熱膨張率の測定温度範囲は0〜20℃とした。
【0022】
テストの結果を表1に示すように、No.1の酸化イットリウム0.5質量%添加仕様、No.6の15.0質量%添加仕様では、緻密体を得ることができなかった。これは、1.0質量%未満では粒成長が伴わずに緻密化できず、また、10.0質量%を越えると助剤過多により焼成温度幅が狭まるため緻密な磁器を得ることが難しくなるためである。
【0023】
これに対し、No.2の酸化イットリウム1.0質量%添加仕様では、焼成温度1210℃で比重2.35、ヤング率108GPa、熱膨張率−1.1×10−6/℃が得られ、平均結晶粒径は1.3μmとなった。No.3の酸化イットリウム2.0質量%添加仕様では、焼成温度1210℃で比重2.37、ヤング率110GPa、熱膨張率−0.9×10−6/℃が得られ、平均結晶粒径は1.4μmとなった。No.4の酸化イットリウム5.0質量%添加仕様では、焼成温度1210℃で比重2.41、ヤング率114GPa、熱膨張率−0.8×10−6/℃が得られ、平均結晶粒径は1.4μmとなった。No.5の酸化イットリウム10.0質量%添加仕様では、焼成温度1190、1210℃で比重2.48〜2.50、ヤング率115〜119GPa、熱膨張率−0.4〜−0.3×10−6/℃が得られ、平均結晶粒径は1.5〜1.7μmとなった。
【0024】
このように本発明に基づき、β−ユークリプタイトに、比表面積8.8m2/g、平均粒径0.9μmの酸化イットリウム原料粉末を1〜10質量%加え、平均粒径0.9μmに粉砕した原料系を使用して、大気雰囲気下で1190℃(試料No.5)または1210℃(試料No.2〜5)で熱処理したことによって得られたセラミックス磁器については、比重2.35〜2.5、ヤング率108〜119GPa、熱膨張率は測定温度範囲0〜20℃で−1.1〜−0.3×10−6/℃で平均結晶粒径1.3〜1.7μmとなる緻密なセラミックスとなった。
【0025】
【表1】
【0026】
実施例2
平均粒径5.5μmのβ−ユークリプタイトに対して、比表面積7.2m2/g、平均粒径0.9μmの酸化チタニウム原料粉末を0.5〜25質量%の仕様で配合し、振動ミルにより72時間混合し、粉砕粒度をそれぞれ平均粒径0.9μmとした。造粒後、乾式プレス成形により抗折試験片形状に製作した。得られた各条件毎の試験片を表2に記した焼成温度にて大気雰囲気下で熱処理しセラミックス磁器を製作し評価を行った。なお、緻密な磁器が得られたか否かについて、判定欄に○×で示した。また、熱膨張率の測定温度範囲は0〜20℃とした。
【0027】
テストの結果を表2に示すように、No.7の酸化チタニウム0.5質量%添加仕様、No.14の25.0質量%添加仕様では、緻密体を得ることができなかった。これは、1.0質量%未満では粒成長によりクラックが発生し、また、20.0質量%を越えると助剤過多により焼成温度幅が狭まるため緻密な磁器を得ることが難しくなるためである。
【0028】
これに対し、No.8の酸化チタニウム1.0質量%添加仕様では、焼成温度1175、1190、1210、1224℃で比重2.35〜2.36、ヤング率115〜118GPa、熱膨張率−0.9〜−0.7×10−6/℃が得られ、平均結晶粒径は0.9〜1.2μmとなった。No.9の酸化チタニウム2.0質量%添加仕様では、焼成温度1175、1190、1210、1224℃で比重2.33〜2.37、ヤング率115〜119GPa、熱膨張率−0.9〜−0.7×10−6/℃が得られ、平均結晶粒径は0.9〜1.3μmとなった。
【0029】
No.10の酸化チタニウム5.0質量%添加仕様では、焼成温度1175、1190
、1210、1224℃で比重2.36〜2.40、ヤング率117〜119GPa、熱膨張率−0.8〜0.6×10−6/℃が得られ、平均結晶粒径は1.1〜1.4μmとなった。No.11の酸化チタニウム10.0質量%添加仕様では、焼成温度1175、1190、1210、1224℃で比重2.44〜2.45、ヤング率122〜124GPa、熱膨張率−0.4〜−0.1×10−6/℃が得られ、平均結晶粒径は1.3〜1.8μmとなった。
【0030】
No.12の酸化チタニウム15.0質量%添加仕様では、焼成温度1175、1190、1210、1224℃で比重2.49〜2.50、ヤング率125〜126GPa、熱膨張率−0.1〜0.2×10−6/℃が得られ、平均結晶粒径は1.5〜2.0μmとなった。No.13の酸化チタニウム20.0質量%添加仕様では、焼成温度1175、1190、1210、1224℃で比重2.54〜2.55、ヤング率128GPa、熱膨張率0.3〜0.4×10−6/℃が得られ、平均結晶粒径は1.6〜2.2μmとなった。
