JP4656765B2 - Damping building and damping material used for damping building - Google Patents

Damping building and damping material used for damping building Download PDF

Info

Publication number
JP4656765B2
JP4656765B2 JP2001189988A JP2001189988A JP4656765B2 JP 4656765 B2 JP4656765 B2 JP 4656765B2 JP 2001189988 A JP2001189988 A JP 2001189988A JP 2001189988 A JP2001189988 A JP 2001189988A JP 4656765 B2 JP4656765 B2 JP 4656765B2
Authority
JP
Japan
Prior art keywords
damping
building
vibration
damping material
pillar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001189988A
Other languages
Japanese (ja)
Other versions
JP2002194817A (en
Inventor
淳 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2001189988A priority Critical patent/JP4656765B2/en
Publication of JP2002194817A publication Critical patent/JP2002194817A/en
Application granted granted Critical
Publication of JP4656765B2 publication Critical patent/JP4656765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の建物ユニットを隣設配置して構成される制振建物及び該制振建物に用いる制振材に関する。
【0002】
【従来の技術】
従来、特開平5−321512号公報に記載されているような制振建物及び該制振建物に用いる制振材が知られている。
【0003】
このようなものでは、図15に示すように、基礎1の上に、長尺状の梁材2,2及び柱材3,3が連結された略ボックス状の建物ユニット4,4が、複数個隣接配置されている。
【0004】
また、前記基礎1と、前記各建物ユニット4との間には、振動を吸収する防振材5,5が介在されている。この防振材5は、上面視略方形形状を呈して、硬質ゴム層と、鉄板層とを交互に積層した薄板状となるように形成されている。
【0005】
更に、この従来のものでは、前記建物ユニット4,4の間にも、前記防振材6a,6bが複数介在されている。
【0006】
次に、この従来の制振建物及び該制振建物に用いる制振材の作用について説明する。
【0007】
このように構成された従来のものでは、防振材5,5が、前記基礎1と、前記各建物ユニット4との間に介在されている。
【0008】
また、前記建物ユニット4,4の間にも、前記防振材6a,6bが複数介在されているので、前記梁材2,2の歪みが防止されると共に、地震などの際の振動が、各防振部材5,6a,6bによって吸収されるので、建物の揺れを小さくすることができる。
【0009】
【発明が解決しようとする課題】
しかしながら、このような従来の技術では、建物ユニット4,4の桁方向対向面及び妻方向対向面の各々に、略方形状の防振材6a,6bを介在させなければならず、前記防振材5に加えて、これらの防振材6a,6bの枚数が増大してしまうといった問題があった。
【0010】
また、前記柱材3と、梁材2との太さが異なる建物ユニット4,4間では、前記防振材6a,6bの厚さを異ならせなければならない。このため、防振材6aと防振材6bとを間違えて誤装着しないようにするため手間がかかった。
【0011】
本発明は、このような従来技術における問題点に着目してなされたものであり、部品点数の増大を抑制し、施工性も良好な制振建物及び該制振建物に用いる制振材を提供することを目的とする。
【0012】
【課題を解決するための手段】
前記目的を達成するために、請求項1,2に記載の発明では、長尺状の梁材及び柱材が連結された略ボックス状の建物ユニットを隣接配置して、該隣設された前記柱材間に、制振材を挟持させてなり、該制振材は、粘弾性体を有すると共に、該柱材の長手方向に沿って長尺形状になされている制振建物を特徴としている。
【0013】
このように構成された請求項1,2に記載のものでは、前記柱材の長手方向に沿って長尺形状の制振材が、前記隣設された前記建物ユニットの柱材間に挟持されているので、地震などの際の振動が、該制振材に吸収されて該制振建物の揺れを減少させる。
【0014】
前記制振材は、前記柱材の長手方向に沿って長尺形状を呈しているので、前記柱材の上下方向略全長に貼設される。
【0015】
このため、少ない数量の制振材で有効に各隣接配置される建物ユニット間の歪みを吸収出来、従来のように梁材と梁材との間にも、防振材を介在させるもののように厚みを異ならせた防振材を複数用意する必要が無くなり、部品点数の増大を抑制できると共に、誤装着を起こす虞もない。
【0016】
従って、施工性も良好である。
【0017】
また、請求項に記載されたものでは、前記建物ユニットが載置される基礎に、前記制振材の下端が連結されていることを特徴としている。
【0018】
このように構成された請求項1に記載のものでは、前記制振材の下端が、前記建物ユニットが載置される基礎に連結されているので、該制振材の横幅方向に加わった振動も、該制振材によって有効に吸収される。
【0019】
このため、前記制振材の面内外方向の振動吸収と合わせて、直交する2方向の振動吸収を行えるので、制振建物の桁方向或いは妻方向のうち、何れか一方の方向に面内外方向を揃えて該制振材を介在させれば良く、更に、部品点数を減少させることができる。
【0020】
また、請求項に記載されたものでは、前記制振材の端部を、柱材の端面より突出させ、折り曲げて柱材の端面に挟み込んだ状態で固定してなることを特徴としている。
【0021】
このように構成された請求項2に記載のものでは、前記制振材の端部を、柱材の端面より突出させ、折り曲げて柱材の端面に挟み込んだ状態で固定したので、該制振材の横幅方向に加わった振動も、該制振材によって有効に吸収される。
【0022】
このため、前記制振材の面内外方向の振動吸収と合わせて、直交する2方向の振動吸収を行えるので、制振建物の桁方向或いは妻方向のうち、何れか一方の方向に面内外方向を揃えて該制振材を介在させれば良く、更に、部品点数を減少させることができる。
【0023】
更に、請求項に記載されたものでは、前記粘弾性体を、長尺状を呈する金属板材と共に、複数層、積層させた請求項1又は2に記載の制振建物に用いる制振材を特徴としている。
【0024】
このように構成された請求項3に記載のものでは、前記粘弾性体が、長尺状を呈する金属板材と共に、複数層、積層されているので、面内外方向の振動を前記粘弾性体が吸収すると共に、該制振材の横幅方向の振動が、前記金属板材によって吸収される。
【0025】
このため、部品点数の増大が抑制され、施工性も良好な制振建物に用いる制振材が提供される。
【0026】
【発明の実施の形態1】
次に、本発明の実施の形態1を図面を参照しながら説明する。
【0027】
図1〜図4は本発明の実施の形態1の制振建物及び該制振建物に用いる制振材である。なお、前記従来例と同一乃至均等な部分については、同一符号を付して説明する。
【0028】
この実施の形態1の制振建物及び該制振建物に用いる制振材では、基礎1の上に、長尺状の梁材2,2及び柱材3,3が連結された略ボックス状の建物ユニット4,4が、複数個隣接配置されて、ユニット建物7が構成されている。この実施の形態1では、下階部分が、図2に示すように、4個の建物ユニット4…が、田の字状に寄せ集められて各々隣接するように配置されている。
【0029】
これらの隣設配置された建物ユニット4,4の前記各柱材3,3間には、制振材8が、各々挟持されて設けられている。
【0030】
この制振材8は、図3に示すように粘弾性体としての基材9,9の間に、厚さ1〜6mmの金属板としての鉄板10を挟んで積層させて、厚さa=約11mmとすると共に、横幅b=約80〜90mmを有し、前記柱材3の長手方向に沿って長さが2000mmとなるように延設されて、正面視で、長尺形状を呈するように構成されている。
【0031】
前記基材9は、ゴム系、アスファルト系、シリーコン系、アクリル系等の各種制振材料で構成され、tanδ=1以上の制振性能を有し、使用可能温度範囲を、約5〜35℃とするものである。
【0032】
なお、この実施の形態1の制振材8では、少なくとも何れか一方の表面に両面テープが貼設されていて、剥離紙をこの両面テープから剥がすことにより、この両面テープの粘着層を、前記柱材3の表面に貼り付けることによって、柱材3,3間に、この制振材8が挟持されるように構成されている。
【0033】
次に、この実施の形態1の作用について説明する。
【0034】
この実施の形態1のユニット建物7では、前記柱材3,3の長手方向に沿って長尺形状の制振材8,8が、前記隣設された前記建物ユニット4,4の柱材3,3間に挟持されているので、地震などの際の振動が、これらの制振材8,8に吸収されて、このユニット建物7の揺れを減少させる。
【0035】
下記表1では、地震時のユニット建物7の変位・加速度を通常耐震設計時の約1/3程度に低減出来ることが分かる。これにより、ユニット建物7の損傷を防止すると共に、家具等の内装物の転倒も防止できる。
【0036】
【表1】

Figure 0004656765
【0037】
また、前記制振材8は、前記柱材3の長手方向に沿って長尺形状を呈しているので、前記柱材3の上下方向略全長に貼設される。
【0038】
このため、少ない数量の制振材8で有効に各隣接配置される建物ユニット4,4間の歪みを吸収出来、従来のように梁材と梁材との間にも、防振材を介在させるもののように厚みを異ならせた防振材を複数用意する必要が無くなり、部品点数の増大を抑制できると共に、誤装着を起こす虞もない。
【0039】
従って、施工性も良好である。
【0040】
【変形例1】
図4は、本発明の実施の形態1の変形例を示すものである。なお、前記実施の形態1と同一乃至均等な部分については同一符号を付して説明する。
【0041】
この変形例では、前記制振材8に代えて、金属板としての鉄板10,10と粘弾性体としての基材9,9,9とを交互に積層した制振材11が構成されている。
【0042】
他の構成、及び作用効果については、前記実施の形態1と略同様であるので説明を省略する。
【0043】
【実施の形態2】
図5乃至図10は、この発明の実施の形態2の制振建物及び該制振建物に用いる制振材を示すものである。なお、前記実施の形態1と同一乃至均等な部分については同一符号を付して説明する。
【0044】
まず、この実施の形態2の制振建物としてのユニット建物17では、下階が、略直方体形状の建物ユニット4,4,4が、桁方向Eに3個並設されて隣設配置されている。これらの建物ユニット4,4間に隣設配置された柱材3,3間には、面内外方向を桁方向Eに揃えて、制振材18,18が各々挟持されて設けられている。
【0045】
この制振材18の基材9,9間に挟まれて積層された金属板としての鉄板19は、図8に示すように、下端部19aが、前記基材9,9よりも下方に所定長さc延設されて、図7に示すように、前記建物ユニット4,4,4が載置される基礎1内に埋設されることにより、この基礎1に対して連結されている。
【0046】
次に、この実施の形態2の作用について説明する。
【0047】
この実施の形態2のユニット建物17では、前記制振材18の下端部19aが、前記建物ユニット4,4が載置される基礎1に連結されている。
【0048】
この制振材18は、前記基材9,9が、長尺状を呈する金属板材19と共に、複数層、積層されているので、面内外方向(桁方向E)の振動を前記基材9,9が吸収すると共に、この制振材18の横幅方向(妻方向F)に加わった振動も、前記金属板材19によって吸収される。
【0049】
下記表2では、地震時のユニット建物17の変位・加速度を通常耐震設計時の約1/3程度に、妻方向、桁方向共に低減出来ることが分かる。これにより、ユニット建物17の損傷を防止すると共に、家具等の内装物の転倒も防止できる。
【0050】
【表2】
Figure 0004656765
【0051】
このため、前記制振材18の面内外方向の振動吸収と合わせて、直交する2方向の振動吸収を行えるので、ユニット建物17の桁方向E或いは妻方向Fのうち、何れか一方の方向(この実施の形態2では、桁方向E)に面内外方向を揃えて、各制振材18,18を介在させれば良く、更に、部品点数を減少させることができる。
【0052】
他の構成及び作用効果については、前記実施の形態1と略同様であるので、説明を省略する。
【0053】
【変形例2】
図9乃至図10は、この発明の実施の形態2の変形例を示すものである。なお、前記実施の形態2と同一乃至均等な部分については同一符号を付して説明する。
【0054】
まず、構成から説明すると、この変形例の制振建物としてのユニット建物27及びこのユニット建物27に用いる制振材28では、前記基材9,9間に挟まれて積層された金属板としての鉄板29の下端部が、平板状のベースプレート30と略直交するように溶接されていて、側面視略逆T字状を呈している。
【0055】
このベースプレート30は、図10に示すように、皿ネジ31,31を挿通するネジ孔32,32が左,右両側片に、各々2カ所づつ計4カ所形成されている。
【0056】
そして、前記皿ネジ31,31をこのネジ孔32,32に上方から挿通して、前記基礎1の上面部1aに螺着させることにより、この制振材28を前記基礎1に連結するように構成されている。
【0057】
更に、図9に示すように、前記各建物ユニット4,4の隣接配置される柱材3,3の下端面3a,3aと、前記基礎1の上面部1aとの間に、このベースプレート30が挟持されるように構成されている。
【0058】
次に、この実施の形態2の変形例の作用について説明する。
【0059】
この変形例では、前記実施の形態2の作用効果に加えて、更に、前記皿ネジ31,31を用いて、基礎1に対して、容易に前記制振材28,28を仮止めすることができる。
【0060】
このため、更に、施工性が良好である。
【0061】
他の構成及び作用効果については、前記実施の形態1及び変形例と略同様であるので、説明を省略する。
【0062】
【実施の形態3】
図11乃至図14は、この発明の実施の形態3の制振建物及び該制振建物に用いる制振材を示すものである。なお、前記実施の形態1、2と同一乃至均等な部分については同一符号を付して説明する。
【0063】
まず、この実施の形態3の制振建物としてのユニット建物37では、図11と図12に示すように、下階が、略直方体形状の建物ユニット4,4,4が、桁方向Eに3個並設されて隣設配置されている。これらの建物ユニット4,4間に隣設配置された柱材3,3間には、面内外方向を桁方向Eに揃えて、制振材38,38が各々挟持されて設けられている。
【0064】
この制振材38は、図13に示すように、金属板材としての鉄板39,39と粘弾性体としての基材9,9,9とを交互に積層して構成され、基材9,9間に挟まれて積層された金属板材としての鉄板39は、下端部が、前記基材9,9よりも下方に所定長さ延設されている。
上記制振材38は、図14に示すように、基材9よりも下方に延設された鉄板39の下端部を、柱材3の下端面より突出させ、これを外側に折り曲げて柱材3の下端面に挟み込んだ状態で固定されている。
【0065】
次に、この実施の形態3の作用について説明する。
【0066】
この実施の形態3のユニット建物37では、前記制振材38を構成する鉄板39の下端部が、柱材3の下端面と前記建物ユニット4,4が載置される基礎1との間に挟み込んだ状態で固定されている。
【0067】
この制振材38は、前記基材9,9,9が、長尺状を呈する金属板材としての鉄板39,39と共に、複数層、積層されているので、面内外方向(桁方向E)の振動を前記基材9,9,9が吸収すると共に、この制振材38の横幅方向(妻方向F)に加わった振動も、前記金属板材19によって吸収される。
【0068】
下記表3では、地震時のユニット建物37の変位・加速度を通常耐震設計時の約1/3程度に、妻方向、桁方向共に低減出来ることが分かる。これにより、ユニット建物37の損傷を防止すると共に、家具等の内装物の転倒も防止できる。
【0069】
【表3】
Figure 0004656765
【0070】
このため、前記制振材38の面内外方向の振動吸収と合わせて、直交する2方向の振動吸収を行えるので、ユニット建物37の桁方向E或いは妻方向Fのうち、何れか一方の方向(この実施の形態3では、桁方向E)に面内外方向を揃えて、各制振材38,38を介在させれば良く、更に、部品点数を減少させることができる。
【0071】
他の構成及び作用効果については、前記実施の形態1、2と略同様であるので、説明を省略する。
【0072】
以上、本発明の実施の形態1,2,3及び各変形例を図面に基づいて説明してきたが、本発明は、前記実施の形態1,2,3に限定されるものでなく、本発明の要旨を変更しない範囲の設計変更があっても、本発明に含まれる。
【0073】
例えば、実施の形態1では、制振材8として3層で構成される基材9,9及び鉄板10を積層したものを、また、その変形例では、制振材18として5層で構成されるものを用いているが、特にこれに限らず、例えば、基材9のみの単層、2層,4層等他の多重積層によって構成されるものであっても、前記柱材3の長手方向に沿って長尺形状を呈するものであるならば、形状、数量、材質等が限定されるものではない。
【0074】
【発明の効果】
以上、上述してきた様に、請求項1,2に記載のものでは、前記柱材の長手方向に沿って長尺形状の制振材が、前記隣設された前記建物ユニットの柱材間に挟持されているので、地震などの際の振動が、該制振材に吸収されて該制振建物の揺れを減少させる。
【0075】
前記制振材は、前記柱材の長手方向に沿って長尺形状を呈しているので、前記柱材の上下方向略全長に貼設される。
【0076】
このため、少ない数量の制振材で有効に各隣接配置される建物ユニット間の歪みを吸収出来、従来のように梁材と梁材との間にも、防振材を介在させるもののように厚みを異ならせた防振材を複数用意する必要が無くなり、部品点数の増大を抑制できると共に、誤装着を起こす虞もない。
【0077】
従って、施工性も良好である。
【0078】
また、請求項に記載されたものでは、前記制振材の下端が、前記建物ユニットが載置される基礎に連結されており、また、請求項2に記載のものでは、前記制振材の端部を、柱材の端面より突出させ、折り曲げて柱材の端面に挟み込んだ状態で固定しているので、該制振材の横幅方向に加わった振動も、該制振材によって有効に吸収される。
【0079】
このため、前記制振材の面内外方向の振動吸収と合わせて、直交する2方向の振動吸収を行えるので、制振建物の桁方向或いは妻方向のうち、何れか一方の方向に面内外方向を揃えて該制振材を介在させれば良く、更に、部品点数を減少させることができる。
【0080】
更に、請求項に記載されたものでは、前記粘弾性体が、長尺状を呈する金属板材と共に、複数層、積層されているので、面内外方向の振動を前記粘弾性体が吸収すると共に、該制振材の横幅方向の振動が、前記金属板材によって吸収される。
【0081】
このため、部品点数の増大が抑制され、施工性も良好な制振建物に用いる制振材が提供される、という実用上有益な効果を発揮する。
【図面の簡単な説明】
【図1】本発明の実施の形態1の制振建物及び該制振建物に用いる制振材であって、ユニット建物の一部の構成を示す分解斜視図である。
【図2】実施の形態1の制振建物及び該制振建物に用いる制振材であって、図1中A−A線に沿った位置での断面図である。
【図3】実施の形態1の制振建物に用いる制振材であって、要部の拡大断面図である。
【図4】実施の形態1の変形例の制振建物に用いる制振材であって、要部の拡大断面図である。
【図5】本発明の実施の形態2の制振建物及び該制振建物に用いる制振材であって、ユニット建物の一部の構成を示す分解斜視図である。
【図6】実施の形態2の制振建物及び該制振建物に用いる制振材であって、図5中B−B線に沿った位置での断面図である。
【図7】実施の形態2の制振建物及び該制振建物に用いる制振材で、基礎との関係を説明する側面図である。
【図8】実施の形態2の制振建物に用いる制振材であって、要部の構成を説明する斜視図である。
【図9】実施の形態2の変形例の制振建物及び該制振建物に用いる制振材で、基礎との関係を説明する側面図である。
【図10】実施の形態2の変形例の制振建物に用いる制振材であって、基礎への取付を説明する斜視図である。
【図11】本発明の実施の形態3の制振建物及び該制振建物に用いる制振材であって、ユニット建物の一部の構成を示す分解斜視図である。
【図12】実施の形態3の制振建物及び該制振建物に用いる制振材であって、図11中B−B線に沿った位置での断面図である。
【図13】実施の形態3の制振建物に用いる制振材であって、要部の構成を説明する斜視図である。
【図14】実施の形態3の制振建物及び該制振建物に用いる制振材で、基礎との関係を説明する側面図である。
【図15】従来例の制振建物及び該制振建物に用いる制振材で、要部の分解斜視図である。
【符号の説明】
3 柱材
4 建物ユニット
7,17,27,37 ユニット建物(制振建物)
8,18,28,38 制振材
9 基材(粘弾性体)
10,19,29,39 鉄板(金属板材)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration control building configured by arranging a plurality of building units adjacent to each other and a vibration control material used for the vibration control building.
[0002]
[Prior art]
Conventionally, a damping building and a damping material used for the damping building as described in JP-A-5-321512 are known.
[0003]
In such a case, as shown in FIG. 15, a plurality of substantially box-shaped building units 4, 4 in which long beam members 2, 2 and column members 3, 3 are connected on the foundation 1. Are arranged adjacent to each other.
[0004]
Further, between the foundation 1 and each building unit 4, vibration isolating materials 5 and 5 that absorb vibration are interposed. The vibration isolator 5 has a substantially square shape when viewed from above, and is formed in a thin plate shape in which hard rubber layers and iron plate layers are alternately laminated.
[0005]
Further, in this conventional apparatus, a plurality of the vibration isolating materials 6a and 6b are also interposed between the building units 4 and 4.
[0006]
Next, the effect | action of this conventional damping building and the damping material used for this damping building is demonstrated.
[0007]
In the conventional structure configured as described above, the vibration isolating materials 5 and 5 are interposed between the foundation 1 and each building unit 4.
[0008]
Also, since a plurality of the vibration isolating materials 6a and 6b are interposed between the building units 4 and 4, distortion of the beam materials 2 and 2 is prevented, and vibration during an earthquake or the like Since it is absorbed by each vibration isolating member 5, 6a, 6b, the shaking of the building can be reduced.
[0009]
[Problems to be solved by the invention]
However, in such a conventional technique, it is necessary to interpose substantially rectangular vibration isolating materials 6a and 6b on each of the beam direction facing surface and the wife direction facing surface of the building units 4 and 4, respectively. In addition to the material 5, there is a problem that the number of the vibration isolating materials 6a and 6b increases.
[0010]
Moreover, between the building units 4 and 4 in which the pillar material 3 and the beam material 2 have different thicknesses, the thickness of the vibration isolating materials 6a and 6b must be different. For this reason, it took time and effort to prevent the vibration isolator 6a and the vibration isolator 6b from being mistakenly attached.
[0011]
The present invention was made paying attention to such problems in the prior art, and provides a vibration-damping building that suppresses an increase in the number of parts and has good workability, and a vibration-damping material used for the vibration-damping building. The purpose is to do.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, in the inventions according to claims 1 and 2, a substantially box-shaped building unit in which long beam members and column members are connected to each other is arranged adjacently, and the adjacent unit is provided. A damping material is sandwiched between pillar materials, and the damping material has a viscoelastic body and is characterized by a damping building that is elongated along the longitudinal direction of the pillar material. .
[0013]
In the structure according to claims 1 and 2, the vibration damping material having a long shape is sandwiched between the pillar members of the adjacent building unit along the longitudinal direction of the pillar member. As a result, vibration during an earthquake or the like is absorbed by the damping material to reduce the shaking of the damping building.
[0014]
Since the vibration damping material has a long shape along the longitudinal direction of the pillar material, the vibration damping material is affixed to substantially the entire vertical length of the pillar material.
[0015]
For this reason, it is possible to absorb the distortion between building units arranged adjacent to each other effectively with a small amount of vibration damping material, and like a conventional one with a vibration damping material interposed between the beam materials. There is no need to prepare a plurality of anti-vibration materials having different thicknesses, an increase in the number of parts can be suppressed, and there is no risk of erroneous mounting.
[0016]
Therefore, workability is also good.
[0017]
Also, those described in claim 1, the foundation the building unit is placed, the lower end of the damping material is characterized in that it is connected.
[0018]
Than those described in Claim 1 thus constructed, the lower end of the damping material is because it is connected to the base of the building unit is placed, it joined in the lateral direction of the該制proof material vibration Are also effectively absorbed by the damping material.
[0019]
For this reason, in addition to vibration absorption in the in-plane and out-of-plane directions of the damping material, vibration absorption in two orthogonal directions can be performed, so that either the girder direction or the wife direction of the damping building is in the out-of-plane direction. And the damping material may be interposed, and the number of parts can be reduced.
[0020]
Also, those described in claim 2, the ends of the damping material, is characterized in that is protruded from the end face of the pillar, formed of a fixed state sandwiching the end face of the pillar is bent.
[0021]
The pump of Claim 2 thus constructed, an end portion of the damping material, is protruded from the end face of the pillar, since the fixed state sandwiching the end face of the pillar bending,該制vibration Vibration applied in the width direction of the material is also effectively absorbed by the damping material.
[0022]
For this reason, in addition to vibration absorption in the in-plane and out-of-plane directions of the damping material, vibration absorption in two orthogonal directions can be performed, so that either the girder direction or the wife direction of the damping building is in the out-of-plane direction. And the damping material may be interposed, and the number of parts can be reduced.
[0023]
Furthermore, in the thing described in Claim 3 , the damping material used for the damping building of Claim 1 or 2 which laminated | stacked the said viscoelastic body with the metal plate material which exhibits a elongate shape in multiple layers. It is a feature.
[0024]
In the structure according to claim 3 configured as described above, since the viscoelastic body is laminated in a plurality of layers together with a long metal plate, the viscoelastic body is subjected to vibration in an in-plane direction. While absorbing, the vibration of the damping material in the width direction is absorbed by the metal plate.
[0025]
For this reason, the damping material used for the damping building where the increase in a number of parts is suppressed and workability is also favorable is provided.
[0026]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1
Next, Embodiment 1 of the present invention will be described with reference to the drawings.
[0027]
1 to 4 show a damping building according to Embodiment 1 of the present invention and a damping material used for the damping building. The same or equivalent parts as those in the conventional example will be described with the same reference numerals.
[0028]
In the vibration-damping building of the first embodiment and the vibration-damping material used for the vibration-damping building, a substantially box-like shape in which long beam members 2 and 2 and column members 3 and 3 are connected to the foundation 1. A plurality of building units 4 and 4 are arranged adjacent to each other to form a unit building 7. In the first embodiment, as shown in FIG. 2, the lower floor portion is arranged so that four building units 4... Are gathered in the shape of a rice field and are adjacent to each other.
[0029]
A damping material 8 is sandwiched and provided between the pillar members 3 and 3 of the building units 4 and 4 arranged adjacent to each other.
[0030]
As shown in FIG. 3, the damping material 8 is laminated by sandwiching an iron plate 10 as a metal plate having a thickness of 1 to 6 mm between base materials 9 and 9 as a viscoelastic body. It is about 11 mm, has a width b = about 80 to 90 mm, and extends so as to have a length of 2000 mm along the longitudinal direction of the pillar material 3 so as to exhibit a long shape in a front view. It is configured.
[0031]
The base material 9 is composed of various vibration damping materials such as rubber, asphalt, silicone, acrylic, etc., and has a vibration damping performance of tan δ = 1 or more, and the usable temperature range is about 5 to 35 ° C. It is what.
[0032]
In the vibration damping material 8 of the first embodiment, a double-sided tape is pasted on at least one surface, and the adhesive layer of the double-sided tape is removed by peeling the release paper from the double-sided tape. The damping material 8 is sandwiched between the column members 3 and 3 by being attached to the surface of the column member 3.
[0033]
Next, the operation of the first embodiment will be described.
[0034]
In the unit building 7 according to the first embodiment, the vibration damping materials 8, 8 having a long shape along the longitudinal direction of the column members 3, 3 are connected to the column members 3 of the adjacent building units 4, 4. , 3, the vibration at the time of an earthquake or the like is absorbed by these damping materials 8, 8 to reduce the shaking of the unit building 7.
[0035]
From Table 1 below, it can be seen that the displacement and acceleration of the unit building 7 during an earthquake can be reduced to about 1/3 that of a normal seismic design. Thereby, while preventing the damage of the unit building 7, the fall of interior objects, such as furniture, can also be prevented.
[0036]
[Table 1]
Figure 0004656765
[0037]
Further, since the vibration damping material 8 has a long shape along the longitudinal direction of the pillar material 3, the vibration damping material 8 is attached to substantially the entire vertical length of the pillar material 3.
[0038]
For this reason, the distortion between the building units 4 and 4 arranged adjacent to each other can be effectively absorbed by a small amount of the vibration damping material 8, and the vibration damping material is interposed between the beam materials as in the past. Thus, it is not necessary to prepare a plurality of vibration isolating materials having different thicknesses as in the case of the one to be made, and it is possible to suppress an increase in the number of parts and there is no risk of erroneous mounting.
[0039]
Therefore, workability is also good.
[0040]
[Modification 1]
FIG. 4 shows a modification of the first embodiment of the present invention. In addition, the same code | symbol is attached | subjected and demonstrated about the same thru | or equivalent part as the said Embodiment 1. FIG.
[0041]
In this modification, instead of the damping material 8, a damping material 11 is configured in which iron plates 10, 10 as metal plates and base materials 9, 9, 9 as viscoelastic bodies are alternately laminated. .
[0042]
Other configurations and operational effects are substantially the same as those of the first embodiment, and thus the description thereof is omitted.
[0043]
Embodiment 2
5 to 10 show a damping building and a damping material used for the damping building according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected and demonstrated about the same thru | or equivalent part as the said Embodiment 1. FIG.
[0044]
First, in the unit building 17 as the vibration-damping building of the second embodiment, three building units 4, 4, 4 having a substantially rectangular parallelepiped shape are arranged next to each other in the girder direction E. Yes. Between the column members 3 and 3 arranged adjacent to each other between these building units 4 and 4, damping materials 18 and 18 are sandwiched and provided with the in-plane and outer directions aligned in the girder direction E, respectively.
[0045]
As shown in FIG. 8, the iron plate 19 as a metal plate sandwiched and laminated between the base materials 9 and 9 of the vibration damping material 18 has a lower end portion 19 a lower than the base materials 9 and 9. As shown in FIG. 7, the length c is extended and embedded in the foundation 1 on which the building units 4, 4, 4 are placed, thereby being connected to the foundation 1.
[0046]
Next, the operation of the second embodiment will be described.
[0047]
In the unit building 17 of the second embodiment, the lower end portion 19a of the damping material 18 is connected to the foundation 1 on which the building units 4 and 4 are placed.
[0048]
Since the base material 9, 9 is laminated with a plurality of layers together with the long metal plate material 19, the vibration damping material 18 oscillates vibrations in the in-plane direction (girder direction E) of the base material 9, 9. 9 absorbs vibrations applied to the vibration damping material 18 in the lateral width direction (wife direction F).
[0049]
Table 2 below shows that the displacement and acceleration of the unit building 17 at the time of the earthquake can be reduced to about 1/3 of the normal seismic design in both the wife direction and the girder direction. Thereby, while preventing the damage of the unit building 17, the fall of interior objects, such as furniture, can also be prevented.
[0050]
[Table 2]
Figure 0004656765
[0051]
For this reason, since vibration absorption in two orthogonal directions can be performed together with vibration absorption in the in-plane direction of the damping material 18, either one of the girder direction E or the wife direction F of the unit building 17 ( In the second embodiment, it is only necessary that the in-plane and outer directions are aligned in the girder direction E) and the vibration damping materials 18 and 18 are interposed, and the number of parts can be further reduced.
[0052]
Other configurations and operational effects are substantially the same as those of the first embodiment, and thus description thereof is omitted.
[0053]
[Modification 2]
9 to 10 show a modification of the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected and demonstrated about the part thru | or equivalent to the said Embodiment 2. FIG.
[0054]
First, in terms of configuration, in the unit building 27 as the damping building of this modification and the damping material 28 used in the unit building 27, the metal plate sandwiched between the base materials 9 and 9 is stacked. The lower end portion of the iron plate 29 is welded so as to be substantially orthogonal to the flat base plate 30 and has a substantially inverted T shape in side view.
[0055]
As shown in FIG. 10, the base plate 30 has four screw holes 32, 32 through which the countersunk screws 31, 31 are inserted, two on each of the left and right side pieces.
[0056]
Then, the countersunk screws 28 are inserted into the screw holes 32, 32 from above and screwed to the upper surface portion 1a of the foundation 1 so that the damping material 28 is connected to the foundation 1. It is configured.
[0057]
Further, as shown in FIG. 9, the base plate 30 is disposed between the lower end surfaces 3 a and 3 a of the column members 3 and 3 disposed adjacent to each of the building units 4 and 4 and the upper surface portion 1 a of the foundation 1. It is comprised so that it may be clamped.
[0058]
Next, the operation of the modification of the second embodiment will be described.
[0059]
In this modified example, in addition to the operational effects of the second embodiment, the damping members 28 and 28 can be easily temporarily fixed to the foundation 1 using the countersunk screws 31 and 31. it can.
[0060]
For this reason, the workability is further good.
[0061]
Other configurations and operational effects are substantially the same as those of the first embodiment and the modified example, and thus the description thereof is omitted.
[0062]
Embodiment 3
11 to 14 show a damping building and a damping material used for the damping building according to Embodiment 3 of the present invention. In addition, the same code | symbol is attached | subjected and demonstrated about the part thru | or equivalent to the said Embodiment 1,2.
[0063]
First, in the unit building 37 as the vibration control building of the third embodiment, as shown in FIG. 11 and FIG. They are arranged side by side and arranged next to each other. Between the column members 3 and 3 arranged adjacent to each other between these building units 4 and 4, vibration damping materials 38 and 38 are sandwiched and provided with the in-plane and outer directions aligned in the girder direction E, respectively.
[0064]
As shown in FIG. 13, the vibration damping material 38 is configured by alternately laminating iron plates 39 and 39 as metal plate materials and base materials 9, 9 and 9 as viscoelastic bodies. The iron plate 39 as a metal plate material sandwiched between them has a lower end extending a predetermined length below the base materials 9 and 9.
As shown in FIG. 14, the damping material 38 has a lower end portion of an iron plate 39 extending below the base material 9 protruding from the lower end surface of the column member 3, and is bent outward to be a column member. 3 is fixed in a state of being sandwiched between the lower end surfaces.
[0065]
Next, the operation of the third embodiment will be described.
[0066]
In the unit building 37 of the third embodiment, the lower end portion of the iron plate 39 constituting the damping material 38 is between the lower end surface of the column member 3 and the foundation 1 on which the building units 4 and 4 are placed. It is fixed in a sandwiched state.
[0067]
In this damping material 38, the base materials 9, 9, 9 are laminated in a plurality of layers together with the iron plates 39, 39 as long metal plates, and therefore in the in-plane direction (girder direction E). The base material 9, 9, 9 absorbs vibration, and vibration applied to the damping material 38 in the lateral width direction (wife direction F) is also absorbed by the metal plate 19.
[0068]
Table 3 below shows that the displacement and acceleration of the unit building 37 at the time of an earthquake can be reduced to about 1/3 of the normal seismic design in both the wife direction and the girder direction. Thereby, while preventing damage to the unit building 37, fall of interior objects, such as furniture, can also be prevented.
[0069]
[Table 3]
Figure 0004656765
[0070]
For this reason, since vibration absorption in two orthogonal directions can be performed together with vibration absorption in the in-plane / outside direction of the damping material 38, one of the girder direction E and the wife direction F of the unit building 37 ( In the third embodiment, it is only necessary to align the in-plane and outer directions in the girder direction E) and interpose each damping material 38, 38, and the number of parts can be further reduced.
[0071]
Other configurations and operational effects are substantially the same as those of the first and second embodiments, and thus the description thereof is omitted.
[0072]
As mentioned above, although Embodiment 1, 2, 3 and each modification of this invention were demonstrated based on drawing, this invention is not limited to the said Embodiment 1, 2, 3, and this invention. Any design changes that do not change the gist of the present invention are included in the present invention.
[0073]
For example, in the first embodiment, the damping material 8 is formed by laminating the base materials 9 and 9 and the iron plate 10 which are constituted by three layers, and in the modified example, the damping material 18 is constituted by five layers. However, the present invention is not limited to this. For example, even if the base material 9 is constituted by other multiple layers such as a single layer, two layers, four layers, etc., the longitudinal direction of the pillar 3 The shape, quantity, material, and the like are not limited as long as they have a long shape along the direction.
[0074]
【The invention's effect】
As described above, according to the first and second aspects, the vibration damping material having a long shape along the longitudinal direction of the pillar material is disposed between the pillar materials of the adjacent building units. Since they are sandwiched, vibrations during an earthquake or the like are absorbed by the damping material to reduce the shaking of the damping building.
[0075]
Since the vibration damping material has a long shape along the longitudinal direction of the pillar material, the vibration damping material is affixed to substantially the entire vertical length of the pillar material.
[0076]
For this reason, it is possible to absorb the distortion between building units arranged adjacent to each other effectively with a small amount of vibration damping material, and like a conventional one with a vibration damping material interposed between the beam materials. There is no need to prepare a plurality of anti-vibration materials having different thicknesses, an increase in the number of parts can be suppressed, and there is no risk of erroneous mounting.
[0077]
Therefore, workability is also good.
[0078]
Moreover, in what was described in Claim 1 , the lower end of the said damping material is connected with the foundation in which the said building unit is mounted, Moreover, in the thing of Claim 2 , the said damping material The end portion of the damping member is protruded from the end surface of the column member, and is bent and fixed in a state of being sandwiched between the end surfaces of the column member. Therefore, vibration applied in the lateral width direction of the damping member is also effectively suppressed by the damping member. Absorbed.
[0079]
For this reason, in addition to vibration absorption in the in-plane and out-of-plane directions of the damping material, vibration absorption in two orthogonal directions can be performed, so that either the girder direction or the wife direction of the damping building is in the out-of-plane direction. And the damping material may be interposed, and the number of parts can be reduced.
[0080]
Furthermore, those described in claim 3, wherein the viscoelastic body, together with the metal plate exhibiting an elongated, multiple layers, since they are stacked, the vibration of the surface and out direction together with the viscoelastic member absorbs The vibration in the width direction of the damping material is absorbed by the metal plate material.
[0081]
For this reason, the increase in a number of parts is suppressed and the practically useful effect that the damping material used for a damping building with favorable workability is provided is exhibited.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a configuration of a part of a unit building, which is a damping building according to Embodiment 1 of the present invention and a damping material used for the damping building.
FIG. 2 is a cross-sectional view of the vibration-damping building of Embodiment 1 and the vibration-damping material used for the vibration-damping building at a position along the line AA in FIG.
FIG. 3 is a vibration damping material used for the vibration damping building of Embodiment 1, and is an enlarged cross-sectional view of a main part.
FIG. 4 is an enlarged cross-sectional view of a main part of a vibration damping material used in a vibration damping building according to a modification of the first embodiment.
FIG. 5 is an exploded perspective view showing a configuration of a part of a unit building, which is a damping building according to a second embodiment of the present invention and a damping material used for the damping building.
6 is a cross-sectional view of the vibration-damping building of Embodiment 2 and a vibration-damping material used for the vibration-damping building at a position along the line BB in FIG. 5;
FIG. 7 is a side view for explaining the relationship with the foundation in the vibration-damping building of Embodiment 2 and the vibration-damping material used in the vibration-damping building.
FIG. 8 is a perspective view illustrating a configuration of a main part, which is a damping material used in the damping building according to the second embodiment.
FIG. 9 is a side view illustrating a relationship with a foundation in a vibration-damping building according to a modification of the second embodiment and a vibration-damping material used in the vibration-damping building.
FIG. 10 is a perspective view illustrating a vibration damping material used in a vibration damping building according to a modification of the second embodiment, which is attached to a foundation.
FIG. 11 is an exploded perspective view showing a structure of a part of a unit building, which is a damping building according to a third embodiment of the present invention and a damping material used for the damping building.
12 is a cross-sectional view of the vibration-damping building of Embodiment 3 and a vibration-damping material used for the vibration-damping building, at a position along the line BB in FIG. 11;
FIG. 13 is a perspective view illustrating a configuration of a main part, which is a damping material used in the damping building of the third embodiment.
FIG. 14 is a side view for explaining the relationship with the foundation in the vibration-damping building of Embodiment 3 and the vibration-damping material used in the vibration-damping building.
FIG. 15 is an exploded perspective view of a main part of a conventional vibration damping building and a vibration damping material used for the vibration damping building.
[Explanation of symbols]
3 Pillar material 4 Building unit 7, 17, 27, 37 Unit building (damping building)
8, 18, 28, 38 Damping material 9 Base material (viscoelastic body)
10, 19, 29, 39 Iron plate (metal plate)

Claims (3)

長尺状の梁材及び柱材が連結された略ボックス状の建物ユニットを隣接配置して、該隣設された前記柱材間に、制振材を挟持させてなり、該制振材は、粘弾性体を有すると共に、該柱材の長手方向に沿って長尺形状になされており、
前記建物ユニットが載置される基礎に、前記制振材の下端が連結されていることを特徴とする制振建物。
A substantially box-shaped building unit in which long beam members and column members are connected to each other is arranged adjacent to each other, and a vibration damping material is sandwiched between the adjacent column members. And having a viscoelastic body and being elongated along the longitudinal direction of the pillar material ,
A damping building , wherein a lower end of the damping material is connected to a foundation on which the building unit is placed .
長尺状の梁材及び柱材が連結された略ボックス状の建物ユニットを隣接配置して、該隣設された前記柱材間に、制振材を挟持させてなり、該制振材は、粘弾性体を有すると共に、該柱材の長手方向に沿って長尺形状になされており、
前記制振材の端部を、柱材の端面より突出させ、折り曲げて柱材の端面に挟み込んだ状態で固定してなることを特徴とする制振建物。
A substantially box-shaped building unit in which long beam members and column members are connected to each other is arranged adjacent to each other, and a vibration damping material is sandwiched between the adjacent column members. And having a viscoelastic body and being elongated along the longitudinal direction of the pillar material,
Wherein an end portion of the damping material, is protruded from the end face of the column member, vibration system you characterized by being fixed in a sandwiched state to the end face of the pillar bending building.
前記粘弾性体を、長尺状を呈する金属板材と共に、複数層、積層させたことを特徴とする請求項1又は2に記載の制振建物に用いる制振材。The damping material used for the damping building according to claim 1 or 2, wherein the viscoelastic body is laminated with a plurality of layers together with a long metal plate.
JP2001189988A 2000-10-18 2001-06-22 Damping building and damping material used for damping building Expired - Fee Related JP4656765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001189988A JP4656765B2 (en) 2000-10-18 2001-06-22 Damping building and damping material used for damping building

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-318105 2000-10-18
JP2000318105 2000-10-18
JP2001189988A JP4656765B2 (en) 2000-10-18 2001-06-22 Damping building and damping material used for damping building

Publications (2)

Publication Number Publication Date
JP2002194817A JP2002194817A (en) 2002-07-10
JP4656765B2 true JP4656765B2 (en) 2011-03-23

Family

ID=26602327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001189988A Expired - Fee Related JP4656765B2 (en) 2000-10-18 2001-06-22 Damping building and damping material used for damping building

Country Status (1)

Country Link
JP (1) JP4656765B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005315275A (en) * 2004-04-27 2005-11-10 Shingiken:Kk Support device for junction between structure and support
JP4824978B2 (en) * 2005-09-12 2011-11-30 ミサワホーム株式会社 Damping device mounting structure
JP2007239217A (en) * 2006-03-06 2007-09-20 Ryokka Keikaku Kenkyusho:Kk Prefabricated building, and vibration control member for prefabricated building
JP5122781B2 (en) * 2006-09-11 2013-01-16 株式会社構造計画研究所 Unit building and vibration control device for unit building
JP2008075392A (en) * 2006-09-22 2008-04-03 Sekisui House Ltd Seismic damping column for rigid frame structure
JP5319902B2 (en) * 2007-09-12 2013-10-16 積水化学工業株式会社 Building vibration control structure
JP4729055B2 (en) * 2008-01-28 2011-07-20 積水化学工業株式会社 Unit building connection structure and unit building
KR101186979B1 (en) 2011-03-30 2012-09-28 문근환 A corridor module construction method for assembly type building
KR102650058B1 (en) * 2023-10-20 2024-03-21 (주)씨홀스하우스 Joint structure between steel frames of a modular house

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321512A (en) * 1992-05-22 1993-12-07 Sekisui Chem Co Ltd Unit house
JPH10306499A (en) * 1997-05-09 1998-11-17 Sekisui Chem Co Ltd Damping building
JP2000144973A (en) * 1998-11-09 2000-05-26 Sekisui Chem Co Ltd Unit building structure, inter-beam vibration control material and execution method of unit dwelling house

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05321512A (en) * 1992-05-22 1993-12-07 Sekisui Chem Co Ltd Unit house
JPH10306499A (en) * 1997-05-09 1998-11-17 Sekisui Chem Co Ltd Damping building
JP2000144973A (en) * 1998-11-09 2000-05-26 Sekisui Chem Co Ltd Unit building structure, inter-beam vibration control material and execution method of unit dwelling house

Also Published As

Publication number Publication date
JP2002194817A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
US7106582B2 (en) Shock mount assembly for attachment of an electronic device to a support structure
JP4656765B2 (en) Damping building and damping material used for damping building
CN106795713B (en) Nonlinear power absorber and its use for sound insulation
US9099163B1 (en) Hard disk drive (HDD) mounting system for shock and vibration
US7270215B2 (en) Loudspeaker enclosure with damping material laminated within internal shearing brace
JPH038907A (en) Response control device
WO2008121396A1 (en) The combination devices clamp spring designed with devices cage
JP2009250269A (en) Vibration-proof plate
JP2000283224A (en) Structure of viscoelastic damper
JP2002030828A (en) Brace damper
JP3684129B2 (en) Bracing hardware
JP3501337B2 (en) Noise barrier
JP3798647B2 (en) Piezoelectric speaker
JP4808098B2 (en) Vibration control structure of building and trunk with vibration control function
JP5824445B2 (en) Floor structure
JPH10252183A (en) Panel construction
JP2005265165A (en) Laminated rubber bearing
JP2002256635A (en) Rubber laminated type mount
JP6176986B2 (en) building
JPS581875A (en) Low-mass vibration resistant magnetic core stack and making thereof
JP2745001B2 (en) Anti-vibration and seismic isolation materials for buildings
JP4851269B2 (en) Sound insulation wall structure
JP2007113178A (en) Vibration control device and vibration control structure
JP2003343076A (en) Support leg of double floor
JP2004183302A (en) Aseismic metal fitting and aseismic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4656765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees