JP4654133B2 - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP4654133B2
JP4654133B2 JP2006033072A JP2006033072A JP4654133B2 JP 4654133 B2 JP4654133 B2 JP 4654133B2 JP 2006033072 A JP2006033072 A JP 2006033072A JP 2006033072 A JP2006033072 A JP 2006033072A JP 4654133 B2 JP4654133 B2 JP 4654133B2
Authority
JP
Japan
Prior art keywords
core
sub
terminal
type
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006033072A
Other languages
Japanese (ja)
Other versions
JP2006253668A (en
Inventor
正樹 村松
伸治 由利
和浩 浦島
洋 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2006033072A priority Critical patent/JP4654133B2/en
Publication of JP2006253668A publication Critical patent/JP2006253668A/en
Application granted granted Critical
Publication of JP4654133B2 publication Critical patent/JP4654133B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Description

この発明は配線基板に関する。   The present invention relates to a wiring board.

特開2001−035966号公報JP 2001-035966 A

CPUやその他のLSIなどの高速動作する半導体集積回路素子は近年ますます小型化しており、信号端子、電源端子あるいはグランド端子の数が増加し、端子間距離も縮小しつつある。多数の端子が密集した集積回路側の端子アレーは、フリップチップ形態でマザーボード側に接続する技術が一般化しているが、集積回路側の端子アレーとマザーボード側の端子アレーとは端子間隔に大きな差があり、これを変換するための中間基板としての配線基板が必要となる。   In recent years, semiconductor integrated circuit elements that operate at high speed, such as CPUs and other LSIs, are becoming increasingly smaller, and the number of signal terminals, power supply terminals, or ground terminals is increasing, and the distance between terminals is also decreasing. For the integrated circuit side terminal array, where many terminals are densely packed, the technology of connecting to the motherboard side in a flip-chip form has become common, but there is a large difference in terminal spacing between the integrated circuit side terminal array and the motherboard side terminal array. There is a need for a wiring board as an intermediate board for converting this.

上記のような中間基板のうち、オーガニックパッケージ基板と称されるものは、高分子材料からなる誘電体層と導体層とが交互に積層された配線積層部を有し、該配線積層部の誘電体層にて形成された第一主表面上に、フリップチップ接続用の端子アレーが配置される。配線積層部は、ガラス繊維にて強化されたエポキシ樹脂など、高分子材料を主体とする基板コア上に形成される。IC側の端子間隔と、接続先となる主基板(マザーボード)側の端子間隔との間に相当の開きがある場合、その変換のための配線やビアの配設パターンは、端子数が増加していることも相まって、微細化及び複雑化する傾向にあるが、オーガニックパッケージ基板は、フォトリソグラフィー技術とメッキ技術との組み合わせにより、このように微細で複雑な配線パターンも高精度かつ容易に形成できる利点がある。   Among the above-mentioned intermediate substrates, what is called an organic package substrate has a wiring laminated portion in which dielectric layers and conductor layers made of a polymer material are alternately laminated, and the dielectric of the wiring laminated portion. A terminal array for flip chip connection is arranged on the first main surface formed of the body layer. The wiring laminated portion is formed on a substrate core mainly composed of a polymer material such as an epoxy resin reinforced with glass fiber. When there is a considerable gap between the terminal spacing on the IC side and the terminal spacing on the main board (motherboard) side that is the connection destination, the number of terminals increases in the wiring and via arrangement pattern for the conversion. However, the organic package substrate can form such a fine and complicated wiring pattern with high accuracy and ease by combining the photolithography technology and the plating technology. There are advantages.

しかしながら、オーガニックパッケージ基板は、接続先となる主基板(例えばマザーボード)が高分子材料を主体とするものであることに加え、自身の構成材料自体も高分子材料を主体とするものであるから、半田リフローなどの熱履歴が加わると、シリコンを主体とする半導体集積回路素子(線膨張係数は例えば2〜3ppm/℃)と主基板(線膨張係数は例えば17〜18ppm/℃)との線膨張係数差を吸収しきれず、半田剥がれなどの不具合につながる惧れがある。   However, in the organic package substrate, in addition to the main substrate (for example, the mother board) as the connection destination being mainly composed of a polymer material, the component material itself is mainly composed of a polymer material. When a thermal history such as solder reflow is applied, the linear expansion of a semiconductor integrated circuit element mainly composed of silicon (linear expansion coefficient is, for example, 2-3 ppm / ° C.) and the main substrate (linear expansion coefficient is, for example, 17-18 ppm / ° C.). The coefficient difference cannot be fully absorbed, which may lead to problems such as solder peeling.

他方、特許文献1等には、基板の主材料をセラミックで構成した、セラミックパッケージ基板が開示されている。このようなセラミックパケージ基板を用いると、フリップチップ接続された半導体集積回路素子と主基板との間の大きな線膨張係数の差を埋めることができ、特に半導体集積回路素子との端子間のはんだ接合部が熱応力により断線したりする不具合を効果的に防止することができる。   On the other hand, Patent Document 1 discloses a ceramic package substrate in which the main material of the substrate is made of ceramic. By using such a ceramic package substrate, it is possible to fill a large difference in linear expansion coefficient between the flip-chip connected semiconductor integrated circuit element and the main substrate, and in particular, solder bonding between terminals of the semiconductor integrated circuit element. It is possible to effectively prevent a problem that the portion is disconnected due to thermal stress.

しかしながら、セラミックパッケージ基板は、配線部が金属ペーストの印刷・焼成を利用して形成されるため、フォトリソグラフィー技術が利用できるオーガニックパッケージ基板ほどには配線部を微細化・高集積化することは困難であり、半導体集積回路素子側の端子間隔の縮小にも限界がある。そこで、主基板側にオーガニックパッケージ基板からなる第一の中間基板を接続し、その第一の中間基板にセラミックからなる第二の中継基板を接続し、その第二の中継基板に半導体集積回路素子を接続する多段の基板接続構造を考えることもできるが、中間基板の枚数が増える分だけ、基板接続構造の高さ方向の寸法が増大するので小形化の要求に応じることが困難となり、また、接続工程数も増えるので非能率となる欠点もある。   However, in a ceramic package substrate, the wiring part is formed by printing and baking metal paste, so that it is difficult to make the wiring part finer and highly integrated than an organic package substrate that can use photolithography technology. Therefore, there is a limit to the reduction of the terminal interval on the semiconductor integrated circuit element side. Therefore, a first intermediate substrate made of an organic package substrate is connected to the main substrate side, a second relay substrate made of ceramic is connected to the first intermediate substrate, and a semiconductor integrated circuit element is connected to the second relay substrate. It is also possible to consider a multi-stage board connection structure that connects the two, but as the number of intermediate boards increases, the height of the board connection structure increases, making it difficult to meet the demand for miniaturization. Since the number of connection processes increases, there is also a disadvantage that becomes inefficient.

本発明の課題は、熱応力による断線等が発生しにくく、しかも基板接続構造全体の低背化も容易に図ることができて接続工数も削減できる配線基板を提供することにある。   An object of the present invention is to provide a wiring board that is less likely to cause disconnection due to thermal stress, and that can easily reduce the overall height of the board connection structure and reduce the number of connection steps.

発明を解決するための手段及び発明の効果Means for Solving the Invention and Effects of the Invention

上記の課題を解決するために、本発明の配線基板の第一は、
高分子材料(セラミック繊維や粒子などのフィラーと複合化された材料を概念として含む)により板状に構成され、第一主表面に自身の厚さを減ずる形で副コア収容部が開口形成されたコア本体部と、コア本体部よりも線膨張係数が小さい材料により板状に構成され、副コア収容部内にコア本体部と厚さ方向を一致させる形で収容された副コア部とからなる基板コアと、副コア収容部の内周面と副コア部の外周面との隙間を充填する高分子材料からなる充填結合層とを有し、
基板コアの第一主表面側に形成され、一方が電源端子、他方がグランド端子として機能する第一側第一種端子及び第一側第二種端子と、第一側信号端子とからなる第一端子アレーと、
基板コアの第二主表面側に形成され、第一側第一種端子及び第二種端子にそれぞれ導通する第二側第一種端子及び第二側第二種端子と、第一側信号端子に導通する第二側信号端子とからなる第二端子アレーとを有し、
第一端子アレーが、基板コアの板面と平行な基準面への正射投影において、副コア部の投影領域と重なる位置関係にて形成されてなり、
副コア部には、第一側第一種端子及び第二側第一種端子に導通する第一電極導体層と、誘電体層と、第一側第二種端子及び第二側第二種端子に導通する第二電極導体層とがこの順序で積層された積層コンデンサが組み込まれてなり、さらに、
副コア収容部は、副コア部の板面と平行な平面による断面の内周縁が四辺形状であり、かつ、その角部に寸法0.1mm以上2mm以下のアール部又は面取り部が形成されてなることを特徴とする。
In order to solve the above problems, the first of the wiring boards of the present invention is:
It is made of a polymer material (conceptually including materials combined with fillers such as ceramic fibers and particles), and the sub-core housing part is formed in the first main surface so as to reduce its thickness. And a sub-core portion that is configured in a plate shape with a material having a smaller linear expansion coefficient than the core main-body portion, and is accommodated in the sub-core accommodating portion so that the thickness direction coincides with the core main-body portion. A substrate core, and a filling and bonding layer made of a polymer material that fills a gap between the inner peripheral surface of the sub-core housing portion and the outer peripheral surface of the sub-core portion,
A first side first type terminal and a first side second type terminal formed on the first main surface side of the substrate core, one functioning as a power supply terminal, the other functioning as a ground terminal, and a first side signal terminal. A one-terminal array;
Second side first type terminal and second side second type terminal formed on the second main surface side of the substrate core and conducting to the first side first type terminal and second type terminal, respectively, and the first side signal terminal A second terminal array comprising a second side signal terminal conducting to
The first terminal array is formed in a positional relationship that overlaps with the projection region of the sub-core portion in the orthogonal projection onto the reference plane parallel to the plate surface of the substrate core,
The sub-core portion includes a first electrode conductor layer conducting to the first side first type terminal and the second side first type terminal, a dielectric layer, a first side second type terminal, and a second side second type. A multilayer capacitor in which a second electrode conductor layer conducting to a terminal is laminated in this order is incorporated, and
The sub-core housing part has a quadrilateral inner peripheral edge in a cross section by a plane parallel to the plate surface of the sub-core part, and a rounded part or a chamfered part having a dimension of 0.1 mm or more and 2 mm or less is formed at the corner part. It is characterized by becoming.

また、同じく第二は、高分子材料(セラミック繊維や粒子などのフィラーと複合化された材料を概念として含む)により板状に構成され、第一主表面に自身の厚さを減ずる形で副コア収容部が開口形成されたコア本体部と、コア本体部よりも線膨張係数が小さい材料により板状に構成され、副コア収容部内にコア本体部と厚さ方向を一致させる形で収容された副コア部とからなる基板コアと、副コア収容部の内周面と副コア部の外周面との隙間を充填する高分子材料からなる充填結合層とを有し、
基板コアの第一主表面側に形成され、一方が電源端子、他方がグランド端子として機能する第一側第一種端子及び第一側第二種端子と、第一側信号端子とからなる第一端子アレーと、
基板コアの第二主表面側に形成され、第一側第一種端子及び第二種端子にそれぞれ導通する第二側第一種端子及び第二側第二種端子と、第一側信号端子に導通する第二側信号端子とからなる第二端子アレーとを有し、
第一端子アレーが、基板コアの板面と平行な基準面への正射投影において、副コア部の投影領域と重なる位置関係にて形成されてなり、
副コア部には、第一側第一種端子及び第二側第一種端子に導通する第一電極導体層と、誘電体層と、第一側第二種端子及び第二側第二種端子に導通する第二電極導体層とがこの順序で積層された積層コンデンサが組み込まれてなり、さらに、
副コア収容部は、副コア部の板面と平行な平面による断面の内周縁が、外向きに凸な曲率半径0.1mm以上の曲線部のみからなることを特徴とする。
Similarly, the second is formed in a plate shape by a polymer material (including a material combined with a filler such as ceramic fibers and particles), and the thickness of the first main surface is reduced by reducing the thickness of the first main surface. The core body part having an opening formed in the core housing part, and a plate-like material made of a material having a smaller linear expansion coefficient than the core body part, are accommodated in the sub core housing part so that the thickness direction coincides with the core body part. A substrate core composed of the sub-core portion, and a filling and bonding layer made of a polymer material that fills a gap between the inner peripheral surface of the sub-core housing portion and the outer peripheral surface of the sub-core portion,
A first side first type terminal and a first side second type terminal formed on the first main surface side of the substrate core, one functioning as a power supply terminal, the other functioning as a ground terminal, and a first side signal terminal. A one-terminal array;
Second side first type terminal and second side second type terminal formed on the second main surface side of the substrate core and conducting to the first side first type terminal and second type terminal, respectively, and the first side signal terminal A second terminal array comprising a second side signal terminal conducting to
The first terminal array is formed in a positional relationship that overlaps with the projection region of the sub-core portion in the orthogonal projection onto the reference plane parallel to the plate surface of the substrate core,
The sub-core portion includes a first electrode conductor layer conducting to the first side first type terminal and the second side first type terminal, a dielectric layer, a first side second type terminal, and a second side second type. A multilayer capacitor in which a second electrode conductor layer conducting to a terminal is laminated in this order is incorporated, and
The sub-core housing portion is characterized in that an inner peripheral edge of a cross section formed by a plane parallel to the plate surface of the sub-core portion is composed only of a curved portion having an outwardly convex curvature radius of 0.1 mm or more.

上記構成によると、半導体集積回路素子側とフリップチップ接続される第一端子アレーの領域と重なるように、高分子材料からなるコア本体よりも線膨張係数の小さい材料からなる副コア部を、基板コア内に埋設した構造を有するので、第一端子アレー内の端子に対し、半導体集積回路素子側との線膨張係数差を十分に縮小することができ、ひいては熱応力による断線等を大幅に生じにくくすることができる。また、第一の配線基板に相当するコア本体部に、第二の配線基板に相当する副コア部を埋設するので、配線基板を用いた半導体集積回路素子と主基板との接続構造全体の低背化を図ることができ、接続工数も削減できる。さらに、デカップリングコンデンサ(あるいはパスコン)として機能するコンデンサを、配線基板の形で半導体素子に直結でき、デカップリングコンデンサを半導体素子に近づけることができる。その結果、電源端子とデカップリングコンデンサとの配線長を短縮でき、コンデンサ端子部のインダクタンスを低減することができるので、デカップリングコンデンサの低インピーダンス化に寄与する。また、配線基板内にデカップリングコンデンサが組み込まれるので、デカップリングコンデンサを別素子として主基板の裏面側に配置する必要がなくなり、部品点数の削減あるいは装置の小型化とを図ることができる。   According to the above configuration, the sub-core portion made of a material having a smaller linear expansion coefficient than the core body made of a polymer material is disposed on the substrate so as to overlap the region of the first terminal array flip-chip connected to the semiconductor integrated circuit element side. Since it has a structure embedded in the core, the difference in coefficient of linear expansion between the terminals in the first terminal array and the semiconductor integrated circuit element side can be sufficiently reduced, resulting in significant disconnection due to thermal stress. Can be difficult. Further, since the sub-core portion corresponding to the second wiring board is embedded in the core body portion corresponding to the first wiring board, the overall connection structure between the semiconductor integrated circuit element using the wiring board and the main board is reduced. The height can be reduced and the connection man-hours can be reduced. Furthermore, a capacitor functioning as a decoupling capacitor (or a bypass capacitor) can be directly connected to the semiconductor element in the form of a wiring board, and the decoupling capacitor can be brought close to the semiconductor element. As a result, the wiring length between the power supply terminal and the decoupling capacitor can be shortened, and the inductance of the capacitor terminal portion can be reduced, which contributes to lowering the impedance of the decoupling capacitor. Further, since the decoupling capacitor is incorporated in the wiring board, it is not necessary to dispose the decoupling capacitor as a separate element on the back side of the main board, and the number of parts can be reduced or the apparatus can be downsized.

ところで、上記本発明のいずれの構成においても、副コア部とコア本体部とが、副コア収容部の内周面と副コア部の外周面との隙間を充填する高分子材料からなる充填結合層により結合される。副コア収容部の内縁角部が、全て90°の直角(いわゆるピン角)に形成されていると、ここに充填される充填結合層も副コア収容部に倣って直角の出隅部を四隅に有する。液状の高分子材料にて充填結合層を副コア収容部に充填し固化させると、出隅部付近に微細な気泡が形成される場合がある。また、熱サイクル試験などの際に、充填結合層の出隅部付近にクラックを生じる場合もある。上記クラックや気泡が生じると副コア部と充填結合層との密着性が低下して、配線基板が破損したり、コア本体部及び副コア部上に追って設けるビルドアップ樹脂絶縁層の形成に支障を来たしたりする、という問題があった。   By the way, in any configuration of the present invention, the sub-core portion and the core main body portion are filled and bonded made of a polymer material that fills the gap between the inner peripheral surface of the sub-core housing portion and the outer peripheral surface of the sub-core portion. Combined by layers. If the inner edge corners of the secondary core housing part are all formed at a right angle of 90 ° (so-called pin angle), the filled bonding layer filled here also has four corners at right angles along the secondary core housing part. Have. When the filling and bonding layer is filled in the sub-core housing portion with a liquid polymer material and solidified, fine bubbles may be formed in the vicinity of the protruding corner. In addition, cracks may occur in the vicinity of the protruding corners of the filled bonded layer during a heat cycle test or the like. If the above cracks or bubbles are generated, the adhesion between the sub-core part and the filling and bonding layer is lowered, and the wiring board is damaged, or the build-up resin insulation layer provided on the core body part and the sub-core part is hindered. There was a problem of coming.

しかしながら、本発明の第一によれば、充填結合層の上記出隅部にも、副コア収容部のアール面に倣った湾曲面または面取りに倣った傾斜面が形成される。このため、かかる出隅部付近の高分子材料に気泡が形成されにくくなり、かつ温度履歴を受けても応力の集中を回避できるため、クラック等が発生しにくくなる。従って、副コア部と充填結合層との密着性が確保され、配線基板が不用意に破損したり、ビルドアップ樹脂絶縁層の形成に支障を来たしたりする不具合も効果的に防止できる。なお、アール部や面取り部の寸法(前者の場合は曲率半径、後者の場合は配線基板の側面長手方向における面取り寸法)が0.1mm未満では、充填結合層の出隅部が狭小となり過ぎ、気泡やクラックが生じやすくなる。一方、アール部や面取り部の寸法が2mmを超えると、上記不具合の防止効果が飽和する場合がある。   However, according to the first aspect of the present invention, a curved surface following the rounded surface of the sub-core housing portion or an inclined surface following chamfering is also formed at the protruding corner portion of the filling bonded layer. For this reason, bubbles are less likely to be formed in the polymer material in the vicinity of the protruding corner, and stress concentration can be avoided even when subjected to a temperature history, so that cracks and the like are less likely to occur. Therefore, the adhesion between the sub-core portion and the filling bonding layer is ensured, and problems such as inadvertent breakage of the wiring board or hindering the formation of the build-up resin insulating layer can be effectively prevented. In addition, when the dimension of the rounded portion or the chamfered portion (the radius of curvature in the former case, the chamfered dimension in the longitudinal direction of the side surface of the wiring substrate in the latter case) is less than 0.1 mm, the protruding corner portion of the filling bonded layer is too narrow, Air bubbles and cracks are likely to occur. On the other hand, when the dimension of the rounded portion or the chamfered portion exceeds 2 mm, the above-described problem prevention effect may be saturated.

他方、本発明の第二によれば、副コア収容部の内縁が、外向きに凸な曲率半径0.1mm以上の曲線部のみからなるので、充填結合層に気泡等の残留を生じやすい出隅部が形成されにくくなり、かつ温度履歴を受けても応力の集中を回避できるため、クラック等が発生しにくくなる。従って、副コア部と充填結合層との密着性が確保され、配線基板が不用意に破損したり、ビルドアップ樹脂絶縁層の形成に支障を来たしたりする不具合も効果的に防止できる。なお、本発明の第二において、「副コア収容部の内縁が、外向きに凸な曲率半径0.1mm以上の曲線部のみからなる」ということは、副コア収容部の内縁の形状的構成要素から「曲率半径0.1mm未満の曲線部」は排除される、ということと等価である。そして、この「曲率半径0.1mm未満の曲線部」の概念には、「曲率半径0.1mm未満となっているピン角部」が含まれるものとする。該本発明の第二においては、副コア収容部の断面の内周縁を円状に形成すれば、特に効果的である。   On the other hand, according to the second aspect of the present invention, the inner edge of the sub-core housing portion is composed only of a curved portion having an outwardly convex curvature radius of 0.1 mm or more, so that bubbles and the like are likely to remain in the filled bonded layer. Since corners are less likely to be formed, and stress concentration can be avoided even when subjected to a temperature history, cracks and the like are less likely to occur. Therefore, the adhesion between the sub-core portion and the filling bonding layer is ensured, and problems such as inadvertent breakage of the wiring board or hindering the formation of the build-up resin insulating layer can be effectively prevented. In the second aspect of the present invention, “the inner edge of the sub-core housing portion is composed only of a curved portion having an outwardly convex curvature radius of 0.1 mm or more” means that the configuration of the inner edge of the sub-core housing portion is It is equivalent to the fact that “curved part having a radius of curvature of less than 0.1 mm” is excluded from the element. The concept of “curved part with a radius of curvature of less than 0.1 mm” includes “pin corners with a radius of curvature of less than 0.1 mm”. In the second aspect of the present invention, it is particularly effective if the inner peripheral edge of the cross section of the sub-core housing portion is formed in a circular shape.

以下、本発明の第一と第二のいずれにも共通に付加可能な要件について説明する。
まず、副コア部は、該副コア部の板面と平行な平面による断面の外周縁を四辺形状とすることができ、かつ、その角部に寸法0.1mm以上2mm以下のアール部又は面取り部を形成することができる。副コア部の角部がピン角になっていると、温度履歴が加わったときに、充填結合層の角部に副コア部からのバックストレスが集中しやすく、クラックが生じやすい場合がある。また、副コア部の角部先端を起点に充填結合層へクラックが生じやすくなる。しかし、副コア部の角部に上記のようなアール部又は面取り部を形成することで、充填結合層の角部への応力集中を一層緩和しやすくできる。また、副コア部の角部先端を起点としたクラックの発生を効果的に抑制できる。
Hereinafter, requirements that can be commonly added to both the first and second aspects of the present invention will be described.
First, the sub-core portion can have a quadrilateral outer peripheral edge in a cross section formed by a plane parallel to the plate surface of the sub-core portion, and a corner portion or a chamfer having a dimension of 0.1 mm or more and 2 mm or less. The part can be formed. When the corner portion of the sub-core portion is a pin angle, when temperature history is applied, back stress from the sub-core portion tends to concentrate on the corner portion of the filling and bonding layer, and cracks are likely to occur. In addition, cracks are likely to occur in the filling bonded layer starting from the corner tip of the sub-core portion. However, by forming the rounded portion or the chamfered portion at the corner portion of the sub-core portion, the stress concentration on the corner portion of the filling and bonding layer can be further eased. In addition, it is possible to effectively suppress the occurrence of cracks starting from the corner tip of the sub-core portion.

次に、第一端子アレーは、基板コアの板面と平行な基準面への正射投影において、副コア部の投影領域内に全体が包含される位置関係にて形成することができる。この構成によると、半導体集積回路素子側とフリップチップ接続される第一端子アレーの全領域を包含するように寸法調整された副コア部が、基板コア内に埋設された構造を有するので、第一端子アレー内の全ての端子に対し、半導体集積回路素子側との線膨張係数差を十分に縮小することができ、ひいては熱応力による断線等をさらに生じにくくすることができる。また、第一の配線基板に相当するコア本体部に、第二の配線基板に相当する副コア部を埋設するので、中間基板を用いた半導体集積回路素子と主基板との接続構造全体の低背化を図ることができ、接続工数も削減できる。さらに、デカップリングコンデンサ(あるいはパスコン)として機能するコンデンサを、中間基板の形で半導体素子に直結でき、デカップリングコンデンサを半導体素子に近づけることができる。その結果、電源端子とデカップリングコンデンサとの配線長を短縮でき、コンデンサ端子部のインダクタンスを低減することができるので、デカップリングコンデンサの低インピーダンス化に寄与する。また、中間基板内にデカップリングコンデンサが組み込まれるので、デカップリングコンデンサを別素子として主基板の裏面側に配置する必要がなくなり、部品点数の削減あるいは装置の小型化とを図ることができる。上記の効果は、副コア部が第一端子アレーの形成領域と同等もしくは大面積にて形成されている場合に特に著しい。   Next, the first terminal array can be formed in a positional relationship in which the whole is included in the projection region of the sub-core portion in the orthogonal projection onto the reference plane parallel to the plate surface of the substrate core. According to this configuration, since the sub-core portion whose size is adjusted to include the entire region of the first terminal array flip-chip connected to the semiconductor integrated circuit element side has a structure embedded in the substrate core, The difference in linear expansion coefficient from the semiconductor integrated circuit element side can be sufficiently reduced with respect to all the terminals in the one-terminal array, so that disconnection due to thermal stress can be further prevented. In addition, since the sub-core portion corresponding to the second wiring board is embedded in the core body portion corresponding to the first wiring board, the overall connection structure between the semiconductor integrated circuit element using the intermediate board and the main board is reduced. The height can be reduced and the connection man-hours can be reduced. Furthermore, a capacitor that functions as a decoupling capacitor (or a bypass capacitor) can be directly connected to the semiconductor element in the form of an intermediate substrate, and the decoupling capacitor can be brought close to the semiconductor element. As a result, the wiring length between the power supply terminal and the decoupling capacitor can be shortened, and the inductance of the capacitor terminal portion can be reduced, which contributes to lowering the impedance of the decoupling capacitor. Further, since the decoupling capacitor is incorporated in the intermediate board, it is not necessary to arrange the decoupling capacitor as a separate element on the back side of the main board, and the number of parts can be reduced or the apparatus can be downsized. The above effect is particularly remarkable when the sub-core portion is formed in the same area as the first terminal array or in a large area.

副コア部は、コア本体部よりも線膨張係数の小さければ材質は特に限定されない。しかしながら、高分子材料の線膨張係数が比較的高いことなどを考慮すれば、副コア部はセラミックからなるセラミック副コア部とすることが、半導体集積回路素子との間の線膨張係数差を縮小効果をより顕著に達成する観点において好都合である。   The material of the sub-core part is not particularly limited as long as the linear expansion coefficient is smaller than that of the core body part. However, considering that the linear expansion coefficient of the polymer material is relatively high, it is possible to reduce the difference in linear expansion coefficient with the semiconductor integrated circuit element by making the sub core part a ceramic sub core part made of ceramic. This is advantageous in terms of achieving the effect more remarkably.

この場合、セラミック副コア部をなすセラミックは、アルミナ(7〜8ppm/℃)や、ガラスセラミック(ホウケイ酸系ガラスあるいはホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを40〜60重量部添加した一種の複合材料である)などを使用できる。前者は線膨張係数が種々のセラミックの中でも特に小さく、接続するべき半導体集積回路素子との間の線膨張係数差の縮小効果に優れる。他方、後者は、低温焼成が容易であり、また、必要に応じて金属配線部やビアなどを形成する際にも、CuやAgを主体とする比較的低融点の高導電率金属材料との同時焼成が可能であるなどの利点がある。   In this case, 40-60 parts by weight of an inorganic ceramic filler such as alumina is added to alumina (7-8 ppm / ° C.) or glass ceramic (borosilicate glass or lead borosilicate glass) as the ceramic forming the ceramic sub-core part. It is a kind of composite material). The former has a particularly small linear expansion coefficient among various ceramics, and is excellent in the effect of reducing the difference in linear expansion coefficient with the semiconductor integrated circuit element to be connected. On the other hand, the latter is easy to be fired at a low temperature, and when forming a metal wiring part, a via, or the like, if necessary, a relatively low melting point high conductivity metal material mainly composed of Cu or Ag. There are advantages such as simultaneous firing.

また、セラミック副コア部をなすセラミックは、Si成分の含有率がSiO換算にて68質量%以上99質量%以下であり、Si以外のカチオン成分が、室温から200℃までの温度範囲においてSiOよりも線膨張係数の大きい酸化物を形成する酸化物形成カチオンにて構成されることにより、1ppm/℃室温から200℃までの平均の線膨張係数が1ppm/℃以上7ppm/℃以下に調整されてなる酸化物系ガラス材料で構成することもできる。 In addition, the ceramic constituting the ceramic sub-core part has a Si component content of 68% by mass or more and 99% by mass or less in terms of SiO 2 , and a cation component other than Si is SiO in a temperature range from room temperature to 200 ° C. The average linear expansion coefficient from 1 ppm / ° C. room temperature to 200 ° C. is adjusted to 1 ppm / ° C. or more and 7 ppm / ° C. or less by being composed of oxide-forming cations that form oxides having a linear expansion coefficient larger than 2. It can also be comprised with the oxide type glass material formed.

室温から200℃までの温度範囲におけるSiOの線膨張係数は1ppm/℃前後と非常に小さく、それよりも線膨張係数の大きい酸化物を形成する酸化物形成カチオンを含有した上記のようなガラス材料で副コア部を構成することにより、その酸化物形成カチオンの種類と含有量に応じてガラス材料の線膨張係数を1ppm/℃以上の任意の値に自由に調整できる。その結果、該ガラス材料を用いた副コア部は、実装される半導体集積回路素子との線膨張係数の差を可及的に縮小することができ、フリップチップ接続等による半導体集積回路素子との端子接続状態の信頼性を大幅に向上させることができる。 The linear expansion coefficient of the SiO 2 in the temperature range up to 200 ° C. from room temperature 1 ppm / ° C. before and after the very small, the glass such as containing an oxide forming cation forming a large oxide coefficient of linear expansion than By constituting the sub-core portion with the material, the linear expansion coefficient of the glass material can be freely adjusted to an arbitrary value of 1 ppm / ° C. or more according to the type and content of the oxide-forming cation. As a result, the sub-core portion using the glass material can reduce the difference in linear expansion coefficient with the semiconductor integrated circuit element to be mounted as much as possible. The reliability of the terminal connection state can be greatly improved.

接続対象となる半導体集積回路素子がSi半導体部品である場合は、Siの線膨張係数が3ppm/℃前後であることから、酸化物系ガラス材料の線膨張係数は1ppm以上6ppm以下、特に、2ppm/℃以上5ppm/℃以下に調整することが望ましい。他方、接続対象となる半導体集積回路素子がGaAsと格子整合するIII−V族化合物からなる化合物半導体部品である場合、該半導体の線膨張係数が5〜6ppm/℃程度なので、酸化物系ガラス材料の線膨張係数が4ppm/℃以上7ppm/℃以下に調整されていることが望ましい。いずれの場合も、副コア部上に実装された半導体集積回路素子との端子接続構造に、部品/基板間の線膨張係数差に基づく熱的な剪断応力が作用しにくくなり、接続破断などの不具合発生確率を大幅に減ずることができる。   When the semiconductor integrated circuit element to be connected is a Si semiconductor component, since the linear expansion coefficient of Si is around 3 ppm / ° C., the linear expansion coefficient of the oxide-based glass material is 1 ppm or more and 6 ppm or less, particularly 2 ppm. It is desirable to adjust to / ppm or more and 5 ppm / ° C or less. On the other hand, when the semiconductor integrated circuit element to be connected is a compound semiconductor component made of a III-V group compound lattice-matched with GaAs, the linear expansion coefficient of the semiconductor is about 5-6 ppm / ° C. It is desirable that the linear expansion coefficient is adjusted to 4 ppm / ° C. or more and 7 ppm / ° C. or less. In either case, thermal shear stress based on the difference in coefficient of linear expansion between the component and the substrate is less likely to act on the terminal connection structure with the semiconductor integrated circuit element mounted on the sub-core part, and connection breakage, etc. The probability of failure occurrence can be greatly reduced.

この場合、副コア部を構成する酸化物系ガラス材料のSiOの含有率が68質量%未満では、ガラス材料の線膨張係数を7ppm/℃以下に留めることが困難となり、半導体部品との間の線膨張係数差を十分に縮小できなくなる。99質量%を超えると、ガラス融点が上昇し、気泡残留等の小さい良質のガラスをガラスの製造コストが増大する。また、ガラス材料の線膨張係数1ppm/℃以上に確保することが難しくなる場合もある。 In this case, if the SiO 2 content of the oxide glass material constituting the sub-core portion is less than 68% by mass, it is difficult to keep the linear expansion coefficient of the glass material at 7 ppm / ° C. The difference in linear expansion coefficient cannot be sufficiently reduced. When it exceeds 99% by mass, the glass melting point increases, and the production cost of glass of high quality glass with small residual bubbles and the like increases. Moreover, it may be difficult to ensure the linear expansion coefficient of the glass material to 1 ppm / ° C. or higher.

以下、本発明の実施の形態を、図面を用いて説明する。
図1は、本発明の配線基板の一実施形態をなす中間基板(配線基板)200を、半導体集積回路素子2と主基板3との間に配置される中間基板として構成した例である。また、本実施形態において板状部材の第一主表面は、図中にて上側に表れている面とし、第二主表面は下側に表れている面とする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example in which an intermediate substrate (wiring substrate) 200 constituting an embodiment of the wiring substrate of the present invention is configured as an intermediate substrate disposed between a semiconductor integrated circuit element 2 and a main substrate 3. In the present embodiment, the first main surface of the plate-like member is a surface appearing on the upper side in the drawing, and the second main surface is a surface appearing on the lower side.

半導体集積回路素子2は第二主表面に各々複数の信号端子、電源端子及びグランド端子からなる素子側端子アレー4を有し、中間基板200の第一主表面に形成された第一端子アレー5に対し、半田接続部6を介してフリップチップ接続されている。他方、主基板3はマザーボード、あるいは2段目の中間基板をなすオーガニック積層パッケージ基板であり、いずれもセラミック粒子あるいは繊維をフィラーとして強化された高分子材料を主体に構成されており、半田ボールあるいは金属ピンからなる主基板側端子アレー8において、中間基板200の第二主表面に形成された第二端子アレー7に対し、半田接続部6を介して接続されている。   The semiconductor integrated circuit element 2 has an element-side terminal array 4 including a plurality of signal terminals, a power supply terminal, and a ground terminal on the second main surface, and a first terminal array 5 formed on the first main surface of the intermediate substrate 200. On the other hand, it is flip-chip connected via the solder connection portion 6. On the other hand, the main substrate 3 is a mother board or an organic laminated package substrate forming a second-stage intermediate substrate, each of which is mainly composed of a polymer material reinforced with ceramic particles or fibers as fillers. The main board-side terminal array 8 made of metal pins is connected to the second terminal array 7 formed on the second main surface of the intermediate board 200 via the solder connection portion 6.

図4に示すように、中間基板(配線基板)200は、主に高分子材料により板状に構成され、第一主表面に自身の厚さを減ずる形で副コア収容部100hが開口形成されたコア本体部100mと、セラミックにより板状に構成され、副コア収容部100h内にコア本体部100mと厚さ方向を一致させる形で収容された副コア部1とからなる基板コア100を有する。該基板コア100の第一主表面側には、一方が電源端子、他方がグランド端子として機能する第一側第一種端子5a及び第一側第二種端子5bと、第一側信号端子5sとからなる第一端子アレー5が形成されている。   As shown in FIG. 4, the intermediate substrate (wiring substrate) 200 is mainly formed of a polymer material in a plate shape, and the sub-core housing portion 100 h is formed in the first main surface so as to reduce its thickness. The substrate core 100 is composed of a core body portion 100m and a sub-core portion 1 that is configured in a plate shape with ceramic and is housed in the sub-core housing portion 100h so that the core body portion 100m and the thickness direction are aligned with each other. . On the first main surface side of the substrate core 100, a first side first type terminal 5a and a first side second type terminal 5b, one of which functions as a power supply terminal and the other functions as a ground terminal, and a first side signal terminal 5s. A first terminal array 5 is formed.

そして、第一端子アレー5は、基板コア100の板面と平行な基準面への正射投影において、セラミック副コア部1の投影領域内に全体が包含される位置関係にて形成されて形成されている。つまり、第一側第一種端子5a、第一側第二種端子5b及び第一側信号端子5sの全てが、セラミック副コア部1上にて半導体集積回路素子2(の素子側端子アレー4)とフリップチップ接合される。これにより、第一端子アレー5内の全ての端子に対し、半導体集積回路素子2側との線膨張係数差を十分に縮小することができ、ひいては熱応力による断線等を大幅に生じにくくすることができる。図4の中間基板200においては、セラミック副コア部1が第一端子アレー5の形成領域よりも大面積とされ、熱応力低減効果がより高められている。   The first terminal array 5 is formed and formed in a positional relationship that is entirely included in the projection region of the ceramic sub-core portion 1 in the orthogonal projection onto the reference plane parallel to the plate surface of the substrate core 100. Has been. That is, all of the first-side first-type terminal 5a, the first-side second-type terminal 5b, and the first-side signal terminal 5s are connected to the semiconductor integrated circuit element 2 (the element-side terminal array 4) on the ceramic sub-core portion 1. ) And flip chip bonding. As a result, for all the terminals in the first terminal array 5, the difference in linear expansion coefficient from the semiconductor integrated circuit element 2 side can be sufficiently reduced, so that disconnection due to thermal stress is hardly caused. Can do. In the intermediate substrate 200 of FIG. 4, the ceramic sub-core portion 1 has a larger area than the region where the first terminal array 5 is formed, and the thermal stress reduction effect is further enhanced.

コア本体部100mは、例えば、耐熱性樹脂板(例えばビスマレイミド−トリアジン樹脂板)や、繊維強化樹脂板(例えばガラス繊維強化エポキシ樹脂)等で板状に構成される。   The core main body 100m is configured in a plate shape with, for example, a heat-resistant resin plate (for example, bismaleimide-triazine resin plate), a fiber reinforced resin plate (for example, glass fiber reinforced epoxy resin), or the like.

また、セラミック副コア部1の要部をなすセラミック層52の構成材料としては、アルミナ(熱膨張係数7〜8ppm/℃)や、ホウケイ酸系ガラスあるいはホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを40〜60重量部添加したガラスセラミックや、Bi−CaO−ZnO−Nb系セラミックなどの低温焼成セラミックを使用できる。また、その他のセラミック材料としては、窒化アルミニウム、窒化珪素、ムライト、二酸化珪素、酸化マグネシウムなども使用可能である。さらに、セラミック副コア部1は、コア本体部100mよりも線膨張係数が小さい、という条件を充足できるのであれば、例えば高分子材料とセラミックとの複合材料(例えば、コア本体部よりもセラミックの重量含有比率の高い、高分子材料とセラミックとの複合材料)にて構成することもできる。他方、参考技術として、セラミック副コア部1を、半導体素子との線膨張係数が類似している観点から、シリコン副コア部で置き換えることも可能である。 The constituent material of the ceramic layer 52 constituting the main part of the ceramic sub-core part 1 includes alumina (thermal expansion coefficient 7 to 8 ppm / ° C.), borosilicate glass or lead borosilicate glass and inorganic ceramics such as alumina. A glass ceramic added with 40 to 60 parts by weight of a filler or a low-temperature fired ceramic such as Bi 2 O 3 —CaO—ZnO—Nb 2 O 5 ceramic can be used. As other ceramic materials, aluminum nitride, silicon nitride, mullite, silicon dioxide, magnesium oxide, and the like can also be used. Further, if the ceramic sub-core portion 1 can satisfy the condition that the linear expansion coefficient is smaller than that of the core main body portion 100m, for example, a composite material of a polymer material and ceramic (for example, a ceramic material more than the core main body portion). It can also be composed of a composite material of a polymer material and a ceramic having a high weight content ratio. On the other hand, as a reference technique, the ceramic sub-core portion 1 can be replaced with a silicon sub-core portion from the viewpoint of a similar linear expansion coefficient with the semiconductor element.

他方、セラミック副コア部をなすセラミックは、ガラス材料、例えば骨格成分が二酸化珪(シリカ)であるシリカ系ガラスで構成することもできる。この場合、セラミック誘電体としての用途に適した物性調整を行なうため、SiO以外の種々のガラス添加成分を配合することができる。上記ガラス材料は、溶融ガラスの流動性を高め、気泡残留等を抑制する観点においては、煤溶材成分として、NaO、KOあるいはLiOなどのアルカリ金属酸化物や、B(硼酸)の配合が有効である。他方、BaOやSrOなどのアルカリ土類金属酸化物を添加すると、ガラス材料の誘電率特性を向上させることができる。しかし、過剰の添加は、ガラスの線膨張係数の増大、ひいては部品側との線膨張係数差の拡大を招きやすくなり、熱応力による接続不良などにつながる場合がある。また、ガラス軟化点の上昇により流動性低下が著しくなり、気泡残留等の不具合を招く場合がある。 On the other hand, the ceramic forming the ceramic sub-core portion can also be made of a glass material, for example, silica-based glass whose skeleton component is silica dioxide (silica). In this case, various glass additive components other than SiO 2 can be blended in order to adjust physical properties suitable for use as a ceramic dielectric. From the viewpoint of enhancing the fluidity of the molten glass and suppressing bubble residuals, the glass material may contain alkali metal oxides such as Na 2 O, K 2 O or Li 2 O, B 2 O 3 (boric acid) is effective. On the other hand, when an alkaline earth metal oxide such as BaO or SrO is added, the dielectric constant characteristics of the glass material can be improved. However, excessive addition tends to cause an increase in the linear expansion coefficient of the glass, and consequently an increase in the difference in linear expansion coefficient from the component side, which may lead to a connection failure due to thermal stress. Further, the increase in the glass softening point causes a significant decrease in fluidity, which may lead to problems such as residual bubbles.

そして、ガラスの線膨張係数の増大抑制には、SiO成分の含有率を高めること、あるいはZnOをガラス添加成分として配合することがそれぞれ有効である。一方、Ti、ZrないしHfの酸化物は、ガラスの誘電率特性向上の他、ガラスの耐水性改善にも効果がある。しかし、過剰の添加は、ガラス軟化点の上昇により流動性低下が著しくなり、気泡残留等の不具合を招く場合がある。 In order to suppress the increase in the linear expansion coefficient of glass, it is effective to increase the content of the SiO 2 component or to blend ZnO as a glass additive component. On the other hand, oxides of Ti, Zr, and Hf are effective in improving the water resistance of glass as well as improving the dielectric constant characteristics of glass. However, excessive addition causes a significant decrease in fluidity due to an increase in the glass softening point, which may cause problems such as residual bubbles.

シリカ系ガラス材料(酸化物系ガラス材料)は、Si成分の含有率がSiO換算にて68質量%以上99質量%以下であり、Si以外のカチオン成分が、室温から200℃までの温度範囲においてSiOよりも線膨張係数の大きい酸化物(以下、線膨張係数調整用酸化物という)を形成する酸化物形成カチオンにて構成されることにより、室温から200℃までの平均の線膨張係数が1ppm/℃以上7ppm/℃以下に調整されたものを採用することにより、(線膨張係数がSiOより大きい)酸化物成分の種類と含有量とに応じて、ガラス材料の線膨張係数を1ppm/℃以上の任意の値に自由に調整できる。その結果、セラミック副コア部1は、実装される半導体部品2との線膨張係数の差を可及的に縮小することができる。半導体集積回路素子2がSi半導体部品(室温から200℃までの平均の線膨張係数:3ppm/℃)の場合、シリカ系ガラス材料の線膨張係数は1ppm以上6ppm以下、特に、2ppm/℃以上5ppm/℃以下に調整することが望ましい。他方、半導体集積回路素子2はGaAsと格子整合するIII−V族化合物からなる化合物半導体部品(例えばGaAs系の次世代型高速CPUやMMIC(Monolithic
Microwave Integrated Circuit))で構成することもできるがこの場合は、該半導体の線膨張係数が5〜6ppm/℃程度なので、シリカ系ガラス材料の線膨張係数が4ppm/℃以上7ppm/℃以下に調整されていることが望ましい。
The silica-based glass material (oxide-based glass material) has a Si component content of 68% by mass or more and 99% by mass or less in terms of SiO 2 , and a cationic component other than Si has a temperature range from room temperature to 200 ° C. The average linear expansion coefficient from room temperature to 200 ° C. is formed by an oxide-forming cation that forms an oxide having a larger linear expansion coefficient than SiO 2 (hereinafter referred to as “linear expansion coefficient adjusting oxide”). Is adjusted to 1 ppm / ° C. or more and 7 ppm / ° C. or less, so that the linear expansion coefficient of the glass material is changed according to the type and content of the oxide component (the linear expansion coefficient is larger than SiO 2 ). It can be freely adjusted to an arbitrary value of 1 ppm / ° C. or higher. As a result, the ceramic sub-core part 1 can reduce the difference in linear expansion coefficient with the semiconductor component 2 to be mounted as much as possible. When the semiconductor integrated circuit element 2 is a Si semiconductor component (average linear expansion coefficient from room temperature to 200 ° C .: 3 ppm / ° C.), the linear expansion coefficient of the silica-based glass material is 1 ppm to 6 ppm, particularly 2 ppm / ° C. to 5 ppm. It is desirable to adjust to below / ° C. On the other hand, the semiconductor integrated circuit element 2 is a compound semiconductor component made of a III-V group compound lattice-matched with GaAs (for example, a GaAs-based next-generation high-speed CPU or MMIC (Monolithic).
In this case, the linear expansion coefficient of the semiconductor is about 5 to 6 ppm / ° C., so that the linear expansion coefficient of the silica-based glass material is adjusted to 4 ppm / ° C. or more and 7 ppm / ° C. or less. It is desirable that

SiOよりも線膨張係数の大きい酸化物は、アルカリ金属酸化物(NaO、KO、LiO:20〜50ppm/℃)、アルカリ土類金属酸化物(BeO、MgO、CaO、SrO、BaO:8〜15ppm/℃)、ZnO(6ppm/℃)、Al(7ppm/℃)など、種々例示でき、誘電特性や融点、さらにはガラス流動性などを考慮して適宜選定すればよい。なお、SiOの含有率は、線膨張係数を上記範囲内のものとするために、68質量%以上99質量%以下(好ましくは80質量%以上85質量%以下)に調整し、残部を上記の線膨張係数調整用酸化物にて構成することができる。 Oxides having a larger linear expansion coefficient than SiO 2 include alkali metal oxides (Na 2 O, K 2 O, Li 2 O: 20 to 50 ppm / ° C.), alkaline earth metal oxides (BeO, MgO, CaO, Various examples such as SrO, BaO: 8 to 15 ppm / ° C., ZnO (6 ppm / ° C.), Al 2 O 3 (7 ppm / ° C.) can be exemplified. do it. The content of SiO 2 is adjusted to 68% by mass or more and 99% by mass or less (preferably 80% by mass or more and 85% by mass or less) so that the linear expansion coefficient is within the above range, and the balance is the above. The linear expansion coefficient adjusting oxide can be used.

以下は、本発明に採用可能なガラス組成の具体例である:
SiO:80.9質量%、B:12.7質量%、Al:2.3質量%、NaO:4.0質量%、KO:0.04質量%、Fe:0.03質量%
軟化点:821℃、線膨張係数(20℃から200℃までの平均値):3.25ppm/℃
The following are specific examples of glass compositions that can be employed in the present invention:
SiO 2: 80.9 wt%, B 2 O 3: 12.7 wt%, Al 2 O 3: 2.3 wt%, Na 2 O: 4.0 wt%, K 2 O: 0.04 wt% , Fe 2 O 3 : 0.03 mass%
Softening point: 821 ° C., linear expansion coefficient (average value from 20 ° C. to 200 ° C.): 3.25 ppm / ° C.

次に、セラミック副コア部1は、本実施形態ではその全体が積層セラミックコンデンサとして構成されている。該積層セラミックコンデンサは、第一側第一種端子5a及び第二側第一種端子7aに導通する第一電極導体層54と、誘電体層となるセラミック層52と、第一側第二種端子5b及び第二側第二種端子7bに導通する第二電極導体層57とがこの順序で積層されたものである。本実施形態ではセラミック層52はチタン酸バリウム(BaTiO3)を主体とする高誘電率セラミックから構成されている。この他、セラミック層として、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸鉛等のペロブスカイト型複合酸化物が好適に使用できる。   Next, the ceramic sub-core portion 1 is entirely configured as a multilayer ceramic capacitor in the present embodiment. The multilayer ceramic capacitor includes a first electrode conductor layer 54 electrically connected to the first side first type terminal 5a and the second side first type terminal 7a, a ceramic layer 52 serving as a dielectric layer, and a first side second type. A second electrode conductor layer 57 conducting to the terminal 5b and the second-side second-type terminal 7b is laminated in this order. In the present embodiment, the ceramic layer 52 is made of a high dielectric constant ceramic mainly composed of barium titanate (BaTiO3). In addition, perovskite complex oxides such as strontium titanate, calcium titanate, lead titanate and the like can be suitably used as the ceramic layer.

図4においてセラミック副コア部1は、具体的には、第一種副コア導体51aに導通する第一電極導体層54と、第二種副コア導体51bに導通する第二電極導体層57と、それら第一電極導体層54及び第二電極導体層57と同時焼成された焼成セラミック誘電体層52とを交互に積層した焼成積層セラミックコンデンサとされている。このような積層セラミックコンデンサからなるセラミック副コア部1は、セラミックグリーンシートを用いて製造でき、第一電極導体層54及び第二電極導体層57は、金属ペーストの印刷塗布により形成することができる。同極性となる電極導体層54同士あるいは57同士は、ビアをなす副コア導体51a,51bにより積層方向に連結され、極性の異なる第一電極導体層54及び第二電極導体層57と第一種副コア導体51a及び第二種副コア導体51b同士は、金属ペーストの印刷パターニング時において各電極導体層54,57に形成された貫通孔56,58により直流的に分離される。該コンデンサは、図2に示すように、半導体集積回路素子2の電源ラインに並列接続されるデカップリングコンデンサとして機能する。   In FIG. 4, specifically, the ceramic sub-core portion 1 includes a first electrode conductor layer 54 that is conductive to the first-type sub-core conductor 51a, and a second electrode conductor layer 57 that is conductive to the second-type sub-core conductor 51b. The fired multilayer ceramic capacitor is formed by alternately laminating the fired ceramic dielectric layers 52 that are fired simultaneously with the first electrode conductor layer 54 and the second electrode conductor layer 57. The ceramic sub-core portion 1 made of such a multilayer ceramic capacitor can be manufactured using a ceramic green sheet, and the first electrode conductor layer 54 and the second electrode conductor layer 57 can be formed by printing and applying a metal paste. . The electrode conductor layers 54 or 57 having the same polarity are connected in the stacking direction by sub-core conductors 51a and 51b forming vias, and the first electrode conductor layer 54 and the second electrode conductor layer 57 having different polarities are the first type. The sub-core conductor 51a and the second-type sub-core conductor 51b are galvanically separated by the through holes 56 and 58 formed in the electrode conductor layers 54 and 57 during the printing patterning of the metal paste. The capacitor functions as a decoupling capacitor connected in parallel to the power supply line of the semiconductor integrated circuit element 2 as shown in FIG.

次に、基板コア100の第二主表面側には、第一側第一種端子5a及び第一側第二種端子5bにそれぞれ導通する第二側第一種端子7a及び第二側第二種端子7bと、第一側信号端子5sに導通する第二側信号端子7sとからなる第二端子アレー7が形成されている。そして、第一端子アレー5が、基板コア100の板面と平行な基準面(例えば、基板コア100の第一主表面自身に設定できる)への正射投影において、セラミック副コア部1の投影領域内に全体が包含される位置関係にて形成されてなる。なお、副コア収容部100h内にてセラミック副コア部1とコア本体部100mとの隙間をなす空間には、高分子材料からなる充填結合層55が形成されている。この充填結合層55は、セラミック副コア部1をコア本体部100mに対して固定するとともに、セラミック副コア部1とコア本体部100mとの面内方向及び厚さ方向の線膨張係数差を自身の弾性変形により吸収する役割を果たす。   Next, on the second main surface side of the substrate core 100, a second-side first-type terminal 7a and a second-side second that are respectively connected to the first-side first-type terminal 5a and the first-side second-type terminal 5b. A second terminal array 7 including a seed terminal 7b and a second side signal terminal 7s that is electrically connected to the first side signal terminal 5s is formed. The first terminal array 5 is projected from the ceramic sub-core portion 1 in orthographic projection onto a reference plane parallel to the plate surface of the substrate core 100 (for example, can be set on the first main surface of the substrate core 100 itself). It is formed in a positional relationship in which the entire region is included. Note that a filling and bonding layer 55 made of a polymer material is formed in a space forming a gap between the ceramic sub-core portion 1 and the core main body portion 100m in the sub-core housing portion 100h. The filling bonding layer 55 fixes the ceramic sub-core portion 1 to the core main body portion 100m, and the difference in linear expansion coefficient between the ceramic sub-core portion 1 and the core main body portion 100m in the in-plane direction and the thickness direction itself. It plays a role of absorbing by elastic deformation of the.

図3に示すように、第一端子アレー5において、第一側第一種端子5aと第一側第二種端子5bとは互い違いの格子状(あるいは千鳥状でもよい)に配列されている。同様に第二端子アレー7においても、第二側第一種端子7aと第二側第二種端子7bとが、第一端子アレー5の端子配列に対応した互い違いの格子状(あるいは千鳥状でもよい)に配列されている。なお、いずれのアレー5,7も、電源端子とグランド端子との格子状配列を取り囲む形態で複数の第一側信号端子5s及び第二側信号端子7sを有している。   As shown in FIG. 3, in the first terminal array 5, the first-side first-type terminals 5 a and the first-side second-type terminals 5 b are arranged in an alternating grid pattern (or may be a staggered pattern). Similarly, also in the second terminal array 7, the second-side first-type terminals 7 a and the second-side second-type terminals 7 b are arranged in an alternating lattice shape (or staggered shape corresponding to the terminal arrangement of the first terminal array 5. Good). Each of the arrays 5 and 7 has a plurality of first-side signal terminals 5s and second-side signal terminals 7s in a form surrounding a grid-like arrangement of power supply terminals and ground terminals.

図4において基板コア100は、コア本体部100mの第一主表面とともにセラミック副コア部1の第一主表面が、高分子材料からなる誘電体層102と、配線又はグランド用もしくは電源用の面導体を含む導体層とが交互に積層された第一配線積層部61(いわゆるビルドアップ配線層)にて覆われてなり、第一端子アレー5が該第一配線積層部61の第一主表面に露出形成されてなる。この構成によると、コア本体部100mとともにセラミック副コア部1を第一配線積層部61にて一括して覆うため、第一配線積層部61及び第一端子アレー5を、一般のビルドアップ型オーガニックパッケージ基板とほとんど同一の工程にて形成でき、製造工程の簡略化に寄与する。   In FIG. 4, the substrate core 100 includes a dielectric main layer 102 made of a polymer material and a surface for wiring, grounding or power supply, as well as the first main surface of the core body 100m and the first main surface of the ceramic sub-core unit 1. The first terminal array 5 is covered with a first wiring laminated portion 61 (so-called build-up wiring layer) in which conductor layers including conductors are alternately laminated, and the first main surface of the first wiring laminated portion 61 is covered. It is exposed and formed. According to this configuration, since the ceramic sub-core part 1 is collectively covered with the first wiring laminated part 61 together with the core main body part 100m, the first wiring laminated part 61 and the first terminal array 5 are generally built-up type organic. It can be formed in almost the same process as the package substrate, contributing to simplification of the manufacturing process.

また、基板コア100の第二主表面は、高分子材料からなる誘電体層102と、配線又はグランド用もしくは電源用の面導体を含む導体層とが交互に積層された第二配線積層部62にて覆われてなり、第二端子アレー7が該第二配線積層部62の第一主表面に露出形成されてなる。   The second main surface of the substrate core 100 has a second wiring laminated portion 62 in which dielectric layers 102 made of a polymer material and conductor layers including wiring or ground or power supply surface conductors are alternately laminated. The second terminal array 7 is exposed and formed on the first main surface of the second wiring laminated portion 62.

いずれの配線積層部61,62においても誘電体層102は、エポキシ樹脂などの樹脂組成物からなるビルドアップ樹脂絶縁層として、厚さが例えば20μm以上50μm以下に形成される。本実施形態において誘電体層102はエポキシ樹脂にて構成され、SiOからなる誘電体フィラーを10質量%以上30質量%以下の比率にて配合したものであり、比誘電率εが2〜4(例えば3程度)に調整されている。また、導体層は、配線及び面導体のいずれも、誘電体層102上へのパターンメッキ層(例えば電解Cuメッキ層である)として、厚さが例えば10μm以上20μm以下に形成される。なお、導体層はパターニングにより、一部導体が配置されない領域を有する。また、その導体非形成領域では上下の誘電体層が直接接触する場合がある。 In any of the wiring laminated portions 61 and 62, the dielectric layer 102 is formed as a build-up resin insulating layer made of a resin composition such as an epoxy resin with a thickness of, for example, 20 μm or more and 50 μm or less. In the present embodiment, the dielectric layer 102 is composed of an epoxy resin, and a dielectric filler made of SiO 2 is blended at a ratio of 10% by mass to 30% by mass, and the relative dielectric constant ε is 2 to 4. (For example, about 3). In addition, the conductor layer is formed to have a thickness of, for example, 10 μm or more and 20 μm or less as a pattern plating layer (for example, an electrolytic Cu plating layer) on the dielectric layer 102 for both the wiring and the surface conductor. The conductor layer has a region where a part of the conductor is not arranged by patterning. In addition, the upper and lower dielectric layers may be in direct contact with each other in the conductor non-formation region.

図4においては、第一端子アレー5の第一側第一種端子5a及び第一側第二種端子5bに対応し、かつ第二端子アレー7の第二側第一種端子7a及び第二側第二種端子7bにそれぞれ導通する第一種副コア導体51a及び第二種副コア導体51bが、セラミック副コア部1の厚さ方向に形成されている。また、それら第一種副コア導体51a及び第二種副コア導体51bが、第一配線積層部61の各誘電体層102を貫く形で形成されたビア導体107を介して第一側第一種端子5a及び第一側第二種端子5bにそれぞれ導通してなる。セラミック副コア部1内に、グランド用及び電源用の導体51a,51bを並列形成することで、グランド用及び電源用の経路の低インダクタンス化ひいては低インピーダンス化を図ることができる。なお、第一種副コア導体51a及び第二種副コア導体51bは、いずれもビア導体107を介して、第二配線積層部62内の第二側第一種面導体211a及び第二側第二種面導体211bに結合されている。さらに、これら第二側第一種面導体211a及び第二側第二種面導体211bに、前述の第二端子アレー7の第二側第一種端子7a及び第二側第二種端子7bがそれぞれ接続されている。   In FIG. 4, the second side first type terminal 7 a and the second side first type terminal 5 a of the second terminal array 7 correspond to the first side first type terminal 5 a and the first side second type terminal 5 b of the first terminal array 5. A first-type sub-core conductor 51a and a second-type sub-core conductor 51b that are respectively connected to the side second-type terminals 7b are formed in the thickness direction of the ceramic sub-core portion 1. The first-type sub-core conductor 51a and the second-type sub-core conductor 51b are connected to the first side first via via conductors 107 formed so as to penetrate the dielectric layers 102 of the first wiring laminated portion 61. Each is connected to the seed terminal 5a and the first-side second-type terminal 5b. By forming the ground and power supply conductors 51a and 51b in parallel in the ceramic sub-core portion 1, it is possible to reduce the inductance of the path for the ground and the power supply, and thus to reduce the impedance. The first-type sub-core conductor 51a and the second-type sub-core conductor 51b are both connected via the via conductor 107 to the second-side first-type surface conductor 211a and the second-side first conductor in the second wiring laminated portion 62. It is coupled to the second type conductor 211b. Furthermore, the second-side first-type terminal 7a and the second-side second-type terminal 7b of the second-terminal array 7 are connected to the second-side first-type surface conductor 211a and the second-side second-type surface conductor 211b. Each is connected.

上記のようなセラミック副コア部1は、構成セラミックの原料粉末を含有した周知のセラミックグリーンシートと、パンチングあるいはレーザー穿孔等により形成したビアホールに、金属粉末ペーストを充填したものを積層して焼成することにより、前述の副コア導体51a,51b(さらには後述の51s)を積層ビアとして形成したものである。   The ceramic sub-core portion 1 is fired by laminating a well-known ceramic green sheet containing a raw material powder of a constituent ceramic and a via hole formed by punching or laser drilling and filling a metal powder paste. Thus, the sub-core conductors 51a and 51b (and 51s described later) are formed as laminated vias.

また、配線積層部61,62のビア導体107は、誘電体層102にフォトビアプロセス(誘電体層102は感光性樹脂組成物、例えば紫外線硬化型エポキシ樹脂にて構成される)、あるいはレーザー穿孔ビアプロセス(誘電体層102は非感光性樹脂組成物にて構成される)などの周知の手法によりビアホールを穿設し、その内側をメッキ等によるビア導体で充填もしくは覆った構造を有する。なお、いずれの配線積層部61,62も、端子アレー5,7を露出させる形で、感光性樹脂組成物よりなるソルダーレジスト層101にて覆われている。   The via conductors 107 of the wiring laminated portions 61 and 62 are formed in the dielectric layer 102 by a photo via process (the dielectric layer 102 is made of a photosensitive resin composition, for example, an ultraviolet curable epoxy resin), or laser drilling. A via hole is formed by a known method such as a via process (dielectric layer 102 is made of a non-photosensitive resin composition), and the inside thereof is filled or covered with a via conductor such as plating. Each of the wiring laminated portions 61 and 62 is covered with a solder resist layer 101 made of a photosensitive resin composition so that the terminal arrays 5 and 7 are exposed.

図3に示すように、第一端子アレー5(及び第二端子アレー7)においては、第一側第一種端子5a及び第一側第二種端子5bがアレー内側領域に、第一側信号端子5sがアレー外側領域にそれぞれ配置されている。図4に示すように、第一配線積層部61内には、第一側信号端子5sに導通する形で、セラミック副コア部1の配置領域の外側に信号伝達経路を引き出す第一側信号用配線108が設けられている。該第一側信号用配線108の末端は、セラミック副コア部1を迂回する形でコア本体部100mの厚さ方向に形成された信号用貫通孔導体109sに導通してなる。   As shown in FIG. 3, in the first terminal array 5 (and the second terminal array 7), the first-side first-type terminal 5 a and the first-side second-type terminal 5 b are in the array inner region, and the first-side signal Terminals 5s are arranged in the array outer region. As shown in FIG. 4, in the first wiring laminated portion 61, the first-side signal for leading out the signal transmission path to the outside of the arrangement region of the ceramic sub-core portion 1 in a form that is electrically connected to the first-side signal terminal 5 s. A wiring 108 is provided. The end of the first signal wiring 108 is electrically connected to a signal through-hole conductor 109s formed in the thickness direction of the core body 100m so as to bypass the ceramic sub-core 1.

半導体集積回路素子2の素子側端子アレー4は、信号端子4sが電源用及びグランド用の端子4a,4bと同様に狭間隔で配置されており、アレーの外周部に位置する信号端子4sは、中間基板200の裏面側に形成された第二端子アレー内の、対応する第二側信号端子7sまでの面内方向距離も大きくなり、多くの場合、セラミック副コア部1の外にはみ出さざるを得ない。しかし、上記の構成によれば、半田接続される素子側信号端子4sと第一側信号端子5sとは、線膨張係数差縮小効果が顕著なセラミック副コア部1の直上に位置させることができ、かつ、十分遠方の第二側信号端子7sに対しても問題なく導通状態を形成できる。   The element-side terminal array 4 of the semiconductor integrated circuit element 2 has signal terminals 4s arranged at narrow intervals like the power supply and ground terminals 4a and 4b, and the signal terminals 4s located on the outer periphery of the array are: The distance in the in-plane direction to the corresponding second-side signal terminal 7s in the second terminal array formed on the back surface side of the intermediate substrate 200 also increases, and in many cases, it does not protrude outside the ceramic sub-core portion 1. I do not get. However, according to the above-described configuration, the element-side signal terminal 4s and the first-side signal terminal 5s that are solder-connected can be positioned directly above the ceramic sub-core portion 1 that has a remarkable linear expansion coefficient difference reduction effect. In addition, it is possible to form a conductive state without problems even for the second-side signal terminal 7s that is sufficiently far away.

なお、コア本体部100mに形成される貫通孔導体109sは、配線積層部61,62に形成されるビア導体107よりも軸断面径が大である。このような貫通孔導体は、例えばコア本体部100mを板厚方向に貫く形でドリル等により貫通孔を穿設し、その内面をCuメッキ等による金属層にて覆うことにより形成できる。貫通孔導体109sの内側はエポキシ樹脂等の樹脂製穴埋め材109fにより充填される。さらに、貫通孔導体109sの両端面は、導体パッド110により封止される。また、ビア導体107や導体パッド110と、電源層やグランド層などの面導体との直流的な分離を図りたい場合は、該面導体に形成した孔部107iを形成し、その内側に円環状の隙間を隔てた形でビア導体107あるいは導体パッド110を配置すればよい。   The through-hole conductor 109s formed in the core main body 100m has a larger axial cross-sectional diameter than the via conductor 107 formed in the wiring laminated portions 61 and 62. Such a through-hole conductor can be formed, for example, by drilling a through-hole with a drill or the like so as to penetrate the core body 100m in the thickness direction and covering the inner surface with a metal layer such as Cu plating. The inside of the through-hole conductor 109s is filled with a resin hole filling material 109f such as an epoxy resin. Furthermore, both end surfaces of the through-hole conductor 109s are sealed with a conductor pad 110. Further, when it is desired to achieve direct current separation between the via conductor 107 and the conductor pad 110 and the surface conductor such as the power supply layer and the ground layer, a hole 107i formed in the surface conductor is formed, and an annular shape is formed inside the hole 107i. The via conductors 107 or the conductor pads 110 may be arranged with a gap therebetween.

なお、図4の中間基板200においては、副コア収容部100hはコア本体部100mを貫通する形態にて構成され、第二配線積層部62が副コア収容部100hに収容されたセラミック副コア部1の第二主表面と接して形成されている。この構成では、セラミック副コア部1の位置から、線膨張係数の大きい高分子材料が主体となるコア本体部100mが排除されるので、半導体集積回路素子2と中間基板200との間の線膨張係数差の縮小効果をより顕著に達成できる。   In the intermediate substrate 200 of FIG. 4, the secondary core housing part 100h is configured to penetrate the core body 100m, and the ceramic secondary core part 62 is housed in the secondary core housing part 100h. 1 in contact with the second main surface. In this configuration, since the core body 100m mainly composed of a polymer material having a large linear expansion coefficient is excluded from the position of the ceramic sub-core portion 1, the linear expansion between the semiconductor integrated circuit element 2 and the intermediate substrate 200 is eliminated. The effect of reducing the coefficient difference can be achieved more remarkably.

図13は、図4の中間基板200において、副コア収容部100h及び副コア部1の、副コア部1の板面と平行な平面(S−S)による断面を模式的に示すものである。副コア収容部100hの内周面と副コア部1の外周面との隙間は、前述の充填結合層55にて充填されている。そして、副コア収容部100hは、上記断面による内周縁が四辺形状であり、かつ、その角部に寸法0.1mm以上2mm以下のアール部Rが形成されている。上記角部に対応する位置にて充填結合層55に形成される出隅部にも、副コア収容部100hのアール面に倣った湾曲面が形成される。このため、かかる出隅部付近の高分子材料に気泡が形成されにくくなり、かつ温度履歴を受けても応力の集中を回避できるため、クラック等が発生しにくくなる。なお、上記アール部Rに代えて、図14に示すように、同様の寸法範囲の面取り部Tを形成してもよい。図13及び図14において、副コア収容部100hの内縁は、角部のアール部Rないし面取り部T以外の各辺部が直線状に形成されている。また、0.1mm以上2mm以下のアール部Rないし面取り部Tの形成により、気泡残留やクラック防止効果が最も顕著に発揮されるのは、副コア部1の一辺寸法をL、充填結合層55の肉厚(アール部ないし面取り部の形成されていない部分において、副コア収容部100hの内周面と、これに対向する副コア部1の外周面との距離)をθとしたとき、θ/Lが0.040以上0.090以下に調整される場合である(例えばθ=0.8mm、L=12mm、θ/L=0.067)。また、同様の観点にて、肉厚θの絶対値は、0.50mm以上2.00mm以下、望ましくは0.75mm以上1.50mm以下、より望ましくは0.75mm以上1.25mm以下に設定するのがよい。   FIG. 13 schematically shows a cross section of the sub core housing part 100h and the sub core part 1 in a plane (SS) parallel to the plate surface of the sub core part 1 in the intermediate substrate 200 of FIG. . The gap between the inner peripheral surface of the sub core housing portion 100 h and the outer peripheral surface of the sub core portion 1 is filled with the above-described filling bonding layer 55. And the sub-core accommodating part 100h has the inner periphery by the said cross section having a quadrilateral shape, and the corner | angular part R of the dimension of 0.1 mm or more and 2 mm or less is formed in the corner | angular part. A curved surface that follows the rounded surface of the sub-core housing portion 100h is also formed at the protruding corner portion formed in the filling bonding layer 55 at a position corresponding to the corner portion. For this reason, bubbles are not easily formed in the polymer material in the vicinity of the protruding corner, and stress concentration can be avoided even when subjected to a temperature history, so that cracks and the like are less likely to occur. Instead of the rounded portion R, a chamfered portion T having a similar size range may be formed as shown in FIG. 13 and 14, the inner edge of the sub-core housing portion 100 h is formed such that each side portion other than the corner rounded portion R or chamfered portion T is linear. In addition, the formation of the rounded portion R or chamfered portion T of 0.1 mm or more and 2 mm or less exhibits the most remarkable effect of preventing air bubbles and cracks. When the thickness (the distance between the inner peripheral surface of the sub-core housing portion 100h and the outer peripheral surface of the sub-core portion 1 facing this in the rounded portion or the portion where the chamfered portion is not formed) is θ, This is a case where / L is adjusted to 0.040 or more and 0.090 or less (for example, θ = 0.8 mm, L = 12 mm, θ / L = 0.067). From the same viewpoint, the absolute value of the thickness θ is set to 0.50 mm or more and 2.00 mm or less, desirably 0.75 mm or more and 1.50 mm or less, more desirably 0.75 mm or more and 1.25 mm or less. It is good.

副コア収容部100hの内縁形状は、図15のように形成することもできる。すなわち、各角部には寸法0.1mm以上2mm以下のアール部Rが形成されているが、残余の各辺部が、該アール部よりも曲率半径の大きい外向きに凸な曲線部Bとなっている。つまり、副コア収容部100hは、副コア部1の板面と平行な平面による断面の内周縁が、外向きに凸な曲率半径0.1mm以上の曲線部のみからなる。この構成によっても、気泡残留やクラック発生の抑制効果が同様にもたらされる。さらに、図16に示すごとく、副コア収容部100hの断面内周縁Cを円状とすれば、効果はさらに高められる。   The inner edge shape of the sub-core housing part 100h can also be formed as shown in FIG. That is, each corner is formed with a rounded portion R having a dimension of 0.1 mm or more and 2 mm or less, and each remaining side portion is an outwardly convex curved portion B having a larger radius of curvature than the rounded portion. It has become. That is, the sub-core housing part 100h is composed only of a curved part having an outwardly convex curvature radius of 0.1 mm or more, with an inner peripheral edge of a cross section formed by a plane parallel to the plate surface of the sub-core part 1. This configuration also brings about the effect of suppressing bubble remaining and crack generation. Further, as shown in FIG. 16, the effect is further enhanced if the inner peripheral edge C of the cross-section of the sub-core housing portion 100h is circular.

上記の効果を確認するために行なった実験結果について説明する。図4の構造の中間基板(配線基板)200の試験品を、次のような構成にて作製した。まず、コア本体部100mは(ガラス繊維強化エポキシ樹脂の両面に銅箔が貼付された基板)とし、厚さを(0.87)mmに設定した。副コア収容部100hの一辺の寸法uを13.5mm〜15mmの範囲で種々設定した。また、各角部に形成するアールの大きさは0.5mm及び1.5mmの2水準とした。他方、セラミック副コア部1は、寸法12mm×12mm厚さ(0.87)mmの(チタン酸バリウムとニッケル電極の交互積層体)の焼結品とした。各角部には寸法0.311mm以上1.174mm以下の種々の値の面取り部tを切削機で削り取ることにより形成した。   The results of experiments conducted to confirm the above effects will be described. A test product of the intermediate substrate (wiring substrate) 200 having the structure shown in FIG. 4 was produced in the following configuration. First, the core main body portion 100m was set to (a substrate on which copper foil was pasted on both sides of a glass fiber reinforced epoxy resin), and the thickness was set to (0.87) mm. The dimension u of one side of the sub core housing part 100h was variously set in the range of 13.5 mm to 15 mm. Moreover, the magnitude | size of the radius formed in each corner | angular part was made into 2 levels, 0.5 mm and 1.5 mm. On the other hand, the ceramic sub-core portion 1 was a sintered product (alternate laminate of barium titanate and nickel electrodes) having dimensions of 12 mm × 12 mm (0.87) mm. Each corner was formed by chamfering various values of chamfered portions t of 0.311 mm to 1.174 mm with a cutting machine.

上記のようなセラミック副コア部1を副コア収容部100h内に配置し、両者の隙間に充填結合層55として(エポキシ)樹脂を充填し硬化させ、試験品とした。隙間の調整により、充填結合層55の形成肉厚θを0.75mm以上1.50mm以下の種々の値に設定した。これらの試験品に対し、米国MIL規格883Dに規定された熱衝撃試験を、該規格の条件Cにて90サイクル行ない、副コア収容部100hの角部及びセラミック副コア部1の角部にクラックが生じているか否かを確認した。そして、セラミック副コア部1側の面取り部の寸法を、0.1mm未満、0.1mm以上0.6mm未満及び0.6mm以上の3つの水準に分類し、それぞれクラックが生じた試験品の数比率(各水準についても総試験品数は7〜10とした)を求めた。その結果、副コア収容部100hの角部でクラック発生した試験品は認められなかった。他方、セラミック副コア部1の角部については、全ての試験品についてクラックが認められなかった場合に優良(◎)、クラックが認められなかった試験品が1つでもあれば良好(○)、副コア収容部100hの角部にはクラック発生しなかったものの、セラミック副コア部1の角部については全てクラック発生が認められた場合は可(△)として判定した。以上の結果を表1〜表3に示す。   The ceramic sub-core portion 1 as described above was placed in the sub-core housing portion 100h, and the (epoxy) resin was filled in the gap between the two as a filling bonding layer 55 and cured to obtain a test product. By adjusting the gap, the formation wall thickness θ of the filling and bonding layer 55 was set to various values of 0.75 mm or more and 1.50 mm or less. A thermal shock test defined in US MIL standard 883D is performed on these test products for 90 cycles under the condition C of the standard, and cracks are formed in the corners of the sub-core housing portion 100h and the ceramic sub-core portion 1. It was confirmed whether or not this occurred. And the dimension of the chamfered part on the ceramic sub-core part 1 side is classified into three levels of less than 0.1 mm, 0.1 mm or more and less than 0.6 mm, and 0.6 mm or more, and the number of test products in which cracks occurred. The ratio (the total number of test samples was 7 to 10 for each level) was determined. As a result, a test product in which cracks occurred at the corners of the secondary core housing part 100h was not recognized. On the other hand, for the corners of the ceramic sub-core part 1, excellent (ク ラ ッ ク) when no cracks were observed for all the test products, good (◯) if there was even one test product with no cracks, Although cracks did not occur at the corners of the sub-core housing part 100h, when cracks were found at all corners of the ceramic sub-core part 1, it was determined as acceptable (Δ). The above results are shown in Tables 1 to 3.

Figure 0004654133
Figure 0004654133

Figure 0004654133
Figure 0004654133

Figure 0004654133
Figure 0004654133

以上の結果、セラミック副コア部1の角部に形成する面取り量を0.1mm以上、特に0.6mm以上とすることで、該セラミック副コア部1の角部を起点としたクラックを効果的に抑制できていることがわかる。   As a result of the above, by setting the chamfering amount formed at the corner of the ceramic sub-core part 1 to 0.1 mm or more, particularly 0.6 mm or more, cracks starting from the corner of the ceramic sub-core part 1 are effective. It can be seen that it can be suppressed.

また、図13〜図16のいずれの構成においても、副コア部1の板面と平行な平面による断面の外周縁が四辺形状であり、角部はピン角状になっているが、各図にて一点鎖線で示すように、副コア部1の角部に寸法0.1mm以上2mm以下のアール部rを形成することができる。これにより、充填結合層55の角部(出隅部)への応力集中を一層緩和しやすくできる。また、副コア部1の角部を起点とする充填結合層55へのクラック発生も抑制できる。各図にて破線で示すように、アール部rに代えて同様の寸法範囲の面取り部tを形成してもよく、同様の効果を達成できる。なお、副コア部1の角部を起点とするクラック発生の抑制効果は、θ/Lが0.040以上0.090以下に調整される場合に最も顕著に発揮される。また、同様の観点にて、肉厚θの絶対値は、0.75mm以上1.50mm以下、望ましくは0.75mm以上1.25mm以下に設定するのがよい。   Moreover, in any structure of FIGS. 13-16, although the outer periphery of the cross section by the plane parallel to the plate | board surface of the subcore part 1 is a quadrilateral shape, and a corner | angular part is a pin angle | corner shape, As shown by a one-dot chain line, a rounded portion r having a dimension of 0.1 mm or more and 2 mm or less can be formed at a corner portion of the sub-core portion 1. As a result, the stress concentration at the corners (protruding corners) of the filling and bonding layer 55 can be further alleviated. In addition, the occurrence of cracks in the filling and bonding layer 55 starting from the corners of the sub-core part 1 can also be suppressed. As shown by broken lines in each drawing, a chamfered portion t having the same size range may be formed instead of the rounded portion r, and the same effect can be achieved. The effect of suppressing the occurrence of cracks starting from the corners of the sub-core part 1 is most noticeable when θ / L is adjusted to 0.040 or more and 0.090 or less. From the same viewpoint, the absolute value of the thickness θ is preferably set to 0.75 mm to 1.50 mm, and more preferably 0.75 mm to 1.25 mm.

さらに、副コア部1の外縁形状は、図17のように形成することもできる。すなわち、各角部には寸法0.1mm以上2mm以下のアール部rが形成されているが、残余の各辺部が、該アール部よりも曲率半径の大きい外向きに凸な曲線部B’となっている。つまり、副コア部1は、副コア部1の板面と平行な平面による断面の外周縁が、外向きに凸な曲率半径0.1mm以上の曲線部のみからなる。この構成によっても、気泡残留やクラック発生の抑制効果が同様にもたらされる。さらに、図18に示すごとく、副コア部1の断面内周縁Cを円状とすれば、効果はさらに高められる。
周縁Cを円状とすれば、効果はさらに高められる。
Furthermore, the outer edge shape of the sub-core part 1 can also be formed as shown in FIG. In other words, round portions r having dimensions of 0.1 mm or more and 2 mm or less are formed at the respective corners, but the remaining side portions are curved portions B ′ having outwardly convex curvatures larger than the round portions. It has become. That is, the sub-core portion 1 is composed only of a curved portion having a radius of curvature of 0.1 mm or more whose outer peripheral edge in a cross section formed by a plane parallel to the plate surface of the sub-core portion 1 is convex outward. This configuration also brings about the effect of suppressing bubble remaining and crack generation. Furthermore, as shown in FIG. 18, if the cross-sectional inner peripheral edge C of the sub-core part 1 is circular, the effect is further enhanced.
If the peripheral edge C is circular, the effect is further enhanced.

以下、本発明の配線基板の種々の変形例について説明する。なお、以下の構成において、図4の中間基板200と同様に構成されて部分は、共通の符号を付与して詳細な説明は省略する。まず、図5の中間基板(配線基板)300は、その副コア収容部100hが、コア本体部100mの第一主表面に開口する有底の凹状部として構成されている。第二配線積層部62は、該凹状部の裏面側にてコア本体部100mの第二主表面と接して形成されている。この構造は、コア本体部100mの第二主表面側にセラミック副コア部1が露出しないので、平坦な第二配線積層部62をより簡便に形成できる利点がある。具体的には、コア本体部100mの、副コア収容部100hの底部をなす部分を貫通する形で第二端子アレー7をなす各端子と導通する底部貫通孔導体部209が形成され、セラミック副コア部1に形成された各副コア導体51a、51bがそれら底部貫通孔導体部209に導通している。より詳しくは、底部貫通孔導体部209側のパッド80と、副コア導体側のパッド70とが半田接続部6’を介してフリップチップ接続された形態となっている。副コア部1及び副コア収容部100hの断面形状については、図13〜図16を用いて説明したものと同様のものを採用できる。   Hereinafter, various modifications of the wiring board of the present invention will be described. In the following configuration, parts that are configured in the same manner as the intermediate substrate 200 of FIG. 4 are given common reference numerals, and detailed description thereof is omitted. First, the intermediate substrate (wiring substrate) 300 in FIG. 5 is configured such that the sub-core housing portion 100h is a bottomed concave portion that opens on the first main surface of the core main body portion 100m. The second wiring laminated portion 62 is formed in contact with the second main surface of the core body portion 100m on the back side of the concave portion. This structure has an advantage that the flat second wiring laminated portion 62 can be more easily formed because the ceramic sub-core portion 1 is not exposed on the second main surface side of the core main body portion 100m. Specifically, a bottom through-hole conductor portion 209 that is electrically connected to each terminal of the second terminal array 7 is formed so as to penetrate the portion of the core main body portion 100m that forms the bottom portion of the sub-core housing portion 100h. The sub-core conductors 51 a and 51 b formed in the core part 1 are electrically connected to the bottom through-hole conductor part 209. More specifically, the pad 80 on the bottom through-hole conductor portion 209 side and the pad 70 on the sub core conductor side are flip-chip connected via the solder connection portion 6 ′. About the cross-sectional shape of the subcore part 1 and the subcore accommodating part 100h, the thing similar to what was demonstrated using FIGS. 13-16 is employable.

次に、図6の中間基板(配線基板)400は、第一端子アレー5を構成する第一側第一種端子5a及び第一側第二種端子5bがセラミック副コア部1の第一主表面上に露出形成されている。また、第一端子アレー5の第一側第一種端子5a及び第一側第二種端子5bに対応し、かつ第二端子アレー7の第二側第一種端子7a及び第二側第二種端子7bにそれぞれ導通する第一種副コア導体51a及び第二種副コア導体51bが、該セラミック副コア部1の厚さ方向に形成されている。この構成によると、セラミック副コア部1の第一主表面から、高分子材料を主体とした第一配線積層部61が排除され、半導体集積回路素子2とセラミック副コア部1とが半田接続部6により直結される。これにより、半導体集積回路素子2と中間基板200との間の線膨張係数差の縮小効果がより向上する。また、セラミック副コア部1の直上では、端子に導通する配線の引き回しがなされないので、該端子に導通する伝送経路の低インダクタンス化ひいては低インピーダンス化を図ることができる。なお、この実施形態の中間基板(配線基板)600においては、第一側配線積層部が形成されていない。副コア部1及び副コア収容部100hの断面形状については、図13〜図16を用いて説明したものと同様のものを採用できる。   Next, in the intermediate substrate (wiring substrate) 400 of FIG. 6, the first side first type terminal 5 a and the first side second type terminal 5 b constituting the first terminal array 5 are the first main of the ceramic sub-core portion 1. It is exposed on the surface. Further, the second side first type terminal 7a and the second side second corresponding to the first side first type terminal 5a and the first side second type terminal 5b of the first terminal array 5 and the second terminal array 7. A first-type sub-core conductor 51a and a second-type sub-core conductor 51b that respectively conduct to the seed terminal 7b are formed in the thickness direction of the ceramic sub-core portion 1. According to this configuration, the first wiring laminated portion 61 mainly composed of a polymer material is excluded from the first main surface of the ceramic sub-core portion 1, and the semiconductor integrated circuit element 2 and the ceramic sub-core portion 1 are connected to the solder connection portion. 6 is directly connected. Thereby, the reduction effect of the linear expansion coefficient difference between the semiconductor integrated circuit element 2 and the intermediate substrate 200 is further improved. Further, since the wiring that conducts to the terminal is not routed immediately above the ceramic sub-core portion 1, it is possible to reduce the inductance of the transmission path that conducts to the terminal, and thus to reduce the impedance. In the intermediate substrate (wiring substrate) 600 of this embodiment, the first side wiring laminated portion is not formed. About the cross-sectional shape of the subcore part 1 and the subcore accommodating part 100h, the thing similar to what was demonstrated using FIGS. 13-16 is employable.

他方、図7の中間基板(配線基板)500においては、セラミック副コア部1の第一主表面の外周縁部が、コア本体部100mの第一主表面とともに、高分子材料からなる誘電体層102と、配線又はグランド用もしくは電源用の面導体を含む導体層とが交互に積層された第一配線積層部61にて覆われている。第一側信号端子5sは、第一配線積層部61の表面に露出する形で形成されている。そして、第一側信号端子5sに導通する形で第一配線積層部61内には、セラミック副コア部1の配置領域の外側に信号伝達経路を引き出す第一側信号用配線108が設けられている。第一側信号用配線108の末端は、セラミック副コア部1を迂回する形でコア本体部100mの厚さ方向に形成された信号用貫通孔導体109sに導通している。この構成は、アレー外周部の信号用端子に導通する配線を面内外方に大きく引き出すことができるので、第一端子アレー5の端子間距離が小さい場合に有利であるといえる。副コア部1及び副コア収容部100hの断面形状については、図13〜図16を用いて説明したものと同様のものを採用できる。   On the other hand, in the intermediate substrate (wiring substrate) 500 of FIG. 7, the outer peripheral edge portion of the first main surface of the ceramic sub-core portion 1 together with the first main surface of the core body portion 100m is a dielectric layer made of a polymer material. 102 and a first wiring laminated portion 61 in which wirings or conductor layers including ground or power supply surface conductors are alternately laminated. The first side signal terminal 5 s is formed so as to be exposed on the surface of the first wiring laminated portion 61. A first signal wiring 108 is provided in the first wiring laminated portion 61 so as to be electrically connected to the first side signal terminal 5s. The first signal wiring 108 leads the signal transmission path outside the arrangement region of the ceramic sub-core portion 1. Yes. The end of the first signal wiring 108 is electrically connected to a signal through-hole conductor 109s formed in the thickness direction of the core body 100m so as to bypass the ceramic sub-core 1. This configuration can be said to be advantageous when the distance between the terminals of the first terminal array 5 is small because the wiring that conducts to the signal terminals on the outer periphery of the array can be drawn largely in and out of the plane. About the cross-sectional shape of the subcore part 1 and the subcore accommodating part 100h, the thing similar to what was demonstrated using FIGS. 13-16 is employable.

また、以上の実施形態においては、いずれも副コア部1が半導体集積回路素子2よりも大面積に形成されていたが、副コア部1を半導体集積回路素子2の投影領域とほぼ同面積に形成することもできる。さらに、図8の中間基板600のごとく、第一端子アレー5の全てを副コア部1の領域内に収めつつ、副コア部1を半導体集積回路素子2よりも小面積に構成することも可能である。また、半導体集積回路素子2よりも外周に位置する端子における半田接続部6の接続状態への影響がそれ程懸念されない場合には、図9の中間基板(配線基板)700のごとく、第一端子アレー5の領域よりも副コア部1を小面積に構成することも不可能ではない。副コア部1及び副コア収容部100hの断面形状については、図13〜図16を用いて説明したものと同様のものを採用できる。   In each of the above embodiments, the sub-core portion 1 is formed to have a larger area than the semiconductor integrated circuit element 2. However, the sub-core portion 1 has substantially the same area as the projection region of the semiconductor integrated circuit element 2. It can also be formed. Further, as in the intermediate substrate 600 of FIG. 8, it is possible to configure the sub-core portion 1 to have a smaller area than the semiconductor integrated circuit element 2 while accommodating the entire first terminal array 5 in the region of the sub-core portion 1. It is. In addition, when the influence on the connection state of the solder connection portion 6 at the terminal located on the outer periphery of the semiconductor integrated circuit element 2 is not so much concerned, the first terminal array as shown in the intermediate substrate (wiring substrate) 700 in FIG. It is not impossible to make the sub-core part 1 smaller in area than the area of 5. About the cross-sectional shape of the subcore part 1 and the subcore accommodating part 100h, the thing similar to what was demonstrated using FIGS. 13-16 is employable.

また、図10の中間基板(配線基板)800は、副コア部1に含まれる一部のセラミック層52のみを用いてコンデンサを形成し、残余のセラミック層52を、コンデンサを含まない副コア本体1Mとした例である。いずれも、副コア部1及び副コア収容部100hの断面形状については、図13〜図16を用いて説明したものと同様のものを採用できる。   Further, the intermediate substrate (wiring substrate) 800 of FIG. 10 forms a capacitor using only a part of the ceramic layer 52 included in the sub-core portion 1, and the remaining ceramic layer 52 is replaced with a sub-core main body not including the capacitor. This is an example of 1M. In any case, the cross-sectional shapes of the sub-core portion 1 and the sub-core housing portion 100h can be the same as those described with reference to FIGS.

図11の中間基板(配線基板)900は、図10の中間基板800をさらに発展させたもので、積層コンデンサを、セラミック副コア部1Mの主表面上に形成された薄膜コンデンサ部10とした例である。薄膜コンデンサ部10は、コンデンサを形成する複数の誘電体薄膜13(誘電体層)と複数の電極導体薄膜14,17(第一電極導体層14、第二電極導体層17)とが交互に積層されたものである。電極導体薄膜14,17は、第一側第一種端子5aに導通する第一種電極導体薄膜14と、第一側第二種端子5bに導通する第二種電極導体薄膜17とが、誘電体薄膜13により隔てられた形で積層方向に交互に配列している。電極導体薄膜14,17の多層化により合計面積が拡大し、かつ、各誘電体層の薄膜化効果とも相俟って、素子寸法が小さくとも、実現可能な静電容量を大幅に増加させることができる。副コア部1及び副コア収容部100hの断面形状については、図13〜図16を用いて説明したものと同様のものを採用できる。図11では、貫通孔16,18の図示に伴い、電極導体薄膜14,17は面内方向に分断されているように見えるが、実際は図12のごとく、貫通孔16,18以外の部分では面内方向に連続薄膜を形成している。また、誘電体薄膜13についても同様である(この構造は、図4〜図11の焼成型コンデンサ1についても同じである)。   An intermediate substrate (wiring substrate) 900 in FIG. 11 is a further development of the intermediate substrate 800 in FIG. 10, and the multilayer capacitor is a thin film capacitor unit 10 formed on the main surface of the ceramic sub-core unit 1M. It is. The thin film capacitor unit 10 includes a plurality of dielectric thin films 13 (dielectric layers) and a plurality of electrode conductor thin films 14 and 17 (first electrode conductor layer 14 and second electrode conductor layer 17) that are alternately stacked. It has been done. The electrode conductor thin films 14 and 17 are composed of a first type electrode conductor thin film 14 that conducts to the first side first kind terminal 5a and a second type electrode conductor thin film 17 that conducts to the first side second kind terminal 5b. They are alternately arranged in the stacking direction in a form separated by the body thin film 13. The total area is expanded by multilayering the electrode conductor thin films 14 and 17 and, in combination with the thinning effect of each dielectric layer, the achievable capacitance is greatly increased even if the element size is small. Can do. About the cross-sectional shape of the subcore part 1 and the subcore accommodating part 100h, the thing similar to what was demonstrated using FIGS. 13-16 is employable. In FIG. 11, the electrode conductor thin films 14 and 17 appear to be divided in the in-plane direction with the illustration of the through holes 16 and 18, but in actuality, in the portions other than the through holes 16 and 18 as shown in FIG. A continuous thin film is formed in the inward direction. The same applies to the dielectric thin film 13 (this structure is the same for the fired capacitor 1 of FIGS. 4 to 11).

誘電体薄膜13の厚さは、例えば10nm以上1000nm以下、より望ましくは30nm以上500nm以下である。他方、電極導体薄膜14,17の厚さは、例えば10nm以上500nm以下、より望ましくは50nm以上500nm以下である。電極導体薄膜14,17及び結合導体部15,19(各々副コア部1の第一種副コア導体51a及び第二種副コア導体51bに導通している)は、例えばCu、Ag、AuあるいはPtなどの金属で構成でき、スパッタリング、真空蒸着などの気相成膜法にて形成され、本実施形態では真空蒸着により形成している。他方、誘電体薄膜13は、酸化物あるいは窒化物などの無機誘電体で構成され、高周波スパッタリング、反応性スパッタリング、化学気相堆積法(Chemical Vapor Deposition:CVD)などの気相成膜法により形成される。本実施形態では、誘電体薄膜13を、ペロブスカイト型結晶構造を有した複合酸化物、例えばチタン酸バリウム、チタン酸ストロンチウム及びチタン酸鉛の1種又は2種以上にて構成された酸化物薄膜を、ゾルゲル法により形成している。   The thickness of the dielectric thin film 13 is, for example, not less than 10 nm and not more than 1000 nm, and more preferably not less than 30 nm and not more than 500 nm. On the other hand, the thickness of the electrode conductor thin films 14 and 17 is, for example, not less than 10 nm and not more than 500 nm, and more preferably not less than 50 nm and not more than 500 nm. The electrode conductor thin films 14 and 17 and the coupling conductor portions 15 and 19 (each conducting to the first-type sub-core conductor 51a and the second-type sub-core conductor 51b of the sub-core portion 1) are, for example, Cu, Ag, Au, or It can be composed of a metal such as Pt, and is formed by a vapor deposition method such as sputtering or vacuum vapor deposition. In this embodiment, it is formed by vacuum vapor deposition. On the other hand, the dielectric thin film 13 is made of an inorganic dielectric such as oxide or nitride, and is formed by a vapor deposition method such as high frequency sputtering, reactive sputtering, or chemical vapor deposition (CVD). Is done. In this embodiment, the dielectric thin film 13 is a composite oxide having a perovskite crystal structure, for example, an oxide thin film composed of one or more of barium titanate, strontium titanate and lead titanate. The sol-gel method is used.

本発明の中間基板(配線基板)の使用形態の一例を示す側面模式図。The side surface schematic diagram which shows an example of the usage condition of the intermediate board (wiring board) of this invention. 集積回路用のデカップリングコンデンサの使用形態の一例を示す等価回路図。The equivalent circuit diagram which shows an example of the usage condition of the decoupling capacitor for integrated circuits. 図1の中間基板の第一端子アレーの配置形態の一例を示す平面図。The top view which shows an example of the arrangement | positioning form of the 1st terminal array of the intermediate | middle board | substrate of FIG. 本発明の中間基板の第一実施形態を示す断面模式図。The cross-sectional schematic diagram which shows 1st embodiment of the intermediate substrate of this invention. 同じく第二実施形態を示す断面模式図。The cross-sectional schematic diagram which similarly shows 2nd embodiment. 同じく第三実施形態を示す断面模式図。The cross-sectional schematic diagram which similarly shows 3rd embodiment. 同じく第四実施形態を示す断面模式図。The cross-sectional schematic diagram which similarly shows 4th embodiment. 同じく第五実施形態を示す断面模式図。The cross-sectional schematic diagram which similarly shows 5th embodiment. 同じく第六実施形態を示す断面模式図。The cross-sectional schematic diagram which similarly shows 6th embodiment. 同じく第七実施形態を示す断面模式図。The cross-sectional schematic diagram which similarly shows 7th embodiment. 同じく第八実施形態を示す断面模式図。The cross-sectional schematic diagram which similarly shows 8th embodiment. 中間基板に組み込まれたコンデンサの電極導体層の平面形態を例示して示す模式図。The schematic diagram which illustrates and illustrates the plane form of the electrode conductor layer of the capacitor | condenser integrated in the intermediate board | substrate. 副コア収容部と副コア部の断面形状の第一例を示す模式図。The schematic diagram which shows the 1st example of the cross-sectional shape of a subcore accommodating part and a subcore part. 同じく第二例を示す模式図。The schematic diagram which similarly shows a 2nd example. 同じく第三例を示す模式図。The schematic diagram which similarly shows a 3rd example. 同じく第四例を示す模式図。The schematic diagram which similarly shows a 4th example. 同じく第五例を示す模式図。The schematic diagram which similarly shows a 5th example. 同じく第六例を示す模式図。The schematic diagram which similarly shows a 6th example.

符号の説明Explanation of symbols

1 セラミック副コア部
5 第一端子アレー
5a 第一側第一種端子
5b 第一側第二種端子
5s 第一側信号端子
7 第二端子アレー
7a 第二側第一種端子
7b 第二側第二種端子
10 薄膜コンデンサ
14 第一種電極導体薄膜(第一電極導体層)
17 第二種電極導体薄膜(第二電極導体層)
51a 第一種副コア導体
51b 第二種副コア導体
52 セラミック層
53 充填結合層
R,r アール部
T,t 面取り部
54 第一電極導体層
57 第二電極導体層
61 第一配線積層部
100 基板コア
100h 副コア収容部
100m コア本体部
102 誘電体層
107 ビア導体
108 第一側信号用配線
109a 第一種貫通孔導体
109b 第二種種貫通孔導体
109s 信号用貫通孔導体
200,300,400,500,600,700,800,900 中間基板
DESCRIPTION OF SYMBOLS 1 Ceramic sub core part 5 1st terminal array 5a 1st side 1st class terminal 5b 1st side 2nd class terminal 5s 1st side signal terminal 7 2nd terminal array 7a 2nd side 1st class terminal 7b 2nd side 2nd Type 2 terminal 10 Thin film capacitor 14 Type 1 electrode conductor thin film (first electrode conductor layer)
17 Second kind electrode conductor thin film (second electrode conductor layer)
51a First-type sub-core conductor 51b Second-type sub-core conductor 52 Ceramic layer 53 Filling and bonding layer R, r round portion T, t Chamfered portion 54 First electrode conductor layer 57 Second electrode conductor layer 61 First wiring laminated portion 100 Substrate core 100h Sub core housing portion 100m Core body portion 102 Dielectric layer 107 Via conductor 108 First-side signal wiring 109a First-type through-hole conductor 109b Second-type through-hole conductor 109s Signal through-hole conductor 200, 300, 400 , 500, 600, 700, 800, 900 Intermediate substrate

Claims (17)

高分子材料により板状に構成され、第一主表面に自身の厚さを減ずる形で副コア収容部が開口形成されたコア本体部と、前記コア本体部よりも線膨張係数が小さい材料により板状に構成され、前記副コア収容部内に前記コア本体部と厚さ方向を一致させる形で収容された副コア部とからなる基板コアと、前記副コア収容部の内周面と前記副コア部の外周面との隙間を充填する高分子材料からなる充填結合層とを有し、
前記基板コアの第一主表面側に形成され、一方が電源端子、他方がグランド端子として機能する第一側第一種端子及び第一側第二種端子と、第一側信号端子とからなる第一端子アレーと、
前記基板コアの第二主表面側に形成され、前記第一側第一種端子及び第二種端子にそれぞれ導通する第二側第一種端子及び第二側第二種端子と、前記第一側信号端子に導通する第二側信号端子とからなる第二端子アレーとを有し、
前記第一端子アレーが、前記基板コアの板面と平行な基準面への正射投影において、前記副コア部の投影領域と重なる位置関係にて形成されてなり、
前記副コア部には、前記第一側第一種端子及び前記第二側第一種端子に導通する第一電極導体層と、誘電体層と、前記第一側第二種端子及び前記第二側第二種端子に導通する第二電極導体層とがこの順序で積層された積層コンデンサが組み込まれてなり、さらに、
前記副コア収容部は、前記副コア部の板面と平行な平面による断面の内周縁が四辺形状であり、かつ、その角部に寸法0.1mm以上2mm以下のアール部又は面取り部が形成されてなることを特徴とする配線基板。
It is composed of a polymer material in a plate shape, and a core main body portion in which a sub core housing portion is formed in the form of reducing its thickness on the first main surface, and a material having a smaller linear expansion coefficient than the core main body portion. A substrate core that is configured in a plate shape and is accommodated in the sub core housing portion so that the core main body portion and the thickness direction coincide with each other, an inner peripheral surface of the sub core housing portion, and the sub core portion A filling and bonding layer made of a polymer material that fills a gap with the outer peripheral surface of the core portion;
Formed on the first main surface side of the substrate core, one is a power supply terminal, the other functions as a ground terminal, a first side first type terminal and a first side second type terminal, and a first side signal terminal A first terminal array;
A second side first type terminal and a second side second type terminal formed on the second main surface side of the substrate core and respectively conducting to the first side first type terminal and the second type terminal; A second terminal array comprising a second side signal terminal conducting to the side signal terminal;
In the orthographic projection onto the reference plane parallel to the plate surface of the substrate core, the first terminal array is formed in a positional relationship overlapping with the projection region of the sub-core portion,
The sub-core portion includes a first electrode conductor layer conducting to the first-side first-type terminal and the second-side first-type terminal, a dielectric layer, the first-side second-type terminal, and the first A multilayer capacitor in which a second electrode conductor layer conducting to the second-side second-type terminal is laminated in this order is incorporated, and
The sub-core housing portion has a quadrilateral inner periphery in a cross section by a plane parallel to the plate surface of the sub-core portion, and a rounded portion or a chamfered portion having a dimension of 0.1 mm or more and 2 mm or less is formed at a corner portion thereof. A wiring board characterized by being made.
高分子材料により板状に構成され、第一主表面に自身の厚さを減ずる形で副コア収容部が開口形成されたコア本体部と、前記コア本体部よりも線膨張係数が小さい材料により板状に構成され、前記副コア収容部内に前記コア本体部と厚さ方向を一致させる形で収容された副コア部とからなる基板コアと、前記副コア収容部の内周面と前記副コア部の外周面との隙間を充填する高分子材料からなる充填結合層とを有し、
前記基板コアの第一主表面側に形成され、一方が電源端子、他方がグランド端子として機能する第一側第一種端子及び第一側第二種端子と、第一側信号端子とからなる第一端子アレーと、
前記基板コアの第二主表面側に形成され、前記第一側第一種端子及び第二種端子にそれぞれ導通する第二側第一種端子及び第二側第二種端子と、前記第一側信号端子に導通する第二側信号端子とからなる第二端子アレーとを有し、
前記第一端子アレーが、前記基板コアの板面と平行な基準面への正射投影において、前記副コア部の投影領域と重なる位置関係にて形成されてなり、
前記副コア部には、前記第一側第一種端子及び前記第二側第一種端子に導通する第一電極導体層と、誘電体層と、前記第一側第二種端子及び前記第二側第二種端子に導通する第二電極導体層とがこの順序で積層された積層コンデンサが組み込まれてなり、さらに、
前記副コア収容部は、前記副コア部の板面と平行な平面による断面の内周縁が、外向きに凸な曲率半径0.1mm以上の曲線部のみからなることを特徴とする配線基板。
It is composed of a polymer material in a plate shape, and a core main body portion in which a sub core housing portion is formed in the form of reducing its thickness on the first main surface, and a material having a smaller linear expansion coefficient than the core main body portion. A substrate core that is configured in a plate shape and is accommodated in the sub core housing portion so that the core main body portion and the thickness direction coincide with each other, an inner peripheral surface of the sub core housing portion, and the sub core portion A filling and bonding layer made of a polymer material that fills a gap with the outer peripheral surface of the core portion;
Formed on the first main surface side of the substrate core, one is a power supply terminal, the other functions as a ground terminal, a first side first type terminal and a first side second type terminal, and a first side signal terminal A first terminal array;
A second side first type terminal and a second side second type terminal formed on the second main surface side of the substrate core and respectively conducting to the first side first type terminal and the second type terminal; A second terminal array comprising a second side signal terminal conducting to the side signal terminal;
In the orthographic projection onto the reference plane parallel to the plate surface of the substrate core, the first terminal array is formed in a positional relationship overlapping with the projection region of the sub-core portion,
The sub-core portion includes a first electrode conductor layer conducting to the first-side first-type terminal and the second-side first-type terminal, a dielectric layer, the first-side second-type terminal, and the first A multilayer capacitor in which a second electrode conductor layer conducting to the second-side second-type terminal is laminated in this order is incorporated, and
The wiring board according to claim 1, wherein the sub-core housing portion includes only a curved portion having an outwardly convex curvature radius of 0.1 mm or more, with an inner peripheral edge of a cross section formed by a plane parallel to the plate surface of the sub-core portion.
前記副コア収容部は、前記断面の内周縁が円状に形成されてなる請求項2記載の配線基板。 The wiring board according to claim 2, wherein the sub-core housing portion has an inner peripheral edge of the cross section formed in a circular shape. 前記副コア部は、該副コア部の板面と平行な平面による断面の外周縁が四辺形状であり、かつ、その角部に寸法0.1mm以上2mm以下のアール部又は面取り部が形成されてなる請求項1ないし請求項3のいずれか1項に記載の配線基板。 The sub-core part has a quadrilateral outer peripheral edge in a plane parallel to the plate surface of the sub-core part, and a rounded part or a chamfered part having a dimension of 0.1 mm to 2 mm is formed at the corner. The wiring board according to any one of claims 1 to 3. 前記副コア部は、前記副コア部の板面と平行な平面による断面の外周縁が、外向きに凸な曲率半径0.1mm以上の曲線部のみからなる請求項1ないし請求項3のいずれか1項に記載の配線基板。 The sub-core portion is composed only of a curved portion having an outwardly convex curvature radius of 0.1 mm or more, with an outer peripheral edge of a cross section formed by a plane parallel to the plate surface of the sub-core portion. The wiring board according to claim 1. 前記副コア部は、前記断面の外周縁が円状に形成されてなる請求項5記載の配線基板。 The wiring board according to claim 5, wherein the sub-core portion has an outer peripheral edge of the cross section formed in a circular shape. 前記第一端子アレーが、前記基板コアの板面と平行な基準面への正射投影において、前記副コア部の投影領域内に全体が包含される位置関係にて形成されてなる請求項1ないし請求項6のいずれか1項に記載の配線基板。 The first terminal array is formed in a positional relationship in which the first terminal array is entirely included in a projection region of the sub-core portion in an orthogonal projection onto a reference plane parallel to a plate surface of the substrate core. The wiring board according to claim 6. 前記基板コアは、前記コア本体部の第一主表面とともに前記副コア部の第一主表面が、高分子材料からなる誘電体層と、配線又はグランド用もしくは電源用の面導体を含む導体層とが積層された第一配線積層部にて覆われてなり、前記第一端子アレーが該第一配線積層部の第一主表面に露出形成されてなる請求項1ないし請求項7のいずれか1項に記載の配線基板。 The substrate core includes a first main surface of the core main body portion and a first main surface of the sub-core portion including a dielectric layer made of a polymer material, and a conductor layer including a wiring or ground or power supply surface conductor. 8. The method according to claim 1, wherein the first terminal array is exposed on the first main surface of the first wiring laminated portion. The wiring board according to item 1. 前記第一端子アレーの前記第一側第一種端子及び第一側第二種端子に対応し、かつ前記第二端子アレーの前記第二側第一種端子及び第二側第二種端子にそれぞれ導通する第一種副コア導体及び第二種副コア導体が、前記副コア部の厚さ方向に形成され、それら第一種副コア導体及び第二種副コア導体が、前記第一配線積層部の前記各誘電体層を貫く形で形成されたビア導体を介して前記第一側第一種端子及び第一側第二種端子にそれぞれ導通してなる請求項8記載の配線基板。 Corresponding to the first side first type terminal and the first side second type terminal of the first terminal array, and to the second side first type terminal and the second side second type terminal of the second terminal array The first-type sub-core conductor and the second-type sub-core conductor that are respectively conductive are formed in the thickness direction of the sub-core portion, and the first-type sub-core conductor and the second-type sub-core conductor are connected to the first wiring. The wiring board according to claim 8, wherein the wiring board is electrically connected to the first-side first-type terminal and the first-side second-type terminal via via conductors formed so as to penetrate the dielectric layers of the laminated portion. 前記第一端子アレーにおいて、前記第一側第一種端子及び第一側第二種端子がアレー内側領域に、前記第一側信号端子がアレー外側領域にそれぞれ配置され、
前記第一側信号端子に導通する形で前記第一配線積層部内に、前記副コア部の配置領域の外側に信号伝達経路を引き出す第一側信号用配線が設けられ、該第一側信号用配線の末端が、前記副コア部を迂回する形で前記コア本体部の厚さ方向に形成された信号用貫通孔導体に導通してなる請求項8又は請求項9に記載の配線基板。
In the first terminal array, the first-side first-type terminals and the first-side second-type terminals are arranged in the array inner area, and the first-side signal terminals are arranged in the array outer area, respectively.
A first signal wiring is provided in the first wiring laminated portion so as to be electrically connected to the first signal terminal, and a first signal wiring is provided outside the arrangement region of the sub core portion to draw a signal transmission path. 10. The wiring board according to claim 8, wherein an end of the wiring is electrically connected to a signal through-hole conductor formed in a thickness direction of the core main body so as to bypass the sub-core.
前記第一端子アレーを構成する前記第一側第一種端子及び前記第一側第二種端子が前記副コア部の第一主表面上に露出形成され、前記第一端子アレーの前記第一側第一種端子及び第一側第二種端子に対応し、かつ前記第二端子アレーの前記第二側第一種端子及び第二側第二種端子にそれぞれ導通する第一種副コア導体及び第二種副コア導体が、該副コア部の厚さ方向に形成されてなる請求項1ないし請求項7のいずれか1項に記載の配線基板。 The first side first type terminal and the first side second type terminal constituting the first terminal array are exposed and formed on the first main surface of the sub-core portion, and the first terminal array includes the first terminal array. A first-type sub-core conductor corresponding to the first-type first terminal and the first-type second-type terminal and conducting to the second-type first-type terminal and the second-side second-type terminal of the second terminal array, respectively. The wiring board according to claim 1, wherein the second-type sub-core conductor is formed in a thickness direction of the sub-core portion. 前記副コア部の第一主表面の外周縁部が、前記コア本体部の第一主表面とともに、高分子材料からなる誘電体層と、配線又はグランド用もしくは電源用の面導体を含む導体層とが積層された第一配線積層部にて覆われてなり、前記第一側信号端子が前記第一配線積層部の表面に露出する形で形成され、
前記第一側信号端子に導通する形で前記第一配線積層部内に、前記副コア部の配置領域の外側に信号伝達経路を引き出す第一側信号用配線が設けられ、該第一側信号用配線の末端が、前記副コア部を迂回する形で前記コア本体部の厚さ方向に形成された信号用貫通孔導体に導通してなる請求項11記載の配線基板。
The outer peripheral edge portion of the first main surface of the sub-core portion together with the first main surface of the core main body portion, a dielectric layer made of a polymer material, and a conductor layer including a wiring or ground or power surface conductor And is covered with the laminated first wiring laminated portion, and the first signal terminal is formed in a form exposed on the surface of the first wiring laminated portion,
A first signal wiring is provided in the first wiring laminated portion so as to be electrically connected to the first signal terminal, and a first signal wiring is provided outside the arrangement region of the sub core portion to draw a signal transmission path. 12. The wiring board according to claim 11, wherein an end of the wiring is electrically connected to a signal through-hole conductor formed in a thickness direction of the core main body so as to bypass the sub-core.
前記副コア部が前記第一端子アレーの形成領域と同等もしくは大面積にて形成されている請求項1ないし請求項12のいずれか1項に記載の配線基板。 The wiring board according to any one of claims 1 to 12, wherein the sub-core portion is formed in a size equal to or larger than a formation region of the first terminal array. 前記副コア部はセラミックからなるセラミック副コア部とされている請求項1ないし請求項13のいずれか1項に記載の配線基板。 The wiring board according to claim 1, wherein the sub-core portion is a ceramic sub-core portion made of ceramic. 前記セラミック副コア部をなすセラミックがアルミナ又はガラスセラミックからなる請求項14記載の配線基板。 The wiring board according to claim 14, wherein the ceramic forming the ceramic sub-core portion is made of alumina or glass ceramic. 前記積層コンデンサは焼成積層セラミックコンデンサからなる請求項1ないし請求項15のいずれか1項に記載の配線基板。 The wiring board according to claim 1, wherein the multilayer capacitor is a fired multilayer ceramic capacitor. 前記積層コンデンサは前記セラミック副コア部の主表面上に形成された薄膜コンデンサからなる請求項1ないし請求項15のいずれか1項に記載の配線基板。 The wiring board according to claim 1, wherein the multilayer capacitor is a thin film capacitor formed on a main surface of the ceramic sub-core portion.
JP2006033072A 2005-02-09 2006-02-09 Wiring board Expired - Fee Related JP4654133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006033072A JP4654133B2 (en) 2005-02-09 2006-02-09 Wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005033559 2005-02-09
JP2006033072A JP4654133B2 (en) 2005-02-09 2006-02-09 Wiring board

Publications (2)

Publication Number Publication Date
JP2006253668A JP2006253668A (en) 2006-09-21
JP4654133B2 true JP4654133B2 (en) 2011-03-16

Family

ID=37093756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033072A Expired - Fee Related JP4654133B2 (en) 2005-02-09 2006-02-09 Wiring board

Country Status (1)

Country Link
JP (1) JP4654133B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5260067B2 (en) * 2007-02-01 2013-08-14 日本特殊陶業株式会社 Wiring board, semiconductor package
JP4975655B2 (en) * 2007-02-01 2012-07-11 日本特殊陶業株式会社 Wiring board, semiconductor package
JP2009027044A (en) * 2007-07-20 2009-02-05 Taiyo Yuden Co Ltd Multi-layer capacitor and wiring board with built-in capacitor
JP5112005B2 (en) * 2007-10-25 2013-01-09 日本特殊陶業株式会社 Wiring board with built-in plate-shaped component and manufacturing method thereof
WO2011034555A1 (en) * 2009-09-15 2011-03-24 R&D Circuits Inc. Embedded components in interposer board for improving power gain (distribution) and power loss (dissipation) in interconnect configuration
JP5536682B2 (en) * 2011-01-18 2014-07-02 日本特殊陶業株式会社 Component built-in wiring board
JP2015149356A (en) * 2014-02-05 2015-08-20 三菱電機株式会社 Multilayer circuit board
TWI578416B (en) * 2015-09-18 2017-04-11 Subtron Technology Co Ltd Package carrier and manufacturing method thereof
US10651020B2 (en) * 2016-09-27 2020-05-12 Perkinelmer Health Sciences Canada, Inc. Capacitors and radio frequency generators and other devices using them

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019572A (en) * 2003-06-24 2005-01-20 Ngk Spark Plug Co Ltd Intermediate substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019572A (en) * 2003-06-24 2005-01-20 Ngk Spark Plug Co Ltd Intermediate substrate

Also Published As

Publication number Publication date
JP2006253668A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
KR101160363B1 (en) Wiring board and capacitor to be built into wiring board
JP2005039243A (en) Intermediate substrate
US6979890B2 (en) Intermediate substrate
JP4654133B2 (en) Wiring board
US9917045B2 (en) Methods and apparatus for providing an interposer for interconnecting semiconductor chips
JP2005039217A (en) Intermediate substrate
JP2006253669A (en) Wiring board
US8487439B2 (en) Laminated and sintered ceramic circuit board, and semiconductor package including the circuit board
JP4965237B2 (en) Wiring board built-in capacitor and wiring board
JP4746422B2 (en) Capacitor manufacturing method and capacitor
JP4160863B2 (en) Intermediate board
JP4746423B2 (en) Wiring board built-in capacitor manufacturing method and wiring board built-in capacitor
JP4549029B2 (en) Glass ceramic composition, glass ceramic sintered body, method for producing glass ceramic sintered body, and wiring board
CN100521168C (en) Intermediate substrate
JP5897944B2 (en) Laminated sintered ceramic interposer and semiconductor package including the laminated sintered ceramic interposer
JP2001143527A (en) Conductive paste and ceramic wiring substrate using the same
JP2005243842A (en) Method of manufacturing capacitor
JP2005191307A (en) Wiring board
TWI283876B (en) Middle substrate
JP2005191299A (en) Wiring board
JPH06283867A (en) Multilayer printed circuit board
JP2006066737A (en) Intermediate substrate
JP2013033935A (en) Laminated sintered ceramic wiring substrate and semiconductor package including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4654133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees