JP4301446B2 - Magnetic sensor - Google Patents

Magnetic sensor Download PDF

Info

Publication number
JP4301446B2
JP4301446B2 JP2004106071A JP2004106071A JP4301446B2 JP 4301446 B2 JP4301446 B2 JP 4301446B2 JP 2004106071 A JP2004106071 A JP 2004106071A JP 2004106071 A JP2004106071 A JP 2004106071A JP 4301446 B2 JP4301446 B2 JP 4301446B2
Authority
JP
Japan
Prior art keywords
magnetic
impedance
film
width
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004106071A
Other languages
Japanese (ja)
Other versions
JP2005291863A (en
Inventor
則光 星
島田  寛
栄吉 吉田
秀夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2004106071A priority Critical patent/JP4301446B2/en
Publication of JP2005291863A publication Critical patent/JP2005291863A/en
Application granted granted Critical
Publication of JP4301446B2 publication Critical patent/JP4301446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Description

本発明は、自動車、家電、通信機器、船舶、航空機、医療機器等の分野で使用する微弱な磁界を検出する磁気センサに関し、特に磁気インピーダンスセンサの構造に関する。   The present invention relates to a magnetic sensor for detecting a weak magnetic field used in the fields of automobiles, home appliances, communication equipment, ships, aircraft, medical equipment, and the like, and more particularly to the structure of a magnetic impedance sensor.

磁気インピーダンスセンサは、磁性体に数MHz以上の高周波電流を印加した場合に生ずる表皮効果の表皮深さが透磁率の平方の逆数に比例すること、前記の磁性体の透磁率が、外部磁場により大きく変動することに起因して、磁性体のインピーダンスが外部磁場によって変動し、この性質を利用した磁気センサである。   The magnetic impedance sensor is such that the skin depth of the skin effect produced when a high frequency current of several MHz or more is applied to a magnetic material is proportional to the reciprocal of the square of the magnetic permeability, and the magnetic permeability of the magnetic material depends on an external magnetic field. Due to the large fluctuation, the impedance of the magnetic substance is fluctuated by an external magnetic field, and this is a magnetic sensor using this property.

本出願人は、特許文献1にて、磁気インピーダンスセンサ素子の基板上に、磁気検出コアを2辺組み入れたブリッジ回路を取り込み、抵抗辺と磁気検出コアのインピーダンスをほぼ等しくした構成を提供した。このようにすることで、磁気検出コアのインピーダンス変動を電圧変動として検出し、磁気検出感度の向上と、オフセット削減の機能を持たせることに成功した。   In the patent document 1, the applicant of the present application provided a configuration in which a bridge circuit in which two sides of a magnetic detection core are incorporated on a substrate of a magnetic impedance sensor element is incorporated, and the impedance of the resistance side and the magnetic detection core are made substantially equal. By doing so, we succeeded in detecting the impedance fluctuation of the magnetic detection core as a voltage fluctuation and improving the magnetic detection sensitivity and providing the offset reduction function.

更に、特許文献2において、抵抗辺を非磁性体にして小型化し、渦巻きコイル、薄膜コイル、磁性膜による磁気バイアス手段を提供している。非磁性基板上に高透磁率磁性膜を形成して構成され,直線が途中で複数回平行に折り返されて長手方向に対し垂直な方向となるように磁気異方性が付けられた素子が特許文献3において提供されている。このように複数回折り返すことで、磁性膜の総延長を長くしても素子全体を短くし小型化できる。また、高インピーダンスになり使用しやすい素子となる。また、特許文献4において高透磁率磁性膜の多層構造を提供している。   Further, Patent Document 2 provides a magnetic bias means using a spiral coil, a thin film coil, and a magnetic film, with a resistance side made nonmagnetic and miniaturized. Patented is an element that is constructed by forming a high-permeability magnetic film on a non-magnetic substrate and has magnetic anisotropy so that the straight line is folded back several times in the middle to be perpendicular to the longitudinal direction. Provided in document 3. In this way, the entire element can be shortened and miniaturized even if the total extension of the magnetic film is lengthened by turning back multiple times. Moreover, it becomes a high impedance and easy-to-use element. Patent Document 4 provides a multilayer structure of a high magnetic permeability magnetic film.

この磁気インピーダンスセンサの製造方法は、誘電体基板にフォトレジストを使用し露光を行い素子形状のレジストマスキングを作製して磁性膜をスパッターにて成膜をする。その後、リフトオフ法にて磁性膜パターンニングをし、素子形状である複数本の高透磁率磁性薄膜を形成する方法である。更に、前記同様の工程にて複数本の磁性膜を直列に繋ぐ導体膜のレジストマスキングを作製し導体膜のパターニングをする。   In this method of manufacturing a magneto-impedance sensor, a photoresist is used for a dielectric substrate, exposure is performed to form a resist mask having an element shape, and a magnetic film is formed by sputtering. Thereafter, magnetic film patterning is performed by a lift-off method to form a plurality of high-permeability magnetic thin films having an element shape. Further, resist masking of a conductor film connecting a plurality of magnetic films in series is produced in the same process as described above, and the conductor film is patterned.

更に、パターンニング後、磁場中熱処理を真空中で行い、スパッター時の異方性を取り除き、且つ一軸異方性をパターンニングした磁性膜の幅方向に付与する一般的な製法である。   Further, after patterning, a general manufacturing method is performed in which heat treatment in a magnetic field is performed in vacuum, anisotropy at the time of sputtering is removed, and uniaxial anisotropy is imparted in the width direction of the patterned magnetic film.

特開平10−270774号公報JP-A-10-270774 特開2000−206217号公報JP 2000-206217 A 特開平09−127218号公報JP 09-127218 A 特開2002−027182号公報JP 2002-027182 A

従来素子のように、同一幅のインピーダンス素子を平行に並べ、複数本同時に幅を替えることで感度をコントロールし、印加磁場に対してインピーダンスのピーク点をコントロールすることは、ある程度可能であったが、コントロールできる範囲が粗く、且つ線形範囲を広くしようとすると感度が下がるという問題があった。   Like conventional elements, it was possible to some extent to arrange impedance elements with the same width in parallel and control the sensitivity by changing the width at the same time, and to control the peak point of impedance with respect to the applied magnetic field. There is a problem that the controllable range is coarse and the sensitivity decreases when the linear range is widened.

更に、従来の単層膜の場合、磁壁移動時に磁性体内部の欠陥や不純物により不連続な磁壁移動が起こり易い問題があり、線形性が悪くなる問題があった。従って、本発明の目的は、線形範囲を広げた、且つ、磁性膜積層構造によりインピーダンス変化が滑らかな直線性の良い磁気センサを提供することである。   Further, in the case of the conventional single layer film, there is a problem that discontinuous domain wall movement is likely to occur due to defects and impurities inside the magnetic body during domain wall movement, and there is a problem that linearity is deteriorated. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a magnetic sensor with good linearity in which the linear range is expanded and the impedance change is smooth due to the magnetic film laminated structure.

本発明により、高周波電流をキャリアとして印加する際のインピーダンスが外部の磁場により変動する磁性体からなるインピーダンス素子を用いた磁気センサにおいて、前記インピーダンス素子が板状の磁性薄膜であって、磁性薄膜の長さ、幅が異なる前記インピーダンス素子が平行に複数本並べられ、直列に繋れた磁気センサが得られる。   According to the present invention, in a magnetic sensor using an impedance element made of a magnetic material whose impedance when a high-frequency current is applied as a carrier varies with an external magnetic field, the impedance element is a plate-like magnetic thin film, A plurality of impedance elements having different lengths and widths are arranged in parallel to obtain a magnetic sensor connected in series.

また、本発明により、1本のインピーダンス素子の幅が5〜50μmで、複数本間のインピーダンス素子の幅の差の最大値が5μm以上ある磁気センサが得られる。   Further, according to the present invention, a magnetic sensor can be obtained in which the width of one impedance element is 5 to 50 μm and the maximum difference in the width of the impedance elements between a plurality of impedance elements is 5 μm or more.

また、本発明により、1本のインピーダンス素子の長さが0.5mm〜5mmで、複数本間のインピーダンス素子の長さの差の最大値が10%以上ある磁気センサが得られる。   In addition, according to the present invention, it is possible to obtain a magnetic sensor in which the length of one impedance element is 0.5 mm to 5 mm and the maximum difference between the lengths of the impedance elements is 10% or more.

また、本発明により、インピーダンス素子が磁性膜と非磁性膜からなる多層構造を有する板状の磁性薄膜である磁気センサが得られる。   Further, according to the present invention, a magnetic sensor is obtained in which the impedance element is a plate-like magnetic thin film having a multilayer structure composed of a magnetic film and a nonmagnetic film.

本発明によれば、磁気センサにおける複数本のインピーダンス素子中の幅、長さを可変することで外部磁場に対するインピーダンス変化のピーク点を可変しながら線形範囲を広げ、且つ、磁性膜積層構造によりインピーダンス変化が滑らかな直線性の良い磁気センサを提供できる。   According to the present invention, by changing the width and length of a plurality of impedance elements in a magnetic sensor, the linear range is expanded while varying the peak point of impedance change with respect to an external magnetic field, and the impedance is improved by the magnetic film laminated structure. A magnetic sensor with smooth linearity and good linearity can be provided.

以下に、本発明の実施の形態による磁気センサについて説明する。   The magnetic sensor according to the embodiment of the present invention will be described below.

(実施の形態1)
図1は、高透磁率磁性膜のパターンニング形状の説明図である。また、図2は、高透磁率磁性膜と導体膜パターン形状の説明図である。
(Embodiment 1)
FIG. 1 is an explanatory diagram of a patterning shape of a high permeability magnetic film. Moreover, FIG. 2 is explanatory drawing of a high magnetic permeability magnetic film and conductor film pattern shape.

図1に示すように、厚さ2μm、長さ1mmの磁性薄膜インピーダンス素子11,12,13,14,15を5本平行に並べる。また、図2に示すように、厚さ0.6μm導体膜62,63,64,65で磁性薄膜インピーダンス素子11〜15を直列に繋ぎあわせる。その両端に導体膜61,66を接続し電極パッド100,200に接続する。その電極パッド100,200の間に高周波プローブを接続し、ネットワークアナライザーにて10MHz〜60MHzの高周波電流を印加して、素子の長手方向に外部磁場を−20〜20×103/4πA/m印加してインピーダンスの変化を観察する。 As shown in FIG. 1, five magnetic thin film impedance elements 11, 12, 13, 14, and 15 having a thickness of 2 μm and a length of 1 mm are arranged in parallel. Further, as shown in FIG. 2, the magnetic thin film impedance elements 11 to 15 are connected in series with the conductor films 62, 63, 64 and 65 having a thickness of 0.6 μm. Conductive films 61 and 66 are connected to both ends thereof and connected to the electrode pads 100 and 200. A high-frequency probe is connected between the electrode pads 100 and 200, a high-frequency current of 10 MHz to 60 MHz is applied by a network analyzer, and an external magnetic field of -20 to 20 × 10 3 / 4πA / m is applied in the longitudinal direction of the element. And observe the change in impedance.

図3は、素子幅を替えた場合の外部磁場に対するインピーダンス変化の説明図である。ここで、素子幅広が40μm、中が30μm、狭が20μmである。図3に示すように、磁性薄膜インピーダンス素子11〜15の幅が20μmと狭くなることで、印加磁場に対してインピーダンスのピーク点が低く、幅が40μmと太くなることでピーク点が高くなる特性が得られる。   FIG. 3 is an explanatory diagram of an impedance change with respect to an external magnetic field when the element width is changed. Here, the element width is 40 μm, the inside is 30 μm, and the narrow is 20 μm. As shown in FIG. 3, when the width of the magnetic thin film impedance elements 11 to 15 is reduced to 20 μm, the peak point of the impedance is low with respect to the applied magnetic field, and the peak point is increased by increasing the width to 40 μm. Is obtained.

磁性薄膜インピーダンス素子11〜15の幅が細くなると、幅方向の外部磁界に対する反磁界が強くなり、磁場中熱処理による一軸異方性付与時の磁場が、幅の広い磁性薄膜インピーダンス素子と同じ磁場では誘導しきれなくなり、磁区は完全に幅方向に付与できず、磁区が斜めに付与される。斜めに付与された磁区を持つ磁性膜は、一軸異方性が弱くなりインピーダンスのピーク点が低くなる。   When the width of the magnetic thin film impedance elements 11 to 15 is narrowed, the demagnetizing field against the external magnetic field in the width direction becomes stronger, and the magnetic field when uniaxial anisotropy is imparted by the heat treatment in the magnetic field is the same as that of the wide magnetic thin film impedance element. The magnetic domain cannot be provided completely in the width direction, and the magnetic domain is provided obliquely. A magnetic film having magnetic domains given obliquely has a weak uniaxial anisotropy and a low impedance peak point.

この原理に基づき、幅の異なるインピーダンス素子を並べた場合の特性について説明する。図4の破線で示す特性は、長さ1mm、幅40μmの磁性薄膜インピーダンス素子11〜15を平行に5本並べた構成のときの外部磁場印加に対するインピーダンス特性を示す図である。図5の破線で示す特性は、長さ1mm、幅30μmの磁性薄膜インピーダンス素子11〜15を平行に5本並べ立た構成の時の外部磁場の印加に対するインピーダンス特性を示す図である。図6は、本発明による一部素子幅を替えた時(中央の幅30μm)の形状の説明図である。また、図7は、本発明による一部素子幅を替えた時の (中央の幅20μm)の形状の説明図である。   Based on this principle, characteristics when impedance elements having different widths are arranged will be described. The characteristic indicated by the broken line in FIG. 4 is a diagram showing the impedance characteristic with respect to the application of an external magnetic field in the case where five magnetic thin film impedance elements 11 to 15 having a length of 1 mm and a width of 40 μm are arranged in parallel. The characteristic indicated by the broken line in FIG. 5 is a diagram showing the impedance characteristic with respect to application of an external magnetic field when five magnetic thin film impedance elements 11 to 15 having a length of 1 mm and a width of 30 μm are arranged in parallel. FIG. 6 is an explanatory diagram of the shape when the width of a part of the elements according to the present invention is changed (the center width is 30 μm). FIG. 7 is an explanatory diagram of the shape of (center width 20 μm) when the partial element width is changed according to the present invention.

図4の実線は、長さ1mm、幅40μmの磁性薄膜インピーダンス素子1,2を平行に2本並べ、その隣に他の磁性薄膜インピーダンス素子1,2,4,5の幅よりも10μm幅を狭めた長さ1mm、幅30μmの磁性薄膜インピーダンス素子3を平行に並べる。更に、長さ1mm、幅40μmの磁性薄膜インピーダンス素子4,5を平行に2本並べ、合計5本の磁性膜インピーダンス素子を線対称の構成としたときの外部磁場印加に対するインピーダンス特性である。   The solid line in FIG. 4 shows two magnetic thin film impedance elements 1 and 2 having a length of 1 mm and a width of 40 μm arranged in parallel, and next to the magnetic thin film impedance elements 1, 2, 4 and 5 by 10 μm in width. Narrow magnetic thin film impedance elements 3 having a length of 1 mm and a width of 30 μm are arranged in parallel. Furthermore, it is an impedance characteristic with respect to the application of an external magnetic field when two magnetic thin film impedance elements 4 and 5 having a length of 1 mm and a width of 40 μm are arranged in parallel, and a total of five magnetic film impedance elements have a line-symmetric configuration.

図5の実線は、長さ1mm、幅30μmの磁性薄膜インピーダンス素子1,2を平行に2本並べ、その隣に他の磁性薄膜インピーダンス素子1,2,4,5の幅よりも10μm幅を狭めた長さ1mm、幅20μmの磁性薄膜インピーダンス素子4,5を平行に2本並べ、合計5本の磁性膜インピーダンス素子を線対称の構成としたときの外部磁場印加に対するインピーダンス特性である。   The solid line in FIG. 5 shows two magnetic thin film impedance elements 1 and 2 having a length of 1 mm and a width of 30 μm arranged in parallel, and next to the magnetic thin film impedance elements 1, 2, 4 and 5 by 10 μm in width. This is an impedance characteristic for application of an external magnetic field when two thin magnetic film impedance elements 4 and 5 having a narrow length of 1 mm and a width of 20 μm are arranged in parallel, and a total of five magnetic film impedance elements have a line-symmetric configuration.

同一の幅寸法の磁性薄膜インピーダンス素子の幅構成の場合、外部印加磁場に対してのインピーダンス変化が、弧を描くように変化しており、非直線的な変化である。磁性薄膜インピーダンス素子の幅を狭めて30μm同一にしても傾向は同じである。   In the case of the width configuration of the magnetic thin film impedance elements having the same width dimension, the impedance change with respect to the externally applied magnetic field changes so as to draw an arc, which is a non-linear change. The tendency is the same even if the width of the magnetic thin-film impedance element is reduced to 30 μm.

次に、図6,図7に示す線対称構成の場合、図4と図5の特性に示したように、中央部の磁性膜インピーダンス素子の幅を狭めることで、一軸異方性の異なる素子を混ぜ合わせ、素子1本ずつの特性が加算されるため、非直線的な特性を補い直線的に変化することが可能となり、直線領域を増加させ、且つ、直線性が改善できる。   Next, in the case of the line-symmetric configuration shown in FIGS. 6 and 7, as shown in the characteristics of FIGS. 4 and 5, by reducing the width of the magnetic film impedance element at the center, elements having different uniaxial anisotropies are used. Since the characteristics of each element are added to each other, the nonlinear characteristics can be compensated to change linearly, the linear area can be increased, and the linearity can be improved.

(実施の形態2)
実施の形態1と同じ製造方法にて実施の形態2の磁気センサを作製した。実施の形態2の磁気センサの形状は、図2に示す高透磁率磁性膜と導体パターン形状と同様であり、素子の幅を変化させた。レジストを用いたリフトオフによるパターンニングにおいては、比較的、容易にパターンニングができることが特徴であるが、パターンニング幅は、製造上5μm程度が限界であり、インピーダンスの絶対値が低いと変化量の絶対値も低くなるため、扱い難い素子となる。
(Embodiment 2)
The magnetic sensor of the second embodiment was manufactured by the same manufacturing method as that of the first embodiment. The shape of the magnetic sensor of the second embodiment is the same as the shape of the high permeability magnetic film and the conductor pattern shown in FIG. 2, and the width of the element was changed. Patterning by lift-off using a resist is characterized in that patterning can be performed relatively easily. However, the patterning width is limited to about 5 μm in manufacturing, and if the absolute value of impedance is low, the amount of change is small. Since the absolute value is also low, the device is difficult to handle.

図8は、素子幅を替えた場合のインピーダンス絶対値の差異の説明図である。図8に示すように、素子幅20μm、30μm、40μmの順にインピーダンス値が低下している。また、インピーダンスの絶対値から50μmを限度とすることで極端な感度低下をさせずに扱い易い実施の形態2の磁気センサを得ることができる。   FIG. 8 is an explanatory diagram of a difference in impedance absolute value when the element width is changed. As shown in FIG. 8, the impedance value decreases in the order of the element width of 20 μm, 30 μm, and 40 μm. Further, by limiting the absolute value of the impedance to 50 μm, it is possible to obtain the magnetic sensor of the second embodiment that is easy to handle without causing an extreme decrease in sensitivity.

(実施の形態
磁気インピーダンス効果を利用した実施の形態の磁気センサを次のように作製した。実施の形態の磁気センサは、誘電体基板を洗浄し、フォトレジストを塗布し磁性薄膜インピーダンス素子形状のマスクにて露光を行い、多層の構造を有するインピーダンス素子のレジストマスキングを作製する。
(Embodiment 3 )
The magnetic sensor according to the third embodiment using the magneto-impedance effect was manufactured as follows. In the magnetic sensor of the third embodiment, a dielectric substrate is washed, a photoresist is applied, and exposure is performed with a mask having a magnetic thin film impedance element shape, thereby producing resist masking of the impedance element having a multilayer structure.

レジストマスキングの上から磁性薄膜2c,3c,4cを0.1μm〜5μmスパッターする。その磁性薄膜2c,3c,4cをスパッター後、Ti、SiO2等の非磁性中間層71,81,91を数百Åスパッターし、非磁性中間層71,81,91の後に最初の磁性薄膜2c,3c,4cと同じ厚みの磁性薄膜2b,3b,4bをスパッターする。 The magnetic thin films 2c, 3c, and 4c are sputtered from 0.1 μm to 5 μm on the resist mask. After sputtering the magnetic thin films 2c, 3c and 4c, several hundred nonmagnetic intermediate layers 71, 81 and 91 such as Ti and SiO 2 are sputtered, and after the nonmagnetic intermediate layers 71, 81 and 91, the first magnetic thin film 2c is sputtered. , 3c, 4c are sputtered on the magnetic thin films 2b, 3b, 4b having the same thickness.

この場合は2層であるが、更に多層も可能でTotalの厚みは印加電流周波数で決まるので、その厚みを維持し、磁性膜が偶数積層の場合、積層する磁性薄膜2c,3c,4cは、磁性薄膜2b,3b,4bと均等な厚みが望ましい。奇数積層の場合は、中心部分にあたる磁性膜を上下層の倍の厚みにすれば良い。   In this case, there are two layers, but a multilayer is also possible, and the total thickness is determined by the applied current frequency. Therefore, when the magnetic film is an even number stack, the magnetic thin films 2c, 3c, 4c to be stacked are A thickness equal to that of the magnetic thin films 2b, 3b, 4b is desirable. In the case of an odd-numbered laminate, the magnetic film corresponding to the central portion may be made twice as thick as the upper and lower layers.

その積層磁性膜とレジストマスキングを取り除くリフトオフを行うことでパターンニングができ、図10の形状である複数本の高透磁率積層磁性薄膜が形成される。   Patterning can be performed by performing lift-off to remove the laminated magnetic film and resist masking, and a plurality of high permeability laminated magnetic thin films having the shape of FIG. 10 are formed.

その後、前記同様の工程にて複数本の積層磁性膜を繋ぐ導体膜のマスキングを作製し、導体膜をパターニングする。パターンニング後、磁場中熱処理を真空中で行い、スパッター時の異方性を取り除き、且つ一軸異方性をパターンニングした磁性膜の幅方向に付与することで実施の形態の磁気センサを得ることができる。 Thereafter, in the same process as described above, masking of a conductor film connecting a plurality of laminated magnetic films is produced, and the conductor film is patterned. After patterning, heat treatment in a magnetic field is performed in vacuum, the anisotropy during sputtering is removed, and uniaxial anisotropy is applied in the width direction of the patterned magnetic film to obtain the magnetic sensor of the third embodiment. be able to.

実施の形態1の方法で作製した単層膜における磁性薄膜インピーダンス素子の外部磁場に対するインピーダンス変化の特性を図11に示す。前記方法の積層構造で作製した磁性薄膜インピーダンス素子の外部磁場に対するインピーダンス変化の特性を図12に示す。   FIG. 11 shows the characteristics of the impedance change with respect to the external magnetic field of the magnetic thin film impedance element in the single layer film produced by the method of the first embodiment. FIG. 12 shows the characteristic of impedance change with respect to the external magnetic field of the magnetic thin film impedance element produced by the laminated structure of the above method.

単層で作製した素子は、インピーダンスの変化が無い、いわゆる不感帯部において、ヒステリシスを持つ異常変化(コブ状のインピーダンス変化)が見られ、且つインピーダンスの変化立ち上がり部には、ギザギザな不連続な特性変化(バルクハウゼン躍動)が見られる。   An element made of a single layer has an abnormal change with a hysteresis (a bump-like impedance change) in the so-called dead zone where there is no change in impedance, and the impedance change rising part has a jagged, discontinuous characteristic. Change (Barkhausen movement) is seen.

この現象は、図13に示す従来の単層膜の磁区の模式説明図のように、単層の場合、膜面方向への磁気双極子相互作用しか働かないため、磁区が細かくなることが推定される。実験においても光Kerr効果顕微鏡による磁区観察から、図14に示す従来の単層膜の磁区の平面での説明図のように、磁区が細かく形成されていることが確認できる。   As shown in the schematic explanatory diagram of the magnetic domain of the conventional single layer film shown in FIG. 13, this phenomenon is presumed that the magnetic domain becomes fine because only the magnetic dipole interaction in the film surface direction works in the case of the single layer. Is done. Also in the experiment, it can be confirmed from the magnetic domain observation by the optical Kerr effect microscope that the magnetic domains are finely formed as shown in the explanatory diagram in the plane of the magnetic domain of the conventional single layer film shown in FIG.

観察写真である図14に示す磁区の端部が丸みを帯びているのは、還流磁区によるもので幅方向に付与したい磁区を妨げ、長手方向に磁区が形成されている部分である。   The end of the magnetic domain shown in FIG. 14 that is an observation photograph is rounded because of the reflux magnetic domain, which is a part where the magnetic domain desired to be applied in the width direction is obstructed and the magnetic domain is formed in the longitudinal direction.

従って、外部磁場により素子の幅方向から素子長手方向に磁壁移動し、磁化回転する際に磁性体内部の欠陥や不純物により不連続な磁壁移動が起こり、線形性が悪くなると考えられる。   Accordingly, it is considered that the domain wall is moved from the width direction of the element to the longitudinal direction of the element by an external magnetic field, and discontinuous domain wall movement occurs due to defects and impurities inside the magnetic body when the magnetization is rotated.

図15は、本発明による磁性積層膜の磁区の模式説明図である。また、図16は、本発明による磁性積層膜の平面での説明図である。実施の形態で作製した素子においては、図15のように磁性膜が上下層で関係が生じるため、磁気双極子相互作用が膜垂直方向に作用し、膜面方向への作用が弱まるため磁区が大きくなることが推定される。実験においても光Kerr効果顕微鏡による磁区観察から、図16のように磁区が大きくなっているが確認できる。 FIG. 15 is a schematic explanatory view of magnetic domains of the magnetic laminated film according to the present invention. FIG. 16 is an explanatory view in a plane of the magnetic laminated film according to the present invention. In the element manufactured in the third embodiment, since the magnetic film has a relationship between the upper and lower layers as shown in FIG. 15, the magnetic dipole interaction acts in the direction perpendicular to the film, and the action in the film surface direction is weakened. Is estimated to increase. Also in the experiment, it can be confirmed from the magnetic domain observation by the optical Kerr effect microscope that the magnetic domain is enlarged as shown in FIG.

図17は、従来の単層膜の磁壁移動の説明図である。また、図18は、本発明による磁性積層膜の磁壁移動の説明図である。同形状素子内の磁壁の数が減ることで磁壁移動および磁化回転時のひっかかりの確率が少なくなることが推定できる。また、単層膜の場合、図17のように磁壁移動過程の際、磁壁内における磁区のようなものが膜垂直面方向に回転しながら磁壁が移動するので、その移動過程でのエネルギーが非常に大きいと推定される。   FIG. 17 is an explanatory diagram of domain wall motion of a conventional single layer film. Moreover, FIG. 18 is explanatory drawing of the domain wall movement of the magnetic laminated film by this invention. It can be presumed that the probability of catching at the time of domain wall movement and magnetization rotation is reduced by reducing the number of domain walls in the same shape element. In the case of a single layer film, as shown in FIG. 17, during the domain wall movement process, the domain wall moves while rotating a domain such as a magnetic domain in the domain wall in the direction perpendicular to the film. It is estimated to be large.

しかしながら、実施の形態においては、図18のように膜面方向での回転のため、磁壁移動時のエネルギーが少ない。従って、磁性体内部の欠陥や不純物にひっかかりがあってもエネルギーが小さいために大きな変化となって現れないと考えられる。このようなことから、直線部分の不連続性を改善し、且つ、広い線形範囲が得られる。 However, in the third embodiment, the energy in moving the domain wall is small because of rotation in the film surface direction as shown in FIG. Therefore, it is considered that even if a defect or impurity inside the magnetic material is caught, it does not appear as a large change due to the small energy. For this reason, the discontinuity of the straight line portion is improved and a wide linear range is obtained.

高透磁率磁性膜のパターンニング形状の説明図。Explanatory drawing of the patterning shape of a high magnetic permeability magnetic film. 高透磁率磁性膜と導体膜のパターン形状の説明図。Explanatory drawing of the pattern shape of a high magnetic permeability magnetic film and a conductor film. 素子幅を替えた場合の外部磁場に対するインピーダンス変化の説明図。Explanatory drawing of the impedance change with respect to an external magnetic field at the time of changing element width. 同素子幅を複数並べた時と本発明による一部素子幅を替えた時(30μm)の外部磁場に対するインピーダンス変化の説明図。Explanatory drawing of the impedance change with respect to an external magnetic field at the time of arranging the several element width and changing the partial element width by this invention (30 micrometers). 同素子幅を複数並べた時と本発明による一部素子幅を替えた時(20μm)の外部磁場に対するインピーダンス変化の説明図。Explanatory drawing of the impedance change with respect to an external magnetic field at the time of arranging the several element width, and changing the partial element width by this invention (20 micrometers). 本発明による一部素子幅を替えた時(中央の幅30μm)の形状の説明図。Explanatory drawing of the shape when the partial element width by this invention is changed (central width 30 micrometers). 本発明による一部素子幅を替えた時(中央の幅20μm)の形状の説明図。Explanatory drawing of the shape when the partial element width by this invention is changed (central width 20 micrometers). 素子幅を替えた場合のインピーダンス絶対値差異の説明図。Explanatory drawing of an impedance absolute value difference at the time of changing element width. 本発明による素子の長さを替えた時のインピーダンス変化の説明図。Explanatory drawing of the impedance change when changing the length of the element by this invention. 本発明による一部素子幅を替えた時の磁性積層膜の形状の説明図。Explanatory drawing of the shape of a magnetic laminated film when changing the partial element width by this invention. 従来の単層膜によるインピーダンス変化の説明図。Explanatory drawing of the impedance change by the conventional single layer film. 本発明による磁性積層膜によるインピーダンス変化の説明図。Explanatory drawing of the impedance change by the magnetic laminated film by this invention. 従来の単層膜の磁区の模式説明図。The schematic explanatory drawing of the magnetic domain of the conventional single layer film. 従来の単層膜の磁区の平面での説明図。Explanatory drawing in the plane of the magnetic domain of the conventional single layer film. 本発明による磁性積層膜の磁区の模式説明図。The schematic explanatory drawing of the magnetic domain of the magnetic laminated film by this invention. 本発明による磁性積層膜の磁区の平面での説明図。Explanatory drawing in the plane of the magnetic domain of the magnetic laminated film by this invention. 従来の単層膜の磁壁移動の説明図。Explanatory drawing of the domain wall motion of the conventional single layer film. 本発明による磁性積層膜の磁壁移動の説明図。Explanatory drawing of the domain wall movement of the magnetic laminated film by this invention.

符号の説明Explanation of symbols

1,2,4,5 磁性薄膜インピーダンス素子(40μm幅)
1a,2a,4a,5a 磁性薄膜インピーダンス素子(30μm幅)
3 磁性薄膜インピーダンス素子(30μm幅)
3a 磁性薄膜インピーダンス素子(20μm幅)
2b,3b,4b 磁性薄膜(上層)
2c,3c,4c 磁性薄膜(下層)
11,12,13,14,15 磁性薄膜インピーダンス素子
61,66 導体膜(端部−パッド)
62,63,64,65 導体膜(直列接続)
71,81,91 非磁性中間層
100,200 電極パッド
1,2,4,5 Magnetic thin film impedance element (40μm width)
1a, 2a, 4a, 5a Magnetic thin film impedance element (30 μm width)
3 Magnetic thin film impedance element (30μm width)
3a Magnetic thin film impedance element (20μm width)
2b, 3b, 4b Magnetic thin film (upper layer)
2c, 3c, 4c Magnetic thin film (lower layer)
11, 12, 13, 14, 15 Magnetic thin film impedance elements 61, 66 Conductor film (edge-pad)
62, 63, 64, 65 Conductor film (series connection)
71, 81, 91 Nonmagnetic intermediate layer 100, 200 Electrode pad

Claims (3)

高周波電流をキャリアとして印加する際のインピーダンスが外部の磁場により変動する磁性体からなるインピーダンス素子を用いた磁気センサにおいて、前記インピーダンス素子が板状の磁性薄膜であって、磁性薄膜の長さ、幅が異なる前記インピーダンス素子が平行に複数本並べられ、直列に繋れており、
前記インピーダンス素子が線対称に並べられるとともに、中心部のインピーダンス素子の幅が、他のインピーダンス素子の幅よりも、5μm以上狭いことを特徴とする磁気センサ。
In a magnetic sensor using an impedance element made of a magnetic material whose impedance when a high frequency current is applied as a carrier varies with an external magnetic field, the impedance element is a plate-shaped magnetic thin film, and the length and width of the magnetic thin film A plurality of impedance elements different from each other are arranged in parallel and connected in series ,
A magnetic sensor characterized in that the impedance elements are line-symmetrically arranged, and the width of the impedance element in the center is narrower by 5 μm or more than the width of other impedance elements .
前記インピーダンス素子の長さが0.5mm以上から5mm以下の範囲の長さであることを特徴とする請求項1に記載の磁気センサ。 The magnetic sensor according to claim 1, wherein the impedance element has a length in a range of 0.5 mm to 5 mm. 前記インピーダンス素子が磁性膜と非磁性膜からなる多層構造を有する板状の磁性薄膜であることを特徴とする請求項1または請求項2のいずれかに記載の磁気センサ。 3. The magnetic sensor according to claim 1, wherein the impedance element is a plate-like magnetic thin film having a multilayer structure including a magnetic film and a nonmagnetic film.
JP2004106071A 2004-03-31 2004-03-31 Magnetic sensor Expired - Lifetime JP4301446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004106071A JP4301446B2 (en) 2004-03-31 2004-03-31 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004106071A JP4301446B2 (en) 2004-03-31 2004-03-31 Magnetic sensor

Publications (2)

Publication Number Publication Date
JP2005291863A JP2005291863A (en) 2005-10-20
JP4301446B2 true JP4301446B2 (en) 2009-07-22

Family

ID=35324958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004106071A Expired - Lifetime JP4301446B2 (en) 2004-03-31 2004-03-31 Magnetic sensor

Country Status (1)

Country Link
JP (1) JP4301446B2 (en)

Also Published As

Publication number Publication date
JP2005291863A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
KR100687513B1 (en) Thin-film magnetic field sensor
US7145331B2 (en) Magnetic sensor having a closed magnetic path formed by soft magnetic films
JP2008197089A (en) Magnetic sensor element and method for manufacturing the same
JP2008134181A (en) Magnetic detector and its manufacturing method
JP5184309B2 (en) Magnetic field detection element
JP2005183614A (en) Magnetic sensor
JP3640230B2 (en) Thin film magnetic field sensor
JP4301446B2 (en) Magnetic sensor
JP3656018B2 (en) Method for manufacturing magneto-impedance effect element
JP4171979B2 (en) Magneto-impedance element
JP2001221838A (en) Magnetic impedance effect element and production method thereof
JP4110468B2 (en) Magneto-impedance element
KR101447131B1 (en) Oscillator element and method for producing the oscillator element
KR100392677B1 (en) A magneto-impedance effect element and method for manufacturing the same
JP2005109246A (en) High frequency magnetic thin film and its manufacturing method, and magnetic element
JP2007178319A (en) Magnetic detection element and its manufacturing method
JP6899117B2 (en) Magnetic field sensor and bias method
JP2003161770A (en) Magnetism detecting element
JP7464420B2 (en) Magnetic detector
JP4474835B2 (en) Magneto-impedance element
JP2898129B2 (en) Amorphous soft magnetic multilayer thin film and manufacturing method thereof
JP2924823B2 (en) Magnetic sensor and magnetic head provided with the sensor
JP4657836B2 (en) Magnetic thin film element using impedance element
JP4069419B2 (en) Magneto-impedance element
JP4812064B2 (en) Magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4301446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250