JP4653719B2 - PM generator - Google Patents

PM generator Download PDF

Info

Publication number
JP4653719B2
JP4653719B2 JP2006294391A JP2006294391A JP4653719B2 JP 4653719 B2 JP4653719 B2 JP 4653719B2 JP 2006294391 A JP2006294391 A JP 2006294391A JP 2006294391 A JP2006294391 A JP 2006294391A JP 4653719 B2 JP4653719 B2 JP 4653719B2
Authority
JP
Japan
Prior art keywords
outer cylinder
cylinder part
fuel
generator
generator according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006294391A
Other languages
Japanese (ja)
Other versions
JP2007155708A (en
Inventor
俊彦 土方
聡 山田
由紀夫 宮入
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006294391A priority Critical patent/JP4653719B2/en
Publication of JP2007155708A publication Critical patent/JP2007155708A/en
Application granted granted Critical
Publication of JP4653719B2 publication Critical patent/JP4653719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、DPFや触媒等を備えた排気ガス浄化装置を評価するために、ガス中にPMを発生させるPM発生装置に関する。   The present invention relates to a PM generator that generates PM in gas in order to evaluate an exhaust gas purifying apparatus including a DPF, a catalyst, and the like.

各種の内燃機関等から排出される排気ガス中の微粒子や有害物質は、人体、環境への影響が大きく、これらの大気への放出を防止する必要性が高まっている。特に、ディーゼルエンジンから排出される粒子状物質(パティキュレートマター、Particulate Matter、PM)やNO(窒素酸化物)等は影響が甚大であり、それらにかかる規制は世界的に強化されている。そこで、PMを除去するためのフィルタ(Diesel Particulate Filter、DPF)やNOを窒素と水に還元するため等に有用な触媒を備えた排気ガス浄化装置の研究・開発が進められ、高性能な浄化装置が市場に提供されるようになった。 Particulates and harmful substances in exhaust gas discharged from various internal combustion engines and the like have a great influence on the human body and the environment, and there is an increasing need to prevent their release into the atmosphere. In particular, particulate matter (particulate matter, particulate matter, PM), NO x (nitrogen oxide) and the like discharged from diesel engines have a great influence, and regulations concerning them are being strengthened worldwide. Therefore, research and development of exhaust gas purifiers equipped with a filter (Diesel Particulate Filter, DPF) for removing PM and a catalyst useful for reducing NO X to nitrogen and water, etc. have been advanced. Purification devices are now available on the market.

ところが、その排気ガス浄化装置を試験し、その性能や耐久性を正確に高い精度で評価する手段は提案されていない、というのが現状である。関連する先行文献も多くはなく、評価ガス供給装置(特許文献1)、気化ガス供給装置(特許文献2)、及びガス分析試験装置(特許文献3)が知られるが、実際の排気ガスを十分に模擬したものとはいえなかったり(特許文献1を参照)、排気ガス発生のための具体的な手段が明らかとなっていない(特許文献2,3を参照)、という問題を有していた。   However, the present situation is that no means has been proposed for testing the exhaust gas purification device and evaluating its performance and durability with high accuracy. There are not many related literatures, and an evaluation gas supply device (Patent Literature 1), a vaporized gas supply device (Patent Literature 2), and a gas analysis test device (Patent Literature 3) are known. (See Patent Document 1), or specific means for exhaust gas generation have not been clarified (see Patent Documents 2 and 3). .

以下、従来技術について説明する。排気ガス浄化装置の性能等を評価する手段としては、先ず、実際のディーゼルエンジン等からの排気ガスを排気ガス浄化装置に供給して、その処理ガスを分析する方法がある。次いで、カーボン粉末や実際の排気ガスから採取したPMを用い、これをガス中に混合して、実際のディーゼルエンジン等からの排気ガスを模擬した排気ガスを製造し、それを排気ガス浄化装置に供給して、その処理ガスを分析する方法が知られる(特許文献1を参照)。更には、軽油又は炭化水素を燃焼させてPMを含む排気ガスを発生させる方法や、黒鉛電極をスパークさせてPMを含む排気ガスを発生させる方法が知られ、これらにより得られた排気ガスを用いて、排気ガス浄化装置の性能等を評価することが可能である(特許文献1を参照)。   Hereinafter, the prior art will be described. As means for evaluating the performance and the like of the exhaust gas purification device, first, there is a method of supplying exhaust gas from an actual diesel engine or the like to the exhaust gas purification device and analyzing the processing gas. Next, using PM collected from carbon powder and actual exhaust gas, this is mixed into the gas to produce exhaust gas that simulates exhaust gas from an actual diesel engine, etc., and this is used as an exhaust gas purification device. A method of supplying and analyzing the processing gas is known (see Patent Document 1). Furthermore, a method of generating exhaust gas containing PM by burning light oil or hydrocarbon and a method of generating exhaust gas containing PM by sparking a graphite electrode are known, and the exhaust gas obtained by using these is used. Thus, it is possible to evaluate the performance and the like of the exhaust gas purification device (see Patent Document 1).

特開2005−214742号公報JP-A-2005-214742 特開平10−318888号公報Japanese Patent Laid-Open No. 10-318888 特開平10−319006号公報JP-A-10-319006

しかしながら、実際のディーゼルエンジン等からの排気ガスを利用する方法では、排気ガス流量、PM発生量、排気ガス温度、SOF量を、独立して制御出来ないため、一定条件で排気ガス浄化装置の性能等を評価することが不可能であるという問題があった。又、ディーゼルエンジン等からの排気ガスを模擬した排気ガスを製造する方法(特許文献1を参照)では、実際に使用される燃料と異なっていたり、一旦採取されたPMを用いることから、既述の通り、実際の排気ガスを十分に模擬したものとはいえないという問題があった。更に、軽油又は炭化水素を燃焼させてPMを含む排気ガスを発生させる方法では、PMの性状、特にPMの粒径分布等の性状が、実際のディーゼルエンジン等からの排気ガスとは異なるものとなり、実際の排気ガスを十分に模擬したものとはいえず、排気ガス浄化装置の性能等の評価に適さないという問題があった。即ち、何れの場合も、排気ガス浄化装置へ供給する評価用の排気ガスを発生させる手段に問題があった。   However, the exhaust gas flow rate, PM generation amount, exhaust gas temperature, and SOF amount cannot be controlled independently in a method that uses exhaust gas from an actual diesel engine or the like. There was a problem that it was impossible to evaluate the above. In addition, in the method of manufacturing exhaust gas that simulates exhaust gas from a diesel engine or the like (see Patent Document 1), it differs from the fuel that is actually used, or because PM that has been collected once is used. As described above, there was a problem that it could not be said that the actual exhaust gas was sufficiently simulated. Furthermore, in the method of generating exhaust gas containing PM by burning light oil or hydrocarbon, the properties of PM, especially the properties of PM particle size distribution, etc., are different from the exhaust gas from an actual diesel engine or the like. However, it cannot be said that the actual exhaust gas is sufficiently simulated, and there is a problem that it is not suitable for evaluation of the performance of the exhaust gas purification device. That is, in any case, there is a problem in the means for generating the exhaust gas for evaluation supplied to the exhaust gas purification device.

本発明は、上記した事情に鑑みてなされたものであり、その目的とするところは、排気ガス浄化装置を評価するために、実際のディーゼルエンジン等からの排気ガスを十分に模擬した排気ガスを一定の条件で安定的に供給することが可能な手段を提供することにある。検討が重ねられた結果、以下に示す手段により、上記目的を達成出来ることが見出された。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide exhaust gas that sufficiently simulates exhaust gas from an actual diesel engine or the like in order to evaluate an exhaust gas purification device. An object of the present invention is to provide a means that can be stably supplied under certain conditions. As a result of repeated studies, it has been found that the above object can be achieved by the following means.

即ち、先ず、本発明によれば、液体及び/又は気体の燃料と、燃焼用空気と、の混合を行い、混合をされた混合気に不完全な燃焼をさせて、ガスの中にPMを発生させる装置であって、混合及び燃焼を生じる燃焼室と、その燃焼室へ燃料を噴射する燃料噴射手段と、混合気を着火するパイロットバーナと、を具備し、燃焼室が、燃焼用空気を供給するための空気入口、PMを発生させたガスを送出するためのガス出口、及びパイロットバーナに通じる火炎入口、を形成した筐体部と、その筐体部との間に空間を形成しつつ筐体部の中に組み込まれた外筒部と、その外筒部との間に空間を形成するとともに火炎入口と直接連通するように外筒部の中に組み込まれた内筒部と、を有し、外筒部及び内筒部は、それぞれの周面に複数の貫通孔を備え、燃料噴射手段によって筐体部と外筒部との間の空間に噴射された燃料と、空気入口から筐体部と外筒部との間の空間に供給された燃焼用空気とが、外筒部の貫通孔を介して外筒部と内筒部との間の空間へ導入され混合をされるように構成されているPM発生装置(Particulate Matter Generater)が提供される。本発明に係るPM発生装置は、ガスの中にPMを発生させる装置であり、換言すれば、本発明に係るPM発生装置は、PMを発生させたガス(PM含有ガス)を製造し供給する装置ということが出来る。尚、スート(煤、Soot)及びSOFは、PM(粒子状物質)に含まれるものである。   That is, first, according to the present invention, liquid and / or gaseous fuel and combustion air are mixed, and the mixed air-fuel mixture is incompletely combusted so that PM is contained in the gas. A combustion chamber for generating mixing and combustion; fuel injection means for injecting fuel into the combustion chamber; and a pilot burner for igniting the air-fuel mixture. A space is formed between a housing portion formed with an air inlet for supplying, a gas outlet for sending a gas that generates PM, and a flame inlet leading to a pilot burner, and the housing portion. An outer cylinder part incorporated in the casing part, and an inner cylinder part incorporated in the outer cylinder part so as to form a space between the outer cylinder part and communicate directly with the flame inlet, The outer cylinder part and the inner cylinder part have a plurality of through holes on their respective peripheral surfaces. The fuel injected into the space between the casing and the outer cylinder by the fuel injection means and the combustion air supplied from the air inlet to the space between the casing and the outer cylinder are the outer cylinder. A PM generator (Particulate Matter Generator) configured to be introduced into the space between the outer cylinder part and the inner cylinder part through the through hole of the part and mixed is provided. The PM generator according to the present invention is a device that generates PM in a gas. In other words, the PM generator according to the present invention manufactures and supplies a gas that generates PM (PM-containing gas). It can be called a device. In addition, soot (soot) and SOF are contained in PM (particulate matter).

本発明に係るPM発生装置においては、上記燃料噴射手段が、筐体部と外筒部との間の空間に、燃料を間欠で噴射することが可能な手段であることが好ましい。   In the PM generator according to the present invention, it is preferable that the fuel injection means is a means capable of intermittently injecting fuel into the space between the casing portion and the outer cylinder portion.

本発明に係るPM発生装置は、筐体部が円筒状部分を有するとともに、外筒部及び内筒部が円筒状を呈し、筐体部の円筒状部分の中に、円筒状の外筒部が、筐体部の円筒状部分と同軸になるように組み込まれ、円筒状の外筒部の中に、円筒状の内筒部が、円筒状の外筒部と中心軸方向を同じくし且つ偏心して組み込まれているものであることが好ましい。以下、このような態様における更に好ましい態様について説明する。   In the PM generator according to the present invention, the casing portion has a cylindrical portion, the outer cylindrical portion and the inner cylindrical portion have a cylindrical shape, and the cylindrical outer cylindrical portion is in the cylindrical portion of the casing portion. Is incorporated so as to be coaxial with the cylindrical portion of the casing portion, and the cylindrical inner cylinder portion has the same central axis direction as the cylindrical outer cylinder portion in the cylindrical outer cylinder portion, and It is preferable that it is incorporated eccentrically. Hereinafter, a more preferable aspect in such an aspect will be described.

本発明に係るPM発生装置は、ガス出口に通じる開口を備え、筐体部の中に組み込まれてガス出口側の端面を構成する前板部と、火炎入口に通じる開口を備え、筐体部の中に組み込まれて火炎入口側の端面を構成する後板部と、を有することが好ましい。そして、この場合に、前板部と外筒部とが一体化し、及び/又は、後板部と内筒部とが一体化していることが好ましい。更に、外筒部、内筒部、前板部、及び後板部が、金属材料で形成されていることが好ましい。そして、その金属材料が、インコネル(登録商標)であることが好ましい。この場合、燃料を燃焼用空気と混合し不完全な燃焼をさせてガスの中にPMを発生させる、という反応は、全てインコネル材料の部材で囲われた空間で生じることになる。 The PM generator according to the present invention includes an opening that leads to a gas outlet, includes a front plate portion that is incorporated in the casing portion and forms an end face on the gas outlet side, and an opening that leads to a flame inlet, and the casing portion It is preferable to have a rear plate portion which is incorporated in the frame and constitutes an end surface on the flame inlet side. In this case, it is preferable that the front plate portion and the outer cylinder portion are integrated and / or the rear plate portion and the inner cylinder portion are integrated. Furthermore, it is preferable that the outer cylinder part, the inner cylinder part, the front plate part, and the rear plate part are formed of a metal material. The metal material is preferably Inconel (registered trademark) . In this case, the reaction of mixing fuel with combustion air and causing incomplete combustion to generate PM in the gas occurs in a space surrounded by members of Inconel material.

また、外筒部、内筒部、前板部、及び後板部が、セラミック材料で形成されていることも好ましい。そして、このセラミック材料が、窒化珪素、炭化珪素、ジルコニア、燐酸ジルコニウム、アルミニウムチタネート、チタニア、及びこれらの組み合わせよりなる群から選ばれる少なくとも一種であることが好ましい。この場合、金属材料に比べて更に耐久性能が向上する。さらに、セラミック材料は、金属材料に比べて熱変形が生じ難いため、熱変形に起因するPM発生量の低下を防止することができるという利点がある。なお、上記群の中でも、セラミック材料は、窒化珪素であることが好ましい。   Moreover, it is also preferable that the outer cylinder part, the inner cylinder part, the front plate part, and the rear plate part are formed of a ceramic material. The ceramic material is preferably at least one selected from the group consisting of silicon nitride, silicon carbide, zirconia, zirconium phosphate, aluminum titanate, titania, and combinations thereof. In this case, the durability performance is further improved as compared with the metal material. Furthermore, since the ceramic material is less likely to be thermally deformed than the metal material, there is an advantage that a decrease in the amount of PM generated due to the heat deformation can be prevented. Of the above groups, the ceramic material is preferably silicon nitride.

本発明に係るPM発生装置において、燃料噴射手段は、燃料の噴射方向が、外筒部の中心軸方向に対し概ね直角であり且つ外筒部の中心軸方向に垂直な断面の接線方向に傾くように、筐体部に設けられ、燃料噴射手段によって筐体部と外筒部との間の空間へ噴射された燃料が、外筒部の周面を廻りながら、外筒部の貫通孔を介して外筒部と内筒部との間の空間へ導入されるように構成されていることが好ましい。概ね直角とは、好ましくは直角であるが、厳密でなくてもよいことを意味し、燃料の噴射方向が、外筒部の中心軸方向に対し85〜95°であってよい。又、上記要件に従う限り、燃料の廻る方向及びそれを実現するための燃料噴射手段の筐体部への取付態様は限定されない。   In the PM generator according to the present invention, the fuel injection means is configured such that the fuel injection direction is substantially perpendicular to the central axis direction of the outer cylinder portion and is inclined in a tangential direction of a cross section perpendicular to the central axis direction of the outer cylinder portion. As described above, the fuel injected into the space between the casing portion and the outer cylinder portion by the fuel injection means passes through the through hole of the outer cylinder portion while traveling around the outer peripheral surface of the outer cylinder portion. It is preferable that it is comprised so that it may introduce into the space between an outer cylinder part and an inner cylinder part via. The general right angle means that it is preferably a right angle, but it may not be exact, and the fuel injection direction may be 85 to 95 ° with respect to the central axis direction of the outer cylinder portion. In addition, as long as the above requirements are followed, the direction in which the fuel travels and the manner in which the fuel injection means for realizing the direction is attached to the casing are not limited.

又、空気入口が、筐体部の前記燃料噴射手段の近傍に設けられ、空気入口から筐体部と外筒部との間の空間に供給された燃焼用空気が、燃料とともに、外筒部の周面を廻りながら、外筒部の貫通孔を介して外筒部と内筒部との間の空間へ導入されるように構成されていることが好ましい。   In addition, an air inlet is provided in the vicinity of the fuel injection means of the casing, and the combustion air supplied from the air inlet to the space between the casing and the outer cylinder, together with the fuel, the outer cylinder It is preferable that it is comprised so that it may introduce | transduce into the space between an outer cylinder part and an inner cylinder part through the through-hole of an outer cylinder part, going around the surrounding surface.

本発明に係るPM発生装置において、外筒部に備わる貫通孔の一部又は全部が、外筒部の中心軸方向に垂直な断面の接線方向(外筒部の周面の方向(周方向))に傾いて形成されていることが好ましい。貫通孔が傾くので、外筒部の表面には楕円形の開口が形成される。   In the PM generator according to the present invention, a part or all of the through-holes provided in the outer cylinder part is a tangential direction of the cross section perpendicular to the central axis direction of the outer cylinder part (the direction of the circumferential surface of the outer cylinder part (circumferential direction)). It is preferable that it is formed to be inclined. Since the through hole is inclined, an elliptical opening is formed on the surface of the outer cylinder portion.

本発明に係るPM発生装置は、筐体部の円筒状部分の中心軸方向に垂直な断面に、その中心軸を通り相互に直角をなすX軸及びY軸からなる座標軸を設定した場合において(但し、X軸とY軸とは中心軸方向に垂直な断面で相互に直角であればよく、絶対的な方向は限定されない)、筐体部の円筒状部分の内壁がY=+100に位置するとき、Y=+60〜80の位置に、燃料の噴射方向がX軸に平行になるように、燃料噴射手段が筐体部に設けられるものであることが好ましい。尚、外筒部は筐体部の円筒状部分と同軸であるから、上記座標軸は外筒部の中心軸方向に垂直な断面に設定されているということが出来る。   In the PM generator according to the present invention, when a coordinate axis composed of an X axis and a Y axis passing through the central axis and perpendicular to each other is set in a cross section perpendicular to the central axis direction of the cylindrical portion of the casing ( However, the X axis and the Y axis need only be perpendicular to each other in a cross section perpendicular to the central axis direction, and the absolute direction is not limited.) The inner wall of the cylindrical portion of the housing portion is located at Y = + 100. At this time, it is preferable that the fuel injection means is provided in the housing portion at a position of Y = + 60 to 80 so that the fuel injection direction is parallel to the X axis. Since the outer cylinder part is coaxial with the cylindrical part of the casing part, it can be said that the coordinate axis is set in a cross section perpendicular to the central axis direction of the outer cylinder part.

上記要件は、燃料噴射手段の位置を規定するものである。座標軸は、筐体部の円筒状部分の中心軸方向に垂直な断面に中心軸を通るように設定されるから、筐体部の円筒状部分の内壁は、Y軸に対し+Y側及び−Y側の2箇所で交わり、X軸に対し+X側及び−X側の2箇所で交わるが、筐体部の円筒状部分の内壁がY=+100に位置するときとは、このうちの筐体部の円筒状部分の内壁がY軸と+Y側で交わる場合を指す。Yの大きさ及び極性によって、座標軸上における燃料噴射手段の位置や、後述する複数の貫通孔うちの少なくとも1つの位置や、外筒部の中心軸に対し内筒部の中心軸がずれる方向を規定しているのである。尚、筐体部の中心軸方向の位置については、燃料噴射手段は、筐体部に備わる外筒部の中心軸方向の長さを100としたときに、火炎入口側から20〜80の位置に設けられることが好ましい。   The above requirements define the position of the fuel injection means. Since the coordinate axis is set to pass through the central axis in a cross section perpendicular to the central axis direction of the cylindrical portion of the casing portion, the inner wall of the cylindrical portion of the casing portion is + Y side and −Y with respect to the Y axis. Intersects at two locations on the side, and intersects at two locations on the + X side and -X side with respect to the X axis, but when the inner wall of the cylindrical portion of the housing portion is located at Y = + 100, the housing portion of these This indicates a case where the inner wall of the cylindrical portion intersects with the Y axis on the + Y side. Depending on the size and polarity of Y, the position of the fuel injection means on the coordinate axis, the position of at least one of a plurality of through-holes to be described later, and the direction in which the central axis of the inner cylindrical portion deviates from the central axis of the outer cylindrical portion. It prescribes. As for the position of the casing portion in the central axis direction, the fuel injection means is located at a position of 20 to 80 from the flame inlet side when the length in the central axis direction of the outer cylinder portion provided in the casing portion is 100. It is preferable to be provided.

本発明に係るPM発生装置は、(筐体部の円筒状部分の内壁がY=+100に位置するとき)外筒部の周面に備わる複数の貫通孔のうちの少なくとも1つが、Y=+70〜90の位置に設けられるものであることが好ましい。   In the PM generator according to the present invention, at least one of the plurality of through holes provided in the peripheral surface of the outer cylinder portion (when the inner wall of the cylindrical portion of the casing portion is located at Y = + 100) has Y = + 70. It is preferable to be provided at a position of ~ 90.

又、外筒部の周面に備わる複数の貫通孔のうちの少なくとも1つと、上記座標軸の原点と、燃料噴射手段と、が形成する角度が、10〜40°であることが好ましい。この角度は、換言すれば、複数の貫通孔のうちの少なくとも1つと上記座標軸の原点と燃料噴射手段とを結ぶ線が表す角度である。貫通孔及び燃料噴射手段には所定の幅があるので、角度は、貫通孔の中心部分と、原点と、燃料噴射手段における燃料が噴射される部分と、を結ぶ線で決まることとする。この好ましい態様は、外筒部の周面に備わる複数の貫通孔のうちの少なくとも1つが、燃料噴射手段と、近過ぎず遠過ぎない位置に設けられることを示している。そして、本発明に係るPM発生装置においては、複数の貫通孔のうちの1つの位置が上記条件で特定されたら、残りの貫通孔は、外筒部の周面に均等に配設されることが好ましい。円筒状の外筒部の中心軸方向に垂直な断面は円輪形(ドーナツ形)になるから、その円輪形の周上に均等間隔で3〜8箇所程度(即ち、中心角が45〜120°程度になるように)、配設する態様が例示出来る。   Moreover, it is preferable that the angle formed by at least one of the plurality of through holes provided in the peripheral surface of the outer cylinder portion, the origin of the coordinate axis, and the fuel injection means is 10 to 40 °. In other words, this angle is an angle represented by a line connecting at least one of the plurality of through holes, the origin of the coordinate axis, and the fuel injection means. Since the through hole and the fuel injection means have a predetermined width, the angle is determined by a line connecting the central portion of the through hole, the origin, and the portion where the fuel is injected in the fuel injection means. This preferable aspect shows that at least one of the plurality of through holes provided in the peripheral surface of the outer cylinder portion is provided at a position that is not too close and not too far from the fuel injection means. And in PM generator concerning the present invention, if one position of a plurality of penetration holes is specified on the above-mentioned conditions, the remaining penetration holes will be arranged equally on the peripheral surface of an outer cylinder part. Is preferred. Since the cross section perpendicular to the central axis direction of the cylindrical outer cylinder portion is an annular shape (donut shape), about 3 to 8 places (that is, the central angle is 45 to 120 °) at regular intervals on the circumference of the annular shape. The mode of arrangement can be exemplified.

更に、内筒部の中心軸が外筒部の中心軸より−Y側にずれることによって、外筒部と内筒部とが偏心していることが好ましい。これは、燃料噴射手段は+Y側に配設されるから、燃料噴射手段とは(座標軸上の)反対側で、外筒部と内筒部とが偏心していることを意味する。   Furthermore, it is preferable that the outer cylinder part and the inner cylinder part are eccentric because the central axis of the inner cylinder part is shifted to the −Y side from the central axis of the outer cylinder part. This means that since the fuel injection means is arranged on the + Y side, the outer cylinder portion and the inner cylinder portion are eccentric on the opposite side (on the coordinate axis) from the fuel injection means.

本発明に係るPM発生装置において、外筒部、前板部、及び後板部の合計の中心軸方向の長さと、筐体部の円筒状部分の内側における中心軸方向の長さと、の比が70:100〜98:100であることが好ましい。   In the PM generator according to the present invention, the ratio of the total length in the central axis direction of the outer cylinder portion, the front plate portion, and the rear plate portion to the length in the central axis direction inside the cylindrical portion of the housing portion. Is preferably 70: 100 to 98: 100.

又、本発明に係るPM発生装置は、後板部と筐体部との間に、非膨張セラミックス繊維性マットが挿入されているものであることが好ましい。   In the PM generator according to the present invention, it is preferable that a non-expanding ceramic fibrous mat is inserted between the rear plate portion and the housing portion.

本発明に係るPM発生装置において、外筒部の周面に備わる貫通孔の径と外筒部の内径の比は、5:100〜20:100であることが好ましい。より好ましい比は、7:100〜15:100である。換言すれば、外筒部の内径を100%としたとき、外筒部の周面に備わる貫通孔の径の好ましい大きさは5〜20%であり、より好ましくは、7〜15%である。   In the PM generator according to the present invention, the ratio of the diameter of the through hole provided in the peripheral surface of the outer cylinder part and the inner diameter of the outer cylinder part is preferably 5: 100 to 20: 100. A more preferable ratio is 7: 100 to 15: 100. In other words, when the inner diameter of the outer cylinder part is 100%, the preferable size of the diameter of the through hole provided on the peripheral surface of the outer cylinder part is 5 to 20%, more preferably 7 to 15%. .

本発明に係るPM発生装置において、筐体部に形成されたPMを発生させたガス出口の径と、外筒部の内径(内側直径)と、の比が10:100〜50:100であることが好ましい。換言すれば、外筒部の内径を100としたとき、筐体部出口径は10〜50である。より好ましくは、筐体部出口径と外筒部の内径の比は、10:100〜30:100である。   In the PM generator according to the present invention, the ratio of the diameter of the gas outlet that generates PM formed in the casing and the inner diameter (inner diameter) of the outer cylinder is 10: 100 to 50: 100. It is preferable. In other words, when the inner diameter of the outer tube portion is 100, the housing portion outlet diameter is 10-50. More preferably, the ratio of the housing part outlet diameter to the inner diameter of the outer cylinder part is 10: 100 to 30: 100.

以上、筐体部が円筒状部分を有するとともに、外筒部及び内筒部が円筒状を呈し、筐体部の円筒状部分の中に、円筒状の外筒部が、筐体部の円筒状部分と同軸になるように組み込まれ、円筒状の外筒部の中に、円筒状の内筒部が、円筒状の外筒部と中心軸方向を同じくし且つ偏心して組み込まれている場合における、更に好ましい態様について説明したが、以下においては限定されない。   As described above, the casing portion has a cylindrical portion, the outer cylinder portion and the inner cylinder portion have a cylindrical shape, and the cylindrical outer cylinder portion is a cylinder of the casing portion in the cylindrical portion of the casing portion. In the case where the cylindrical inner cylinder part is incorporated in the cylindrical outer cylinder part in the same direction as the cylindrical outer cylinder part and eccentrically. Although the more preferable aspect in was demonstrated, it is not limited below.

本発明に係るPM発生装置において、燃焼室の外筒部の内側の容積(L、リットル)が、供給される最大の燃焼用空気の流量(Nm/min)の1.2倍以上であることが好ましい。より好ましくは、1.5倍以上である。上限は4倍以下である。例えば、供給される(使用される)最大の燃焼用空気の流量が0.5(Nm/min)の場合には、燃焼室の容積は、0.6L以上であることが好ましく、0.75リットル以上であれば、更に好ましい。尚、大気圧で1mは1000Lだから、この要件は、1分間あたりに供給される最大の燃焼用空気の量(NL)に対して、燃焼室の外筒部の内側の容積(L)が1.2×10−3倍以上であることが好ましい、ことを意味する。 In the PM generator according to the present invention, the volume (L, liter) inside the outer cylinder portion of the combustion chamber is 1.2 times or more the maximum flow rate of combustion air (Nm 3 / min) to be supplied. It is preferable. More preferably, it is 1.5 times or more. The upper limit is 4 times or less. For example, when the flow rate of the maximum combustion air supplied (used) is 0.5 (Nm 3 / min), the volume of the combustion chamber is preferably 0.6 L or more. More preferably, it is 75 liters or more. Since 1 m 3 at atmospheric pressure is 1000 L, this requirement is that the volume (L) inside the outer cylinder of the combustion chamber is the maximum amount of combustion air (NL) supplied per minute. It means that it is preferably 1.2 × 10 −3 times or more.

本発明に係るPM発生装置においては、燃焼室に備わる外筒部の内径(mm)は、外筒部の内径(mm)の2乗を、供給される最大の燃焼用空気の流量(Nm/min)で除した値が、2.0×10倍以上であることが好ましい。より好ましくは2.3×10倍以上である。上限は5.0×10倍以下である。例えば、供給される(使用される)最大の燃焼用空気の流量が0.5(Nm/min)の場合には、燃焼室の内径は100mm以上であることが好ましく、107mm以上であれば、尚好ましい。 In the PM generator according to the present invention, the inner diameter (mm) of the outer cylinder part provided in the combustion chamber is the square of the inner diameter (mm) of the outer cylinder part, and the maximum flow rate of combustion air supplied (Nm 3). / Min) is preferably 2.0 × 10 4 times or more. More preferably, it is 2.3 × 10 4 times or more. The upper limit is 5.0 × 10 4 times or less. For example, when the flow rate of the maximum combustion air supplied (used) is 0.5 (Nm 3 / min), the inner diameter of the combustion chamber is preferably 100 mm or more, and is 107 mm or more. More preferred.

本発明に係るPM発生装置において、燃料の噴射圧力は0.1〜1.0(MPa)であることが好ましい。   In the PM generator according to the present invention, the fuel injection pressure is preferably 0.1 to 1.0 (MPa).

本発明に係るPM発生装置は、燃料が軽油である場合に、ガスの中に発生させるPMの量を0.1〜30g/L(軽油)とすることが可能である。又、ガスの中に発生させるPMのSOF(有機溶媒可溶性成分、Soluble Organic Fraction)を1〜50質量%とし、且つPMの平均粒子径を10〜150×10−9mとすることが可能である。本発明に係るPM発生装置は、このような能力が要求される場合に、好適に採用されるものである。 In the PM generator according to the present invention, when the fuel is light oil, the amount of PM generated in the gas can be 0.1 to 30 g / L (light oil). In addition, the SOF (organic solvent soluble component, soluble organic fraction) of PM generated in the gas can be 1 to 50% by mass, and the average particle size of PM can be 10 to 150 × 10 −9 m. is there. The PM generator according to the present invention is suitably employed when such a capability is required.

本発明に係るPM発生装置では、1つの燃焼室に複数の燃料噴射手段を具備することが出来、このような態様も好ましいものである。   In the PM generator according to the present invention, a plurality of fuel injection means can be provided in one combustion chamber, and such an aspect is also preferable.

又、本発明に係るPM発生装置は、燃焼室、燃料噴射手段、及びパイロットバーナを、複数、具備することが出来、このような態様も好ましいものである。   Moreover, the PM generator according to the present invention can include a plurality of combustion chambers, fuel injection means, and pilot burners, and such an aspect is also preferable.

本発明に係るPM発生装置は、PMを発生させたガスの供給先が排気ガス浄化装置であり、その排気ガス浄化装置の評価を行うために好適に使用される。そして、排気ガス浄化装置が、DPF(Diesel Particulate Filter)を備えたものであり、評価が、DPFの捕集効率、PM堆積圧損、再生性能、酸化性能のうちの何れか1又は2以上の評価である場合に、好適に使用される。尚、評価は、排気ガス浄化装置の耐久性の評価も含まれ、評価対象である排気ガス浄化装置としては、排気ガス中の有害物質を分解するための触媒を備えたものも含まれる。尚、触媒の酸化性能を測定する場合に、PM発生装置にNO(一酸化窒素)等を外部供給することも好ましい手段である。   In the PM generator according to the present invention, the supply destination of the gas that has generated PM is an exhaust gas purifier, and is preferably used for evaluating the exhaust gas purifier. The exhaust gas purifying apparatus is provided with a DPF (Diesel Particulate Filter), and the evaluation is one or more of DPF collection efficiency, PM deposition pressure loss, regeneration performance, and oxidation performance. Is preferably used. The evaluation includes evaluation of the durability of the exhaust gas purification device, and the exhaust gas purification device to be evaluated includes a device equipped with a catalyst for decomposing harmful substances in the exhaust gas. When measuring the oxidation performance of the catalyst, it is also a preferable means to supply NO (nitrogen monoxide) or the like to the PM generator externally.

次に、本発明によれば、上記した何れかのPM発生装置を、複数、具備するとともに、それら複数のPM発生装置を、同一の条件で作動させ、あるいは、少なくとも一のPM発生装置を、他のPM発生装置と異なる条件で作動させ得る制御手段と、複数のPM発生装置で得られた、PMを発生させたガスを混合し、混合PM含有ガスを得るPM含有ガス混合手段と、を具備し、混合PM含有ガスを排気ガス浄化装置へ供給することによって、その排気ガス浄化装置の評価を行う排気ガス浄化装置の評価装置が提供される。更に、複数のPM発生装置の燃焼室の容積を変えることによって、小排気ガス量から大排気ガス量までをカバーするPM発生装置を得ることが出来る。   Next, according to the present invention, a plurality of the PM generators described above are provided, and the plurality of PM generators are operated under the same conditions, or at least one PM generator is Control means that can be operated under conditions different from those of other PM generators, and PM-containing gas mixing means that obtains a mixed PM-containing gas by mixing gases that have been generated by a plurality of PM generators, An exhaust gas purification device evaluation apparatus is provided that evaluates the exhaust gas purification device by supplying the mixed PM-containing gas to the exhaust gas purification device. Furthermore, by changing the volumes of the combustion chambers of the plurality of PM generators, a PM generator that covers from a small exhaust gas amount to a large exhaust gas amount can be obtained.

本発明に係るPM発生装置は、燃焼室が、筐体部とその筐体部の中に組み込まれた外筒部とその外筒部の中に組み込まれた内筒部とを有し、外筒部及び内筒部は、それぞれの周面に複数の貫通孔を備え、燃料噴射手段によって筐体部と外筒部との間の空間に噴射された燃料と、空気入口から筐体部と外筒部との間の空間に供給された燃焼用空気とが、外筒部の貫通孔を介して外筒部と内筒部との間の空間へ導入され混合をされるように構成されているので、筐体部と外筒部との間の空間に、燃焼用空気を連続的に一定量供給し、同じ空間に燃料噴射手段によって燃料を好ましくは間欠で噴射したときに、加熱されて外筒部で気化した燃料の濃度の高い混合気が、外筒部の貫通孔を介して外筒部と内筒部との間の空間へ導入され、その混合気のうちの空気と接している部分が燃焼し、空気と遮断された内側の混合気が、その燃焼の熱により蒸し焼きとなってPMが発生する。即ち、本発明に係るPM発生装置によれば、ディーゼルエンジンから発生するPMと概ね同じ発生メカニズムでPMを発生させることが出来、得られるPM含有ガスも、実際のディーゼルエンジンからの排気ガスと概ね同等なものになる。従って、本発明に係るPM発生装置によって製造されるPM含有ガスは、排気ガス浄化装置の性能等の評価に適したものになる。又、実際のディーゼルエンジンに比べて、軽油の使用量に対してPMを多く発生させることが出来るため、効率の面でも優れている。従来の燃料噴射装置付きバーナー装置を用いて燃料を不完全燃焼させると、燃料の気化が不十分であることから、PMの粒径(主にPMに含まれるスートの粒径)の分布が実際のディーゼルエンジンより広い範囲となってしまったり、SOFが増大して安定した性状のPM含有ガスを得ることが不可能であったが、本発明によれば、このような問題を解決出来る。   In the PM generator according to the present invention, the combustion chamber has a casing part, an outer cylinder part incorporated in the casing part, and an inner cylinder part incorporated in the outer cylinder part. The cylindrical portion and the inner cylindrical portion each include a plurality of through holes on the respective peripheral surfaces, fuel injected into a space between the casing portion and the outer cylindrical portion by the fuel injection unit, and the casing portion from the air inlet. Combustion air supplied to the space between the outer cylinder and the outer cylinder is introduced into the space between the outer cylinder and the inner cylinder via the through hole of the outer cylinder and mixed. Therefore, when a constant amount of combustion air is continuously supplied to the space between the casing portion and the outer cylinder portion and fuel is injected into the same space by the fuel injection means, preferably it is heated intermittently. The fuel mixture having a high fuel concentration vaporized in the outer cylinder part is introduced into the space between the outer cylinder part and the inner cylinder part through the through hole of the outer cylinder part, and the mixture gas Burning the portion in contact with Chino air, the air-fuel mixture inside which is shut off from the air, PM is generated a roasted by its heat of combustion. That is, according to the PM generator according to the present invention, it is possible to generate PM with substantially the same generation mechanism as that of PM generated from a diesel engine, and the obtained PM-containing gas is also substantially equal to exhaust gas from an actual diesel engine. It will be equivalent. Therefore, the PM-containing gas produced by the PM generator according to the present invention is suitable for evaluating the performance and the like of the exhaust gas purification device. In addition, compared to an actual diesel engine, it is possible to generate a larger amount of PM with respect to the amount of light oil used. When fuel is incompletely burned using a conventional burner device with a fuel injection device, the vaporization of the fuel is insufficient, so the distribution of the particle size of PM (mainly the particle size of soot contained in PM) is actually However, according to the present invention, such problems can be solved.

本発明に係るPM発生装置は、その好ましい態様により、燃料の噴射方向が外筒部の中心軸方向に対し概ね直角であり且つ外筒部の中心軸方向に垂直な断面の接線方向に傾くように、燃料噴射手段が筐体部に設けられており、空気入口が筐体部の燃料噴射手段の近傍に設けられ、燃料噴射手段によって筐体部と外筒部との間の空間へ噴射された燃料と、燃焼用空気と、が外筒部の周面を廻りながら、外筒部の貫通孔を介して外筒部と内筒部との間の空間へ導入されるように構成されているので、燃焼用空気及び燃料の気化によって、外筒部と筐体部の中が冷却され、過度の温度上昇を防止する。そのため、燃焼室の筐体部及び外筒部の耐久性が、飛躍的に向上する。従来の燃料噴射装置付きバーナー装置では、筐体部の内側に燃焼炎が直接当たるため、筐体部は過度に温度上昇し、耐久性に乏しいが、本発明によれば、このような問題が生じない。   According to a preferred embodiment of the PM generator of the present invention, the fuel injection direction is substantially perpendicular to the central axis direction of the outer cylinder portion and is inclined in the tangential direction of the cross section perpendicular to the central axis direction of the outer cylinder portion. Further, the fuel injection means is provided in the casing portion, and the air inlet is provided in the vicinity of the fuel injection means of the casing portion, and is injected into the space between the casing portion and the outer cylinder portion by the fuel injection means. The fuel and the combustion air are configured to be introduced into the space between the outer cylinder part and the inner cylinder part through the through hole of the outer cylinder part while going around the peripheral surface of the outer cylinder part. Therefore, the inside of the outer cylinder portion and the casing portion are cooled by the vaporization of the combustion air and the fuel, and an excessive temperature rise is prevented. Therefore, the durability of the casing part and the outer cylinder part of the combustion chamber is greatly improved. In the conventional burner device with a fuel injection device, the combustion flame directly hits the inside of the casing portion, so that the casing portion excessively rises in temperature and lacks durability, but according to the present invention, such a problem is caused. Does not occur.

本発明に係るPM発生装置は、その好ましい態様により、外筒部に備わる貫通孔の一部又は全部が、外筒部の中心軸方向に垂直な断面の接線方向(外筒部の周面の方向(周方向))に傾いて形成され、外筒部の表面に楕円形の開口が形成されるため、燃料を、安定して滑らかに、外筒部と内筒部との間の空間へ導入することが可能である。このことにより、燃料と燃焼用空気の混合が抑制され、混合気の中の燃料の濃度が部分的に高く維持されるため、導入された燃料が蒸し焼きとなり、SOF量の少ない、黒色で安定したPMが多量に発生する。外筒部に備わる貫通孔が傾かず、外筒部の表面に円形の開口が形成される場合には、噴射された燃料は、スムースに、外筒部と内筒部との間の空間へ導入されず、燃料は筐体部と外筒部との間の空間を廻るため、燃焼用空気と混合され、燃料の濃度が薄くなる。そのため、茶色のPMとなり、SOF量も多く、PMの発生量が少なくなり易いが、本発明によれば、このような問題は生じない。   In the PM generator according to the present invention, according to a preferred aspect, a part or all of the through-hole provided in the outer cylinder part is tangential in the cross section perpendicular to the central axis direction of the outer cylinder part (the circumferential surface of the outer cylinder part). Direction (circumferential direction)) and an elliptical opening is formed on the surface of the outer cylinder portion, so that fuel can be stably and smoothly transferred to the space between the outer cylinder portion and the inner cylinder portion. It is possible to introduce. As a result, mixing of fuel and combustion air is suppressed, and the concentration of the fuel in the air-fuel mixture is partially maintained, so that the introduced fuel is steamed and stabilized in black with a small amount of SOF. A large amount of PM is generated. When the through hole provided in the outer cylinder part does not tilt and a circular opening is formed on the surface of the outer cylinder part, the injected fuel smoothly flows into the space between the outer cylinder part and the inner cylinder part. Since the fuel is not introduced and goes around the space between the casing and the outer cylinder, the fuel is mixed with the combustion air and the concentration of the fuel is reduced. Therefore, it becomes brown PM, the amount of SOF is large, and the amount of generated PM tends to decrease, but according to the present invention, such a problem does not occur.

本発明に係るPM発生装置は、その好ましい態様により、燃料噴射手段の取付位置とは反対側で、外筒部と内筒部とが偏心しているため、外筒部と内筒部との間の空間が、その偏心した側で狭くなる。従って、燃料噴射装置近傍の外筒部の貫通孔から、外筒部と内筒部との間の空間へ導入された燃料及び燃焼用空気が内筒部の周りを廻る速度と、燃料噴射装置から離れた位置の外筒部の貫通孔から、外筒部と内筒部との間の空間へ導入された燃料及び燃焼用空気が内筒部の周りを廻る速度と、が概ね均一になり、燃料と燃焼用空気との混合が抑制され、混合気の中の燃料の濃度が部分的に高く維持されるため、SOF量の少ない、黒色で安定したPMが多量に発生する。   In the PM generator according to the present invention, the outer cylinder part and the inner cylinder part are decentered on the side opposite to the mounting position of the fuel injection means according to a preferred aspect thereof, and therefore, between the outer cylinder part and the inner cylinder part. The space becomes narrower on the eccentric side. Therefore, the speed at which the fuel and combustion air introduced into the space between the outer cylinder portion and the inner cylinder portion from the through hole in the outer cylinder portion near the fuel injection device go around the inner cylinder portion, and the fuel injection device The speed at which the fuel and combustion air introduced into the space between the outer cylinder part and the inner cylinder part from the through hole of the outer cylinder part at a position away from the inner cylinder part is substantially uniform. Since the mixing of the fuel and the combustion air is suppressed and the concentration of the fuel in the air-fuel mixture is partially kept high, a large amount of black and stable PM with a small amount of SOF is generated.

本発明に係るPM発生装置は、その好ましい態様により、筐体部の円筒状部分の中心軸方向に垂直な断面に、その中心軸を通り相互に直角をなすX軸及びY軸からなる座標軸を設定した場合において、筐体部の円筒状部分の内壁がY=+100に位置するとき、外筒部の周面に備わる複数の貫通孔のうちの少なくとも1つが、Y=+70〜90の位置に設けら、貫通孔と燃料噴射手段との位置関係が、外筒部の周面に備わる複数の貫通孔のうちの少なくとも1つと上記座標軸の原点と燃料噴射手段とが形成する角度が10〜40°になるような位置関係である。そのため、燃料と燃焼用空気は、外筒部の周面と滑らかに衝突し、更に、燃料噴射装置と貫通孔との距離が適度に短いので、燃料と燃焼用空気とによる混合気は、燃料の濃度が高く維持されたまま、外筒部貫通孔から外筒部内部へと導入されるので、SOF量の少ない、黒色で安定したPMが多量に発生する。上記角度が40°より大きくなると、燃料と燃焼用空気は外筒部の周面と激しく衝突し、貫通孔も燃料噴射装置から離れるので、燃料と燃焼用空気は混合し易くなるため、茶色でSOF量が多く、PM発生量も少なくなり易い。上記角度が10°より小さく貫通孔が燃料噴射装置に近過ぎると、燃料が気体となる前に導入され燃焼するため、PMの粒径分布が広く、粒径が大きくなるので、ディーゼルエンジン等からの排気ガスとは異なるものとなる。   According to a preferred embodiment of the PM generator according to the present invention, a coordinate axis composed of an X axis and a Y axis passing through the central axis and perpendicular to each other in a cross section perpendicular to the central axis direction of the cylindrical portion of the casing portion. In the case of setting, when the inner wall of the cylindrical portion of the housing portion is located at Y = + 100, at least one of the plurality of through holes provided in the peripheral surface of the outer cylinder portion is at a position of Y = + 70 to 90. The positional relationship between the through hole and the fuel injection means is such that the angle formed by at least one of the plurality of through holes provided on the peripheral surface of the outer cylinder portion, the origin of the coordinate axis, and the fuel injection means is 10 to 40. The position is such that the angle becomes °. For this reason, the fuel and the combustion air smoothly collide with the peripheral surface of the outer cylinder portion, and the distance between the fuel injection device and the through hole is moderately short. In the outer cylinder part, it is introduced into the outer cylinder part while maintaining a high concentration of NO. Therefore, a large amount of black and stable PM with a small SOF amount is generated. If the angle is larger than 40 °, the fuel and combustion air collide violently with the peripheral surface of the outer cylinder, and the through hole is also away from the fuel injection device. The amount of SOF is large and the amount of PM generated tends to be small. If the angle is less than 10 ° and the through hole is too close to the fuel injection device, the fuel is introduced and burned before it becomes gas, so the PM particle size distribution is wide and the particle size is large. This is different from the exhaust gas.

本発明に係るPM発生装置は、その好ましい態様により、燃焼室に備わる外筒部の内側の容積(L)が、供給される最大の前記燃焼用空気の流量(Nm/min)の、1.2〜1.5倍以上であるため、使用される最大の燃焼用空気の流量に対し、充分大きい。又、燃焼室に備わる外筒部の内径(mm)は、燃焼室の内径(mm)の2乗を、供給される最大の燃焼用空気の流量(Nm/min)で除した値が、2.0×10〜2.3×10倍以上であり、更には、外筒部の周面に備わる貫通孔の径と、外筒部の内径(内側直径)と、の比が5:100〜20:100、より好ましくは、7:100〜15:100であり、各部分の流速が充分に低くなるように設定されているので、燃料と燃焼用空気の混合が抑制され、部分的に燃料の濃度が高い混合気として維持される。従って、その混合気中の燃料が蒸し焼きとなり、SOF量の少ない、黒色で安定したPMが多量に発生する。燃焼室の容積が1.2未満では流速が速く、燃料が燃焼用空気と混合し易く、燃料濃度が薄くなるため、茶色のPMとなり、SOF量も多く、PM発生量が少なくなり易いが、本発明によれば、このような問題は生じない。 According to a preferred embodiment of the PM generator according to the present invention, the inner volume (L) of the outer cylinder part provided in the combustion chamber is 1 at the maximum flow rate (Nm 3 / min) of the supplied combustion air. Since it is 2 to 1.5 times or more, it is sufficiently large for the maximum flow rate of combustion air used. Further, the inner diameter (mm) of the outer cylinder portion provided in the combustion chamber is a value obtained by dividing the square of the inner diameter (mm) of the combustion chamber by the maximum flow rate (Nm 3 / min) of the supplied combustion air. 2.0 × 10 4 to 2.3 × 10 4 times or more, and furthermore, the ratio of the diameter of the through-hole provided in the peripheral surface of the outer cylinder part to the inner diameter (inner diameter) of the outer cylinder part is 5 : 100 to 20: 100, more preferably 7: 100 to 15: 100, and the flow rate of each part is set to be sufficiently low, so that mixing of fuel and combustion air is suppressed, and the part In particular, it is maintained as an air-fuel mixture with a high fuel concentration. Therefore, the fuel in the air-fuel mixture is steamed and a large amount of black and stable PM with a small amount of SOF is generated. If the volume of the combustion chamber is less than 1.2, the flow rate is fast, the fuel is easy to mix with the combustion air, and the fuel concentration becomes thin, so it becomes brown PM, the amount of SOF is large, and the amount of PM generated tends to be small. According to the present invention, such a problem does not occur.

即ち、本発明に係るPM発生装置は、燃焼室が、筐体部とその筐体部の中に組み込まれた外筒部とその外筒部の中に組み込まれた内筒部とを有し、外筒部及び内筒部は、それぞれの周面に複数の貫通孔を備え、燃料噴射手段によって筐体部と外筒部との間の空間に噴射された燃料と、空気入口から筐体部と外筒部との間の空間に供給された燃焼用空気とが、外筒部の貫通孔を介して外筒部と内筒部との間の空間へ導入され混合をされるように構成されているが、このような構造は、燃焼室の大きさに比べ、燃焼用空気の多い範囲(上記した外筒部の内側の容積(L)が使用される最大の燃焼用空気の流量に対し充分大きい範囲)では、燃料濃度を、不均一なもの、濃淡があるもの、とするに好都合な構造ということが出来る。   That is, in the PM generator according to the present invention, the combustion chamber has a casing part, an outer cylinder part incorporated in the casing part, and an inner cylinder part incorporated in the outer cylinder part. The outer cylinder part and the inner cylinder part are provided with a plurality of through holes in the respective peripheral surfaces, the fuel injected into the space between the casing part and the outer cylinder part by the fuel injection means, and the casing from the air inlet Combustion air supplied to the space between the outer cylinder part and the outer cylinder part is introduced into the space between the outer cylinder part and the inner cylinder part via the through hole of the outer cylinder part and mixed. Although configured, such a structure has a larger range of combustion air than the size of the combustion chamber (the maximum flow rate of combustion air in which the volume (L) inside the outer cylinder portion described above is used). In a sufficiently large range), it can be said that the fuel concentration is convenient for making the fuel concentration non-uniform or light and dark.

本発明に係るPM発生装置は、その好ましい態様により、筐体部のガス出口の径と外筒部の内径の比が10:100〜50:100であり、筐体部のガス出口の径を小さくしているので、燃焼室に圧力がかかり、燃焼の殆どが流速の低い燃焼室で生じる。従って、燃料と燃焼用空気の混合が抑制され、燃料の濃度が高い混合気として維持されるため、その混合気中の燃料が蒸し焼きとなり、SOF量の少ない、黒色で安定したPMが多量に発生する。上記範囲を外れ、外筒部の内径を100としたとき、筐体部のガス出口の径が50より大きいと、燃焼室にかかる圧力が低いため、燃焼が燃焼室の外で生じ、その間に、燃料が燃焼用空気と混合し、燃料濃度が薄くなるため、茶色のPMとなり、SOF量も多く、PM発生量が少なくなり易いが、本発明によれば、このような問題は生じない。   In the PM generator according to the present invention, the ratio of the diameter of the gas outlet of the housing part to the inner diameter of the outer cylinder part is 10: 100 to 50: 100, and the diameter of the gas outlet of the housing part is set according to the preferred mode. Since it is small, pressure is applied to the combustion chamber, and most of the combustion occurs in the combustion chamber with a low flow rate. Therefore, mixing of fuel and combustion air is suppressed, and the mixture is maintained as a fuel mixture with a high fuel concentration, so the fuel in the fuel mixture is steamed and a large amount of black, stable PM with a small amount of SOF is generated. To do. Out of the above range, when the inner cylinder has an inner diameter of 100, if the diameter of the gas outlet of the housing is larger than 50, the pressure applied to the combustion chamber is low, so combustion occurs outside the combustion chamber, Since the fuel is mixed with the combustion air and the fuel concentration is reduced, the PM becomes brown PM, the amount of SOF is large, and the amount of generated PM tends to decrease. However, according to the present invention, such a problem does not occur.

本発明に係るPM発生装置は、その好ましい態様により、燃料の噴射圧力が0.1〜1.0(MPa)であり、圧力が高く、範囲が広い。従って、間欠噴射により圧力を高く設定した場合には、同じ流量の燃料を短時間に噴射出来るので、より高濃度の燃料を含む混合気となり、PMを多量に発生させることが可能となる。又、その圧力を様々に変化させることで、広い範囲のPM発生量の制御や、発生したPMの色、SOF量を、自由に制御可能となるため、排気ガス浄化装置の性能や耐久性を、正確に、高い精度で、評価する手段として好適である。   In the PM generator according to the present invention, the fuel injection pressure is 0.1 to 1.0 (MPa), the pressure is high, and the range is wide according to the preferred embodiment. Therefore, when the pressure is set high by intermittent injection, the fuel having the same flow rate can be injected in a short time, so that the air-fuel mixture includes a higher concentration of fuel and a large amount of PM can be generated. In addition, by changing the pressure in various ways, it is possible to freely control the PM generation amount in a wide range, the color of the generated PM, and the SOF amount, so that the performance and durability of the exhaust gas purification device can be improved. It is suitable as a means for evaluating accurately and with high accuracy.

得ようとするPMを発生させたガスの流量が少ない場合、即ち、PM発生装置において燃料及び燃焼用空気の流量が少ない場合には、燃焼において燃焼室の温度が充分に上昇せず、茶色のPMとなり、SOF量は多く、PM発生量が少なくなってしまう、という欠点を生じ得るが、本発明に係るPM発生装置は、その好ましい態様により、燃焼室、燃料噴射手段、及びパイロットバーナを、複数、具備することで、流量に対応した仕様を実現することが出来、小流量から大流量までに対応可能なPM発生装置とすることが出来る。更に、複数の燃焼室の容積を同一とせず、少なくとも一つを変えることによって、PMを発生させたガスが、より少流量から大流量の場合までを、カバーすることが出来る。   When the flow rate of the gas that generates the PM to be obtained is small, that is, when the flow rates of the fuel and the combustion air are small in the PM generator, the temperature of the combustion chamber does not rise sufficiently during combustion, Although it becomes PM, the amount of SOF is large and the amount of generated PM may be reduced, the PM generator according to the present invention has a combustion chamber, a fuel injection unit, and a pilot burner according to a preferable aspect thereof. By providing a plurality, specifications corresponding to the flow rate can be realized, and a PM generator capable of handling from a small flow rate to a large flow rate can be obtained. Furthermore, by changing at least one of the plurality of combustion chambers without making the volumes the same, it is possible to cover the case where the gas in which the PM is generated has a smaller flow rate to a larger flow rate.

本発明に係るPM発生装置は、実際のディーゼルエンジン等からの排気ガスを利用していないので、設備をより小型化することが可能であり、コストを抑制出来る。又、実際のディーゼルエンジンでは、排気ガスの流量、PM発生量、排気ガスの温度、SOF量、を独立して制御出来ない。しかし、この点においても、本発明のPM発生装置は、各々を独立して制御可能であり、ディーゼルエンジン等からの排気ガスを十分に模擬しながら、一定条件で排気ガス浄化装置へ排気ガスを供給することが出来るので、より優れた手段であるといえる。従って、排気ガス浄化装置へ供給する評価用の排気ガスを製造し供給する手段として好適なものである。   Since the PM generator according to the present invention does not use exhaust gas from an actual diesel engine or the like, the facility can be further downsized and the cost can be suppressed. In an actual diesel engine, the exhaust gas flow rate, PM generation amount, exhaust gas temperature, and SOF amount cannot be controlled independently. However, in this respect as well, the PM generator of the present invention can be controlled independently, and exhaust gas is supplied to the exhaust gas purification device under certain conditions while sufficiently simulating exhaust gas from a diesel engine or the like. It can be said that it is a better means because it can be supplied. Therefore, it is suitable as a means for producing and supplying an exhaust gas for evaluation to be supplied to the exhaust gas purification device.

得ようとするPMを発生させたガスの流量が少ない場合には、即ち、PM発生装置において燃料及び燃焼用空気の流量が少ない場合には、燃焼室の温度が充分に上昇せず、茶色のPMとなり、SOF量が多く、PM発生量が少ないという問題が生じ得るが、本発明に係る排気ガス浄化装置の評価装置は、本発明に係るPM発生装置を、複数、具備することで、そのような欠点をカバーすることが出来、PMを発生させたガスが、小流量から大流量の場合までをカバーした排気ガス浄化装置の評価装置とすることが出来る。更に、具備する複数のPM発生装置におけるそれぞれの燃焼室の容積を同一とせず、少なくとも一つを変えることで、より少流量から大流量の場合までをカバーすることが可能である。従って、大型から小型排気ガス浄化装置まで一つの排気ガス浄化装置で性能や耐久性を正確に高い精度で評価する手段として好適である。   When the flow rate of the gas that generates the PM to be obtained is small, that is, when the flow rate of fuel and combustion air is small in the PM generator, the temperature of the combustion chamber does not rise sufficiently, Although it becomes PM and there is a problem that the amount of SOF is large and the amount of PM generated is small, the evaluation apparatus for the exhaust gas purifying apparatus according to the present invention includes a plurality of PM generating apparatuses according to the present invention. Such a defect can be covered, and an evaluation apparatus for an exhaust gas purification apparatus that covers a case where the gas that generates PM is from a small flow rate to a large flow rate can be provided. Furthermore, the volume of each combustion chamber in the plurality of PM generators provided is not the same, and by changing at least one, it is possible to cover the case of a smaller flow rate to a larger flow rate. Therefore, it is suitable as a means for accurately evaluating performance and durability with a single exhaust gas purification device from large to small exhaust gas purification devices.

以下、本発明について、適宜、図面を参酌しながら、実施の形態を説明するが、本発明はこれらに限定されて解釈されるべきものではない。本発明の要旨を損なわない範囲で、当業者の知識に基づいて、種々の変更、修正、改良、置換を加え得るものである。例えば、図面は、好適な本発明の実施の形態を表すものであるが、本発明は図面に表される態様や図面に示される情報により制限されない。本発明を実施し又は検証する上では、本明細書中に記述されたものと同様の手段若しくは均等な手段が適用され得るが、好適な手段は、以下に記述される手段である。   Hereinafter, embodiments of the present invention will be described with appropriate reference to the drawings, but the present invention should not be construed as being limited thereto. Various changes, modifications, improvements, and substitutions can be added based on the knowledge of those skilled in the art without departing from the scope of the present invention. For example, the drawings show preferred embodiments of the present invention, but the present invention is not limited by the modes shown in the drawings or the information shown in the drawings. In practicing or verifying the present invention, the same means as described in this specification or equivalent means can be applied, but preferred means are those described below.

先ず、本発明に係るPM発生装置について説明する。図1〜図6は、本発明に係るPM発生装置の一の実施形態を示す図である。図1は上面図であり、図2は側面図であり、図3は図1におけるPP断面を示す図であり、図4は図2におけるQQ断面を示す図である。又、図5は内部を分解して表す斜視図であり、図6は、燃料及び燃焼用空気の流れを説明するために図4において筐体部を拡大し燃料噴射手段を簡略化して描いた図である。   First, the PM generator according to the present invention will be described. 1-6 is a figure which shows one Embodiment of PM generator which concerns on this invention. 1 is a top view, FIG. 2 is a side view, FIG. 3 is a view showing a PP section in FIG. 1, and FIG. 4 is a view showing a QQ section in FIG. 5 is an exploded perspective view showing the inside, and FIG. 6 is a simplified illustration of the fuel injection means by enlarging the casing in FIG. 4 to explain the flow of fuel and combustion air. FIG.

図1〜図6に示されるPM発生装置10は、燃料131を噴射する燃料噴射手段3と燃焼を生じる燃焼室1とを具備する装置である。PM発生装置10は、燃焼用空気132を、空気入口113から燃焼室1へ、連続して供給するとともに、燃料131を、燃料噴射手段3によって好ましくは間欠で燃焼室1へ噴射することにより、高濃度燃料の混合気を生成し、この高濃度燃料の混合気が、燃焼室1において、燃焼用空気と接する側(外側)から燃焼するため、燃焼用空気と接しない側(内側)の燃料(気体)が燃焼用空気と遮断され、燃焼の熱によって蒸し焼き状態となり、排気ガスの中にPMが発生する装置である。即ち、PM発生装置10は、PMを発生させたガス(PM含有ガス133)を製造することが可能な装置である。   The PM generator 10 shown in FIGS. 1 to 6 is a device that includes a fuel injection means 3 that injects fuel 131 and a combustion chamber 1 that generates combustion. The PM generator 10 continuously supplies the combustion air 132 from the air inlet 113 to the combustion chamber 1 and injects the fuel 131 into the combustion chamber 1 by the fuel injection means 3, preferably intermittently. A high-concentration fuel mixture is generated, and this high-concentration fuel mixture burns from the side (outside) in contact with the combustion air in the combustion chamber 1, so the fuel on the side not in contact with the combustion air (inside) This is a device in which (gas) is cut off from the combustion air, becomes steamed by the heat of combustion, and PM is generated in the exhaust gas. That is, the PM generator 10 is an apparatus capable of producing a gas that generates PM (PM-containing gas 133).

PM発生装置10の燃料噴射手段3は、自らが噴射する燃料131の噴射方向(図6を参照)が、円筒状の外筒部6の中心軸方向(図5において横方向)に対し概ね直角であり、且つ、外筒部6の中心軸方向に垂直な断面(円形又は円輪形)の接線方向に傾くように、筐体部5に設けられる(図4及び図6を参照)。燃料噴射手段3としては、例えば、筐体部5と外筒部6との間の空間101に、燃料131を間欠で噴射することが可能な電磁式インジェクタが採用される。   In the fuel injection means 3 of the PM generator 10, the injection direction (see FIG. 6) of the fuel 131 injected by itself is substantially perpendicular to the central axis direction (lateral direction in FIG. 5) of the cylindrical outer cylinder portion 6. And is provided in the housing 5 so as to be inclined in a tangential direction of a cross section (circular or annular) perpendicular to the central axis direction of the outer cylinder portion 6 (see FIGS. 4 and 6). As the fuel injection means 3, for example, an electromagnetic injector capable of intermittently injecting fuel 131 into the space 101 between the casing 5 and the outer cylinder 6 is employed.

PM発生装置10の燃焼室1は、分割面53で2つに分割し内部を開くことが可能な筐体部5と、その筐体部5の円筒状部分5aの中に収められた外筒部6、内筒部7、及び外筒部6を保持するリング4を有する。外筒部6は円筒状を呈し、筐体部5の円筒状部分5aの中に、その筐体部5の円筒状部分5aと同軸になるように組み込まれ、更に、円筒状の内筒部7が、外筒部6の中に、外筒部6と中心軸方向を同じくし且つ偏心して(図3及び図4を参照)、組み込まれている。PM発生装置10の燃焼室1では、円筒状の外筒部6は、燃焼用空気が供給される空気入口113と連通しており、円筒状の内筒部7は、空気入口113と直接連通しておらず、パイロットバーナ2に通じる火炎入口51と連通している(図3を参照)。外筒部6、前板部8、及び後板部9の中心軸方向の長さは、筐体部5の円筒状部分5aの内側における中心軸方向の長さD(図3を参照)に対し、98%の大きさである。換言すれば、外筒部6、前板部8、及び後板部9の中心軸方向の長さと、筐体部5の円筒状部分5aの軸方向の長さDと、の比が98:100になっている。   The combustion chamber 1 of the PM generator 10 is divided into two at a dividing surface 53 and can be opened inside, and an outer cylinder housed in a cylindrical portion 5a of the casing 5 A ring 4 that holds the part 6, the inner cylinder part 7, and the outer cylinder part 6 is provided. The outer cylindrical portion 6 has a cylindrical shape, is incorporated in the cylindrical portion 5a of the casing portion 5 so as to be coaxial with the cylindrical portion 5a of the casing portion 5, and further, the cylindrical inner cylindrical portion 7 is incorporated in the outer cylinder part 6 in the same direction as the outer cylinder part 6 and in the eccentric direction (see FIGS. 3 and 4). In the combustion chamber 1 of the PM generator 10, the cylindrical outer cylinder portion 6 communicates with an air inlet 113 to which combustion air is supplied, and the cylindrical inner cylinder portion 7 communicates directly with the air inlet 113. It communicates with a flame inlet 51 leading to the pilot burner 2 (see FIG. 3). The length in the central axis direction of the outer cylinder portion 6, the front plate portion 8, and the rear plate portion 9 is the length D in the central axis direction inside the cylindrical portion 5a of the housing portion 5 (see FIG. 3). On the other hand, it is 98%. In other words, the ratio of the length in the central axis direction of the outer cylinder portion 6, the front plate portion 8, and the rear plate portion 9 to the axial length D of the cylindrical portion 5a of the housing portion 5 is 98: 100.

筐体部5には、パイロットバーナ2に通じる火炎入口51及びPMを発生させたガスを送出するガス出口52が形成され、前板部8は、ガス出口52に通じる開口81を備え、筐体部5の円筒状部分5aの中に組み込まれてガス出口52側の端面を構成し、後板部9は、火炎入口51に通じる開口91を備え、筐体部5の円筒状部分5aの中に組み込まれて火炎入口51側の端面を構成する。ガス出口52の径Cは、外筒部6の内径Aに対し、25%の大きさである(図3を参照)。換言すれば、ガス出口52の径Cと、外筒部6の内径Aと、の比C:Aは、25:100になっている。燃焼室1では、前板部8と外筒部6とは一体化していないが、後板部9と内筒部7とは一体化している。又、リング4と筐体部5の間にはガスケット301が挿入され、後板部9と筐体部5の間には図示しない非膨張セラミックス繊維性マットが挿入されている。   The casing 5 is formed with a flame inlet 51 that leads to the pilot burner 2 and a gas outlet 52 that sends out gas that has generated PM, and the front plate 8 includes an opening 81 that leads to the gas outlet 52. It is incorporated in the cylindrical part 5a of the part 5 to constitute the end face on the gas outlet 52 side, and the rear plate part 9 is provided with an opening 91 leading to the flame inlet 51, and the inside of the cylindrical part 5a of the casing part 5 And constitutes an end face on the flame inlet 51 side. The diameter C of the gas outlet 52 is 25% of the inner diameter A of the outer cylinder portion 6 (see FIG. 3). In other words, the ratio C: A between the diameter C of the gas outlet 52 and the inner diameter A of the outer cylinder portion 6 is 25: 100. In the combustion chamber 1, the front plate portion 8 and the outer cylinder portion 6 are not integrated, but the rear plate portion 9 and the inner cylinder portion 7 are integrated. Further, a gasket 301 is inserted between the ring 4 and the casing 5, and a non-expanded ceramic fibrous mat (not shown) is inserted between the rear plate 9 and the casing 5.

燃焼室1において、外筒部6は、その周面に貫通孔61を備えている。貫通孔61は、円筒状の外筒部6の中心軸方向(図5において横方向)に3つの層を形成するように設けられ、各層毎に、円筒状の外筒部6の中心軸方向に垂直な断面の周上に、均等間隔で(中心角が90°になるように)4つ配設されている。即ち、外筒部6には、合計で(3×4=)12の貫通孔61が備わっている。外筒部6の貫通孔61は、全て、外筒部6の中心軸方向に垂直な断面(円形又は円輪形)の接線方向(外筒部の周面の方向)に傾いて形成されており(図4を参照)、貫通孔61が傾く結果、外筒部6の表面には楕円形の開口が形成される(図5を参照)。貫通孔61の径Bは、外筒部6の内径Aに対して7%の大きさである(図4を参照)。換言すれば、貫通孔61の径Bと、外筒部6の内径Aと、の比B:Aは7:100になっている。尚、貫通孔61の径Bは、図4に示されるように、外筒部6の表面の楕円形の開口で定められるのではなく、貫通孔61自体の中心軸方向に垂直な断面の直径として求められる。   In the combustion chamber 1, the outer cylinder portion 6 includes a through hole 61 on its peripheral surface. The through-hole 61 is provided so as to form three layers in the central axis direction (lateral direction in FIG. 5) of the cylindrical outer cylinder part 6, and the central axis direction of the cylindrical outer cylinder part 6 is provided for each layer. Four are arranged at equal intervals (so that the central angle is 90 °) on the circumference of the cross section perpendicular to the vertical axis. That is, the outer cylinder portion 6 is provided with a total of (3 × 4 =) 12 through holes 61. The through holes 61 of the outer cylinder part 6 are all formed to be inclined in the tangential direction (direction of the peripheral surface of the outer cylinder part) of the cross section (circular or annular shape) perpendicular to the central axis direction of the outer cylinder part 6. As a result of the through hole 61 being inclined (see FIG. 4), an elliptical opening is formed on the surface of the outer cylinder portion 6 (see FIG. 5). The diameter B of the through hole 61 is 7% of the inner diameter A of the outer cylinder portion 6 (see FIG. 4). In other words, the ratio B: A between the diameter B of the through-hole 61 and the inner diameter A of the outer cylinder portion 6 is 7: 100. As shown in FIG. 4, the diameter B of the through hole 61 is not determined by an elliptical opening on the surface of the outer cylindrical portion 6, but is a diameter of a cross section perpendicular to the central axis direction of the through hole 61 itself. As required.

一方、内筒部7は、その周面に貫通孔71を備えている。貫通孔71は、円筒状の内筒部7の中心軸方向(図5において横方向)に2つの層を形成するように設けられ、各層毎に、円筒状の内筒部7の中心軸方向に垂直な断面の周上に、均等間隔で(中心角が90°になるように)4つ配設されている。即ち、内筒部7には、合計で(2×4=)8の貫通孔71が備わっている。内筒部7の貫通孔71は、全て、傾いて形成されておらず、内筒部7の中心軸方向に垂直な断面(円形又は円輪形)の法線方向(周面から中心軸へ向けた方向)に向けて形成され(図4を参照)、その結果、内筒部7の表面には円形の開口が形成される(図5を参照)。   On the other hand, the inner cylinder part 7 is provided with a through hole 71 on its peripheral surface. The through-hole 71 is provided so as to form two layers in the central axis direction (lateral direction in FIG. 5) of the cylindrical inner cylinder portion 7, and the central axis direction of the cylindrical inner cylinder portion 7 is provided for each layer. Four are arranged at equal intervals (so that the central angle is 90 °) on the circumference of the cross section perpendicular to the vertical axis. That is, the inner cylinder portion 7 is provided with a total of (2 × 4 =) 8 through holes 71. The through-holes 71 of the inner cylinder part 7 are not formed to be inclined at all, and the normal direction (from the circumferential surface to the central axis) of the cross section (circular or annular shape) perpendicular to the central axis direction of the inner cylinder part 7 (See FIG. 4), and as a result, a circular opening is formed on the surface of the inner cylinder portion 7 (see FIG. 5).

PM発生装置10において、外筒部6は、燃焼用空気が供給される空気入口113と連通しており、円筒状の内筒部7は空気入口113とは、直接、連通しておらず、パイロットバーナ2(に通じる火炎入口51)と連通している(図3を参照)。燃料噴射手段3によって筐体部5と外筒部6との間の空間101に噴射された燃料131は、気化し、外筒部6の貫通孔61を介して外筒部6と内筒部7との間の空間102へ導入され、燃焼する。このとき、燃料噴射手段3は、燃料131の噴射方向が既述の如く傾くように、筐体部5に設けられるから、燃料噴射手段3によって筐体部5と外筒部6との間の空間101へ噴射された燃料は、外筒部6の周面を廻りながら、外筒部6の貫通孔61を介して、外筒部6と内筒部7との間の空間102へ導入される(図6を参照)。   In the PM generator 10, the outer cylinder portion 6 communicates with an air inlet 113 to which combustion air is supplied, and the cylindrical inner cylinder portion 7 does not communicate directly with the air inlet 113. It communicates with the pilot burner 2 (flame inlet 51 leading to) (see FIG. 3). The fuel 131 injected into the space 101 between the casing 5 and the outer cylinder 6 by the fuel injection means 3 is vaporized, and the outer cylinder 6 and the inner cylinder via the through hole 61 of the outer cylinder 6. 7 is introduced into the space 102 between the two and burned. At this time, since the fuel injection means 3 is provided in the housing part 5 so that the injection direction of the fuel 131 is inclined as described above, the fuel injection means 3 is provided between the housing part 5 and the outer cylinder part 6. The fuel injected into the space 101 is introduced into the space 102 between the outer cylinder portion 6 and the inner cylinder portion 7 through the through hole 61 of the outer cylinder portion 6 while going around the peripheral surface of the outer cylinder portion 6. (See FIG. 6).

空気入口113から筐体部5と外筒部6との間の空間101に連続供給された燃焼用空気132は、外筒部6の周面を廻りながら、外筒部6の貫通孔61を介して、外筒部6と内筒部7との間の空間102へ導入される(図6を参照)。そして、筐体部5と外筒部6との間の空間101に、好ましくは間欠で噴射された燃料131は、外筒部6の周面を廻りながら、外筒部6の貫通孔61を介して、外筒部6と内筒部7との間の空間102へ導入され、燃焼用空気132と接する側(外側)が燃焼し、接しない側(内側)の燃料(気体)は、空気と遮断され、燃焼の熱によって蒸し焼き状態となり、PMが発生し、PM含有ガス133となって、ガス出口52から、排気ガス浄化装置等へ供給される。PM発生装置10は、外筒部6、内筒部7、前板部8、後板部9は全て、インコネル材料で形成されたものであり、上記PMを発生させる不完全な燃焼は、全てインコネル材料からなる部材で囲われた空間で生じる。空気入口113は、燃料噴射手段3の近傍に設けられており、装置のコンパクト化、メンテナンス性向上の観点から都合がよい構造になっている。   Combustion air 132 continuously supplied from the air inlet 113 to the space 101 between the casing 5 and the outer cylinder 6 passes through the through-hole 61 of the outer cylinder 6 while rotating around the outer surface of the outer cylinder 6. And introduced into the space 102 between the outer cylinder portion 6 and the inner cylinder portion 7 (see FIG. 6). Then, the fuel 131 injected preferably into the space 101 between the housing 5 and the outer cylinder 6 preferably intermittently passes through the through-hole 61 of the outer cylinder 6 while going around the outer surface of the outer cylinder 6. The side (outside) that is introduced into the space 102 between the outer cylinder portion 6 and the inner cylinder portion 7 is in contact with the combustion air 132, and the fuel (gas) on the side that is not in contact (inside) is air. Then, it is in a steamed state by the heat of combustion, PM is generated, becomes PM-containing gas 133, and is supplied from the gas outlet 52 to an exhaust gas purification device or the like. In the PM generator 10, the outer cylinder portion 6, the inner cylinder portion 7, the front plate portion 8, and the rear plate portion 9 are all formed of Inconel material, and the incomplete combustion that generates the PM is all It occurs in a space surrounded by a member made of Inconel material. The air inlet 113 is provided in the vicinity of the fuel injection means 3 and has a structure that is convenient from the viewpoint of compactness of the apparatus and improvement of maintenance.

なお、PM発生装置10は、外筒部6、内筒部7、前板部8、後板部9を全て、インコネル材料で形成する代わりに、セラミック材料(窒化珪素)で形成されたものとすることもできる。このようにセラミック材料(窒化珪素)で形成すると、PM発生装置10の耐久性能が向上する。さらに、セラミック材料は、金属材料に比べて熱変形が生じ難いため、熱変形に起因するPM発生量の低下を防止することができるという利点がある。   The PM generator 10 is formed of a ceramic material (silicon nitride) instead of all of the outer cylinder portion 6, the inner cylinder portion 7, the front plate portion 8, and the rear plate portion 9 made of Inconel material. You can also When the ceramic material (silicon nitride) is used in this way, the durability performance of the PM generator 10 is improved. Furthermore, since the ceramic material is less likely to be thermally deformed than the metal material, there is an advantage that a decrease in the amount of PM generated due to the heat deformation can be prevented.

ここで、図6に示された座標軸を用いて、PM発生装置10における燃料噴射手段3及び貫通孔61の位置、並びに外筒部6の中心軸に対し内筒部7の中心軸がずれる方向について説明する。図6における座標軸は、筐体部5の円筒状部分の中心軸方向に垂直な断面に、その中心軸を通り相互に直角をなすように設定されたX軸及びY軸からなるものである。   Here, using the coordinate axes shown in FIG. 6, the position of the fuel injection means 3 and the through hole 61 in the PM generator 10, and the direction in which the central axis of the inner cylindrical portion 7 deviates from the central axis of the outer cylindrical portion 6. Will be described. The coordinate axes in FIG. 6 are composed of an X axis and a Y axis set so as to pass through the central axis and make a right angle to each other in a cross section perpendicular to the central axis direction of the cylindrical portion of the housing portion 5.

PM発生装置10では、座標軸上において、筐体部5の円筒状部分の内壁がY=+100に位置するとき、それに対し、燃料噴射手段3は、Y=+60の位置に、且つ、燃料の噴射方向がX軸に平行になるように、筐体部5に設けられている。外筒部6の貫通孔61のうちの1つである貫通孔61aの設けられる位置は、Y=+70の位置である。そして、既述のように外筒部6と内筒部7とは偏心しているが、それは内筒部7の中心軸が外筒部6の中心軸より−Y側にずれることによって実現されている。即ち、座標軸上で、燃料噴射手段3は+Y側に設けられ、それとは反対の−Y側で、外筒部6と内筒部7とが偏心している。又、PM発生装置10では、外筒部6の貫通孔61のうちの1つである貫通孔61aと座標軸の原点Oと燃料噴射手段3とが形成する角度θは、27°になっている。   In the PM generator 10, when the inner wall of the cylindrical portion of the casing 5 is located at Y = + 100 on the coordinate axis, the fuel injection means 3 is at the position of Y = + 60 and the fuel is injected. The casing 5 is provided so that the direction is parallel to the X axis. The position where the through hole 61a which is one of the through holes 61 of the outer cylinder part 6 is provided is a position of Y = + 70. As described above, the outer cylinder part 6 and the inner cylinder part 7 are eccentric, but this is realized by the center axis of the inner cylinder part 7 being shifted from the center axis of the outer cylinder part 6 to the -Y side. Yes. That is, the fuel injection means 3 is provided on the + Y side on the coordinate axis, and the outer cylinder portion 6 and the inner cylinder portion 7 are eccentric on the opposite -Y side. Further, in the PM generator 10, the angle θ formed by the through hole 61 a that is one of the through holes 61 of the outer cylinder portion 6, the origin O of the coordinate axis, and the fuel injection means 3 is 27 °. .

次に、本発明に係る排気ガス浄化装置の評価装置について説明する。図7は、本発明に係る排気ガス浄化装置の評価装置(単に「評価装置」ともいう)の一の実施形態を示す構成図である。図7に示される評価装置20は、4台の上記したPM発生装置10(No.1,2,3,4)を具備し、それらで製造されたPM含有ガスをPM含有ガス混合手段によって混合し、得られた混合PM含有ガスを、排気ガス浄化装置32へ供給することによって、その排気ガス浄化装置32の評価を行うことが可能な装置である。混合PM含有ガスは、切替弁22,23によって、排気ガス浄化装置32へ供給されるか否か選択される。又、切替弁22,23の下流には、例えば熱電対で構成される温度検出器33が取り付けられており、得られた混合PM含有ガスの温度を検出する。尚、図7において、各PM発生装置10の燃料間欠噴射手段、パイロットバーナ2等の詳細部分は省略され描かれていない。   Next, an evaluation apparatus for an exhaust gas purification apparatus according to the present invention will be described. FIG. 7 is a configuration diagram showing an embodiment of an exhaust gas purifying apparatus evaluation apparatus (also simply referred to as “evaluation apparatus”) according to the present invention. The evaluation apparatus 20 shown in FIG. 7 includes the four above-described PM generators 10 (No. 1, 2, 3, 4), and the PM-containing gas produced by them is mixed by the PM-containing gas mixing means. Then, by supplying the obtained mixed PM-containing gas to the exhaust gas purification device 32, the exhaust gas purification device 32 can be evaluated. Whether the mixed PM-containing gas is supplied to the exhaust gas purification device 32 by the switching valves 22 and 23 is selected. Further, a temperature detector 33 constituted by, for example, a thermocouple is attached downstream of the switching valves 22 and 23, and detects the temperature of the obtained mixed PM-containing gas. In FIG. 7, details of the intermittent fuel injection means, the pilot burner 2 and the like of each PM generator 10 are omitted and not drawn.

PM含有ガス混合手段は、PM発生装置10が製造したPM含有ガスの温度を調整する二次空気供給部31と、No.1〜4のPM含有ガスを合流させ混合するメインヘッダ部21と、によって実現されている。即ち、評価装置20では、4台のPM発生装置10が並列に接続され、最終的にメインヘッダ部21に合流し混合された混合PM含有ガスが、排気ガス浄化装置32へ供給される。尚、本発明に係る排気ガス浄化装置の評価装置では、PM含有ガス混合手段は、4台に限らず複数であって、同じものではなく異なる仕様のPM発生装置を、並列に接続で構成された態様とすることも可能である。   The PM-containing gas mixing means includes a secondary air supply unit 31 that adjusts the temperature of the PM-containing gas produced by the PM generator 10, and This is realized by the main header portion 21 that mixes and mixes 1 to 4 PM-containing gases. That is, in the evaluation device 20, four PM generators 10 are connected in parallel, and finally the mixed PM-containing gas that has joined and mixed with the main header portion 21 is supplied to the exhaust gas purification device 32. In the exhaust gas purifying apparatus evaluation apparatus according to the present invention, the number of PM-containing gas mixing means is not limited to four, and there are a plurality of PM generators that are not the same, but are configured by connecting in parallel PM generators of different specifications. It is also possible to adopt an embodiment.

評価装置20では、各PM発生装置10において、PM含有ガスが送出される出口に、二次空気供給部31が取り付けられている。それぞれの二次空気供給部31では、各PM発生装置10で製造されたPM含有ガスに、図示しないコンプレッサ等の二次空気供給手段によって流路15から供給された二次空気が合流し混合され、その二次空気の流量を調節することによって、各PM発生装置10毎に、PM含有ガスが、所定の温度及び流量になるように調製される。この二次空気の流量の調節は、流量計28と調節弁29とで行われる。即ち、各PM発生装置10毎に設けられた二次空気供給部31へ送られる二次空気の流路15には、各系統毎に、流量計28と調節弁29とが設けられており、それぞれの二次空気の流量を調節することが出来るようになっている。調節弁29は、流量計28から独立して手動調整出来るものであってもよいが、流量計28の検出流量に基づいて自動制御可能なものが特に好ましい。   In the evaluation device 20, the secondary air supply unit 31 is attached to an outlet from which each PM generator 10 delivers the PM-containing gas. In each secondary air supply unit 31, the secondary air supplied from the flow path 15 by the secondary air supply means such as a compressor (not shown) is mixed and mixed with the PM-containing gas produced by each PM generator 10. By adjusting the flow rate of the secondary air, the PM-containing gas is prepared so as to have a predetermined temperature and flow rate for each PM generator 10. The flow rate of the secondary air is adjusted by the flow meter 28 and the control valve 29. That is, the flow path 15 of the secondary air sent to the secondary air supply unit 31 provided for each PM generator 10 is provided with a flow meter 28 and a control valve 29 for each system, The flow rate of each secondary air can be adjusted. The control valve 29 may be one that can be manually adjusted independently of the flow meter 28, but one that can be automatically controlled based on the detected flow rate of the flow meter 28 is particularly preferable.

評価装置20では、又、4台のPM発生装置10を、同一の条件で作動させ、あるいは、全てを、他のPM発生装置10と異なる条件で作動させ得る制御手段が備わっている。この制御手段は、4台のPM発生装置10にそれぞれ備わる、電磁弁の開閉時間及び周期を制御する機能を持つ燃料間欠噴射手段(図7において省略)と、燃焼用空気流量調節手段と、で実現される。   The evaluation device 20 also includes control means that can operate the four PM generators 10 under the same conditions, or can operate all of them under different conditions from the other PM generators 10. This control means includes an intermittent fuel injection means (not shown in FIG. 7) and a combustion air flow rate adjustment means, each of which is provided in each of the four PM generators 10 and has a function of controlling the open / close time and cycle of the solenoid valves. Realized.

燃焼用空気流量調節手段は、燃焼用空気の流量を調節する手段であり、流量計24と調節弁25とで構成される。即ち、各PM発生装置10の燃焼室へ送られる燃焼用空気の流路14には、各系統毎に、流量計24と調節弁25とが設けられており、それぞれの燃焼用空気の流量を調節することが出来るようになっている。調節弁25は、流量計24から独立して手動調整出来るものであってもよいが、流量計24の検出流量に基づいて自動制御可能なものが、特に好ましい。   The combustion air flow rate adjusting means is a means for adjusting the flow rate of the combustion air, and includes a flow meter 24 and a control valve 25. That is, the flow path 14 of combustion air sent to the combustion chamber of each PM generator 10 is provided with a flow meter 24 and a control valve 25 for each system, and the flow rate of each combustion air is controlled. It can be adjusted. The control valve 25 may be one that can be manually adjusted independently of the flow meter 24, but one that can be automatically controlled based on the detected flow rate of the flow meter 24 is particularly preferable.

図7に示されない評価装置20の制御装置により、4台のPM発生装置10のそれぞれにおいて、上記燃料間欠噴射手段を用いて燃料の噴射周期(電磁弁の開閉周期)を選択し、燃料の噴射時間により燃料の流量を調節するとともに、燃焼用空気の流量を調節し、更には、上記した二次空気の流量を調節することによって、最終的に排気ガス浄化装置32へ供給される混合PM含有ガスの流量、温度、PM含有量、含有されたPMの性状等を、自在に変更することが可能である。   The control device of the evaluation device 20 not shown in FIG. 7 selects the fuel injection cycle (electromagnetic valve opening / closing cycle) using the fuel intermittent injection means in each of the four PM generators 10 to inject the fuel. Contain mixed PM that is finally supplied to the exhaust gas purification device 32 by adjusting the flow rate of fuel according to time, adjusting the flow rate of combustion air, and further adjusting the flow rate of secondary air as described above. The gas flow rate, temperature, PM content, the properties of the contained PM, and the like can be freely changed.

尚、図7において、排気ガス浄化装置32は、その側面が描かれており、性能及び/又は耐久性を評価する対象である排気ガス浄化装置32は、円筒状の空間と、両端において徐々に狭くなるすり鉢状空間と、を有する箱体として構成され、円筒状の空間の中に、例えばハニカム構造を呈するフィルタであって排気ガス中の微粒子を除去するフィルタや酸化触媒がコートされたフィルタであって微粒子を除去するフィルタ、あるいは、例えばハニカム構造を呈する触媒(触媒体)であって排気ガス中の有害物質を分解するための酸化触媒、三元触媒等の触媒(触媒体)、が収容されているものである。尚、図示しないが、排気ガス浄化装置32の下流側(排気ガスの出口側)に、ガス中のCO、HC、NO、SO等を分析する分析手段を備えることが好ましい。 In FIG. 7, the side surface of the exhaust gas purifying device 32 is drawn, and the exhaust gas purifying device 32, which is a target for evaluating performance and / or durability, is gradually formed in a cylindrical space and at both ends. It is configured as a box having a narrow mortar-shaped space, and is a filter having a honeycomb structure, for example, a filter that removes particulates in exhaust gas or a filter that is coated with an oxidation catalyst in a cylindrical space. Contains a filter for removing fine particles, or a catalyst (catalyst body) having a honeycomb structure, for example, an oxidation catalyst for decomposing harmful substances in exhaust gas, a catalyst such as a three-way catalyst (catalyst body) It is what has been. Although not shown, it is preferable to provide an analysis means for analyzing CO, HC, NO X , SO X and the like in the gas on the downstream side (exhaust gas outlet side) of the exhaust gas purification device 32.

以下、実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to a following example.

(実施例1)図1に示されるPM発生装置10に二次空気供給部(図7を参照)を設けた装置を使用し、燃料としては軽油を用い、燃料噴射手段によって燃焼用空気の中に燃料を間欠で噴射し、不完全燃焼させてPMを発生させ、PM含有ガスを製造した。そして、そのPM含有ガスに、二次空気供給部から二次空気を混合し、評価対象となる200℃のPM含有ガス(評価ガス)を得た。そして、そのPM含有ガス(評価ガス)を吸引して、濾紙(フィルタ)の質量から1時間あたりのPM発生量を測定するとともに、PMの粒径分布を測定し、更に、PM含有ガス(評価ガス)中の粒子状物質の成分と、PM含有ガス(評価ガス)中のガス成分を、分析した。   (Embodiment 1) An apparatus provided with a secondary air supply unit (see FIG. 7) is used for the PM generator 10 shown in FIG. 1, light oil is used as fuel, and fuel is injected into the combustion air by fuel injection means. The fuel was injected intermittently and incompletely combusted to generate PM to produce a PM-containing gas. And secondary air was mixed with the PM containing gas from a secondary air supply part, and 200 degreeC PM containing gas (evaluation gas) used as evaluation object was obtained. Then, the PM-containing gas (evaluation gas) is sucked, the amount of PM generated per hour is measured from the mass of the filter paper (filter), the particle size distribution of the PM is measured, and further the PM-containing gas (evaluation) The component of the particulate matter in the gas) and the gas component in the PM-containing gas (evaluation gas) were analyzed.

[PM発生量の測定方法]PM含有ガス(評価ガス)を20L/minの速度で吸引し、一定時間(1分間)、濾紙(ローボリ用フィルタ8015−3(AP2005500、55mm)、Millipore Corporation製)に通す。そして、濾紙に付着したPMの質量をミクロ天秤(ME5−F、0.001mg、SARTORIUS社製)で測定し、二次空気を混合した後のPM含有ガス(評価ガス)の流量、それから吸引されたガスの流量、及び吸引時間より、1時間あたりのPM発生量(g/Hr)及び消費した燃料1リットルあたりのPM発生量(g/l)を求めた。   [Measurement Method of PM Generation Amount] PM-containing gas (evaluation gas) is sucked at a rate of 20 L / min and filtered for a certain time (1 minute), filter paper (Roboli filter 8015-3 (AP2005500, 55 mm), manufactured by Millipore Corporation) Pass through. Then, the mass of PM adhering to the filter paper is measured with a microbalance (ME5-F, 0.001 mg, manufactured by SARTORUS), the flow rate of the PM-containing gas (evaluation gas) after mixing the secondary air, and then sucked. The amount of PM generated per hour (g / Hr) and the amount of PM generated per liter of fuel consumed (g / l) were determined from the flow rate of the gas and the suction time.

[PMの粒径分布の測定方法]二次空気を混合した後のPM含有ガス(評価ガス)から吸引されたガスを希釈し、TSI社製Scanning Mobility Particle Sizer (SMPS)Model 3936シリーズを使用してPMの粒径分布を測定した。   [Measuring method of PM particle size distribution] Gas sucked from PM-containing gas (evaluation gas) after mixing with secondary air was diluted, and using Scanning Mobility Particle Sizer (SMPS) Model 3936 series manufactured by TSI. Then, the particle size distribution of PM was measured.

[粒子状物質の成分分析方法]HORIBA社製Particulate Analyzer MEXA−1370PMを用いて分析した。   [Component Analysis Method for Particulate Matter] Analysis was performed using Particulate Analyzer MEXA-1370PM manufactured by HORIBA.

[ガス成分の分析方法]HORIBA社製MEXA−9100Dを用いて分析した。   [Analysis Method of Gas Components] Analysis was performed using MEXA-9100D manufactured by HORIBA.

結果は、PMの粒径分布が60〜120×10−9mであり、デイーゼルエンジンの排気ガスと概ね同等であった。又、PM発生量は30.6g/Hrであり、消費した燃料1リットルあたりのPM発生量は11.7(g/l)であった。PM含有ガスの粒子状物質の成分は、SOFが6.2質量%、スートが93.6質量%、SULFATEが0.2質量%であった。ガス成分は、COが40ppm、HCが50ppm、NOが12ppm、Oが14体積%、COが5体積%であった。 As a result, the particle size distribution of PM was 60 to 120 × 10 −9 m, which was almost equivalent to the exhaust gas of a diesel engine. The PM generation amount was 30.6 g / Hr, and the PM generation amount per liter of consumed fuel was 11.7 (g / l). The particulate matter component of the PM-containing gas was SOF 6.2% by mass, soot 93.6% by mass, and SULFATE 0.2% by mass. Gas components, CO is 40 ppm, HC is 50 ppm, NO X is 12 ppm, O 2 14 vol%, CO 2 was 5% by volume.

(比較例1)図8に示される燃焼装置180を使用し、燃料としては軽油を用い、燃料噴射手段によって燃焼用空気の中に燃料を間欠で噴射し混合させ、不完全燃焼させてPMを発生させ、PM含有ガスを製造した。そして、そのPM含有ガスに、コンプレッサによって二次空気を混合し、評価対象となる200℃のPM含有ガス(評価ガス)を得た。そして、実施例1と同様な手段により、1時間あたりのPM発生量、消費した燃料1リットルあたりのPM発生量(g/l)、及びPMの粒径分布を測定するとともに、PM含有ガス(評価ガス)中の粒子状物質の成分を分析し、更に、PM含有ガス(評価ガス)中のガス成分を分析した。   (Comparative Example 1) The combustion apparatus 180 shown in FIG. 8 is used, light oil is used as the fuel, fuel is intermittently injected into the combustion air by the fuel injection means, mixed, and incompletely combusted to obtain PM. To produce a PM-containing gas. And secondary air was mixed with the PM containing gas with a compressor, and 200 degreeC PM containing gas (evaluation gas) used as evaluation object was obtained. Then, by the same means as in Example 1, the amount of PM generated per hour, the amount of PM generated per liter of fuel consumed (g / l), and the particle size distribution of PM were measured, and the PM-containing gas ( The components of the particulate matter in the evaluation gas) were analyzed, and further the gas components in the PM-containing gas (evaluation gas) were analyzed.

図8に示される燃焼装置180は、燃焼用空気を供給するための空気入口251から導入された燃焼用空気232を、空気予熱室185で加熱するとともに、燃料噴射手段183からバッフルプレート186によって燃焼筒187に向けて噴射された燃料231を、加熱された燃焼用空気232と、空気予熱室185内で混合し、燃焼器182で着火して燃焼筒187内で不完全に燃焼をさせて、ガス出口252から、PM含有ガス233を排出するように構成された装置である。   The combustion apparatus 180 shown in FIG. 8 heats combustion air 232 introduced from an air inlet 251 for supplying combustion air in an air preheating chamber 185 and burns it from a fuel injection means 183 by a baffle plate 186. The fuel 231 injected toward the cylinder 187 is mixed with the heated combustion air 232 in the air preheating chamber 185, ignited in the combustor 182, and incompletely combusted in the combustion cylinder 187, This is an apparatus configured to discharge the PM-containing gas 233 from the gas outlet 252.

結果は、PMの粒径分布が300〜1000×10−9mであり、デイーゼルエンジンの排気ガスとは大きく異なっていた。又、PM発生量は5.2g/Hr(軽油)であり、消費した燃料1リットルあたりのPM発生量は2.0(g/l)であった。PM含有ガスの粒子状物質の成分は、SOFが30質量%、スートが67質量%、SULFATEが3質量%であった。ガス成分は、COが30ppm、HCが50ppm、NOが300ppm、Oが14体積%、COが5体積%であった。 As a result, the particle size distribution of PM was 300 to 1000 × 10 −9 m, which was greatly different from the exhaust gas of a diesel engine. The amount of PM generated was 5.2 g / Hr (light oil), and the amount of PM generated per liter of consumed fuel was 2.0 (g / l). The particulate matter component of the PM-containing gas was SOF 30% by mass, soot 67% by mass, and SULFATE 3% by mass. Gas components, CO is 30 ppm, HC is 50 ppm, NO X is 300 ppm, O 2 14 vol%, CO 2 was 5% by volume.

(考察)実施例1により、本発明に係るPM発生器の使用により、粒径分布がデイーゼルエンジンの排気ガス並の60〜120×10−9mになることが確認出来た。又、PM発生量が増加してもSOFが増加することはなく安定した性状のPMを発生させ得ることが確認出来た。比較例1の結果より、従来の燃焼装置の場合、燃料が充分気化されないために、粒径分布が300〜1000×10−9mと広い範囲となる。又、PM発生量が、より少ないのにもかかわらず、SOFが増大し、安定した性状のPMを発生させることが出来なかった。尚、実施例1では、PMの色は黒色であったが、比較例1では灰色であった。これは、SOFの含有量の違いによるものと考えられた。 (Consideration) It was confirmed from Example 1 that the particle size distribution was 60 to 120 × 10 −9 m, which is equivalent to the exhaust gas of a diesel engine, by using the PM generator according to the present invention. Further, it was confirmed that even if the amount of PM generated increases, SOF does not increase and stable PM can be generated. From the result of the comparative example 1, in the case of the conventional combustion apparatus, since the fuel is not sufficiently vaporized, the particle size distribution becomes a wide range of 300 to 1000 × 10 −9 m. In addition, despite the fact that the amount of PM generated was smaller, SOF increased and PM with stable properties could not be generated. In Example 1, the color of PM was black, but in Comparative Example 1, it was gray. This was thought to be due to the difference in the SOF content.

本発明のPM発生装置及び排気ガス浄化装置の評価装置は、排気ガス中の微粒子を除去するフィルタ、フィルタに堆積した微粒子を酸化燃焼除去するための触媒、又は排気ガス中の有害物質を分解するための触媒、等を備えた排気ガス浄化装置の性能及び/又は耐久性の評価を行うために、好適に利用される。   The PM generator and the exhaust gas purification apparatus evaluation apparatus of the present invention decompose a filter for removing particulates in exhaust gas, a catalyst for oxidizing and removing particulates deposited on the filter, or harmful substances in exhaust gas. In order to evaluate the performance and / or durability of an exhaust gas purifying apparatus equipped with a catalyst for the purpose, etc., it is preferably used.

本発明に係るPM発生装置の一の実施形態を示す上面図である。It is a top view which shows one Embodiment of PM generator based on this invention. 図1に示されるPM発生装置の側面図である。It is a side view of PM generator shown by FIG. 図1におけるPP断面を示す断面図である。It is sectional drawing which shows PP cross section in FIG. 図2におけるQQ断面を示す断面図である。It is sectional drawing which shows the QQ cross section in FIG. 図1に示されるPM発生装置の内部を分解して表す斜視図である。It is a perspective view which decomposes | disassembles and represents the inside of PM generator shown by FIG. 図4と同じ断面を示す図であり、筐体部を拡大し燃料噴射手段を簡略化して描いた断面図である。It is a figure which shows the same cross section as FIG. 4, and is sectional drawing which expanded the housing | casing part and simplified the fuel-injection means. 本発明に係る排気ガス浄化装置の評価装置の一の実施形態を示す構成図である。It is a block diagram which shows one Embodiment of the evaluation apparatus of the exhaust-gas purification apparatus which concerns on this invention. 従来の燃焼装置の一の例を示す断面図である。It is sectional drawing which shows one example of the conventional combustion apparatus.

符号の説明Explanation of symbols

1:燃焼室、2:燃焼器、3:燃料噴射手段、5:筐体部、5a:(筐体部の)円筒状部分、6:外筒部、7:内筒部、8前板部、9:後板部、10:PM発生装置、11:火炎検知器、13:流路、14:流路、15:流路、20:(排気ガス浄化装置の)評価装置、21:メインヘッダ部、22,23:切替弁、24:流量計、25:調節弁、28:流量計、29:調節弁、31:二次空気供給部、32:排気ガス浄化装置、33:温度検出器、51:火炎入口、52:(PMを発生させた)ガス出口、53:分割面、61,61a:貫通孔、71:貫通孔、113:空気入口、132:燃焼用空気、180:燃焼装置、183:燃料噴射手段、185:空気予熱室、186:バッフルプレート、187:燃焼筒、231:燃料、232:燃焼用空気、233:PM含有ガス、251:空気入口、252:ガス出口。 1: Combustion chamber, 2: Combustor, 3: Fuel injection means, 5: Housing part, 5a: Cylindrical part (of housing part), 6: Outer cylinder part, 7: Inner cylinder part, 8 Front plate part , 9: rear plate portion, 10: PM generator, 11: flame detector, 13: flow channel, 14: flow channel, 15: flow channel, 20: evaluation device (for exhaust gas purification device), 21: main header Unit, 22, 23: switching valve, 24: flow meter, 25: control valve, 28: flow meter, 29: control valve, 31: secondary air supply unit, 32: exhaust gas purification device, 33: temperature detector, 51: Flame inlet, 52: Gas outlet (generating PM), 53: Dividing surface, 61, 61a: Through hole, 71: Through hole, 113: Air inlet, 132: Combustion air, 180: Combustion device, 183: Fuel injection means, 185: Air preheating chamber, 186: Baffle plate, 187: Combustion cylinder, 231: Fuel, 232 Combustion air, 233: PM-containing gas, 251: air inlet, 252: gas outlet.

Claims (28)

液体及び/又は気体の燃料と、燃焼用空気と、の混合を行い、混合をされた混合気に不完全な燃焼をさせて、ガスの中にPM(パティキュレートマター、粒子状物質)を発生させる装置であって、
前記混合及び燃焼を生じる燃焼室と、その燃焼室へ前記燃料を噴射する燃料噴射手段と、前記混合気を着火するパイロットバーナと、を具備し、
前記燃焼室が、前記燃焼用空気を供給するための空気入口、前記PMを発生させたガスを送出するためのガス出口、及び前記パイロットバーナに通じる火炎入口、を形成した筐体部と、その筐体部との間に空間を形成しつつ前記筐体部の中に組み込まれた外筒部と、その外筒部との間に空間を形成するとともに前記火炎入口と直接連通するように前記外筒部の中に組み込まれた内筒部と、を有し、
前記外筒部及び前記内筒部は、それぞれの周面に複数の貫通孔を備え、
前記燃料噴射手段によって前記筐体部と外筒部との間の空間に噴射された前記燃料と、前記空気入口から前記筐体部と外筒部との間の空間に供給された前記燃焼用空気とが、前記外筒部の貫通孔を介して前記外筒部と内筒部との間の空間へ導入され前記混合をされるように構成されているPM発生装置。
Mixing liquid and / or gaseous fuel with combustion air, causing the mixed gas mixture to be incompletely burned and generating PM (particulate matter, particulate matter) in the gas A device for causing
A combustion chamber for generating the mixture and combustion; fuel injection means for injecting the fuel into the combustion chamber; and a pilot burner for igniting the mixture.
A housing part in which the combustion chamber forms an air inlet for supplying the combustion air, a gas outlet for sending out the gas generating the PM, and a flame inlet leading to the pilot burner; The outer cylinder part incorporated in the casing part while forming a space between the casing part and the outer cylinder part so as to form a space and communicate directly with the flame inlet An inner cylinder part incorporated in the outer cylinder part,
The outer cylinder part and the inner cylinder part are provided with a plurality of through holes in their respective peripheral surfaces,
The fuel injected into the space between the casing and the outer cylinder by the fuel injection means, and the combustion supplied from the air inlet to the space between the casing and the outer cylinder A PM generator configured to be mixed with air introduced into a space between the outer cylinder part and the inner cylinder part through a through hole of the outer cylinder part.
前記燃料噴射手段が、前記筐体部と外筒部との間の空間に、前記燃料を間欠で噴射することが可能な手段である請求項1に記載のPM発生装置。   2. The PM generator according to claim 1, wherein the fuel injection unit is a unit capable of intermittently injecting the fuel into a space between the casing unit and the outer cylinder unit. 前記筐体部が円筒状部分を有するとともに、前記外筒部及び内筒部が円筒状を呈し、
前記筐体部の円筒状部分の中に、前記円筒状の外筒部が、前記筐体部の円筒状部分と同軸になるように組み込まれ、
前記円筒状の外筒部の中に、前記円筒状の内筒部が、前記円筒状の外筒部と中心軸方向を同じくし且つ偏心して組み込まれている請求項1又は2に記載のPM発生装置。
While the housing portion has a cylindrical portion, the outer tube portion and the inner tube portion have a cylindrical shape,
In the cylindrical part of the casing part, the cylindrical outer cylinder part is incorporated so as to be coaxial with the cylindrical part of the casing part,
3. The PM according to claim 1, wherein the cylindrical inner tube portion is incorporated in the cylindrical outer tube portion so as to have the same central axis direction as the cylindrical outer tube portion and eccentric. Generator.
前記ガス出口に通じる開口を備え、前記筐体部の中に組み込まれて前記ガス出口側の端面を構成する前板部と、
前記火炎入口に通じる開口を備え、前記筐体部の中に組み込まれて前記火炎入口側の端面を構成する後板部と、を有する請求項3に記載のPM発生装置。
A front plate portion that includes an opening that communicates with the gas outlet, and that is incorporated in the housing portion and constitutes an end surface on the gas outlet side;
4. The PM generator according to claim 3, further comprising: a rear plate portion that includes an opening that communicates with the flame inlet and that is incorporated in the housing portion and constitutes an end surface on the flame inlet side.
前記前板部と前記外筒部とが一体化し、及び/又は、前記後板部と前記内筒部とが一体化している請求項4に記載のPM発生装置。   The PM generator according to claim 4, wherein the front plate portion and the outer cylinder portion are integrated, and / or the rear plate portion and the inner cylinder portion are integrated. 前記外筒部、内筒部、前板部、及び後板部が、金属材料で形成されている請求項4又は5に記載のPM発生装置。   The PM generator according to claim 4 or 5, wherein the outer tube portion, the inner tube portion, the front plate portion, and the rear plate portion are formed of a metal material. 前記外筒部、内筒部、前板部、及び後板部が、セラミックス材料で形成されている請求項4又は5に記載のPM発生装置。   The PM generator according to claim 4 or 5, wherein the outer cylinder part, the inner cylinder part, the front plate part, and the rear plate part are formed of a ceramic material. 前記セラミックス材料が、窒化珪素、炭化珪素、ジルコニア、燐酸ジルコニウム、アルミニウムチタネート、チタニア、及びこれらの組み合わせよりなる群から選ばれる少なくとも一種である請求項に記載のPM発生装置。 The PM generator according to claim 7 , wherein the ceramic material is at least one selected from the group consisting of silicon nitride, silicon carbide, zirconia, zirconium phosphate, aluminum titanate, titania, and combinations thereof. 前記燃料噴射手段は、燃料の噴射方向が、前記外筒部の中心軸方向に対し略直角であり且つ前記外筒部の中心軸方向に垂直な断面の接線方向に傾くように、前記筐体部に設けられ、
前記燃料噴射手段によって前記筐体部と外筒部との間の空間へ噴射された前記燃料が、前記外筒部の周面を廻りながら、前記外筒部の貫通孔を介して前記外筒部と内筒部との間の空間へ導入されるように構成されている請求項3〜の何れか一項に記載のPM発生装置。
The fuel injection means is configured so that the fuel injection direction is substantially perpendicular to the central axis direction of the outer cylinder portion and is inclined in a tangential direction of a cross section perpendicular to the central axis direction of the outer cylinder portion. Provided in the department,
The fuel injected into the space between the casing and the outer cylinder by the fuel injection means goes around the outer surface of the outer cylinder and passes through the through hole of the outer cylinder. The PM generator according to any one of claims 3 to 8 , wherein the PM generator is configured to be introduced into a space between the portion and the inner cylinder portion.
前記空気入口が、前記筐体部の前記燃料噴射手段の近傍に設けられ、
前記空気入口から前記筐体部と外筒部との間の空間に供給された前記燃焼用空気が、前記燃料とともに、前記外筒部の周面を廻りながら、前記外筒部の貫通孔を介して前記外筒部と内筒部との間の空間へ導入されるように構成されている請求項3〜の何れか一項に記載のPM発生装置。
The air inlet is provided near the fuel injection means of the casing;
The combustion air supplied from the air inlet to the space between the housing part and the outer cylinder part, together with the fuel, goes around the peripheral surface of the outer cylinder part and passes through the through hole of the outer cylinder part. The PM generator according to any one of claims 3 to 9 , wherein the PM generator is configured to be introduced into a space between the outer tube portion and the inner tube portion.
前記外筒部に備わる貫通孔の一部又は全部が、前記外筒部の中心軸方向に垂直な断面の接線方向に傾いて形成されている請求項3〜10の何れか一項に記載のPM発生装置。 Some or all of the through holes provided in the outer cylinder part is according to any one of the outer cylindrical portion central axis according direction are formed inclined in the tangential direction of the cross section perpendicular to claim 3-10 in PM generator. 前記筐体部の円筒状部分の中心軸方向に垂直な断面に、その中心軸を通り相互に直角をなすX軸及びY軸からなる座標軸を設定した場合において(但し、X軸とY軸とは中心軸方向に垂直な断面で相互に直角であればよく、絶対的な方向は限定されない)、
前記筐体部の円筒状部分の内壁がY=+100に位置するとき、Y=+60〜80の位置に、燃料の噴射方向がX軸に平行になるように、前記燃料噴射手段が前記筐体部に設けられる請求項3〜11の何れか一項に記載のPM発生装置。
When a coordinate axis composed of an X axis and a Y axis passing through the central axis and perpendicular to each other is set in a cross section perpendicular to the central axis direction of the cylindrical portion of the casing (provided that the X axis and the Y axis Can be any cross section perpendicular to the central axis direction and perpendicular to each other, the absolute direction is not limited)
When the inner wall of the cylindrical portion of the casing portion is located at Y = + 100, the fuel injection means is located at the position of Y = + 60 to 80 so that the fuel injection direction is parallel to the X axis. The PM generator according to any one of claims 3 to 11 , which is provided in the section.
前記外筒部の周面に備わる複数の貫通孔のうちの少なくとも1つが、Y=+70〜90の位置に設けられる請求項12に記載のPM発生装置。 The PM generator according to claim 12 , wherein at least one of a plurality of through holes provided on a peripheral surface of the outer cylinder portion is provided at a position of Y = + 70 to 90. 前記外筒部の周面に備わる複数の貫通孔のうちの少なくとも1つと、前記座標軸の原点と、前記燃料噴射手段と、が形成する角度が、10〜40°である請求項12又は13に記載のPM発生装置。 At least one of the plurality of through holes provided in the circumferential surface of the outer cylindrical portion, and the origin of the coordinate axis, and said fuel injection means, the angle is formed, in claim 12 or 13 is 10 to 40 ° The PM generator described. 前記内筒部の中心軸が前記外筒部の中心軸より−Y側にずれることによって、前記外筒部と内筒部とが偏心している請求項1214の何れか一項に記載のPM発生装置。 By the central axis of the inner cylinder part is displaced in -Y side of the central axis of the outer cylindrical portion, according to any one of the outer cylindrical portion and the inner claims and the tubular portion is eccentric 12-14 PM generator. 前記外筒部、前板部、及び後板部の合計の中心軸方向の長さと、前記筐体部の円筒状部分の内側における中心軸方向の長さと、の比が70:100〜98:100である請求項4〜15の何れか一項に記載のPM発生装置。 The ratio of the total length in the central axis direction of the outer cylinder portion, the front plate portion, and the rear plate portion to the length in the central axis direction inside the cylindrical portion of the housing portion is 70: 100 to 98: The PM generator according to any one of claims 4 to 15 , which is 100. 前記後板部と前記筐体部との間に、非膨張セラミックス繊維性マットが挿入されている請求項4〜16の何れか一項に記載のPM発生装置。 The PM generator according to any one of claims 4 to 16 , wherein a non-expandable ceramic fibrous mat is inserted between the rear plate portion and the housing portion. 前記外筒部の周面に備わる貫通孔の径と、前記外筒部の内径(内側直径)と、の比が5:100〜20:100である請求項3〜17の何れか一項に記載のPM発生装置。 And the diameter of the through hole provided in the peripheral surface of the outer cylindrical portion, the inner diameter of the outer cylindrical portion (inner diameter), the ratio of 5: 100 to 20: in any one of claims 3-17 100 The PM generator described. 前記筐体部に形成された前記PMを発生させたガス出口の径と、前記外筒部の内径(内側直径)と、の比が10:100〜50:100である請求項3〜18の何れか一項に記載のPM発生装置。 Wherein the diameter of the gas outlet that caused the PM formed in the housing portion, the inner diameter of the outer tube part (inner diameter), the ratio of 10: 100 to 50: according to claim 3-18 100 PM generator as described in any one. 前記燃焼室に備わる外筒部の内側の容積(L(リットル))が、供給される最大の前記燃焼用空気の流量(Nm/min)の、1.2倍以上である請求項1〜19の何れか一項に記載のPM発生装置。 The inner volume (L (liter)) of the outer cylinder part provided in the combustion chamber is 1.2 times or more the maximum flow rate (Nm 3 / min) of the supplied combustion air. The PM generator according to any one of 19 . 前記燃焼室に備わる外筒部の内径(mm)は、前記外筒部の内径(mm)の2乗を、供給される最大の燃焼用空気の流量(Nm/min)で除した値が、2.0×10倍以上である請求項1〜20の何れか一項に記載のPM発生装置。 The inner diameter (mm) of the outer cylinder part provided in the combustion chamber is a value obtained by dividing the square of the inner diameter (mm) of the outer cylinder part by the maximum flow rate of combustion air (Nm 3 / min) supplied. , PM generating apparatus according to any one of claims 1 to 20 is 2.0 × 10 4 times or more. 前記燃料の噴射圧力が、0.1〜1.0(MPa)である請求項1〜21の何れか一項に記載のPM発生装置。 The PM generator according to any one of claims 1 to 21 , wherein an injection pressure of the fuel is 0.1 to 1.0 (MPa). 前記燃料が軽油である場合に、前記ガスの中に発生させるPMの量が0.1〜30g/L(軽油)である請求項1〜22の何れか一項に記載のPM発生装置。 The PM generator according to any one of claims 1 to 22 , wherein when the fuel is light oil, an amount of PM generated in the gas is 0.1 to 30 g / L (light oil). 前記ガスの中に発生させるPMのSOF(有機溶媒可溶性成分、Soluble Organic Fraction)が1〜50質量%であり、且つPMの平均粒子径が10〜150×10−9mである請求項1〜23の何れか一項に記載のPM発生装置。 The SOF (organic solvent soluble component, Soluble Organic Fraction) of PM generated in the gas is 1 to 50% by mass, and the average particle size of PM is 10 to 150 × 10 −9 m. 24. The PM generator according to any one of 23 . 前記燃焼室、前記燃料噴射手段、及び前記パイロットバーナを、複数、具備する請求項1〜24の何れか一項に記載のPM発生装置。 The PM generator according to any one of claims 1 to 24 , comprising a plurality of the combustion chambers, the fuel injection means, and the pilot burners. PMを発生させたガスの供給先が排気ガス浄化装置であり、その排気ガス浄化装置の評価を行うために使用される請求項1〜25の何れか一項に記載のPM発生装置。 The PM generation device according to any one of claims 1 to 25 , wherein the supply destination of the gas that has generated PM is an exhaust gas purification device, and is used for evaluating the exhaust gas purification device. 前記排気ガス浄化装置が、DPF(Diesel Particulate Filter)を備え、前記評価が、前記DPFの捕集効率、PM堆積圧損、再生性能、酸化性能のうちの何れか1又は2以上の評価である請求項26に記載のPM発生装置。 The exhaust gas purification device includes a DPF (Diesel Particulate Filter), and the evaluation is an evaluation of one or more of the collection efficiency, PM deposition pressure loss, regeneration performance, and oxidation performance of the DPF. Item 27. The PM generator according to Item 26 . 請求項1〜27の何れか一項に記載のPM発生装置を、複数、具備するとともに、
それら複数のPM発生装置を、同一の条件で作動させ、あるいは、少なくとも一のPM発生装置を、他のPM発生装置と異なる条件で作動させ得る制御手段と、
複数のPM発生装置で得られた、PMを発生させたガスを混合し、混合PM含有ガスを得るPM含有ガス混合手段と、を具備し、
前記混合PM含有ガスを排気ガス浄化装置へ供給することによって、その排気ガス浄化装置の評価を行う排気ガス浄化装置の評価装置。
A plurality of the PM generators according to any one of claims 1 to 27 are provided,
Control means for operating the plurality of PM generators under the same conditions, or for operating at least one PM generator under conditions different from those of other PM generators;
PM-containing gas mixing means that obtains a mixed PM-containing gas by mixing the gas that generates PM obtained by a plurality of PM generators,
An evaluation apparatus for an exhaust gas purification apparatus that evaluates the exhaust gas purification apparatus by supplying the mixed PM-containing gas to the exhaust gas purification apparatus.
JP2006294391A 2005-11-14 2006-10-30 PM generator Active JP4653719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006294391A JP4653719B2 (en) 2005-11-14 2006-10-30 PM generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005329108 2005-11-14
JP2006294391A JP4653719B2 (en) 2005-11-14 2006-10-30 PM generator

Publications (2)

Publication Number Publication Date
JP2007155708A JP2007155708A (en) 2007-06-21
JP4653719B2 true JP4653719B2 (en) 2011-03-16

Family

ID=38240251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006294391A Active JP4653719B2 (en) 2005-11-14 2006-10-30 PM generator

Country Status (1)

Country Link
JP (1) JP4653719B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5313732B2 (en) * 2009-03-17 2013-10-09 日本碍子株式会社 Exhaust gas generator, exhaust gas generation method, and ceramic structure evaluation apparatus
JP2010223882A (en) * 2009-03-25 2010-10-07 Ngk Insulators Ltd Continuous regeneration testing device for filter, and continuous regeneration testing method of filter
JP5390231B2 (en) * 2009-03-25 2014-01-15 日本碍子株式会社 PM generation method
JP5390232B2 (en) * 2009-03-25 2014-01-15 日本碍子株式会社 PM generation method
JP5261426B2 (en) * 2010-03-23 2013-08-14 日本碍子株式会社 Particulate matter generator and particulate matter generation method
JP5261428B2 (en) * 2010-03-30 2013-08-14 日本碍子株式会社 Particulate matter generator and particulate matter generation method
JP5548639B2 (en) * 2011-03-10 2014-07-16 日本碍子株式会社 Particulate material-containing gas or hot gas generator for filter regeneration, particulate material generation method, and porous ceramic structure evaluation device
JP6148865B2 (en) * 2013-01-28 2017-06-14 東京窯業株式会社 Pressure loss measuring device for exhaust gas purification filter
JP6202049B2 (en) * 2014-07-08 2017-09-27 トヨタ自動車株式会社 Filter failure diagnosis device for internal combustion engine
JP6448440B2 (en) * 2015-03-30 2019-01-09 日本碍子株式会社 Measuring apparatus and measuring method for measuring solid component collection efficiency of diesel particulate filter
JP6633952B2 (en) 2016-03-28 2020-01-22 日本碍子株式会社 Honeycomb structure
JP6887303B2 (en) 2017-05-12 2021-06-16 日本碍子株式会社 Honeycomb filter
JP6887300B2 (en) 2017-05-12 2021-06-16 日本碍子株式会社 Honeycomb filter
JP6887301B2 (en) 2017-05-12 2021-06-16 日本碍子株式会社 Honeycomb filter

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025288A (en) * 1973-06-22 1975-03-17
US3957446A (en) * 1972-04-14 1976-05-18 Texaco Inc. Swirl reactor for exhaust gases
US4228131A (en) * 1975-07-08 1980-10-14 Deutsche Gold-Und Silber-Scheideanstalt Vormal Roessler Apparatus for the production of carbon black
US4240784A (en) * 1978-09-25 1980-12-23 Dauvergne Hector A Three-stage liquid fuel burner
JPS57128829A (en) * 1981-02-04 1982-08-10 Toshiba Corp Thermal decomposing device
JPS6363938A (en) * 1986-09-04 1988-03-22 Kazuya Hayakawa Generation of floating standard fine particle
US4879959A (en) * 1987-11-10 1989-11-14 Donlee Technologies, Inc. Swirl combustion apparatus
JPH10318888A (en) * 1997-05-15 1998-12-04 Toyota Central Res & Dev Lab Inc Vaporization gas supply device
JPH10319006A (en) * 1997-05-15 1998-12-04 Toyota Central Res & Dev Lab Inc Gas analyzing test equipment
JPH11326153A (en) * 1998-05-09 1999-11-26 Horiba Ltd Generating machine for gas containing powdered material
JP2005214742A (en) * 2004-01-28 2005-08-11 Toyota Central Res & Dev Lab Inc Evaluation gas supply device and catalyst evaluating device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3957446A (en) * 1972-04-14 1976-05-18 Texaco Inc. Swirl reactor for exhaust gases
JPS5025288A (en) * 1973-06-22 1975-03-17
US4228131A (en) * 1975-07-08 1980-10-14 Deutsche Gold-Und Silber-Scheideanstalt Vormal Roessler Apparatus for the production of carbon black
US4240784A (en) * 1978-09-25 1980-12-23 Dauvergne Hector A Three-stage liquid fuel burner
JPS57128829A (en) * 1981-02-04 1982-08-10 Toshiba Corp Thermal decomposing device
JPS6363938A (en) * 1986-09-04 1988-03-22 Kazuya Hayakawa Generation of floating standard fine particle
US4879959A (en) * 1987-11-10 1989-11-14 Donlee Technologies, Inc. Swirl combustion apparatus
JPH10318888A (en) * 1997-05-15 1998-12-04 Toyota Central Res & Dev Lab Inc Vaporization gas supply device
JPH10319006A (en) * 1997-05-15 1998-12-04 Toyota Central Res & Dev Lab Inc Gas analyzing test equipment
JPH11326153A (en) * 1998-05-09 1999-11-26 Horiba Ltd Generating machine for gas containing powdered material
JP2005214742A (en) * 2004-01-28 2005-08-11 Toyota Central Res & Dev Lab Inc Evaluation gas supply device and catalyst evaluating device

Also Published As

Publication number Publication date
JP2007155708A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP4653719B2 (en) PM generator
JP4667344B2 (en) PM generator
US8372187B2 (en) Particulate matter generator and collector
RU2011153012A (en) EXHAUST GAS TOXICITY REDUCTION SYSTEM
JP2010223882A (en) Continuous regeneration testing device for filter, and continuous regeneration testing method of filter
WO2014050375A1 (en) Burner
JP5390231B2 (en) PM generation method
EP1785715B1 (en) PM generating apparatus
US7802421B2 (en) PM generating apparatus
JP5390232B2 (en) PM generation method
CA2767366C (en) Burner apparatus
JP5548639B2 (en) Particulate material-containing gas or hot gas generator for filter regeneration, particulate material generation method, and porous ceramic structure evaluation device
JP5261428B2 (en) Particulate matter generator and particulate matter generation method
EP2455664B1 (en) Burner device
JP5261426B2 (en) Particulate matter generator and particulate matter generation method
JPS6329135Y2 (en)
JP5521465B2 (en) Burner equipment
JP2018066587A (en) Particulate substance generator
JP2005307842A (en) Exhaust emission control device
JPH04151406A (en) Combustion device with ultrasonic atomizer
JP5428712B2 (en) Burner equipment
JP2013538966A (en) Burner with low back pressure and stable spray
JP2003106223A (en) Internal combustion engine and fuel consumption improved-intake system for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R150 Certificate of patent or registration of utility model

Ref document number: 4653719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3