JP4653877B2 - Method and composition for immobilizing photocatalyst - Google Patents

Method and composition for immobilizing photocatalyst Download PDF

Info

Publication number
JP4653877B2
JP4653877B2 JP2000249103A JP2000249103A JP4653877B2 JP 4653877 B2 JP4653877 B2 JP 4653877B2 JP 2000249103 A JP2000249103 A JP 2000249103A JP 2000249103 A JP2000249103 A JP 2000249103A JP 4653877 B2 JP4653877 B2 JP 4653877B2
Authority
JP
Japan
Prior art keywords
photocatalyst
film
organopolysiloxane
coating
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000249103A
Other languages
Japanese (ja)
Other versions
JP2002060689A (en
Inventor
祖依 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Yamamura Glass Co Ltd
Original Assignee
Nihon Yamamura Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co Ltd filed Critical Nihon Yamamura Glass Co Ltd
Priority to JP2000249103A priority Critical patent/JP4653877B2/en
Priority to PCT/JP2001/004914 priority patent/WO2002016486A1/en
Publication of JP2002060689A publication Critical patent/JP2002060689A/en
Application granted granted Critical
Publication of JP4653877B2 publication Critical patent/JP4653877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/395Thickness of the active catalytic layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/054Forming anti-misting or drip-proofing coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Description

【0001】
【技術分野】
本発明は、脱臭、空気浄化、表面親水化を含む防汚、抗菌等の目的で物体表面に光触媒を固定する方法、特にオルガノポリシロキサンの独立膜および基材表面に形成されたオルガノポリシロキサン塗膜上に光触媒を固定する方法に関する。本発明はそのような光触媒の固定方法に使用するためのコーティング組成物にも関する。
【0002】
【背景技術および課題】
酸化チタンに代表される光触媒は、酸素と水の存在下近紫外光の照射により活性酸素種を生成し、物質を酸化することが知られている。この現象を利用して、光触媒は空気中の悪臭物質や汚染物質の除去、物体表面へ防汚性、セルフクリーニング性、抗菌性などを付与するために用いられる。
【0003】
光触媒は一般に粉体であるから、前記目的に使用するためには固体のマトリックスないしバインダーを用いて固定しなければならない。光触媒特に酸化チタンの光酸化作用は強力であるため、有機物をマトリックスないしバインダーとして用いるとそれ自体が光酸化作用によって分解されて了い、長期間に亘って光触媒を固定することができない。そのためマトリックスないしバインダーの材質としては、セメント、シリカなどの無機物、あるいはフッ素樹脂やシリコーン樹脂などの光酸化作用によって分解され難い材料しか実用に耐えられない。
【0004】
光触媒の固定化においては、光触媒粒子の強固な保持と、保持するマトリックスないしバインダーが光触媒作用によって劣化しないことが重要であるが、マトリックスないしバインダーによって固定する方法は固定化した光触媒の有効比表面積を減らし、本来の光触媒機能を低下させる欠点がある。
【0005】
このため特開平5−253544号においては、例えばタイル表面に釉薬を施し、その表面に酸化チタンゾルを吹き付けた後高温で焼成することによって多くの光触媒粒子を露出させた状態で固定する方法を開示している。しかしながらこの方法は基材が300〜850℃のような高温に耐えられるものに限られる。
【0006】
特開平11−323194号においては、例えばPETフィルムなどの基材表面にアクリル変性シリコーンを接着層として塗布し、該接着層の上にバインダーとしてシリカゾルなどを含むアルコールなどの有機溶媒に光触媒を分散させたコーティング液を塗布することよりなる親水性の光触媒性表面を備えた複合材の製造方法が開示されている。この方法でもシリカまたはシリコーンはバインダーとしてのみならず、親水性表面を提供するためにも必要であり、表面に多くの光触媒を固定化することが可能にしてもやはり有効比表面積が低下することを免れない。また接着剤層および光触媒コーティング層の硬化に加熱を必要とする。このような加熱は大型物体や地上に固定されている構造物には適用できない。
【0007】
そこで常温で光触媒の多くを露出状態で固定化できる方法の開発が望まれる。
【0008】
【課題の解決方法】
本発明は、光触媒粒子の支持部材としてオルガノポリシロキサン膜を使用する。この膜はゾル−ゲル法によりあらかじめつくった独立膜でもよいし、またはゾル−ゲル法によって基材表面に形成した塗膜でもよい。
【0009】
本発明によれば、特定の有機溶媒を含む分散媒に分散した光触媒を含むコーティング液をオルガノポリシロキサン膜の表面に塗布する。ここで用いる有機溶媒は膜のオルガノポリシロキサンを膨潤により軟化させるものでなければならない。光触媒としては、例えばアナタース型酸化チタンをコロイド状態まで解膠して得られる水性ゾル、または溶媒置換によるオルガノゾルを用いることができる。コーティング液は実質的にバインダーを含まないことが好ましい。ここで「実質的に含まない」とは、本発明のコーティング組成物をそれによって膨潤軟化されない基材に塗布した時その上に光触媒を強固に保持するに足りる量のバインダーを含まないとの意味である。
【0010】
コーティング液の分散媒は前記膜を膨潤し、軟化させる有機溶媒を含んでいるので、光触媒粒子は軟化した膜表面へ容易に捕捉され、空気乾燥による溶媒の揮散により膜が再び固化するにつれ、膜表面に強固に保持される。このときコーティング液は実質的にバインダーを含まないので、光触媒の有効比表面積が大幅に低下することはない。
【0011】
オルガノポリシロキサン膜は、トリアルコキシシランを主体とするアルコキシシランの部分加水分解により得られるシリコーンオリゴマー溶液からゾル−ゲル法によって独立膜または基材上の塗膜として形成することができる。この時常温硬化型のシリコーンオリゴマー溶液の使用により、オルガノポリシロキサン膜の形成を含めて本発明のすべての工程を常温で実施することも可能である。
【0012】
このため本発明方法は、加熱により変形、変質するプラスチックや木材、紙などにも適用可能であり、さらに加熱が不可能な大型の物体や地上に固定された構造物にも適用可能である。
【0013】
またオルガノポリシロキサンは一般に透明である上、光触媒作用によって表面が親水化されるので、鏡、レンズ、窓ガラスなどの防曇にも本発明を適用することができる。
【0014】
【発明実施形態の詳論】
本発明の光触媒の固定方法においては、分散媒中にオルガノポリシロキサンを膨潤軟化させる有機溶媒を含有する光触媒分散液を、オルガノポリシロキサン膜に塗布して該膜表面層を軟化させ、溶媒の揮散による該膜表面層の固化に伴い光触媒を固定する。光触媒分散液の塗布は、オルガノポリシロキサン膜の指触乾燥から完全硬化前の任意の時期とすることができる。
【0015】
用いられる光触媒としては、TiO2、ZnO 、SnO2、SrTiO3、WO3 等を挙げることができる。その中で、光触媒能及び化学的耐久性を考慮すると、アナタース型酸化チタンが最も好ましい。また、これらの光触媒を所望により2種以上混合して用いてもよい。
【0016】
本発明の光触媒コーティング組成物は、微粒子、ゾル或いは金属アルコキシドを用いて調製することができる。チタニア粉末としては、石原産業(株)からのST−01、ST−11、ST−21またはST−31の銘柄で、またテイカ(株)からのAMT −100 、AMT −600 及びTITANIX JA-1の銘柄で市場に提供されている。チタニアゾルとしては、例えば、テイカ(株)のTKS −201 、TKS −202 、TKS−203 及びTKS-251 の銘柄のゾルを用いることができる。これらに対応する他社のチタニア粉末及びゾルも使用することができる。
【0017】
オルガノポリシロキサン膜の表面層を膨潤により軟化させる、本発明の光触媒コーティング組成物に用いられる有機溶媒としては、オルガノポリシロキサン膜との親和性が高く、膜を軟化させる能力がある沸点が200℃以下、好ましくは170℃以下の揮発性含酸素溶媒を用いることができる。これらの含酸素溶媒としては、アルコール類、ケトン類やカルボン酸エステル類が特に好ましい。アルコール類としては、例えば、メタノール、エタノール、1−プロパノール、イソプロピルアルコール、1−ブタノール、2-ブタノール,イソブチルアルコール、tert−ブチルアルコールなどを挙げることができる。また、2 −メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノールなどのエーテル基を有するアルコールも使用することができる。ケトン類としては、アセトン、メチルエチルケトン、2−ペンタノン、3−ペンタノン、2−ヘキサノン、メチルイソブチルケトンなどを挙げることができる。カルボン酸エステル類としては、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチルなどを挙げることができる。これらの化合物を2 種類以上の混合物として使用することもできる。更に、軟化効果を発揮させるため、沸点が100 ℃以上の成分を少なくとも1種類含むことがより好ましい。これらの成分は、オルガノポリシロキサン膜の成分、硬化の程度(架橋密度)等に応じ適宜選択することができる。オルガノポリシロキサン膜の硬化が進んでいる場合には、比較的高沸点のアルコール類やケトン類を多く配合することが好ましい。また、カルボン酸エステル類は、光触媒コーティング組成物と膜の濡れ性を改善するため、配合することが好ましい。
【0018】
また、上記のオルガノポリシロキサン膜の表面層を軟化させる揮発性有機溶媒の内、2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール等は、水と本発明の光触媒コーティング組成物との相溶性を高めるための相溶化剤としての作用も有する。これにより、光触媒微粒子の固定時に有機溶媒等が揮発する際、水が凝縮しても局所的に不混和部分を形成するのを防止できる。
【0019】
さらに、本発明の光触媒コーティング組成物の溶媒(分散媒)は、外部からの水の混入を妨げるために、トルエン、キシレン等の芳香族炭化水素を含有させることが好ましい。
【0020】
これらの有機溶媒を含有する光触媒コーティング組成物をオルガノポリシロキサン膜上に塗布することにより、表面層の光触媒の含有量が高く、しかも光触媒の露出度が大きい光触媒層を、基材上に形成したオルガノポリシロキサン塗膜又はオルガノポリシロキサン独立膜表面層に形成することができる。
【0021】
光触媒コーティング組成物中の固形分の内、光触媒が80重量%以上であることが好ましい。例えばアナタース型酸化チタンゾルの場合、このことは固形分から無定型酸化チタンや分散剤等の光触媒機能を有しない成分を除いた残りが80重量%以上であることを意味する。固形分中の光触媒以外の成分が多いと、表面層の光触媒の含有量が低下すると共に露出度が低下し、光触媒能が弱くなるおそれがある。光触媒の特性をより一層発揮させるためには、固形分の内、光触媒が90重量%以上であることがより好ましく、95重量%以上であることが一層好ましい。
【0022】
上述の固定メカニズムから、本発明の光触媒コーティング組成物には、シリカ、シリコーン、アルミナ等のバインダー成分を添加する必要はないが、所望により光触媒の露出を妨げない程度に添加することも可能である。
【0023】
コーティング組成物中の光触媒の含有量は5重量%以下であることが好ましい。光触媒の含有量があまり高いと、スプレー時に凝集が起こるおそれがある。また、光触媒層の膜厚が厚くなり、干渉縞が現われ美観を損なうおそれがある。光触媒の含有量は0.05重量%以上2重量%以下であることがより好ましい。なお、光触媒コーティング組成物の塗布方法としては、上記スプレー法以外に、刷毛塗り、ローラー等の各種塗布方法を選択することができる。
【0024】
更に、本発明の光触媒コーティング組成物の光触媒は、表面がキレート化剤で修飾されていることが好ましい。光触媒の表面をキレート化剤で修飾することにより光触媒が疎水性になるため、光触媒層形成の際、水分による光触媒の凝集が起らず均一な光触媒層が得られる。光触媒の表面をキレート化剤で修飾する方法は、予め修飾した光触媒を用いてもよいし、コーティング組成物の調製時にキレート化剤を添加し、光触媒の表面を修飾することもできる。使用されるキレート化剤は、Ti、Zn、Sn、Sr、W などの光触媒のカチオン成分との錯体生成定数の大きいものが好ましく、またコーティング組成物調製時に表面修飾を行う場合は、光触媒の分散媒に溶解することが必要であり、β−ジケトン類、β−ケトエステル類等を好適に用いることができる。具体的には、アセチルアセトン、アセト酢酸エチル、マロン酸ジエチル等を挙げることができる。成膜後、キレート化剤は光触媒の作用により酸化分解される。
【0025】
光触媒を固定するオルガノポリシロキサン膜としては、基材上に被覆された塗膜又は独立膜が用いられる。オルガノポリシロキサンのケイ素原子に直結した炭化水素基は耐酸化性を持つだけではなく、酸化されても体積収縮が小さいという特徴がある。オルガノポリシロキサン膜の成分について、特に制限はないが、光触媒に対する接着力と耐酸化性の観点から、主成分として、平均構造単位R n SiO2-n/2(n=0.8〜1.2 、R :炭化水素)であることがことが好ましい。n>1.2 では、有機成分の含有量が多くなり、光触媒による劣化が速くなるおそれがある。また、三次元網目構造を形成し難くなり、膜の機械的性質が低下するおそれもある。n<0.8 の場合では、膜の乾燥段階で応力が緩和し難く成膜特性が悪化するおそれがある。炭化水素基Rとしては、メチル基、エチル基、n-プロピル基、イソプロピル基、ビニル基、フェニル基の少なくとも1種とすることができ、全て同一でも異なっていてもよい。また、オルガノポリシロキサン膜には、未反応のヒドロキシル基、アルコキシ基や硬化剤成分が存在してもよい。更に、上述した軟化特性に影響が少ないフィラー微粒子や、コロイド成分が存在してもよい。光触媒を長時間脱落することなく保持するために、ケイ素原子に直結する炭化水素基は酸化後の重量減が最も小さいメチル基であることが好ましい。なお、平均構造単位とは、オルガノポリシロキサンのSi1原子について平均した構造単位である。
【0026】
基材の被覆層であるオルガノポリシロキサン塗膜は、アルコキシシランを加水分解、縮重合して得たシリコーンオリゴマー溶液を基材に塗布し熱処理することにより、あるいは、上記オリゴマー溶液に硬化剤を混合したコーティング液を基材に塗布、乾燥、硬化して製造することができる。また、独立膜の形態であるオルガノポリシロキサン膜は、膜と親和性の低い基材を用いてドクターブレード法等で成形し、硬化後剥離して製造することができる。
【0027】
シリコーンオリゴマー溶液の製造に用いるアルコキシシランは、例えば、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)などのテトラアルコキシシラン、メチルトリメトキシシラン(MTMS)、メチルトリエトキシシラン(MTES)、エチルトリメトキシシラン(ETMS)、フェニルトリエトキシシラン(PhTES)、ビニルトリエトキシシラン(VTES)、n−プロピルトリメトキシシラン(n−PrTMS)、イソプロピルトリメトキシシラン( iso− PrTMS)などのトリアルコキシシラン、ジメチルジエトキシシラン(DMDE)、ジフェニルジメトキシシラン(DPhDM)、メチルエチルジメトキシシラン(MEDM)などのジアルコキシシラン、トリメチルメトキシシラン(TMMS)などのモノアルコキシシランなどから選ぶことができる。
【0028】
シリコーンオリゴマー溶液の製造においては、水とアルコキシシランをH2 O/Siが1.4〜4.0(モル比)となるように混合して、加水分解、縮重合反応を行うことが好ましく、H2 O/Siが1.5〜2.5(モル比)となるように混合して、加水分解、縮重合反応を行うことがより好ましい。H2 O/Siが1. 4(モル比)未満であると、シリコーンオリゴマー溶液の製造において未反応のアルコキシ基が多く残り、オリゴマーの高分子化率が低くなり、膜の機械的性質に悪影響を及ぼすおそれがある。H2 O/Siが4.0(モル比)を超えると、シリコーンオリゴマー溶液の安定性が低下するおそれがある。また、基材上に塗膜を形成する場合には、スプレー時に結露しやすく、成膜時に均一な塗膜を形成することが困難となるおそれもある。H2 O/Siを1.4〜4.0(モル比)とすることにより、アルコキシ基の一部が残存して、シリコーンオリゴマーを含有する溶液の安定性を向上させる効果をもたらす。
【0029】
シリコーンオリゴマー溶液の製造に際して、加水分解の触媒として、金属キレート化合物又は酸を用いることができる。金属キレート化合物は、アルコキシシランの加水分解に触媒効果を果たすのみならず、原料に多量のメチルトリアルコキシシランを用いる場合には、結晶の析出をも抑制する。また、金属キレート化合物は、加水分解触媒としての作用の他にシラノールの脱プロトン化を促進し、縮重合反応をより線状に進行させる作用も有するので、得られるシリコーンオリゴマー溶液はゲル化時間が長く、液の長期保存安定性に優れ、塗膜形成の場合には有利にはたらく。酸触媒を添加する場合には、金属キレート化合物を併用することが好ましい。使用する金属キレート化合物としては、1,3−ジオキソプロピレン鎖を有するβ−ジケトン類又は大環状ポリエーテルを配位子とする金属キレート化合物を好適に使用することができる。また、金属イオン種として、配位子との錯体生成定数の大きいイオンを好適に使用することができる。
【0030】
このような金属キレート化合物としては、例えば、トリス(アセチルアセトナト)アルミニウム(III)、トリス(エチルアセトアセタト)アルミニウム(III)、トリス(ジエチルマロナト)アルミニウム(III)、ビス(アセチルアセトナト)銅(II) 、テトラキス(アセチルアセトナト)ジルコニウム(IV)、トリス(アセチルアセトナト)クロム(III)、トリス(アセチルアセトナト)コバルト(III)、酸化チタン(II)アセチルアセトネート[(CH3 COCHCOCH3 2 TiO]などのβ−ジケトン類金属キレート、希土類金属のβ−ジケトン類金属キレート、18−クラウン−6−カリウムキレート化合物塩、12−クラウン−4−リチウムキレート化合物塩、15−クラウン−5−ナトリウムキレート化合物塩などの大環状ポリエーテル化合物金属キレートなどを挙げることができる。
【0031】
金属キレート化合物触媒の添加量は、触媒効果に応じて選定することができるが、通常はアルコキシシランに対して0.001〜5モル%であることが好ましく、0.005〜1モル%であることがより好ましい。金属キレート化合物触媒の添加量があまり少ないと、当然のことながら加水分解の触媒効果が十分に発現しない。金属キレート化合物触媒の添加量があまり過剰であると、膜形成時に金属キレート化合物が析出し、膜の性質に悪影響を及ぼすおそれがある。
【0032】
オルガノポリシロキサン膜の硬化剤としては、チタン、ジルコニウム、アルミニウム等の金属アルコキシドの部分キレート化合物、有機錫化合物、アミン系シランカップリング剤、カルボン酸のアンモニウム塩等が使用できる。
【0033】
この種のシリコーン系コーティング剤は各種市販されているが、例えば、日本山村硝子製のUTC無機コーティング剤を用いれば、室温から200℃でオルガノポリシロキサン塗膜を形成させることができる。
【0034】
基材上にオルガノポリシロキサン塗膜を形成する際の液の塗布方法は、被塗物の形状、シリコーンオリゴマー溶液の粘度などに応じて、任意の公知の方法を選択することができる。例えば、スプレー法、浸漬法、フロー法、ロール法などの各種方法を選択することができる。塗膜の厚さは任意であるが、通常は1〜50μmであることが好ましい。金属、ガラス、セラミック、コンクリートなどの無機基材や、アクリル樹脂、ABS樹脂、木材、紙などの有機基材にオルガノポリシロキサン塗膜を形成し、基材の表面を保護すると共に、光触媒と基材との中間の光触媒の支持層として役立たせる。基材によっては、シリコーンオリゴマーの塗布前に、例えば防錆やオルガノポリシロキサン塗膜の密着性を改善する目的等でプライマーを施すこともできる。
【0035】
独立膜を形成する場合には、上記と同様のシリコーンオリゴマー溶液を好ましくは濃縮した後、オルガノポリシロキサン膜に含まれるシラノール基と非結合性の有機基材、あるいは該有機材料で表面を被覆した各種基材上に展開し乾燥する。その後膜の強度が発現する段階で基材から剥離し、独立膜を得る。さらに必要により熱処理によって硬化させる。熱処理温度は200℃程度までとすることが好ましい。この方法によって、厚さ数十〜数百μmの独立膜を得ることができる。
【0036】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
【0037】
製造例1(光触媒コーティング剤の製造)
50重量部の水性アナタースゾル(テイカ(株)製 TKS-201)に10重量部のアセト酢酸エチルを混合し、光触媒調整液を得た。別に、60重量部の酢酸エチル、10重量部のトルエン、20重量部のエタノール及び10重量部の2−ブトキシエタノールを混合し、この混合液に、5重量部の光触媒調整液を添加、混合して、光触媒コーティング剤A-1 を得た。
【0038】
製造例2(光触媒コーティング剤の製造)
60重量部の酢酸エチル、10重量部のトルエン、10重量部のイソプロピルアルコール及び20重量部のtert−ブチルアルコールを混合した。この混合液に、1重量部のアセチルアセトンと5重量部のオルガノアナタースゾル(テイカ(株)製 TKS-251)を添加、混合して、光触媒コーティング剤A-2 を得た。
【0039】
製造例3(光触媒コーティング剤の製造)
60重量部の酢酸n−プロピル、10重量部のイソプロピルアルコール、10重量部のアセトン及び20重量部の2-エトキシエタノールを混合した。この混合液に、1重量部のアセチルアセトンと10重量部のオルガノアナタースゾル(テイカ(株)製 TKS-251)を添加、混合し、光触媒コーティング剤A-3 を得た。
【0040】
製造例4(シリコーンオリゴマーの製造)
178 重量部のメチルトリエトキシシラン(信越化学工業(株)、LS−1890)と45重量部のエタノールとの混合液に、0.1重量部のトリス(アセチルアセトナト)アルミニウム(III)((株)同仁化学研究所)を添加した。この液を室温で30分間攪拌し、トリス(アセチルアセトナト)アルミニウム(III)を溶解した後、32重量部の蒸留水を攪拌しながら1 時間で添加した。2 日間室温で静置し、透明なシリコーンオリゴマー溶液B-1を得た。
【0041】
製造例5(硬化剤の製造)
100 重量部のイソプロピルアルコールに20重量部のチタニウムテトラ‐n−ブトキシドを添加した後、7 重量部のアセチルアセトンを反応させた。1 日間室温で静置した後、硬化剤C- 1を得た。
【0042】
実施例1
100 重量部のシリコーンオリゴマー溶液B-1に硬化促進剤として0.5 重量部の酢酸アンモニウムを添加、攪拌し、透明なコーティング液を得た。2 時間室温で静置した後、厚さ40×70mmのサイズのガラス基板(厚さ2mm)の片面にこのコーティング液をスプレーし、オルガノポリシロキサンの塗膜を得た。得られた塗膜を2日間自然曝露(20 〜30℃)した後、塗膜上に光触媒コーティング剤A-1を刷毛で塗布した。更に、10日間自然曝露し、光触媒層の評価サンプルを得た。
【0043】
次に、得られたサンプルの脱臭特性と表面性状を調べた。まず、4 Lのパイレックス製容器を2 個用意し、上記のサンプルを各1 枚容器に入れ密閉した。これに5 μlのアセトアルデヒドをマイクロシリンジで注入し、容器中の気相のアセトアルデヒド濃度をアセトアルデヒドガス検知管(ガステック製)で測定したところ450ppmであった。1 つの容器を暗所に24時間放置してアセトアルデヒドの濃度を測定したところ、ほとんど変化しなかった。一方、365nmの紫外線(4.5mW/cm2 )を照射した容器の方では、24時間で20ppmまで減少した。また、このサンプルの光触媒層形成面に水滴を滴下したところ、水滴が広がり、親水性であった。さらに、JIS K 5400 8.5.2碁盤目テープ法で、光触媒層の密着性を評価したところ、10点であった。
【0044】
実施例2
100 重量部のシリコーンオリゴマー溶液B-1に10重量部の硬化剤C-1を添加、攪拌し、透明なコーティング液を得た。2 時間室温で静置した後、40×70mmのサイズのガラス基板(厚さ2mm)の片面にこのコーティング液を刷毛で塗布し、オルガノポリシロキサンの塗膜を得た。得られた塗膜を2日間自然曝露(20 〜30℃)した後、塗膜上に光触媒コーティング剤A-2 をスプレー法で塗布した。更に、10日間自然曝露し、光触媒層の評価サンプルを得た。
【0045】
次に、得られたサンプルの脱臭特性と表面性状を調べた。まず、4 Lのパイレックス製容器を2 個用意し、上記のサンプルを各1 枚容器に入れ密閉した。これに5 μlのアセトアルデヒドをマイクロシリンジで注入し、容器中の気相のアセトアルデヒド濃度をアセトアルデヒドガス検知管( ガステック製) で測定したところ470ppmであった。1 つの容器を暗所に24時間放置してアセトアルデヒドの濃度を測定したところ、ほとんど変化しなかった。一方、365nm の紫外線(4.5mW/cm2) を照射した容器の方では、24時間で30ppmまで減少した。また、このサンプルの光触媒層形成面に水滴を滴下したところ、水滴が広がり、親水性であった。さらに、JIS K 5400 8.5.2碁盤目テープ法で、光触媒層の密着性を評価したところ、10点であった。
【0046】
実施例3
100 重量部のシリコーンオリゴマー溶液B-1に硬化促進剤として0.5 重量部の酢酸アンモニウムを添加、攪拌し、透明なコーティング液を得た。2 時間室温で静置した後、40×70mmのサイズのガラス基板(厚さ2mm)の片面にこのコーティング液を刷毛で塗布し、オルガノポリシロキサンの塗膜を得た。得られた塗膜を2 日間自然曝露(20 〜30℃) した後、塗膜上に光触媒コーティング剤A-3をスプレー法で塗布した。更に、10日間自然曝露し、光触媒層の評価サンプルを得た。
【0047】
次に、得られたサンプルの表面性状を調べた。サンプルの光触媒層形成面に水滴を滴下したところ、水滴が広がり、親水性であった。また、JIS K 5400 8.5.2碁盤目テープ法で、光触媒層の密着性を評価したところ、10点であった。
【0048】
実施例4
100 重量部のシリコーンオリゴマー溶液B-1から、40℃で真空エバポレーターを用いて50重量部のエタノールを留去した。得られた透明液に、10重量部の硬化剤C- 1を添加、攪拌した。15分間室温で反応させてから、シリコーンコートしたポリエステルシートの上に、ドクターブレード法で膜を形成した。60℃で乾燥してから、その表面に光触媒コーティング剤A-2 をスプレー法で塗布した。その後、膜を剥離させ、120 ℃で硬化させ、さらに5 日間自然曝露して、厚さ80μmの片面に光触媒層を有するオルガノポリシロキサン独立膜を得た。
【0049】
次に、得られた独立膜を40×70mmのサイズに切り出し、脱臭特性と表面性状を調べた。まず、4 Lのパイレックス製容器を2 個用意し、上記のサンプルを各1枚容器に入れ密閉した。これに5 μlのアセトアルデヒドをマイクロシリンジで注入し、容器中の気相のアセトアルデヒド濃度をアセトアルデヒドガス検知管( ガステック製) で測定したところ460ppmであった。1 つの容器を暗所に24時間放置してアセトアルデヒドの濃度を測定したところ、ほとんど変化しなかった。一方、365nmの紫外線(4.5mW/cm2) を照射した容器の方では、24時間で30ppmまで減少した。又、このサンプルの光触媒層形成面に水滴を滴下したところ、水滴が広がり、親水性であった。一方、光触媒層を形成していない面では、撥水性であった。
【0056】
【発明の効果】
本発明によれば、表面層の光触媒含有量が高く、しかも光触媒の露出度が大きい光触媒層を、基材上に形成したオルガノポリシロキサン塗膜又はオルガノポリシロキサン独立膜表面層に常温で形成することができる。
[0001]
【Technical field】
The present invention relates to a method of fixing a photocatalyst on the surface of an object for the purpose of deodorization, air purification, antifouling including surface hydrophilization, antibacterial and the like, particularly an organopolysiloxane independent film and an organopolysiloxane coating formed on a substrate surface. The present invention relates to a method for fixing a photocatalyst on a film. The present invention also relates to a coating composition for use in such a photocatalyst fixing method.
[0002]
[Background technology and issues]
A photocatalyst typified by titanium oxide is known to generate active oxygen species upon irradiation with near ultraviolet light in the presence of oxygen and water to oxidize the substance. Utilizing this phenomenon, the photocatalyst is used to remove malodorous substances and contaminants in the air, and to impart antifouling property, self-cleaning property, antibacterial property and the like to the object surface.
[0003]
Since the photocatalyst is generally a powder, it must be fixed using a solid matrix or binder in order to be used for the above purpose. Since the photooxidation action of photocatalyst, particularly titanium oxide, is strong, when an organic substance is used as a matrix or binder, the photocatalyst itself cannot be fixed for a long time because it is decomposed by the photooxidation action itself. For this reason, as the material of the matrix or binder, only inorganic materials such as cement and silica, or materials that are difficult to be decomposed by the photo-oxidation action such as fluororesin and silicone resin can withstand practical use.
[0004]
In immobilizing the photocatalyst, it is important that the photocatalyst particles are firmly held and that the matrix or binder to be retained is not deteriorated by the photocatalytic action. There is a drawback of reducing the original photocatalytic function.
[0005]
For this reason, JP-A-5-253544 discloses a method of fixing many photocatalyst particles in an exposed state by, for example, applying a glaze to the tile surface, spraying a titanium oxide sol on the surface and then baking at a high temperature. ing. However, this method is limited to a substrate that can withstand high temperatures such as 300 to 850 ° C.
[0006]
In JP-A-11-323194, for example, acrylic modified silicone is applied as an adhesive layer on the surface of a substrate such as a PET film, and a photocatalyst is dispersed in an organic solvent such as alcohol containing silica sol as a binder on the adhesive layer. A method for producing a composite material having a hydrophilic photocatalytic surface comprising applying a coating liquid is disclosed. Even in this method, silica or silicone is necessary not only as a binder but also to provide a hydrophilic surface, and even if it is possible to immobilize many photocatalysts on the surface, the effective specific surface area is still lowered. I can't escape. Further, heating is required for curing the adhesive layer and the photocatalyst coating layer. Such heating cannot be applied to large objects or structures fixed on the ground.
[0007]
Therefore, it is desired to develop a method capable of fixing most of the photocatalyst in an exposed state at room temperature.
[0008]
[Solutions to the problem]
In the present invention, an organopolysiloxane film is used as a support member for the photocatalyst particles. This film may be an independent film prepared in advance by a sol-gel method, or may be a coating film formed on the substrate surface by a sol-gel method.
[0009]
According to the present invention, a coating liquid containing a photocatalyst dispersed in a dispersion medium containing a specific organic solvent is applied to the surface of the organopolysiloxane film. The organic solvent used here must soften the organopolysiloxane of the film by swelling. As the photocatalyst, for example, an aqueous sol obtained by peptizing anatase-type titanium oxide to a colloidal state, or an organosol by solvent substitution can be used. It is preferable that the coating liquid contains substantially no binder. Here, “substantially free” means that when the coating composition of the present invention is applied to a substrate that is not swollen and softened, it does not contain an amount of binder sufficient to firmly hold the photocatalyst thereon. It is.
[0010]
Since the dispersion medium of the coating liquid contains an organic solvent that swells and softens the film, the photocatalyst particles are easily trapped on the softened film surface, and the film is solidified again by evaporation of the solvent by air drying. It is firmly held on the surface. At this time, since the coating liquid does not substantially contain a binder, the effective specific surface area of the photocatalyst is not significantly reduced.
[0011]
The organopolysiloxane film can be formed as a stand-alone film or a coating film on a substrate by a sol-gel method from a silicone oligomer solution obtained by partial hydrolysis of alkoxysilane mainly composed of trialkoxysilane. At this time, it is possible to carry out all the steps of the present invention including the formation of the organopolysiloxane film at room temperature by using a room temperature curing type silicone oligomer solution.
[0012]
Therefore, the method of the present invention can be applied to plastics, wood, paper, and the like that are deformed and altered by heating, and can also be applied to large objects that cannot be heated or structures fixed on the ground.
[0013]
Organopolysiloxane is generally transparent and has a hydrophilic surface by photocatalytic action. Therefore, the present invention can be applied to anti-fogging of mirrors, lenses, window glass and the like.
[0014]
Detailed Description of Embodiments of the Invention
In the photocatalyst fixing method of the present invention, a photocatalyst dispersion containing an organic solvent that swells and softens the organopolysiloxane in the dispersion medium is applied to the organopolysiloxane film to soften the film surface layer, and the solvent is volatilized. The photocatalyst is fixed along with the solidification of the surface layer of the film. Application of the photocatalyst dispersion liquid can be performed at any time before dry-drying of the organopolysiloxane film to the touch.
[0015]
As the photocatalyst used, TiO 2 , ZnO, SnO 2 , SrTiO Three , WO Three Etc. Among them, anatase type titanium oxide is most preferable in consideration of photocatalytic ability and chemical durability. Further, two or more kinds of these photocatalysts may be mixed and used as desired.
[0016]
The photocatalytic coating composition of the present invention can be prepared using fine particles, sol or metal alkoxide. As titania powder, ST-01, ST-11, ST-21 or ST-31 from Ishihara Sangyo Co., Ltd., and AMT-100, AMT-600 and TITANIX JA-1 from Teika Co., Ltd. Are offered to the market. As the titania sol, for example, TKS-201, TKS-202, TKS-203 and TKS-251 brand sols from Teika Co., Ltd. can be used. Other titania powders and sols corresponding to these can also be used.
[0017]
The organic solvent used in the photocatalyst coating composition of the present invention, which softens the surface layer of the organopolysiloxane film by swelling, has a high affinity with the organopolysiloxane film and a boiling point of 200 ° C. capable of softening the film. Hereinafter, a volatile oxygen-containing solvent having a temperature of preferably 170 ° C. or lower can be used. As these oxygen-containing solvents, alcohols, ketones and carboxylic acid esters are particularly preferable. Examples of alcohols include methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, and tert-butyl alcohol. Also, alcohols having ether groups such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol can be used. Examples of ketones include acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, and methyl isobutyl ketone. Examples of carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, and butyl acetate. These compounds can also be used as a mixture of two or more. Furthermore, it is more preferable to include at least one component having a boiling point of 100 ° C. or higher in order to exert a softening effect. These components can be appropriately selected according to the components of the organopolysiloxane film, the degree of curing (crosslinking density), and the like. In the case where the curing of the organopolysiloxane film is proceeding, it is preferable to add a large amount of relatively high boiling alcohols and ketones. In addition, the carboxylic acid esters are preferably blended in order to improve the wettability between the photocatalyst coating composition and the film.
[0018]
Of the volatile organic solvents that soften the surface layer of the organopolysiloxane film, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, and the like are phases of water and the photocatalytic coating composition of the present invention. It also has an action as a compatibilizing agent for enhancing solubility. Thereby, when an organic solvent volatilizes at the time of fixation of photocatalyst fine particles, even if water condenses, it can prevent forming an immiscible part locally.
[0019]
Furthermore, the solvent (dispersion medium) of the photocatalyst coating composition of the present invention preferably contains an aromatic hydrocarbon such as toluene and xylene in order to prevent external water from mixing.
[0020]
By applying a photocatalyst coating composition containing these organic solvents on the organopolysiloxane film, a photocatalyst layer having a high photocatalyst content in the surface layer and a high degree of photocatalyst exposure was formed on the substrate. An organopolysiloxane coating film or an organopolysiloxane independent film surface layer can be formed.
[0021]
Of the solid content in the photocatalyst coating composition, the photocatalyst is preferably 80% by weight or more. For example, in the case of anatase-type titanium oxide sol, this means that the remainder obtained by removing a component having no photocatalytic function such as amorphous titanium oxide or a dispersant from the solid content is 80% by weight or more. If there are many components other than the photocatalyst in the solid content, the content of the photocatalyst in the surface layer is lowered and the degree of exposure is lowered, which may weaken the photocatalytic ability. In order to further exhibit the characteristics of the photocatalyst, the photocatalyst in the solid content is more preferably 90% by weight or more, and more preferably 95% by weight or more.
[0022]
From the above-described fixing mechanism, it is not necessary to add a binder component such as silica, silicone, or alumina to the photocatalyst coating composition of the present invention, but it is also possible to add it to the extent that it does not hinder the exposure of the photocatalyst if desired. .
[0023]
The content of the photocatalyst in the coating composition is preferably 5% by weight or less. If the photocatalyst content is too high, aggregation may occur during spraying. Moreover, the film thickness of the photocatalyst layer becomes thick, and interference fringes may appear, which may impair the aesthetic appearance. The content of the photocatalyst is more preferably 0.05% by weight or more and 2% by weight or less. In addition, as a coating method of a photocatalyst coating composition, various coating methods, such as brush coating and a roller, other than the said spray method can be selected.
[0024]
Furthermore, the surface of the photocatalyst of the photocatalyst coating composition of the present invention is preferably modified with a chelating agent. Since the photocatalyst becomes hydrophobic by modifying the surface of the photocatalyst with a chelating agent, the photocatalyst layer is not aggregated by moisture during formation of the photocatalyst layer, and a uniform photocatalyst layer is obtained. As a method for modifying the surface of the photocatalyst with a chelating agent, a photocatalyst modified in advance may be used, or the chelating agent may be added during preparation of the coating composition to modify the surface of the photocatalyst. The chelating agent used is preferably one having a large complex formation constant with the cationic component of the photocatalyst such as Ti, Zn, Sn, Sr, W, etc. It is necessary to dissolve in a medium, and β-diketones, β-ketoesters and the like can be suitably used. Specific examples include acetylacetone, ethyl acetoacetate, and diethyl malonate. After film formation, the chelating agent is oxidatively decomposed by the action of the photocatalyst.
[0025]
As the organopolysiloxane film for fixing the photocatalyst, a coating film or an independent film coated on a substrate is used. The hydrocarbon group directly bonded to the silicon atom of the organopolysiloxane is not only resistant to oxidation but also has a feature of small volume shrinkage even when oxidized. There are no particular restrictions on the components of the organopolysiloxane film, but from the viewpoint of adhesion to photocatalysts and oxidation resistance, the average structural unit R is the main component. n SiO 2-n / 2 (N = 0.8 to 1.2, R: hydrocarbon) is preferable. When n> 1.2, the content of the organic component is increased, and deterioration by the photocatalyst may be accelerated. In addition, it is difficult to form a three-dimensional network structure, and the mechanical properties of the film may be deteriorated. In the case of n <0.8, it is difficult to relieve stress in the drying stage of the film, and the film forming characteristics may be deteriorated. The hydrocarbon group R can be at least one of a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a vinyl group, and a phenyl group, and they may all be the same or different. The organopolysiloxane film may contain unreacted hydroxyl groups, alkoxy groups, and curing agent components. Furthermore, filler fine particles and colloidal components that have little influence on the softening properties described above may be present. In order to keep the photocatalyst for a long time without dropping off, it is preferable that the hydrocarbon group directly connected to the silicon atom is a methyl group having the smallest weight loss after oxidation. In addition, an average structural unit is a structural unit averaged about Si1 atom of organopolysiloxane.
[0026]
The organopolysiloxane coating film, which is the coating layer of the base material, is obtained by applying a silicone oligomer solution obtained by hydrolysis and condensation polymerization of alkoxysilane to the base material and heat-treating, or by mixing a curing agent with the oligomer solution. The coated liquid can be applied to a substrate, dried, and cured. In addition, the organopolysiloxane film in the form of an independent film can be manufactured by molding by a doctor blade method or the like using a base material having low affinity with the film, and peeling after curing.
[0027]
Examples of the alkoxysilane used for the production of the silicone oligomer solution include tetraalkoxysilanes such as tetramethoxysilane (TMOS) and tetraethoxysilane (TEOS), methyltrimethoxysilane (MTMS), methyltriethoxysilane (MTES), ethyltrisilane. Trialkoxysilanes such as methoxysilane (ETMS), phenyltriethoxysilane (PhTES), vinyltriethoxysilane (VTES), n-propyltrimethoxysilane (n-PrTMS), isopropyltrimethoxysilane (iso-PrTMS), dimethyl Dialkoxysilanes such as diethoxysilane (DMDE), diphenyldimethoxysilane (DPhDM), and methylethyldimethoxysilane (MEDM), trimethylmethoxysilane (TMMS) What monoalkoxysilanes can be selected from like.
[0028]
In the production of the silicone oligomer solution, water and alkoxysilane are mixed with H. 2 It is preferable to carry out hydrolysis and polycondensation reaction by mixing so that O / Si is 1.4 to 4.0 (molar ratio). 2 It is more preferable to carry out hydrolysis and polycondensation reaction by mixing so that O / Si is 1.5 to 2.5 (molar ratio). H 2 When O / Si is less than 1.4 (molar ratio), many unreacted alkoxy groups remain in the production of the silicone oligomer solution, the oligomer polymerization rate is lowered, and the mechanical properties of the film are adversely affected. There is a fear. H 2 When O / Si exceeds 4.0 (molar ratio), the stability of the silicone oligomer solution may decrease. Moreover, when forming a coating film on a base material, it is easy to condense at the time of spraying, and there exists a possibility that it may become difficult to form a uniform coating film at the time of film-forming. H 2 By setting O / Si to 1.4 to 4.0 (molar ratio), a part of the alkoxy group remains and brings about an effect of improving the stability of the solution containing the silicone oligomer.
[0029]
In the production of the silicone oligomer solution, a metal chelate compound or an acid can be used as a catalyst for hydrolysis. The metal chelate compound not only has a catalytic effect on the hydrolysis of the alkoxysilane, but also suppresses the precipitation of crystals when a large amount of methyltrialkoxysilane is used as a raw material. In addition to the action as a hydrolysis catalyst, the metal chelate compound also has the action of promoting deprotonation of silanol and causing the polycondensation reaction to proceed more linearly. It is long, excellent in long-term storage stability of the liquid, and is advantageous in the case of coating film formation. When an acid catalyst is added, it is preferable to use a metal chelate compound in combination. As the metal chelate compound to be used, a metal chelate compound having a β-diketone having a 1,3-dioxopropylene chain or a macrocyclic polyether as a ligand can be preferably used. Moreover, an ion with a large complex formation constant with a ligand can be suitably used as the metal ion species.
[0030]
Examples of such metal chelate compounds include tris (acetylacetonato) aluminum (III), tris (ethylacetoacetate) aluminum (III), tris (diethylmalonato) aluminum (III), and bis (acetylacetonato). ) Copper (II), Tetrakis (acetylacetonato) zirconium (IV), Tris (acetylacetonato) chromium (III), Tris (acetylacetonato) cobalt (III), Titanium oxide (II) acetylacetonate [(CH Three COCHCOCH Three ) 2 Β-diketone metal chelate such as TiO], β-diketone metal chelate of rare earth metal, 18-crown-6-potassium chelate compound salt, 12-crown-4-lithium chelate compound salt, 15-crown-5-sodium Examples thereof include macrocyclic polyether compound metal chelates such as chelate compound salts.
[0031]
The addition amount of the metal chelate compound catalyst can be selected according to the catalytic effect, but is usually preferably 0.001 to 5 mol%, and preferably 0.005 to 1 mol% with respect to the alkoxysilane. It is more preferable. If the addition amount of the metal chelate compound catalyst is too small, it is natural that the catalytic effect of hydrolysis is not sufficiently exhibited. If the amount of the metal chelate compound catalyst added is excessive, the metal chelate compound may be precipitated during film formation, which may adversely affect the properties of the film.
[0032]
As the curing agent for the organopolysiloxane film, a partial chelate compound of a metal alkoxide such as titanium, zirconium or aluminum, an organic tin compound, an amine silane coupling agent, an ammonium salt of carboxylic acid, or the like can be used.
[0033]
Various silicone coating agents of this type are commercially available. For example, when a UTC inorganic coating agent manufactured by Nippon Yamamura Glass is used, an organopolysiloxane coating film can be formed at room temperature to 200 ° C.
[0034]
Any known method can be selected as the method for applying the liquid when forming the organopolysiloxane coating film on the substrate, depending on the shape of the article to be coated, the viscosity of the silicone oligomer solution, and the like. For example, various methods such as a spray method, a dipping method, a flow method, and a roll method can be selected. Although the thickness of a coating film is arbitrary, it is preferable normally that it is 1-50 micrometers. An organopolysiloxane coating is formed on inorganic substrates such as metals, glass, ceramics, and concrete, and organic substrates such as acrylic resin, ABS resin, wood, and paper to protect the surface of the substrate. It serves as a support layer for the photocatalyst intermediate to the material. Depending on the substrate, a primer can be applied before the application of the silicone oligomer, for example, for the purpose of improving rust prevention or adhesion of the organopolysiloxane coating film.
[0035]
In the case of forming an independent film, the same silicone oligomer solution as described above is preferably concentrated, and then the surface is coated with an organic base material that is non-bonding to silanol groups contained in the organopolysiloxane film, or the organic material. Develop and dry on various substrates. Thereafter, the film is peeled off from the substrate at the stage where the strength of the film is developed to obtain an independent film. Further, it is cured by heat treatment if necessary. The heat treatment temperature is preferably up to about 200 ° C. By this method, an independent film having a thickness of several tens to several hundreds of μm can be obtained.
[0036]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[0037]
Production Example 1 (Production of photocatalytic coating agent)
10 parts by weight of ethyl acetoacetate was mixed with 50 parts by weight of an aqueous anatase sol (TKS-201 manufactured by Teika Co., Ltd.) to obtain a photocatalyst adjustment liquid. Separately, 60 parts by weight of ethyl acetate, 10 parts by weight of toluene, 20 parts by weight of ethanol and 10 parts by weight of 2-butoxyethanol were mixed, and 5 parts by weight of the photocatalyst adjustment liquid was added and mixed. As a result, a photocatalytic coating agent A-1 was obtained.
[0038]
Production Example 2 (Production of photocatalytic coating agent)
60 parts by weight of ethyl acetate, 10 parts by weight of toluene, 10 parts by weight of isopropyl alcohol and 20 parts by weight of tert-butyl alcohol were mixed. To this mixed solution, 1 part by weight of acetylacetone and 5 parts by weight of organoanater sol (TKS-251 manufactured by Teika Co., Ltd.) were added and mixed to obtain a photocatalyst coating agent A-2.
[0039]
Production Example 3 (Production of photocatalytic coating agent)
60 parts by weight of n-propyl acetate, 10 parts by weight of isopropyl alcohol, 10 parts by weight of acetone and 20 parts by weight of 2-ethoxyethanol were mixed. To this mixed solution, 1 part by weight of acetylacetone and 10 parts by weight of organoanater sol (TKS-251 manufactured by Teika Co., Ltd.) were added and mixed to obtain a photocatalyst coating agent A-3.
[0040]
Production Example 4 (Production of silicone oligomer)
In a mixture of 178 parts by weight of methyltriethoxysilane (Shin-Etsu Chemical Co., Ltd., LS-1890) and 45 parts by weight of ethanol, 0.1 part by weight of tris (acetylacetonato) aluminum (III) (Corporation) Dojindo Laboratories) was added. This solution was stirred at room temperature for 30 minutes to dissolve tris (acetylacetonato) aluminum (III), and then 32 parts by weight of distilled water was added with stirring for 1 hour. The solution was allowed to stand at room temperature for 2 days to obtain a transparent silicone oligomer solution B-1.
[0041]
Production Example 5 (Production of curing agent)
After adding 20 parts by weight of titanium tetra-n-butoxide to 100 parts by weight of isopropyl alcohol, 7 parts by weight of acetylacetone was reacted. After standing at room temperature for 1 day, a curing agent C-1 was obtained.
[0042]
Example 1
To 100 parts by weight of the silicone oligomer solution B-1, 0.5 part by weight of ammonium acetate as a curing accelerator was added and stirred to obtain a transparent coating solution. After standing at room temperature for 2 hours, this coating solution was sprayed onto one side of a glass substrate (thickness 2 mm) having a thickness of 40 × 70 mm to obtain an organopolysiloxane coating film. The obtained coating film was naturally exposed (20 to 30 ° C.) for 2 days, and then photocatalyst coating agent A-1 was applied onto the coating film with a brush. Furthermore, it exposed naturally for 10 days and obtained the evaluation sample of the photocatalyst layer.
[0043]
Next, the deodorizing characteristics and surface properties of the obtained samples were examined. First, two 4 L Pyrex containers were prepared, and each of the above samples was put into a container and sealed. 5 μl of acetaldehyde was injected into this with a microsyringe, and the acetaldehyde concentration in the gas phase in the container was measured with an acetaldehyde gas detector tube (manufactured by Gastec) and found to be 450 ppm. When one container was left in the dark for 24 hours and the concentration of acetaldehyde was measured, there was almost no change. On the other hand, 365nm UV (4.5mW / cm 2 ) Was reduced to 20 ppm in 24 hours. Moreover, when water droplets were dropped on the photocatalyst layer forming surface of this sample, the water droplets spread and were hydrophilic. Furthermore, when the adhesiveness of the photocatalyst layer was evaluated by JIS K 5400 8.5.2 grid tape method, it was 10 points.
[0044]
Example 2
10 parts by weight of the curing agent C-1 was added to 100 parts by weight of the silicone oligomer solution B-1 and stirred to obtain a transparent coating solution. After standing at room temperature for 2 hours, this coating solution was applied to one side of a 40 × 70 mm size glass substrate (thickness 2 mm) with a brush to obtain an organopolysiloxane coating film. The obtained coating film was naturally exposed (20 to 30 ° C.) for 2 days, and then photocatalyst coating agent A-2 was applied onto the coating film by a spray method. Furthermore, it exposed naturally for 10 days and obtained the evaluation sample of the photocatalyst layer.
[0045]
Next, the deodorizing characteristics and surface properties of the obtained samples were examined. First, two 4 L Pyrex containers were prepared, and each of the above samples was put into a container and sealed. 5 μl of acetaldehyde was injected into this with a microsyringe, and the concentration of gas phase acetaldehyde in the container was measured with an acetaldehyde gas detector tube (manufactured by Gastec), which was 470 ppm. When one container was left in the dark for 24 hours and the concentration of acetaldehyde was measured, there was almost no change. Meanwhile, 365nm UV (4.5mW / cm 2 In the container irradiated with), it decreased to 30 ppm in 24 hours. Moreover, when water droplets were dropped on the photocatalyst layer forming surface of this sample, the water droplets spread and were hydrophilic. Furthermore, when the adhesiveness of the photocatalyst layer was evaluated by JIS K 5400 8.5.2 grid tape method, it was 10 points.
[0046]
Example 3
To 100 parts by weight of the silicone oligomer solution B-1, 0.5 part by weight of ammonium acetate as a curing accelerator was added and stirred to obtain a transparent coating solution. After standing at room temperature for 2 hours, this coating solution was applied to one side of a 40 × 70 mm size glass substrate (thickness 2 mm) with a brush to obtain an organopolysiloxane coating film. The obtained coating film was naturally exposed (20 to 30 ° C.) for 2 days, and then the photocatalyst coating agent A-3 was applied on the coating film by a spray method. Furthermore, it exposed naturally for 10 days and obtained the evaluation sample of the photocatalyst layer.
[0047]
Next, the surface properties of the obtained samples were examined. When water droplets were dropped on the photocatalyst layer forming surface of the sample, the water droplets spread and were hydrophilic. Further, the adhesion of the photocatalyst layer was evaluated by JIS K 5400 8.5.2 cross cut tape method, and was 10 points.
[0048]
Example 4
50 parts by weight of ethanol was distilled off from 100 parts by weight of the silicone oligomer solution B-1 at 40 ° C. using a vacuum evaporator. To the obtained transparent liquid, 10 parts by weight of curing agent C-1 was added and stirred. After reacting for 15 minutes at room temperature, a film was formed on a silicone-coated polyester sheet by the doctor blade method. After drying at 60 ° C., photocatalyst coating agent A-2 was applied to the surface by a spray method. Thereafter, the film was peeled off, cured at 120 ° C., and further naturally exposed for 5 days to obtain an organopolysiloxane independent film having a photocatalyst layer on one side having a thickness of 80 μm.
[0049]
Next, the obtained independent membrane was cut into a size of 40 × 70 mm, and the deodorizing characteristics and surface properties were examined. First, two 4 L Pyrex containers were prepared, and each of the above samples was put into a container and sealed. 5 μl of acetaldehyde was injected into this with a microsyringe, and the acetaldehyde concentration in the gas phase in the container was measured with an acetaldehyde gas detector tube (manufactured by Gastec) and found to be 460 ppm. When one container was left in the dark for 24 hours and the concentration of acetaldehyde was measured, there was almost no change. On the other hand, 365nm UV (4.5mW / cm 2 In the container irradiated with), it decreased to 30 ppm in 24 hours. Further, when water droplets were dropped on the photocatalyst layer forming surface of this sample, the water droplets spread and were hydrophilic. On the other hand, the surface where the photocatalyst layer was not formed was water repellent.
[0056]
【The invention's effect】
According to the present invention, a photocatalyst layer having a high photocatalyst content in the surface layer and a high degree of photocatalyst exposure is formed on the surface of the organopolysiloxane coating film or the organopolysiloxane independent film surface layer formed on the substrate. be able to.

Claims (14)

主成分の平均構造単位がR SiO 2−n/2 (n=0.8〜1.2、R:炭化水素)であるオルガノポリシロキサン膜表面に光触媒を固定する方法であって、分散媒中にアルコール類、ケトン類、エステル類およびそれらの混合溶媒から選ばれる有機溶媒を含有し、光触媒をオルガノポリシロキサン膜表面に固定するためのバインダーを含まない光触媒分散液を前記膜表面に塗布し、該膜の少なくとも表面層を軟化させると同時に光触媒を軟化した膜表面に付着させ、次いで光触媒分散液を塗布した前記膜を乾燥することを特徴とする前記方法。 Average structural units of the main component is R n SiO 2-n / 2 (n = 0.8~1.2, R: hydrocarbon) A method for fixing the photocatalyst organopolysiloxane film surface is, the dispersion medium alcohols into ketones, coating contains an organic solvent selected from esters and a mixed solvent thereof, a binder that does not contain photocatalyst dispersion liquid for fixing the photocatalyst organopolysiloxane film surface to the membrane surface The method is characterized in that at least the surface layer of the film is softened, and at the same time, the photocatalyst is attached to the softened film surface, and then the film coated with the photocatalyst dispersion is dried. 前記分散媒はさらに芳香族炭化水素溶媒を含んでいる請求項1の方法。The dispersion medium The method of claim 1 including a Fang aromatic hydrocarbon solvent further. 前記分散液は光触媒を一時的に疎水化するためのキレート化剤を含んでいる請求項1または請求項2の方法。The method according to claim 1 or 2 , wherein the dispersion contains a chelating agent for temporarily hydrophobizing the photocatalyst. 前記分散液は、5重量%以下の光触媒を含有する請求項1ないしのいずれかの方法。The method according to any one of claims 1 to 3 , wherein the dispersion contains 5% by weight or less of a photocatalyst. 光触媒は0.05〜2重量%である請求項の方法。The method of claim 4 , wherein the photocatalyst is 0.05 to 2 wt%. 光触媒分散液を塗布した前記オルガノポリシロキサン膜は常温で乾燥される請求項1ないしのいずれかの方法。The method of any of claims 1 to 5 wherein the organopolysiloxane film coated photocatalyst dispersion liquid is dried at room temperature. 前記オルガノポリシロキサン膜は、ゾル−ゲル法によって作製された独立膜である請求項1ないしのいずれかの方法。The organopolysiloxane film, sol - The method of any of claims 1 an independent film produced by gel method 6. 前記オルガノポリシロキサン膜は、基材表面にゾル−ゲル法によって作製された塗膜である請求項1ないしのいずれかの方法。The method according to any one of claims 1 to 6 , wherein the organopolysiloxane film is a coating film formed on a substrate surface by a sol-gel method. 主成分の平均構造単位がR SiO 2−n/2 (n=0.8〜1.2、R:炭化水素)であるオルガノポリシロキサン膜上に光触媒を固定するためのコーティング組成物であって、アルコール類、ケトン類、エステル類およびそれらの混合溶媒から選ばれる有機溶媒を含む分散媒と、該分散媒中に分散した光触媒を含み、バインダーを含有しないことを特徴とする前記組成物。 Average structural units of the main component is R n SiO 2-n / 2 (n = 0.8~1.2, R: hydrocarbon) was a coating composition for fixing the photocatalyst organopolysiloxane film is Te, alcohols, ketones, esters and a dispersion medium containing an organic solvent selected from a mixed solvent thereof, comprises a photocatalyst dispersed in the dispersion medium, said composition characterized by containing no Ba Indah . 前記分散媒はさらに芳香族炭化水素溶媒を含んでいる請求項の組成物。The dispersion medium composition according to claim 9 which contains Kaoru aromatic hydrocarbon solvent further. 光触媒を一時的に疎水化するためのキレート化剤をさらに含んでいる請求項9または請求項10の組成物。 The composition according to claim 9 or 10, further comprising a chelating agent for temporarily hydrophobizing the photocatalyst. 光触媒の含有量が5重量%以下である請求項ないし11のいずれかの組成物。The composition according to any one of claims 9 to 11 , wherein the content of the photocatalyst is 5% by weight or less. 光触媒の含有量が0.05〜2重量%である請求項12の組成物。The composition according to claim 12 , wherein the content of the photocatalyst is 0.05 to 2% by weight. 基材表面に常温硬化性オルガノポリシロキサンオリゴマーの溶液を塗布する工程、
前記オリゴマー溶液塗膜の空気乾燥およびその中のオリゴマーのオルガノポリシロキサンへの縮重合を許容する工程、
前記塗膜上にその指触乾燥後、請求項ないし13のいずれかの光触媒コーティング組成物を塗布する工程、
前記光触媒コーティング組成物塗膜の空気乾燥およびオルガノポリシロキサン塗膜の完全硬化を許容する工程、
を含むことを特徴とする基材表面に光化学反応のための塗膜を形成する方法。
A step of applying a room temperature curable organopolysiloxane oligomer solution to the substrate surface;
Allowing air drying of the oligomer solution coating film and condensation polymerization of the oligomer in the oligomer solution to organopolysiloxane;
A step of applying the photocatalyst coating composition according to any one of claims 9 to 13 after the touch-drying on the coating film;
Allowing air drying of the photocatalyst coating composition coating and complete curing of the organopolysiloxane coating;
A method for forming a coating film for photochemical reaction on the surface of a base material, comprising:
JP2000249103A 2000-08-21 2000-08-21 Method and composition for immobilizing photocatalyst Expired - Fee Related JP4653877B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000249103A JP4653877B2 (en) 2000-08-21 2000-08-21 Method and composition for immobilizing photocatalyst
PCT/JP2001/004914 WO2002016486A1 (en) 2000-08-21 2001-06-11 Method of fixing photocatalyst and composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000249103A JP4653877B2 (en) 2000-08-21 2000-08-21 Method and composition for immobilizing photocatalyst

Publications (2)

Publication Number Publication Date
JP2002060689A JP2002060689A (en) 2002-02-26
JP4653877B2 true JP4653877B2 (en) 2011-03-16

Family

ID=18738887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000249103A Expired - Fee Related JP4653877B2 (en) 2000-08-21 2000-08-21 Method and composition for immobilizing photocatalyst

Country Status (2)

Country Link
JP (1) JP4653877B2 (en)
WO (1) WO2002016486A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5351378B2 (en) * 2006-06-28 2013-11-27 日本曹達株式会社 Organic-inorganic composite and method for producing the same
JP5877086B2 (en) * 2012-02-21 2016-03-02 帝人株式会社 Plastic laminate and manufacturing method thereof
US10280272B2 (en) 2012-02-21 2019-05-07 Teijin Limited Laminate having a top coat layer containing flaky metal oxide fine particles
JP7463164B2 (en) * 2020-03-30 2024-04-08 大阪瓦斯株式会社 Coating Fluid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195336A (en) * 1997-01-09 1998-07-28 Toto Ltd Primer composition for fixing photocatalytic titanium oxide particle on plastic substrate and photocatalytic member
JPH1158623A (en) * 1997-08-11 1999-03-02 Daicel Chem Ind Ltd Film with antifungal property
JPH11291408A (en) * 1998-04-06 1999-10-26 Shin Etsu Chem Co Ltd Article having hydrophilic coat film
JPH11323257A (en) * 1998-05-21 1999-11-26 Mitsubishi Materials Corp Photocatalyst coating, its production, photocatalyst film coated therewith and substrate having the same photocatalyst film
JP2000190415A (en) * 1998-12-28 2000-07-11 Orient Chem Ind Ltd Organic-inorganic multilayered material and its production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2939524B2 (en) * 1995-10-16 1999-08-25 工業技術院長 Photocatalyst sheet and method for producing the same
JP2000042419A (en) * 1998-07-30 2000-02-15 Bridgestone Corp Photocatalytic body
JP3122082B2 (en) * 1999-02-04 2001-01-09 川崎重工業株式会社 Manufacturing method of titanium oxide coated material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195336A (en) * 1997-01-09 1998-07-28 Toto Ltd Primer composition for fixing photocatalytic titanium oxide particle on plastic substrate and photocatalytic member
JPH1158623A (en) * 1997-08-11 1999-03-02 Daicel Chem Ind Ltd Film with antifungal property
JPH11291408A (en) * 1998-04-06 1999-10-26 Shin Etsu Chem Co Ltd Article having hydrophilic coat film
JPH11323257A (en) * 1998-05-21 1999-11-26 Mitsubishi Materials Corp Photocatalyst coating, its production, photocatalyst film coated therewith and substrate having the same photocatalyst film
JP2000190415A (en) * 1998-12-28 2000-07-11 Orient Chem Ind Ltd Organic-inorganic multilayered material and its production

Also Published As

Publication number Publication date
WO2002016486A1 (en) 2002-02-28
JP2002060689A (en) 2002-02-26

Similar Documents

Publication Publication Date Title
JP3488965B2 (en) Method for producing independent membrane by sol-gel method
JP4199490B2 (en) Coating material composition
WO1998027021A1 (en) Nonfogging and stainproof glass articles
WO2000018504A1 (en) Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
JPH09310039A (en) Photocatalyst coating agent
JP3797037B2 (en) Photocatalytic hydrophilic coating composition
JP3459408B2 (en) Method for producing silicone oligomer solution and organopolysiloxane film formed from the solution
US6217999B1 (en) Photochemical reactor element containing microcapsulated titanium dioxide photocatalyst
JP4653877B2 (en) Method and composition for immobilizing photocatalyst
JP2007145896A (en) Coating liquid for wood surface and method for treating wood surface
WO1999063011A1 (en) Undercoating agent for forming photoexiting coating film or photocatalytic and hydrophilic coating film
JP2004107381A (en) Coating material composition and coated product thereof
JP3346278B2 (en) Method of forming photocatalytic film on organic base material and its use
JP3103975B2 (en) Photochemical reactor element containing microencapsulated titanium oxide photocatalyst
JP4410443B2 (en) Antifouling film forming product
JP2004100110A (en) Photocatalyst supporting paper
JP2000042320A (en) Functional filter
JP2000109631A (en) Antifogging composite material
JP3291561B2 (en) Photocatalytic paint, method for producing the same, photocatalytic film coated with the same, and base material having the photocatalytic film
JP4001495B2 (en) Coating composition for organic substrate
JP6653627B2 (en) Photocatalyst coating liquid, photocatalyst structure and method for producing the same
JP2002058925A (en) Air cleaning filter and producing method thereof
JPH1190327A (en) Formation of coating film
JP2000017227A (en) Coating composition
JP3804449B2 (en) Coating film forming method and coated product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees