JP4657836B2 - Magnetic thin film element using impedance element - Google Patents

Magnetic thin film element using impedance element Download PDF

Info

Publication number
JP4657836B2
JP4657836B2 JP2005202534A JP2005202534A JP4657836B2 JP 4657836 B2 JP4657836 B2 JP 4657836B2 JP 2005202534 A JP2005202534 A JP 2005202534A JP 2005202534 A JP2005202534 A JP 2005202534A JP 4657836 B2 JP4657836 B2 JP 4657836B2
Authority
JP
Japan
Prior art keywords
thin film
magnetic thin
magnetic
impedance
impedance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005202534A
Other languages
Japanese (ja)
Other versions
JP2007027161A (en
Inventor
則光 星
橘  奈緒子
政智 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2005202534A priority Critical patent/JP4657836B2/en
Publication of JP2007027161A publication Critical patent/JP2007027161A/en
Application granted granted Critical
Publication of JP4657836B2 publication Critical patent/JP4657836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

本発明は、自動車、家電、通信機器、船舶、航空機、医療機器等の分野で使用する微弱な磁界を検出するインピーダンス素子を用いた磁性薄膜素子に関する。 The present invention relates to a magnetic thin film element using an impedance element for detecting a weak magnetic field used in the fields of automobiles, home appliances, communication equipment, ships, aircraft, medical equipment and the like.

磁性薄膜素子は,磁区構造を有した磁性薄膜素子に外部磁場を印加することで,磁化回転が生じ,磁壁移動が起こることで透磁率が変化し,高周波電流を印加していた場合,磁性体のインピーダンスが変動する性質を利用した磁気センサと外部磁界を印加することで磁区の変化により,材料の抵抗値が変化する性質を利用した磁気センサである。   A magnetic thin film element is formed by applying an external magnetic field to a magnetic thin film element having a magnetic domain structure, causing magnetization rotation, changing magnetic permeability due to domain wall movement, and applying a high-frequency current to a magnetic material. The magnetic sensor uses the property that the impedance of the material changes, and the magnetic sensor uses the property that the resistance value of the material changes due to the change of the magnetic domain by applying an external magnetic field.

本出願人は、磁性層と導体層の構成においてCo基材料の組成比でインピーダンス変化が起きる素子を、特許文献1において提案している。   The present applicant has proposed an element in which impedance changes in the composition ratio of the Co-based material in the configuration of the magnetic layer and the conductor layer in Patent Document 1.

さらに、特許文献2において、抵抗辺を非磁性体にして小型化し、渦巻きコイル、薄膜コイル、磁性膜による磁気バイアス手段を提案している。   Furthermore, Patent Document 2 proposes a magnetic bias means using a spiral coil, a thin film coil, and a magnetic film, with a resistance side made nonmagnetic and miniaturized.

非磁性基板上に高透磁率磁性膜を形成して構成され,直線が途中で複数回平行に折り返されて長手方向に対し垂直な方向となるように磁気異方性が付けられた素子が特許文献3において提案されている。   Patented is an element that is constructed by forming a high-permeability magnetic film on a non-magnetic substrate and has magnetic anisotropy so that the straight line is folded back several times in the middle to be perpendicular to the longitudinal direction. It is proposed in Document 3.

このように複数回折り返すことで磁性膜の総延長を長くしても素子全体を短くし小型化できる。また高インピーダンスになり使用しやすい素子となる。   In this way, the entire element can be shortened and miniaturized even if the total extension of the magnetic film is lengthened by turning back multiple times. Moreover, it becomes a high impedance and easy-to-use element.

また、特許文献4において高透磁率磁性膜の多層構造を提案している。   Patent Document 4 proposes a multilayer structure of a high permeability magnetic film.

図10は磁気インピーダンス効果を利用した従来技術による磁性薄膜素子を示す平面図である。図10を参照すると、磁気薄膜素子は、厚さ2μm,長さ1mmの磁性薄膜11,12,13,14,15を5本並行に並べ、磁性薄膜11と12の端部を0.6μmの導体膜16で接続し,その反対側の磁性薄膜12と13の端部を,前記同様、導体膜16で接続する。更に,その反対側端部を磁性薄膜14に接続して,磁性膜15まで,直列に接続し,その直列端にあたる磁性膜11端部と磁性膜11端部から電極パッド17に夫々接続する。   FIG. 10 is a plan view showing a conventional magnetic thin film element using the magneto-impedance effect. Referring to FIG. 10, the magnetic thin film element has five magnetic thin films 11, 12, 13, 14, 15 having a thickness of 2 μm and a length of 1 mm arranged in parallel, and ends of the magnetic thin films 11 and 12 are 0.6 μm. The conductor films 16 are connected, and the opposite ends of the magnetic thin films 12 and 13 are connected by the conductor film 16 as described above. Further, the opposite end is connected to the magnetic thin film 14 and connected in series up to the magnetic film 15, and the end of the magnetic film 11 corresponding to the series end and the end of the magnetic film 11 are connected to the electrode pad 17.

図10に示す磁気インピーダンス効果を利用した磁性薄膜素子を製造するには、ガラス基板10にフォトレジストを使用し露光を行い素子形状のレジストマスキングを作成して磁性膜をスパッターにて成膜をする。その後、リフトオフ法にて磁性膜パターンニングをし、素子形状である複数本の高透磁率磁性薄膜11,12,13,14,15を形成する方法である。更に前記同様の工程にて複数本の磁性膜11,12,13,14,15を直列に繋ぐ導体膜のレジストマスキングを作成し導体膜16,16,16のパターニング形成する。   In order to manufacture a magnetic thin film element utilizing the magneto-impedance effect shown in FIG. 10, a glass substrate 10 is exposed using a photoresist to create a resist mask of the element shape, and a magnetic film is formed by sputtering. . Thereafter, the magnetic film patterning is performed by a lift-off method to form a plurality of high-permeability magnetic thin films 11, 12, 13, 14, and 15 having an element shape. Further, resist masking of a conductor film that connects a plurality of magnetic films 11, 12, 13, 14, and 15 in series is created in the same process as described above, and the conductor films 16, 16, and 16 are patterned.

更に、パターンニング形成後、磁場中熱処理を真空中で行い、スパッター時の異方性を取り除き、且つ一軸異方性をパターンニングした磁性膜11,12,13,14,15の幅方向に付与する一般的な製法である。   Further, after patterning, heat treatment in a magnetic field is performed in a vacuum to remove the anisotropy during sputtering, and uniaxial anisotropy is applied in the width direction of the patterned magnetic films 11, 12, 13, 14, 15. It is a general manufacturing method.

図11は図10の磁性薄膜を示す斜視図である。図11に示すように、磁性薄膜11,12,13,14は、磁性膜11aと磁性膜11bの間に,非磁性膜18を挟んだ構造で,この従来例においては,磁性膜11aを2層,磁性膜11bを2層,その各の層間に非磁性膜18を挟んだ,磁性層4層,及び非磁性層3層の多層構造とした。   FIG. 11 is a perspective view showing the magnetic thin film of FIG. As shown in FIG. 11, the magnetic thin films 11, 12, 13, and 14 have a structure in which a nonmagnetic film 18 is sandwiched between a magnetic film 11a and a magnetic film 11b. In this conventional example, two magnetic films 11a are provided. A multilayer structure of four magnetic layers and three nonmagnetic layers, with two layers, two magnetic films 11b, and a nonmagnetic film 18 sandwiched between the layers.

2つの電極パッド17間に高周波プローブを接続し、ネットワークアナライザーにて10MHz〜60MHzの高周波電流を印加して、素子の長手方向に外部磁界を−1KA/m〜1KA/m印加してインピーダンスの変化を観察する。   A high frequency probe is connected between the two electrode pads 17, a high frequency current of 10 MHz to 60 MHz is applied with a network analyzer, and an external magnetic field is applied in the longitudinal direction of the element to −1 KA / m to 1 KA / m to change the impedance. Observe.

図12は図10の従来の磁性薄膜素子のインピーダンス特性を示す図である。図12に示すように、磁性薄膜素子に印加する外部磁界を負側(−)から印加した場合のインピーダンス変化101は,外部磁界の正側(+)のピーク点,約0.5KA/m付近で,インピーダンスの変化が崩れる。逆に外部磁界を正側(+)から印加した場合,外部磁界の負側(−)のインピーダンスピーク点(−0.5KA/m付近)が崩れている特性となっている。   FIG. 12 is a diagram showing impedance characteristics of the conventional magnetic thin film element of FIG. As shown in FIG. 12, when the external magnetic field applied to the magnetic thin film element is applied from the negative side (-), the impedance change 101 is about the peak point on the positive side (+) of the external magnetic field, about 0.5 KA / m. Then, the change of impedance collapses. Conversely, when an external magnetic field is applied from the positive side (+), the impedance peak point (near -0.5 KA / m) on the negative side (−) of the external magnetic field is broken.

図13は図10の従来の薄膜素子のインピーダンスが崩れている理由の説明に供せられる図である。図13に示すように、磁性薄膜素子の端部に於ける磁区の形成構造と磁化の動きにある。磁性薄膜11と磁性薄膜12を導体膜6で接続している端部部分をビッター法にて磁区観察している。磁性体端部に形成された磁区102は,亀の甲羅のような丸みを帯びた構造をしており,外部磁界を飽和磁界以上に印加しても,磁区103が残存してしまう。また、印加した磁界を,減磁して行くと磁区の発生点が,印加時と異なってしまっていることからである。   FIG. 13 is a diagram for explaining the reason why the impedance of the conventional thin film element of FIG. 10 is broken. As shown in FIG. 13, there is a magnetic domain formation structure and magnetization movement at the end of the magnetic thin film element. An end portion where the magnetic thin film 11 and the magnetic thin film 12 are connected by the conductor film 6 is observed by a magnetic domain by the bitter method. The magnetic domain 102 formed at the end of the magnetic material has a rounded structure like a turtle shell, and the magnetic domain 103 remains even when an external magnetic field is applied above the saturation magnetic field. Further, when the applied magnetic field is demagnetized, the magnetic domain generation point is different from that at the time of application.

前述したように、棒状の細長い磁性薄膜素子は,素子端部が磁気回路的に空隙に曝されるため,反磁界が非常に強くなる部位である。素子中央部は,端部と比較すると,反磁界が弱いため,異方性を誘導する場合に於いても比較的,誘導は容易であり,磁区も均一に形成されるが、素子端部に於いては,反磁界が強いため,異方性を誘導しようとしても均一な磁区を付与するのは困難で,複雑な磁区構造となってしまうことが多い。   As described above, the rod-shaped elongated magnetic thin film element is a part where the demagnetizing field becomes very strong because the end of the element is exposed to the air gap in a magnetic circuit manner. Since the demagnetizing field is weaker in the center of the element than in the end, it is relatively easy to induce anisotropy when the anisotropy is induced, and the magnetic domain is formed uniformly. However, since the demagnetizing field is strong, it is difficult to provide a uniform magnetic domain even when trying to induce anisotropy, and the magnetic domain structure often becomes complicated.

また、磁性薄膜素子端部は,複雑な磁区構造なため、外部より磁界が印加された場合,磁壁移動や磁区回転により,磁区の消失もしくは,磁区の発生時に於いて同一箇所からの変化に再現が無く,素子の特性にヒステリシスをもたらす原因となる問題がある。   In addition, because the magnetic thin film element end has a complicated magnetic domain structure, when a magnetic field is applied from the outside, the magnetic domain disappears or reappears from the same location when the magnetic domain occurs due to domain wall movement or magnetic domain rotation. There is a problem that causes hysteresis in the element characteristics.

特開平10−90380号公報Japanese Patent Laid-Open No. 10-90380 特開2002−6015号公報Japanese Patent Laid-Open No. 2002-6015 特開2000−206217号公報JP 2000-206217 A 特開2000−206216号公報JP 2000-206216 A

従って,本発明の技術的課題は,正,負外部磁界のどちらから磁界を印加してもヒステリシスの生じない再現性の良いインピーダンス素子を用いた磁性薄膜素子を提供することである。 Therefore, a technical problem of the present invention is to provide a magnetic thin film element using an impedance element with good reproducibility that does not generate hysteresis even when a magnetic field is applied from either a positive or negative external magnetic field.

本発明によれば、一軸異方性を有するCo基及びFe基の内の少なくとも一方を用いた板状からなる磁性薄膜を備えた磁性薄膜素子であって、前記磁性薄膜は、少なくとも一端部に透磁率遷移開始又は完了部を備え、前記磁性薄膜に外部より磁界を印加されることで,磁壁移動または,磁化回転が生じ,磁区の消失,磁区の発生が前記透磁率遷移開始又は完了部から起こり、当該磁性薄膜の透磁率が変化することを特徴とするインピーダンス素子を用いた磁性薄膜素子が得られる。 According to the present invention, there is provided a magnetic thin film element including a plate-shaped magnetic thin film using at least one of Co group and Fe group having uniaxial anisotropy, wherein the magnetic thin film is at least at one end. A magnetic permeability transition start or completion unit is provided, and a magnetic field is applied to the magnetic thin film from the outside, thereby causing domain wall movement or magnetization rotation, and disappearance of magnetic domains and generation of magnetic domains from the start or completion of the magnetic permeability transition. Thus, a magnetic thin film element using an impedance element characterized in that the magnetic permeability of the magnetic thin film changes is obtained.

また、本発明によれば、前記インピーダンス素子を用いた磁性薄膜素子において、前記板状の磁性薄膜が複数本折り返されるように並んだ形状で,前記磁性薄膜の両端部に前記透磁率遷移開始又は完了部を有することを特徴とするインピーダンス素子を用いた磁性薄膜素子が得られる。 According to the present invention, in the magnetic thin film element using the impedance element, the magnetic permeability transition starts or ends at both ends of the magnetic thin film in a shape in which a plurality of the plate-like magnetic thin films are lined up. A magnetic thin film element using an impedance element having a completion portion is obtained.

また、本発明によれば、前記インピーダンス素子を用いた磁性薄膜素子において、前記板状の磁性薄膜は、複数本並行に並んだ形状を備え、さらに、前記複数本の磁性薄膜を電気的に直列に導通するために、前記複数本の磁性薄膜の内の隣接する端部同士を、並んだ方向に互い違いに導体膜にて接続した構造を有することを特徴とするインピーダンス素子を用いた磁性薄膜素子が得られる。 According to the present invention, in the magnetic thin film element using the impedance element , the plate-like magnetic thin film has a shape in which a plurality of magnetic thin films are arranged in parallel, and the plurality of magnetic thin films are electrically connected in series. A magnetic thin film element using an impedance element having a structure in which adjacent end portions of the plurality of magnetic thin films are alternately connected to each other by a conductor film in the aligned direction. Is obtained.

また、本発明によれば、前記いずれか1つのインピーダンス素子を用いた薄膜磁性素子において、前記透磁率遷移開始又は完了部は、前記板状の磁性薄膜の両端部から当該素子長の20%以内の位置に設けられていることを特徴とするインピーダンス素子を用いた磁性薄膜素子が得られる。 Further, according to the present invention, in the thin film magnetic element using any one of the impedance elements, the permeability transition start or completion portion is within 20% of the element length from both ends of the plate-like magnetic thin film. Thus, a magnetic thin film element using an impedance element characterized by being provided at the position is obtained.

また、本発明によれば、前記いずれか一つのインピーダンス素子を用いた磁性薄膜素子において、前記透磁率遷移開始又は完了部は、微小穴または,微小凹凸形状を備えていることを特徴とするインピーダンス素子を用いた磁性薄膜素子が得られる。 Further, according to the present invention, the in the magnetic thin film element using any one of the impedance elements, magnetic permeability transition started or completed part, impedance, characterized in that the micro-holes or is provided with a fine unevenness A magnetic thin film element using the element is obtained.

また、本発明によれば、前記インピーダンス素子を用いた磁性薄膜素子において、前記透磁率遷移開始又は完了部は、前記板状からなる端部に微小凹凸形状を持ち、当該素子幅よりも充分小さい形状で,前記微小凹凸形状は,先が尖った1つまたは,複数の楔型の山形状または谷型状の構造を有することを特徴とするインピーダンス素子を用いた磁性薄膜素子が得られる。 According to the present invention, in the magnetic thin film element using the impedance element, the permeability transition start or completion part has a minute uneven shape at the end made of the plate shape, and is sufficiently smaller than the element width. The magnetic thin film element using the impedance element is characterized in that the minute concavo-convex shape has one or a plurality of wedge-shaped mountain-shaped or valley-shaped structures.

また、本発明によれば、前記インピーダンス素子を用いた磁性薄膜素子において、前記透磁率遷移開始又は完了部は、前記板状からなる端部に微小穴を持ち、当該素子幅よりも充分小さい穴を1つまたは,複数有する構造を有することを特徴とするインピーダンス素子を用いた磁性薄膜素子が得られる。 Further, according to the present invention, in the magnetic thin film element using the impedance element, the permeability transition start or completion part has a minute hole in the end portion made of the plate shape, and is a hole sufficiently smaller than the element width. Thus, a magnetic thin film element using an impedance element characterized by having a structure having one or a plurality of can be obtained.

また、本発明によれば、前記インピーダンス素子を用いた磁性薄膜素子において、前記磁性薄膜は、磁性薄膜基部と非磁性薄膜基部とが積層された多層構造を有することを特徴とするインピーダンス素子を用いた磁性薄膜素子が得られる。 According to the present invention, in the magnetic thin film element using the impedance element, the magnetic thin film has a multilayer structure in which a magnetic thin film base and a nonmagnetic thin film base are stacked . The magnetic thin film element can be obtained.

また、本発明によれば、前記インピーダンス素子を用いた磁性薄膜素子において,当該磁性薄膜素子の幅が5μm〜1000μmであり、前記素子端部の鋭利な凹凸形状は100°以下の角度を持つ楔型をしていることを特徴とするインピーダンス素子を用いた磁性薄膜素子が得られる。 According to the present invention, in the magnetic thin film element using the impedance element, the width of the magnetic thin film element is 5 μm to 1000 μm, and the sharp concavo-convex shape at the end of the element is a wedge having an angle of 100 ° or less. A magnetic thin film element using an impedance element characterized by being shaped can be obtained.

さらに、本発明によれば、前記インピーダンス素子を用いた磁性薄膜素子において,前記素子1本の幅が5μm〜1000μmで、前記素子端部の微小穴の径は、当該素子幅の50%以下であることを特徴とするインピーダンス素子を用いた磁性薄膜素子が得られる。 Further, according to the present invention, in the magnetic thin film element using the impedance element, the width of one element is 5 μm to 1000 μm, and the diameter of the minute hole at the end of the element is 50% or less of the element width. A magnetic thin film element using an impedance element having a certain characteristic can be obtained.

本発明によれば,磁性薄膜素子に於ける素子端部を凹凸の尖った形状または,微小な穴形状を持つ構造にすることで,外部磁場の正磁界,負磁界どちらから印加されても,透磁率変化にヒステリシスのない再現性の良いインピーダンス素子を用いた磁性薄膜素子を提供することが出来る。 According to the present invention, the element end of the magnetic thin film element has a structure with a pointed or uneven shape or a minute hole shape, so that it can be applied from either a positive magnetic field or a negative magnetic field of an external magnetic field. It is possible to provide a magnetic thin film element using an impedance element having good reproducibility and no hysteresis in the permeability change.

以下に、本発明の実施の形態によるインピーダンス素子を用いた磁性薄膜素子について説明する。 The magnetic thin film element using the impedance element according to the embodiment of the present invention will be described below.

本発明の磁性薄膜素子は、磁性体に高周波電流をキャリアとして印加し、その高周波キャリア電流によって磁性体に生じる表皮効果の表皮深さが外部の磁場に対して変化することで、前記磁性体のインピーダンスが変動する効果(MI効果)を利用したインピーダンス素子を用いた磁性薄膜素子である。   The magnetic thin film element of the present invention applies a high-frequency current as a carrier to a magnetic material, and the skin depth of the skin effect generated in the magnetic material by the high-frequency carrier current changes with respect to an external magnetic field, thereby This is a magnetic thin film element using an impedance element utilizing an effect of changing impedance (MI effect).

また、本発明の磁性薄膜素子は、磁性体に一定の電流を印加し,外部からの磁界強度により,磁性体の磁化回転により,抵抗値が変化する効果(MR効果)の磁性薄膜素子に於いて,立方体を含む板状の磁性薄膜の両端部に、鋭利な凹凸形状または,微小な円状穴形状の部分を有する透過磁率遷移開始又は完了部備えた構造の素子を具備する。ここで、本発明において、このように外部からの磁界強度により,磁性体の磁化回転により,抵抗値が変化する効果(MR効果)の係る部位を透磁率遷移開始又は完了部と呼ぶ。   In addition, the magnetic thin film element of the present invention is a magnetic thin film element having an effect of changing the resistance value (MR effect) by applying a constant current to the magnetic material, and rotating the magnetization of the magnetic material by the magnetic field strength from the outside. In addition, an element having a structure having a transmission magnetic permeability transition start or completion portion having a sharp concavo-convex shape or a minute circular hole shape at both ends of a plate-like magnetic thin film including a cube is provided. Here, in the present invention, the part related to the effect (MR effect) in which the resistance value changes due to the magnetic field strength from the outside due to the magnetization rotation of the magnetic material is referred to as a permeability transition start or completion part.

また、本発明の磁性薄膜素子は、素子1の幅が5μm〜1000μmの幅で,その素子端部の鋭利な凹凸形状は100°以下の角度を持つ楔型をしている。   In the magnetic thin film element of the present invention, the width of the element 1 is 5 μm to 1000 μm, and the sharp concavo-convex shape at the end of the element has a wedge shape with an angle of 100 ° or less.

この本発明による磁性薄膜素子において,素子1本の幅が5μm〜1000μmの幅で,その素子端部の微小穴径は幅の50%以下の微小穴を有する。   In the magnetic thin film element according to the present invention, the width of one element is 5 μm to 1000 μm, and the minute hole diameter at the end of the element has minute holes of 50% or less of the width.

本発明の磁性薄膜素子においては、素子の構造が、板状の一枚の磁性薄膜からなるものであってもよく、一方、積層した磁性膜及び非磁性膜からなる多層構造を有しても良い。   In the magnetic thin film element of the present invention, the structure of the element may be a single plate-shaped magnetic thin film, or may have a multilayer structure including a laminated magnetic film and a nonmagnetic film. good.

それでは、本発明の実施の形態について、図面を参照しながら説明する。図1は本発明の第1の実施の形態による磁性薄膜素子の磁性薄膜を示す斜視図である。図1を参照すると、板状の磁性薄膜素子の長手方向の両端部に鋭利なくさび型の切り欠け形状1a,1b(開口角度60°)が設けられている。   Now, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a magnetic thin film of a magnetic thin film element according to a first embodiment of the present invention. Referring to FIG. 1, wedge-shaped notched shapes 1a and 1b (opening angle 60 °) are provided at both ends in the longitudinal direction of a plate-like magnetic thin film element.

図2は、実際にフォトマスクを使用し,露光,現像,磁性膜スパッターと一連の前記作業にて,実施の形態と同様,磁性薄膜11,12,13,14,15が5本並行に並び,導体膜16にて,それら磁性膜が直列に接続されている形状である。なお、磁性薄膜の厚さ,長さ,導体膜厚さは,従来例と同じである。   In FIG. 2, five magnetic thin films 11, 12, 13, 14, and 15 are arranged in parallel in the same manner as in the embodiment by using a photomask and performing a series of operations such as exposure, development, and magnetic film sputtering. The magnetic films are connected in series at the conductor film 16. The thickness, length, and conductor film thickness of the magnetic thin film are the same as in the conventional example.

図3は図2の拡大平面図である。素子1本毎の両端部に、透磁率遷移開始又は完了部として当時鋭利なくさび型の切り欠け形状1a,1b,1c,1d,1eを設けた。前記形状は,磁区発生の核(nucleation site)形成を目的として作成したもので,外部磁界が印加された場合の磁区の発生,消失が常にその核より行われる。このような核を有する点を本発明では、透磁率遷移開始又は完了部と呼ぶ。この透磁率遷移開始又は完了部とを設けることで,ヒステリシスが改善される。   FIG. 3 is an enlarged plan view of FIG. Sharp wedge-shaped notch shapes 1a, 1b, 1c, 1d, and 1e were provided at both ends of each element as the start or completion of permeability transition. The shape is created for the purpose of forming a nucleus for generating a magnetic domain, and the generation and disappearance of a magnetic domain when an external magnetic field is applied is always performed from the nucleus. In the present invention, the point having such a nucleus is called a permeability transition start or completion part. By providing this permeability transition start or completion part, the hysteresis is improved.

図4は本発明による第1の実施の形態による形状において測定したインピーダンス特性を示す図である。図4に示すように、素子に印加する外部磁界を負側(−)から印加した場合のインピーダンス変化26,外部磁界を正側(+)から印加した場合のインピーダンス変化25は,ほぼ同じ軌跡を辿っている。   FIG. 4 is a diagram showing impedance characteristics measured in the shape according to the first embodiment of the present invention. As shown in FIG. 4, the impedance change 26 when the external magnetic field applied to the element is applied from the negative side (-) and the impedance change 25 when the external magnetic field is applied from the positive side (+) have substantially the same locus. Tracing.

図5は本発明の第1の実施の形態による磁性薄膜を従来技術と同様に,素子端部をビッター法にて磁区観察した写真である。図5を参照すると、外部磁界印加前は,細かい磁壁は観察されておらず,外部磁界を印加することで,その磁化は,本発明による素子の尖り部分(nucleation site;磁区発生の核)に向かって磁化することが観察されている。一方、外部磁界を反転させると、その磁化は,素子の尖り部分(nucleation site;磁区発生の核)に向かって磁化することが観察される。本発明では、nucleation siteを有する点を透磁率遷移開始又は完了部と呼ぶ。本発明では、この透磁率遷移開始又は完了部を設けることで、素子の透磁率のヒステリシスを改善し,外部磁界の印加方向に影響されない再現性のある特性が得られる。   FIG. 5 is a photograph of the magnetic thin film according to the first embodiment of the present invention observed in the magnetic domain by the bitter method at the end of the element as in the prior art. Referring to FIG. 5, before applying an external magnetic field, a fine domain wall is not observed, and by applying an external magnetic field, the magnetization is generated in the nucleation site of the element according to the present invention. It has been observed to magnetize towards. On the other hand, when the external magnetic field is reversed, it is observed that the magnetization is magnetized toward the nucleation site of the element. In the present invention, a point having a nucleation site is called a permeability transition start or completion part. In the present invention, by providing this magnetic permeability transition start or completion portion, the hysteresis of the magnetic permeability of the element is improved, and a reproducible characteristic that is not affected by the application direction of the external magnetic field is obtained.

図6は本発明の第2の実施の形態による磁性薄膜を示す斜視図である。図6を参照すると、磁性薄膜素子の薄膜の端部付近に、透磁率遷移開始又は完了部として丸穴形状2a,2b(穴径10μm)を設けた構造を備えている。   FIG. 6 is a perspective view showing a magnetic thin film according to the second embodiment of the present invention. Referring to FIG. 6, a structure is provided in which round hole shapes 2 a and 2 b (hole diameter: 10 μm) are provided in the vicinity of the end of the thin film of the magnetic thin film element as magnetic permeability transition start or completion.

次に図7は前記フォトマスクにて作成した磁性薄膜11,12,13,14,15が5本並行に並び,導体膜16で磁性膜が直列に接続されている素子の磁性膜端部に丸穴形状構造2a,2b,2c,2d,2eをもたせた試作品である。図8は図7の部分拡大図である。   Next, FIG. 7 shows that the magnetic thin films 11, 12, 13, 14, and 15 prepared by the photomask are arranged in parallel, and at the end of the magnetic film of the element in which the magnetic films are connected in series by the conductor film 16. This is a prototype with round hole-shaped structures 2a, 2b, 2c, 2d and 2e. FIG. 8 is a partially enlarged view of FIG.

本発明の第2の実施の形態による薄膜磁性素子も、第1の実施の形態と同様、素子の透磁率のヒステリシスを改善し,外部磁界の印加方向に影響されない再現性のある特性が得られる。   Similarly to the first embodiment, the thin film magnetic element according to the second embodiment of the present invention can improve the hysteresis of the magnetic permeability of the element and obtain reproducible characteristics that are not affected by the application direction of the external magnetic field. .

図9は本発明の第3の実施の形態による磁性薄膜を示す斜視図である。図9を参照すると、磁性薄膜の両端部に透磁率遷移開始又は完了部として、鋭利な尖り形状3a,3bのフォトマスクを作成した。前記形状は,第1及び第2の実施の形態と同様に、磁区発生の核(nucleation site)形成を目的として作製したもので,外部磁界が印加された場合の磁区の発生,消失が常にその核より行われることで,このような部分を有する点を透磁率遷移開始又は完了部と呼び、この透磁率遷移開始又は完了部を設けることで、ヒステリシスが改善される。   FIG. 9 is a perspective view showing a magnetic thin film according to the third embodiment of the present invention. Referring to FIG. 9, photomasks having sharp pointed shapes 3 a and 3 b were formed at both end portions of the magnetic thin film as magnetic permeability transition start or completion portions. Similar to the first and second embodiments, the shape is produced for the purpose of forming a nucleation site for generating a magnetic domain, and the occurrence and disappearance of a magnetic domain when an external magnetic field is applied is always observed. By being performed from the nucleus, a point having such a portion is called a magnetic permeability transition start or completion portion, and the hysteresis is improved by providing the magnetic permeability transition start or completion portion.

本発明の第3の実施の形態による薄膜磁性素子も、端部に透磁率遷移開始又は完了部を設けることで、第1及び第2の実施の形態と同様、素子の透磁率のヒステリシスを改善し,外部磁界の印加方向に影響されない再現性のある特性が得られる。   The thin film magnetic element according to the third embodiment of the present invention also improves the hysteresis of the magnetic permeability of the element by providing a magnetic permeability transition start or completion portion at the end as in the first and second embodiments. In addition, reproducible characteristics that are not affected by the direction in which the external magnetic field is applied can be obtained.

以上の説明の通り、本発明の薄膜磁性素子は、自動車、家電、通信機器、船舶、航空機、医療機器等の分野で使用する微弱な磁界を検出する磁性薄膜素子に最適である。   As described above, the thin film magnetic element of the present invention is optimal for a magnetic thin film element for detecting a weak magnetic field used in the fields of automobiles, home appliances, communication equipment, ships, aircraft, medical equipment and the like.

本発明の第1の実施の形態による磁性薄膜素子の端部形状の説明図(透磁率開始又は完了部は尖り凹形状)である。It is explanatory drawing (the permeability start or completion part is a pointed concave shape) of the edge part shape of the magnetic thin film element by the 1st Embodiment of this invention. 本発明の第1の実施の形態による磁性薄膜素子の端部を示す部分平面図(透磁率開始又は完了部は尖り凹形状)である。FIG. 3 is a partial plan view showing the end portion of the magnetic thin film element according to the first embodiment of the present invention (the magnetic permeability start or completion portion has a pointed concave shape). 図2の磁性薄膜素子端部の部分拡大図(透磁率開始又は完了部は尖り凹形状)である。It is the elements on larger scale of the magnetic thin film element edge part of FIG. 2 (The permeability start or completion part is pointed concave shape). 本発明の第1の実施の形態による磁性薄膜素子の外部磁場に対するインピーダンス変化の説明図である。It is explanatory drawing of the impedance change with respect to the external magnetic field of the magnetic thin film element by the 1st Embodiment of this invention. 本発明の第1の実施の形態の磁性薄膜素子端部の金属組織の外部磁場印加に於ける磁区変化の説明するための写真である。It is a photograph for demonstrating the magnetic domain change in the external magnetic field application of the metal structure of the magnetic thin film element edge part of the 1st Embodiment of this invention. 本発明の第2の実施の形態による磁性薄膜素子の端部形状を示す斜視図(透磁率開始又は完了部は微小穴形状)である。It is a perspective view which shows the edge part shape of the magnetic thin film element by the 2nd Embodiment of this invention (The permeability start or completion part is a microhole shape). 本発明の第2の実施の形態による磁性薄膜素子の端部の部分平面図(透磁率開始又は完了部は微小穴形状)である。FIG. 6 is a partial plan view of an end portion of a magnetic thin film element according to a second embodiment of the present invention (permeability start or completion portion is a minute hole shape). 図7の磁性薄膜素子端部の部分拡大図(透磁率開始又は完了部は微小穴形状)である。It is the elements on larger scale of the magnetic thin film element edge part of FIG. 7 (The permeability start or completion part is a microhole shape). 本発明の第3の実施の形態による磁性薄膜素子の端部形状の説明図(透磁率開始又は完了部は尖り凸形状)である。It is explanatory drawing (the magnetic permeability start or completion part is a pointed convex shape) of the edge part shape of the magnetic thin film element by the 3rd Embodiment of this invention. 従来技術による磁性薄膜素子のパターンニング形状の説明図である。It is explanatory drawing of the patterning shape of the magnetic thin film element by a prior art. 従来の磁性薄膜素子の端部の説明図である。It is explanatory drawing of the edge part of the conventional magnetic thin film element. 従来の磁性薄膜素子の外部磁場に対するインピーダンス変化の説明図である。It is explanatory drawing of the impedance change with respect to the external magnetic field of the conventional magnetic thin film element. 従来の磁性薄膜素子端部の外部磁場印加に於ける磁区変化の説明するための写真である。It is a photograph for demonstrating the magnetic domain change in the external magnetic field application of the conventional magnetic thin film element edge part.

1a,1b,1c,1d,1e 素子端部の尖った凹形状構造(透磁率開始又は完了部)
2a,2b,2c,2d,2e 素子端部の微小穴形状構造(透磁率開始又は完了部)
3a,3b 素子端部の尖った凸形状構造(透磁率開始又は完了部)
10 ガラス基板
11,12,13,14,15 磁性薄膜素子
11a 磁性薄膜(上層)
11b 磁性薄膜(下層)
16 導体膜(直列接続、導体膜(端子−パッド)
18 非磁性中間膜
25 外部磁界−インピーダンス特性(正磁界→負磁界)
26 外部磁界−インピーダンス特性(負磁界→正磁界)
27 外部磁界印加前の磁性薄膜素子端部の磁区構造(本発明)
28 外部磁界印加後の磁性薄膜素子端部の磁区構造(本発明)
100 外部磁界−インピーダンス特性(正磁界→負磁界)
101 外部磁界−インピーダンス特性(負磁界→正磁界)
102 外部磁界印加前の磁性薄膜素子端部の磁区構造(従来)
103 外部磁界印加後の磁性薄膜素子端部の磁区構造(従来)
1a, 1b, 1c, 1d, 1e Concave-shaped structure with pointed end of element (permeability start or completion part)
2a, 2b, 2c, 2d, 2e Micro hole shape structure at element end (permeability start or completion part)
3a, 3b Convex-shaped structure with sharp element end (permeability start or completion)
DESCRIPTION OF SYMBOLS 10 Glass substrate 11, 12, 13, 14, 15 Magnetic thin film element 11a Magnetic thin film (upper layer)
11b Magnetic thin film (lower layer)
16 Conductor film (series connection, conductor film (terminal-pad)
18 Nonmagnetic interlayer 25 External magnetic field-impedance characteristics (positive magnetic field → negative magnetic field)
26 External magnetic field-impedance characteristics (negative magnetic field → positive magnetic field)
27 Magnetic domain structure of magnetic thin film element end before application of external magnetic field (present invention)
28 Magnetic domain structure of magnetic thin film element end after application of external magnetic field (present invention)
100 External magnetic field-impedance characteristics (positive magnetic field → negative magnetic field)
101 External magnetic field-impedance characteristics (negative magnetic field → positive magnetic field)
102 Magnetic domain structure of magnetic thin film element end before applying external magnetic field (conventional)
103 Magnetic domain structure of magnetic thin film element end after application of external magnetic field (conventional)

Claims (10)

一軸異方性を有するCo基合金及びFe基合金の内の少なくとも一方の材料を用いた板状からなる磁性薄膜を備えた磁性薄膜素子であって、前記磁性薄膜は、少なくとも一端部に透磁率遷移開始又は完了部を備え、前記磁性薄膜に外部より磁界を印加されることで,磁壁移動または,磁化回転が生じ,磁区の消失,磁区の発生が前記透磁率遷移開始又は完了部から起こり、当該磁性薄膜の透磁率が変化することを特徴とするインピーダンス素子を用いた磁性薄膜素子。 A magnetic thin film element comprising a plate-shaped magnetic thin film using at least one of a Co-based alloy and a Fe-based alloy having uniaxial anisotropy, wherein the magnetic thin film has a magnetic permeability at least at one end. A transition start or completion part is provided, and by applying a magnetic field to the magnetic thin film from the outside, domain wall movement or magnetization rotation occurs, the disappearance of the magnetic domain, the generation of the magnetic domain occurs from the permeability transition start or completion part, A magnetic thin film element using an impedance element, wherein magnetic permeability of the magnetic thin film changes. 請求項1に記載のインピーダンス素子を用いた磁性薄膜素子において、前記板状の磁性薄膜が複数本折り返されるように並んだ形状で,前記磁性薄膜の両端部に前記透磁率遷移開始又は完了部を有することを特徴とするインピーダンス素子を用いた磁性薄膜素子。 The magnetic thin film element using the impedance element according to claim 1, wherein a plurality of the plate-like magnetic thin films are arranged so as to be folded back, and the permeability transition start or completion portion is provided at both ends of the magnetic thin film. A magnetic thin film element using an impedance element , characterized by comprising: 請求項1に記載のインピーダンス素子を用いた磁性薄膜素子において、前記板状の磁性薄膜は、複数本並行に並んだ形状を備え、さらに、前記複数本の磁性薄膜を電気的に直列に導通するために、前記複数本の磁性薄膜の内の隣接する端部同士を、並んだ方向に互い違いに導体膜にて接続した構造を有することを特徴とするインピーダンス素子を用いた磁性薄膜素子。 The magnetic thin film element using the impedance element according to claim 1, wherein the plate-shaped magnetic thin film has a shape in which a plurality of magnetic thin films are arranged in parallel, and further electrically connects the plurality of magnetic thin films in series. Therefore, a magnetic thin film element using an impedance element having a structure in which adjacent end portions of the plurality of magnetic thin films are alternately connected in a lined direction by a conductor film. 請求項1から3の内のいずれか一つに記載のインピーダンス素子を用いた磁性薄膜素子において、前記透磁率遷移開始又は完了部は、前記板状の磁性薄膜の両端部から当該素子長の20%以内の位置に設けられていることを特徴とするインピーダンス素子を用いた磁性薄膜素子。 4. The magnetic thin film element using the impedance element according to claim 1, wherein the magnetic permeability transition start or completion portion is 20 times the element length from both ends of the plate-like magnetic thin film. A magnetic thin film element using an impedance element, wherein the magnetic thin film element is provided at a position within%. 請求項1から3の内のいずれか一つに記載のインピーダンス素子を用いた磁性薄膜素子において、前記透磁率遷移開始又は完了部は、微小穴または,微小凹凸形状を備えていることを特徴とするインピーダンス素子を用いた磁性薄膜素子。 The magnetic thin film element using the impedance element according to any one of claims 1 to 3, wherein the permeability transition start or completion portion has a minute hole or a minute uneven shape. Magnetic thin film element using impedance element . 請求項5に記載のインピーダンス素子を用いた磁性薄膜素子において、前記透磁率遷移開始又は完了部は、前記板状からなる端部に微小凹凸形状を持ち、当該素子幅よりも充分小さい形状で,前記微小凹凸形状は,先が尖った1つまたは,複数の楔型の山形状または谷型状の構造を有することを特徴とするインピーダンス素子を用いた磁性薄膜素子。 The magnetic thin film element using the impedance element according to claim 5, wherein the magnetic permeability transition start or completion part has a minute uneven shape at an end formed of the plate shape, and has a shape sufficiently smaller than the element width. 2. The magnetic thin film element using an impedance element, wherein the minute concavo-convex shape has one or a plurality of wedge-shaped mountain-shaped or valley-shaped structures. 請求項5に記載のインピーダンス素子を用いた磁性薄膜素子において、前記透磁率遷移開始又は完了部は、前記板状からなる端部に微小穴を持ち、当該素子幅よりも充分小さい穴を1つまたは,複数有する構造を有することを特徴とするインピーダンス素子を用いた磁性薄膜素子。 6. The magnetic thin film element using the impedance element according to claim 5, wherein the permeability transition start or completion part has a minute hole at the end made of the plate shape, and one hole sufficiently smaller than the element width. Alternatively, a magnetic thin film element using an impedance element having a plurality of structures. 請求項1に記載のインピーダンス素子を用いた磁性薄膜素子において、前記磁性薄膜は、磁性薄膜基部と非磁性薄膜基部とが積層された多層構造を有することを特徴とするインピーダンス素子を用いた磁性薄膜素子。 In the magnetic thin film element using an impedance element according to claim 1, wherein the magnetic thin film, magnetic thin film and a magnetic thin film base and a non-magnetic thin film base using an impedance element characterized by having a multilayer structure that is laminated element. 請求項6に記載のインピーダンス素子を用いた磁性薄膜素子において,当該磁性薄膜素子の幅が5μm〜1000μmであり、前記素子端部の鋭利な凹凸形状は100°以下の角度を持つ楔型をしていることを特徴とするインピーダンス素子を用いた磁性薄膜素子。 7. The magnetic thin film element using the impedance element according to claim 6, wherein the width of the magnetic thin film element is 5 μm to 1000 μm, and the sharp concavo-convex shape at the end of the element has a wedge shape with an angle of 100 ° or less. A magnetic thin film element using an impedance element. 請求項7に記載のインピーダンス素子を用いた磁性薄膜素子において,前記素子1本の幅が5μm〜1000μmで、前記素子端部の微小穴の径は、当該素子幅の50%以下であることを特徴とするインピーダンス素子を用いた磁性薄膜素子。 The magnetic thin film element using the impedance element according to claim 7, wherein the width of one element is 5 μm to 1000 μm, and the diameter of the minute hole at the end of the element is 50% or less of the element width. A magnetic thin film element using a characteristic impedance element.
JP2005202534A 2005-07-12 2005-07-12 Magnetic thin film element using impedance element Active JP4657836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005202534A JP4657836B2 (en) 2005-07-12 2005-07-12 Magnetic thin film element using impedance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005202534A JP4657836B2 (en) 2005-07-12 2005-07-12 Magnetic thin film element using impedance element

Publications (2)

Publication Number Publication Date
JP2007027161A JP2007027161A (en) 2007-02-01
JP4657836B2 true JP4657836B2 (en) 2011-03-23

Family

ID=37787594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005202534A Active JP4657836B2 (en) 2005-07-12 2005-07-12 Magnetic thin film element using impedance element

Country Status (1)

Country Link
JP (1) JP4657836B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5509531B2 (en) * 2008-03-31 2014-06-04 Tdk株式会社 Magnetic coupler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374016A (en) * 2001-06-14 2002-12-26 Toyota Motor Corp Magnetic detection element
JP2004039837A (en) * 2002-07-03 2004-02-05 Japan Science & Technology Corp Magnetic field detecting element
JP2004047992A (en) * 2002-06-17 2004-02-12 Hewlett-Packard Development Co Lp Magnetic memory element having controlled nucleation site in data layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374016A (en) * 2001-06-14 2002-12-26 Toyota Motor Corp Magnetic detection element
JP2004047992A (en) * 2002-06-17 2004-02-12 Hewlett-Packard Development Co Lp Magnetic memory element having controlled nucleation site in data layer
JP2004039837A (en) * 2002-07-03 2004-02-05 Japan Science & Technology Corp Magnetic field detecting element

Also Published As

Publication number Publication date
JP2007027161A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
US8085039B2 (en) Miniature magnetic core, sensor comprising same and method for manufacturing same
US6430085B1 (en) Magnetic random access memory having digit lines and bit lines with shape and induced anisotropy ferromagnetic cladding layer and method of manufacture
JP4633689B2 (en) Microwave oscillation device, method for manufacturing the same, and microwave oscillation device including the microwave oscillation device
US7145331B2 (en) Magnetic sensor having a closed magnetic path formed by soft magnetic films
JP2008197089A (en) Magnetic sensor element and method for manufacturing the same
JP2012204682A (en) Magnetic oscillation element and spin wave device
JP4657836B2 (en) Magnetic thin film element using impedance element
TW201409784A (en) Magnetic tunnel junction device and method of forming the same
JPH05335650A (en) Ferromagnetic magnetic resistance element
KR101233662B1 (en) Flexible magnetoresistance sensor and manufacturing method thereof
KR100485591B1 (en) Compact Micro Magnetic Field Detecting Sensor Using Magneto Impedance Effects and Method for Making the Same
JP2007047115A (en) Magnetic sensor
JP2007178319A (en) Magnetic detection element and its manufacturing method
KR100704856B1 (en) Compact Micro Magnetic Field Detecting Sensor Using Magneto Impedance Effects and Method for Making the Same
JP2006208020A (en) Biaxial magnetic sensor, and manufacturing method therefor
JP4301446B2 (en) Magnetic sensor
JP4110468B2 (en) Magneto-impedance element
JPH06267023A (en) Thin film magnetic head and manufacture thereof
JP3216605B2 (en) Dot array-like magnetic film, magnetic recording medium and magnetoresistive element using the same
JPH1183966A (en) Method, system and element for detection of magnetic field
US5289628A (en) Method of producing a thin film magnetic head
JPH1183967A (en) Method, system and element for detection of magnetic field
JPS5877208A (en) Multi-layer magnetic thin film and manufacture thereof
KR20050034177A (en) Micro magnetic field detecting sensor of flux gate type capable of decreasing deviation between x-axis output and y-axis output from the sensor and method of making the same
US7323113B2 (en) Pattern transfer with self-similar sacrificial mask layer and vector magnetic field sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4657836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250