【0031】
このように本発明に基づき、β−ユークリプタイトに、比表面積7.2m2/g、平均粒径0.9μmの酸化チタニウム原料粉末を10〜20質量%加え、平均粒径0.9μmに粉砕した原料系を使用して、大気雰囲気下で1175〜1224℃で熱処理したことにより、比重2.44〜2.55、ヤング率122〜128GPa、熱膨張率は測定温度範囲0〜20℃で−0.4〜0.4×10−6/℃で平均結晶粒径1.3〜2.2μmとなる緻密なセラミックスを得ることができた。
【0032】
【表2】
【0033】
【発明の効果】
以上、詳述したとおり本発明のリチウムアルミノシリケート系セラミックスによれば、一般式LiAlSiO4で表されるβ−ユークリプタイトを90〜99質量%、酸化イットリウムを10〜1質量%の焼結体からなり、ヤング率が108〜119GPa、熱膨張率が−1.1〜−0.3×10−6/℃であることによって、軽量で低熱膨張を有するとともに、剛性の高いセラミックスを提供することができる。
【0034】
また、一般式LiAlSiO4で表されるβ−ユ−クリプタイトを80〜90質量%、酸化チタニウムを20〜10質量%の焼結体からなり、ヤング率が122〜128GPa、熱膨張率は測定温度範囲0〜20℃で−0.4〜0.4×10−6/℃であることによって、軽量で低熱膨張を有するとともに、剛性の高いセラミックスを提供することができる。
【0035】
このリチウムアルミノシリケート系セラミックスを精密機器用部品として用いることにより温度変化に対して寸法安定性に優れ、変形・振動の影響を極めて少なくすることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium aluminosilicate ceramic suitable for precision equipment parts.
[0002]
[Prior art]
Ceramics such as alumina and silicon nitride are widely used as precision equipment parts because of their light weight, little thermal dimensional change, and difficulty in deformation.
[0003]
Further, as the low thermal expansion material, cordierite, lithium aluminosilicate (hereinafter, LAS denoted.) Is well known. The cordierite-based sintered body is prepared by blending and synthesizing cordierite powder or MgO, Al 2 O 3 , SiO 2 powder forming cordierite as disclosed in Japanese Patent Publication No. 57-3629, JP-A-2-229760, etc. Then, a rare earth oxide, CaO, SiO 2 , MgO or the like is added as a sintering aid to this, and after molding into a predetermined shape, it is obtained by firing at a temperature of 1000 to 1400 ° C.
[0004]
In particular, β-spodumene in the LAS-based sintered body is represented by the general formula LiAlSi 2 O 6 and is made into a predetermined shape by using natural raw materials as shown in Japanese Patent Publication No. 53-9605, Japanese Patent Publication No. 56-164070, and the like. It is produced by firing at 1100 to 1400 ° C. after molding.
[0005]
This β-spodumene has a low specific gravity of 2.0 to 2.4, a thermal expansion coefficient of 0.3 to 2.7 × 10 −6 / ° C. at room temperature to 800 ° C., and 0 to 0.2 × 10 at around room temperature. It is as low as -6 / ° C. The low coefficient of thermal expansion of the LAS sintered body is attributed to the anisotropy in the crystal axis direction and the presence of microcracks associated therewith. Microcracks are often seen as the crystal axis direction anisotropy increases, and the method of suppressing microcracks is to determine the critical grain size of microcracks and control the ceramic crystal within the critical grain size. .
[0006]
[Problems to be solved by the invention]
The specific gravity of ceramics such as alumina and silicon nitride, which are generally used for precision equipment parts, is 3.8 for alumina and 3.0 for silicon nitride, which is lower than metal, but for weight reduction of equipment and vibration suppression. Therefore, lightweight materials have been required. In addition, the coefficient of thermal expansion is about 5.0 × 10 −6 / ° C. for alumina and about 1.5 × 10 −6 / ° C. for silicon nitride at 0 to 20 ° C., which reduces thermal deformation of precision instruments. Therefore, a lower thermal expansion material has been required. The characteristics of materials desired as parts for precision instruments are low specific gravity, low thermal expansion, and high rigidity, but the above-mentioned alumina and silicon nitride could not satisfy this.
[0007]
On the other hand, cordierite, which is known as a low thermal expansion material, has a low specific gravity of 2.6 to 2.7, but its Young's modulus is as small as 70 to 90 GPa. There was a problem such as the occurrence of resonance due to a decrease in the number.
[0008]
On the other hand, in recent reports, cordierite ceramics using rare earth oxide as a sintering aid have a specific gravity of 2.7, a thermal expansion coefficient of -0.1 to 0.1 × 10 −6 / ° C., and a Young's modulus. Some have 130 to 140 GPa, and are expected to prevent deformation and improve the natural frequency (see JP-A-11-255557). However, since the rare earth oxide used as a sintering aid is expensive in itself, there is a problem that the raw material unit price is relatively high.
[0009]
On the other hand, β-spodumene and petalite, which are one type of LAS-based ceramics, have a low specific gravity of 2.0 to 2.4 and a coefficient of thermal expansion of 0.3 to 2.7 × 10 −6 / ° C. at room temperature to 800 ° C. Although it is as low as 0 to 0.2 × 10 −6 / ° C. near room temperature, the Young's modulus is a material having a low rigidity of 60 to 80 GPa. Further, this material has a large anisotropy in the crystal axis direction, and cracks are generated along with grain growth during sintering, so that it is difficult to obtain a sintered body having no defects.
[0010]
It is an object of the present invention to provide a ceramic that is lightweight and has low thermal expansion, does not generate cracks after sintering, and has high rigidity.
[0011]
[Means for Solving the Problems]
The present invention uses a β-eucryptite material having a low specific gravity, especially a LAS-based sintered body having a low specific gravity among low thermal expansion materials, and micro-cracking is generated by densification in the state of a fine crystal structure. A material having low thermal expansion characteristics and relatively high rigidity was obtained.
[0012]
That is, the lithium aluminosilicate-based ceramics of the present invention is represented by Formula LiAlSiO 4 beta-Yuktobanian descriptor consists tight 90-99 wt% yttrium oxide 10-1% by weight of the sintered body, the Young's modulus 108~119GPa The coefficient of thermal expansion at a measurement temperature of 0 to 20 ° C. is −1.1 to −0.3 × 10 −6 / ° C.
[0013]
Further, the lithium aluminosilicate-based ceramics of the present invention is represented by Formula LiAlSiO 4 beta-Yuktobanian descriptor consists tight 80-9 0% by mass and titanium oxide 20 to 1% by weight of the sintered body, the Young's modulus of 1 22 -128 GPa, and the coefficient of thermal expansion at a measurement temperature of 0-20 ° C. is -0. 4-0. 4 × 10 −6 / ° C.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The light weight low thermal expansion ceramic of the present invention is a LAS-based sintered body having a light weight and low thermal expansion characteristic, and is mainly composed of a composite oxide represented by the chemical formula LiAlSiO 4 known as β-eucryptite as a sintering aid. is made of yttrium oxide (Y 2 O 3) sintered body was allowed to contain 1 to 10 mass%. Yttrium oxide, without grain growth is less than 1 mass%, beta-eucryptite is not densified. Further, the addition amount is obtained a dense β- eucryptite for firing temperature range is narrowed by auxiliary excessive if it exceeds 10 mass% is difficult.
[0015]
Further, instead of the yttrium oxide as a sintering aid, a titanium oxide (TiO 2) may be contained 1 to 20 mass%. In this system, when the addition amount is less than 1% by mass, microcracking occurs due to grain growth, and when the addition amount exceeds 20% by mass, the firing temperature range is narrowed due to excessive auxiliary agent, so that a dense β- It becomes difficult to obtain cryptite. In order to have low thermal expansion characteristics and increase rigidity, in the present invention, the amount of titanium oxide (TiO 2 ) added is 10 to 20% by mass.
[0016]
Moreover, the forms of the main component β- Yu - To prepare a Kuriputaito is a mass ratio Li 2 O: Al 2 O 3 : SiO 2 = 12.5: 40.5: 47 raw material powder formulated Use. Mullite product or into the crystal increase or decrease of the component, now cristobalite generation is seen, as a result, the thermal expansion rate increases, with the variation in each component of the mass ratio, ± of the Mass Ratio 0. It is necessary to keep it within 5%.
[0017]
With respect to the LAS raw material powder 100 having an average particle diameter of 5 to 7 μm formulated at the above composition ratio by the alkoxide method, a specific surface area of 8 to 9 m 2 / g and an yttrium oxide having an average particle diameter of 0.8 to 0.9 μm are provided. Add a fixed amount. After compounding, using vibration mill or the like, the average particle diameter were ground and mixed to be less than 1 [mu] m, after molding into a predetermined shape, by performing a heat treatment at 1 190-1210 ° C. in an air atmosphere, the specific gravity 2. 3 5 to 2.5, the thermal expansion coefficient -1.1~-0.3 × 10 -6 / ℃ at a measurement temperature of 0 to 20 ° C., Young's modulus 108~119GPa, average grain size 1.3 to 1. Ceramics with a thickness of 7 μm can be obtained.
[0018]
Alternatively, for the LAS raw material powder 100 having an average particle diameter of 5 to 7 μm prescribed by the above composition ratio by the alkoxide method, a specific surface area of 7 to 8 m 2 / g and an average particle diameter of 0.9 to 1.0 μm of titanium oxide Is added in a predetermined amount. After blending, using a vibration mill or the like, the mixture is pulverized and mixed so as to have an average particle size of less than 1 μm, molded into a predetermined shape, and then heat treated at 1175-1224 ° C. in an air atmosphere to obtain a specific gravity of 2. 44 to 2.55 and the coefficient of thermal expansion is -0. 4-0. 4 × 10 -6 / ℃, Young's modulus 1 22 ~128GPa, the average crystal grain size of 1. A ceramic having a thickness of 3 to 2.2 μm can be obtained.
[0019]
Lightweight low thermal expansion ceramic of the present invention obtained by the above specifications, specific gravity 2.3 5-2. As small as 55, it is in a low-thermal-expansion material group high Young's modulus 108~119GPa or 1 22 ~128GPa, also alumina, the thermal expansion coefficient compared to silicon nitride at a measurement temperature of 0~20 ℃ -1.1~ −0.3 × 10 −6 / ° C. or −0. 4-0. 4 × 10 -6 / ℃ thermal expansion is close to 0, and having a light weight low thermal expansion characteristics.
[0020]
The lithium aluminosilicate ceramics of the present invention are excellent in dimensional stability with respect to temperature changes and can greatly reduce the influence of deformation / vibration by utilizing the above characteristics and being used as a precision instrument part.
[0021]
【Example】
Example 1
A β-eucryptite having an average particle size of 5.5 μm is blended with a yttrium oxide raw material powder having a specific surface area of 8.8 m 2 / g and an average particle size of 0.9 μm in a specification of 0.5 to 15% by mass, The mixture was mixed for 72 hours by a vibration mill, and the pulverized particle size was adjusted to an average particle size of 0.9 μm. After granulation, it was manufactured in the shape of a bending specimen by dry press molding. The obtained test pieces for each condition were heat-treated in the air atmosphere at the firing temperature shown in Table 1, and ceramic porcelains were produced and evaluated. In addition, it was shown by (circle) in the determination column about whether the fine porcelain was obtained. The measurement temperature range of the thermal expansion coefficient was 0 to 20 ° C..
[0022]
As shown in Table 1, the results of the test are No. 1 of yttrium oxide 0.5 mass% added specifications, No. The 6 15.0 mass% added specifications, it was impossible to obtain a dense body. This is 1.0 is less than mass% can not be densified without grain growth, also be obtained dense porcelain for firing temperature range is narrowed by auxiliary excessive if it exceeds 10.0 mass% This is because it becomes difficult.
[0023]
In contrast, no. In two of yttrium oxide 1.0 mass% added specification, specific gravity 2.35 at sintering temperature 1210 ° C., Young's modulus 108GPa, thermal expansion coefficient -1.1 × 10 -6 / ℃ is obtained, an average crystal grain size It was 1.3 μm. No. The 3 yttrium oxide 2.0 mass% added specifications, specific gravity 2.37 at sintering temperature 1210 ° C., Young's modulus 110 GPa, the thermal expansion coefficient of -0.9 × 10 -6 / ℃ is obtained, an average crystal grain size It became 1.4 μm. No. The 4 yttrium oxide 5.0 mass% added specifications, specific gravity 2.41 at sintering temperature 1210 ° C., Young's modulus 114 GPa, the thermal expansion coefficient of -0.8 × 10 -6 / ℃ is obtained, an average crystal grain size It became 1.4 μm. No. The 5 yttrium oxide 10.0 mass% added specifications, firing temperature 1190,1210 ° C. in specific gravity from 2.48 to 2.50, the Young's modulus 115~119GPa, thermal expansion coefficient -0.4 to-0.3 × 10 −6 / ° C. was obtained, and the average crystal grain size was 1.5 to 1.7 μm.
[0024]
Thus based on the present invention, beta-Yuktobanian descriptor tight, specific surface area 8.8 m 2 / g, was added to 10 mass% of yttrium oxide raw material powder having an average particle diameter 0.9 .mu.m, the average particle diameter of 0.9 .mu.m use crushed material system, for 1190 ° C. (sample No.5) or 1210 ° C. ceramics porcelain obtained I by the fact that heat treatment at (sample Nanba2~5) in the atmosphere, the specific gravity 2.3 5 to 2.5, Young's modulus 108 to 119 GPa, coefficient of thermal expansion is −1.1 to −0.3 × 10 −6 / ° C. in the measurement temperature range 0 to 20 ° C., and average crystal grain size 1.3 It became a dense ceramic with a thickness of ˜1.7 μm.
[0025]
[Table 1]
[0026]
Example 2
With respect to β-eucryptite having an average particle size of 5.5 μm, a titanium oxide raw material powder having a specific surface area of 7.2 m 2 / g and an average particle size of 0.9 μm is blended in a specification of 0.5 to 25% by mass, The mixture was mixed for 72 hours by a vibration mill, and the pulverized particle size was adjusted to an average particle size of 0.9 μm. After granulation, it was manufactured in the shape of a bending specimen by dry press molding. The obtained test pieces for each condition were heat-treated in the air atmosphere at the firing temperature shown in Table 2, and ceramic porcelains were produced and evaluated. In addition, it was shown by (circle) in the determination column about whether the fine porcelain was obtained. The measurement temperature range of the thermal expansion coefficient was 0 to 20 ° C..
[0027]
As shown in Table 2, the results of the test are No. 7 titanium oxide 0.5 mass% added specifications, No. In 14 25.0 mass% added specifications, it was impossible to obtain a dense body. This is 1.0 is less than mass% cracks caused by grain growth, and it since it is difficult to obtain a dense porcelain for firing temperature range is narrowed by auxiliary excessive if it exceeds 20.0 mass% It is.
[0028]
In contrast, no. The 8 titanium oxide 1.0 mass% added specifications, firing temperature 1175,1190,1210,1224 ° C. in specific gravity from 2.35 to 2.36, the Young's modulus 115~118GPa, thermal expansion coefficient -0.9~-0 0.7 × 10 −6 / ° C. was obtained, and the average crystal grain size was 0.9 to 1.2 μm. No. 9 The titanium oxide 2.0 mass% added specifications, firing temperature 1175,1190,1210,1224 ° C. in specific gravity from 2.33 to 2.37, the Young's modulus 115~119GPa, thermal expansion coefficient -0.9~-0 0.7 × 10 −6 / ° C. was obtained, and the average crystal grain size was 0.9 to 1.3 μm.
[0029]
No. The 10 titanium oxide 5.0 mass% added specifications, the firing temperature 1175,1190
, 1210, 1224 ° C., specific gravity 2.36 to 2.40, Young's modulus 117 to 119 GPa, coefficient of thermal expansion −0.8 to 0 . 6 × 10 −6 / ° C. was obtained, and the average crystal grain size was 1.1 to 1.4 μm. No. The 11 titanium oxide 10.0 mass% added specifications, firing temperature 1175,1190,1210,1224 ° C. in specific gravity from 2.44 to 2.45, the Young's modulus 122~124GPa, thermal expansion coefficient -0.4-0 0.1 × 10 −6 / ° C. was obtained, and the average crystal grain size was 1.3 to 1.8 μm.
[0030]
No. The 12 titanium oxide 15.0 mass% added specifications, firing temperature 1175,1190,1210,1224 ° C. in specific gravity from 2.49 to 2.50, the Young's modulus 125~126GPa, thermal expansion -0.1~0. 2 × 10 −6 / ° C. was obtained, and the average crystal grain size was 1.5 to 2.0 μm. No. The 13 titanium oxide 20.0 mass% added specifications, firing temperature 1175,1190,1210,1224 ° C. in specific gravity from 2.54 to 2.55, the Young's modulus 128GPa, the coefficient of thermal expansion 0.3 to 0.4 × 10 −6 / ° C. was obtained, and the average crystal grain size was 1.6 to 2.2 μm.
[0031]
Thus, based on the present invention, 10 to 20% by mass of titanium oxide raw material powder having a specific surface area of 7.2 m 2 / g and an average particle size of 0.9 μm is added to β-eucryptite, and an average particle size of 0.9 μm is added. A specific gravity of 2. by heat treatment at 1175-1224 ° C. in an air atmosphere using the raw material system pulverized to 1. 44 to 2.55, the Young's modulus 1 22 ~128GPa, thermal expansion coefficient at the measurement temperature range 0 to 20 ° C. -0. 4-0. 4 × 10 −6 / ° C. Average crystal grain size 1 . A dense ceramic having a thickness of 3 to 2.2 μm could be obtained.
[0032]
[Table 2]
[0033]
【The invention's effect】
As described above, according to the lithium aluminosilicate-based ceramics of the present invention as detailed formula LiAlSiO 90 to 99 mass% of the β- eucryptite represented by 4, the yttrium oxide 10-1 mass% tempered consists body, Young's modulus is 108~119GPa, by thermal expansion rate of -1.1~-0.3 × 10 -6 / ℃ , which has a low thermal expansion lightweight, high rigidity ceramics can it to provide.
[0034]
In general formula LiAlSiO 4 represented by β- Yoo - Kuriputaito the 80-9 0 wt%, the oxide of titanium from 20 to 1 0% by weight of the sintered body, a Young's modulus of 1 22 ~128GPa, coefficient of thermal expansion Is -0. 4-0. By being 4 × 10 −6 / ° C., it is possible to provide ceramics that are lightweight and have low thermal expansion and high rigidity.
[0035]
By using this lithium aluminosilicate ceramic as a precision device part, it is excellent in dimensional stability against temperature change, and the influence of deformation and vibration can be extremely reduced.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000371627A JP4658311B2 (en) | 2000-12-06 | 2000-12-06 | Lithium aluminosilicate ceramics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000371627A JP4658311B2 (en) | 2000-12-06 | 2000-12-06 | Lithium aluminosilicate ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002173363A JP2002173363A (en) | 2002-06-21 |
JP4658311B2 true JP4658311B2 (en) | 2011-03-23 |
Family
ID=18841321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000371627A Expired - Fee Related JP4658311B2 (en) | 2000-12-06 | 2000-12-06 | Lithium aluminosilicate ceramics |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4658311B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4610076B2 (en) * | 2000-12-06 | 2011-01-12 | 京セラ株式会社 | Lithium aluminosilicate ceramics |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56109870A (en) * | 1981-01-23 | 1981-08-31 | Asahi Glass Co Ltd | Minute low expansion sintered body |
JP2000128629A (en) * | 1998-10-27 | 2000-05-09 | Nichias Corp | Low thermal expansion ceramics plane asbestos cement sheet and its production |
JP2000219572A (en) * | 1999-01-29 | 2000-08-08 | Kyocera Corp | Low thermal expansion ceramic and its production |
JP2001068536A (en) * | 1999-08-24 | 2001-03-16 | Taiheiyo Cement Corp | Aligner and support member used for the same |
-
2000
- 2000-12-06 JP JP2000371627A patent/JP4658311B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56109870A (en) * | 1981-01-23 | 1981-08-31 | Asahi Glass Co Ltd | Minute low expansion sintered body |
JP2000128629A (en) * | 1998-10-27 | 2000-05-09 | Nichias Corp | Low thermal expansion ceramics plane asbestos cement sheet and its production |
JP2000219572A (en) * | 1999-01-29 | 2000-08-08 | Kyocera Corp | Low thermal expansion ceramic and its production |
JP2001068536A (en) * | 1999-08-24 | 2001-03-16 | Taiheiyo Cement Corp | Aligner and support member used for the same |
Also Published As
Publication number | Publication date |
---|---|
JP2002173363A (en) | 2002-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4416191B2 (en) | Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component | |
US20120309609A1 (en) | Composite material with controlled coefficient of thermal expansion with oxidic ceramics and process for obtaining same | |
JP4429288B2 (en) | Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same | |
JP4658311B2 (en) | Lithium aluminosilicate ceramics | |
JP4610076B2 (en) | Lithium aluminosilicate ceramics | |
JP3805119B2 (en) | Method for producing low thermal expansion ceramics | |
JPS6265976A (en) | Silicon iodide sintered body and its production | |
JPH01108177A (en) | Ceramic foam | |
JP3676552B2 (en) | Low thermal expansion ceramics and method for producing the same | |
JP4658312B2 (en) | Lithium aluminosilicate ceramics | |
JP2000128625A (en) | Aluminous ceramic sintered compact and its production | |
JP2002167267A (en) | Low thermal expansion ceramic and method of manufacturing it | |
JPH10212158A (en) | Refractory for glass fusion furnace | |
KR101683400B1 (en) | High-strength low temperature co-fired ceramic composition | |
JPH0930860A (en) | Production of refractory having low thermal expansion property | |
JP4568979B2 (en) | Cordierite dense sintered body and manufacturing method thereof | |
JP6179026B2 (en) | Low thermal expansion ceramics and method for producing the same | |
JP2002160972A (en) | High rigidity and low thermal expansion ceramic and its manufacturing method | |
JP2005239446A (en) | Porcelain composition and its manufacturing method | |
WO2006137488A1 (en) | Machinable glass ceramic and process for production thereof | |
JP4047050B2 (en) | Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same | |
JPH035371A (en) | Production of si3n4 sintered compact | |
JP2000344572A (en) | Porcelain composition | |
JPH04293290A (en) | Smooth ceramic substrate and manufacture thereof | |
JP2846930B2 (en) | Ceramic material firing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071019 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100430 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101101 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101224 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |