次に、本発明を実施するための最良の形態を、図面を参照して具体的に説明する。
図1乃至図3は、本発明をテレビ受信機1、オーディオ機器2、レコーダ3〜5などを、HDMI(High Definition Multimedia Interface)端子10〜17を備えたHDMIケーブル6〜9、及び光ケーブル18で接続して、映像信号、音声信号、制御信号の授受を行い、映像や音声の再生を行う第1〜第3の実施の形態を示している。
図1はテレビ受信機1とオーディオ機器2をHDMIケーブル6と光ケーブル18で接続した第1の実施の形態であり、図2はテレビ受信機1と2台のレコーダ3、4をHDMIケーブル7及びHDMIケーブル8で接続した第2の実施の形態であり、図3はテレビ受信機1とオーディオ機器2をHDMIケーブル6と光ケーブル18で接続し更にオーディオ機器2とレコーダ5をHDMIケーブル9で接続した第3の実施の形態である。
HDMI端子10〜17は、ディスプレイ接続技術のDVI(Digital Visual Interface)端子をAV向けにアレンジして開発されたもので、次世代テレビ向けのインターフェース規格に基づいた接続端子である。HDMI端子では1本のケーブルで映像信号、音声信号、制御信号を合わせて送ることができ、制御信号は双方向にも伝送させることができるため、機器間をシンプルに接続でき、1台のリモコンで複数のAV機器を制御することができるようになる。
図1乃至図3におけるHDMIケーブル6〜9部分の詳細な接続関係を図4に示す。
図4において、21は映像データと音声データの送り側であるHDMIソース、22は映像データと音声データの受け側のHDMIシンクを示している。例えば図2で言えばレコーダ3とレコーダ4がHDMIソース21に相当し、テレビ受信機1がHDMIシンク22に相当している。HDMIソース21にはHDMI送信機23が備わり、HDMIシンク22にはHDMI受信機24が備わっている。25は両端にHDMI端子26、27を備えたHDMIケーブルである。
HDMI送信機23に入力された映像信号、音声信号、及び制御状態信号がTMDSチャンネル28(TMDSチャンネル0〜2とTMDSクロックチャンネル)を通してHDMIシンク22にシリアル伝送される。HDMIシンク22ではTMDSクロックチャンネルを通して送られたクロック信号を基に、TMDSチャンネル28を通して送られた映像信号、音声信号、制御状態信号を再生する。なお、音声信号と制御状態信号は映像信号のブランキング期間を利用して伝送される。
また、HDMIケーブル25にはCEC(Consumer Electronics Control)ライン29とDDC(Display Data Channel)ライン30も配置されている。CECライン29とDDCライン30は双方向ラインであり、これらの信号ラインを通じ機器間で制御信号のやり取りが行われる。
例えば、後述するように、テレビ受信機1やオーディオ機器2の音場モードを切り替えるため、テレビ受信機1、オーディオ機器2、及びレコーダ3〜5の間で、番組ジャンル情報やチャンネル数(コンテンツに関する付加情報)に応じた制御信号がCECライン29を通してやり取りされる。また例えば、テレビ受信機1やレコーダ3〜5は、自己に直接的又は間接的に外部接続された機器の映像表示仕様や音声出力仕様などを、EDID(Extended Display Identification)−ROM31からDDCライン30を通して読み取り、接続されている機器の仕様にあった映像信号と音声信号を送信するようになっている。
図5は、図3の第3の実施の形態を、概略の制御ブロック図で示したものである。
図5において、41〜43はホストCPUである。また、44はモニタマイコン、45、46はフロントマイコンである。47〜49はインターフェース回路である。また、50、51はHDMI受信用LSIである。また、52、53はHDMI送信用LSIである。インターフェース47、48、49間はCECラインで接続されている。HDMI受信用LSI50、51はHDMI受信機24をLSI化したもの、HDMI送信用LSI52、53はHDMI送信機23をLSI化したものである。
HDMI送信用LSI53は送信先としてHDMI受信用LSI50が接続されている。またHDMI送信用LSI52は送信先としてHDMI受信用LSI51が接続されている。またHDMI送信用LSI53は、HDMI受信用LSI51がHDMI送信用LSI52から受信したデータを受け取ることができるように、HDMI受信用LSI51に接続されている。
ホストCPU41〜43は、モニターマイコン44、フロントマイコン45、46、インターフェース回路47〜49、CECラインを介して相互に通信することができる。また、ホストCPU41〜43は、HDMI送信用LSI52、53を制御し、TMDSチャンネルを介して映像信号、音声信号、制御状態信号を送信することができる。また、HDMI受信用LSI50、51を制御し、TMDSチャンネルを介して映像信号、音声信号、制御状態信号を受信することができる。
HDMIケーブル6は、映像信号、音声信号、制御状態信号の伝送方向が一方向のみ可能なので、テレビ受信機1が放送局から受信した番組の音声をオーディオ機器2のスピーカで再生する場合には、テレビ受信機1からオーディオ機器2へ音声データを送る光ケーブル18が設けられる。54,55は光ケーブル用インターフェースである。
例えば、ユーザによって操作されるリモコン(図示なし)からの指令により、テレビ受信機1がレコーダ5の映像信号、音声信号を受信して映像表示及び音声出力する場合には、テレビ受信機1のホストCPU41はレコーダ5のホストCPU43に対して映像信号と音声信号を送信するよう制御信号を送る。
この制御信号はモニタマイコン44、インターフェース回路47、CECライン、インターフェース回路49、フロントマイコン46を介してホストCPU43に伝達される。ホストCPU41からの制御信号を受け取ったホストCPU43はHDMI送信用LSI52を制御してテレビ受信機1に向けて映像信号と音声信号を送信する。HDMI送信用LSI52から送信された映像信号と音声信号は一旦オーディオ機器2のHDMI受信用LSI51で受信される。このときホストCPU42は受信された信号が自己向けでないと判断し、再びHDMI送信用LSI53からテレビ受信機1に向けて映像信号と音声信号を送信する。HDMI送信用LSI53から送信された映像信号と音声信号はテレビ受信機1のHDMI受信用LSI50で受信され、ホストCPU41が自己向けに送信された信号と判断したら受信したデータを取り込む。
テレビ受信機1はこのようにしてレコーダ5からの映像信号と音声信号を基に映像表示、音声出力を行うことができる。また、レコーダ5で再生された番組ジャンル情報やチャンネル数(コンテンツに関する付加情報)をレコーダ5のホストCPU43からテレビ受信機1のホストCPU41に、フロントマイコン46、インターフェース回路49、CECライン、インターフェース回路47、モニタマイコン44を介して送信する。テレビ受信機1は、上記番組ジャンル情報やチャンネル数(コンテンツに関する付加情報)に応じてスピーカ出力モードを番組に適した構成に制御する。別の手段として、レコーダ5から再生された番組ジャンル情報やチャンネル数(コンテンツに関する付加情報)そのものを送るのではなく、この情報をもとにスピーカ出力モードが番組に適したものになるよう制御情報を送っても良い。
また、他の例として、例えば、ユーザによって操作されるリモコン(図示なし)からの指令により、レコーダ5の映像信号を基にテレビ受信機1で映像表示し、レコーダ5の音声信号を基にオーディオ機器2で音声出力する場合には、ホストCPU41はレコーダ5のホストCPU43に対して、映像信号をテレビ受信機1に送信し音声信号をオーディオ機器2に送信するよう制御信号を送る。
この制御信号はモニタマイコン44、インターフェース回路47、CECライン、インターフェース回路49、フロントマイコン46を介してホストCPU43に伝達される。ホストCPU41からの制御信号を受け取ったホストCPU43はHDMI送信用LSI52を制御してテレビ受信機1に向けて映像信号を送信し、オーディオ機器2に向けて音声信号を送信する。HDMI送信用LSI52から送信された映像信号と音声信号は一旦オーディオ機器2のHDMI受信用LSI51で受信される。このときホストCPU42は受信された信号の内映像信号は自己向けでないと判断し、映像信号を再びHDMI送信用LSI53からテレビ受信機1のHDMI受信用LSI50に向けて映像信号を送信する。HDMI送信用LSI53から送信された映像信号はテレビ受信機1のHDMI受信用LSI50で受信される。このときホストCPU41は自己向けに送信された映像信号と判断し、受信したデータを取り込む。
このようにしてテレビ受信機1は自己の映像表部に映像を表示する。
一方ホストCPU42は音声信号が自己向けであると判断するので自己向け音声データとして取り込み、オーディオ機器2は取り込んだ音声データを基に自己のスピーカから音声を出力する。また、レコーダ5で再生された番組ジャンル情報やチャンネル数(コンテンツに関する付加情報)をレコーダ5のホストCPU43からオーディオ機器2のホストCPU42に、フロントマイコン46、インターフェース回路49、CECライン、インターフェース回路48、フロントマイコン45を介して送信する。オーディオ機器2は、上記番組ジャンル情報やチャンネル数(コンテンツに関する付加情報)に応じてスピーカ出力モードを番組に適した構成に制御する。別の手段として、レコーダ5から再生された番組ジャンル情報やチャンネル数(コンテンツに関する付加情報)そのものを送るのではなく、この情報をもとにスピーカ出力モードが番組に適したものになるよう制御情報を送っても良い。
このようにレコーダ5の映像信号、音声信号を基に、テレビ受信機1で映像表示し、オーディオ機器2で音声を出力することができる。また、ホストCPU43はHDMIケーブル9のCECラインを介して番組ジャンル情報やチャンネル数(コンテンツに関する付加情報)もしくは、この情報をもとにスピーカ出力モードが番組に適したものになるような制御情報を送る。
これらの情報を受信して、オーディオ機器2はスピーカ出力モードを番組に適した構成に制御する。
また、更に他の例として、例えば、テレビ受信機1のホストCPUが、ユーザによって操作されるリモコン(図示なし)からの指令により、テレビ受信機1が放送局からの放送番組を受信して映像をテレビ受信機1で表示し、音声をオーディオ機器2から出力する場合には、テレビ受信機1の通常の処理でテレビ受信機1の表示部に映像を表示し、音声はテレビ受信機に備わるスピーカからの出力を停止し、代わりに光ケーブル18を通して音声データをオーディオ機器2へ送る。
また、ホストCPU41は番組ジャンル情報やチャンネル数(コンテンツに関する付加情報)をテレビ受信機1のホストCPU41からオーディオ機器2のホストCPU42に、モニタマイコン44、インターフェース回路47、CECライン、インターフェース回路48、フロントマイコン45を介して送信する。オーディオ機器2は、上記番組ジャンル情報やチャンネル数(コンテンツに関する付加情報)に応じてスピーカ出力モードを番組に適した構成に制御する。別の手段として、テレビ受信機1は番組ジャンル情報やチャンネル数(コンテンツに関する付加情報)そのものを送るのではなく、この情報をもとにスピーカ出力モードが番組に適したものになるよう制御情報を送っても良い。
これにより、テレビ受信機1が受信した放送番組の映像をテレビ受信機1の表示機により表示し、放送番組内容に対応した音場モードでオーディオ機器2のスピーカから音声を出力することができるようになる。
このように、HDMIケーブルと光ケーブルにより相互接続されたテレビ受信機1、オーディオ機器2、レコーダ5は、リモコンでテレビ受信機1に操作信号を送ることにより種々の再生モードを実現できるようになる。上記再生モードの例の他にも種々の再生モードが考えられ、この場合、種々の再生モードを実現するに当たり音声データを双方向に送受信することが必要な箇所には光ケーブルが追加的に備えられる。
図6は、図3に示した第3の実施の形態における、テレビ受信機1、オーディオ機器2、レコーダ5の制御構成を更に詳細に示した図である。
図6を参照すると、本実施の形態のテレビジョン受信装置1は、アンテナ104と、チューナ105と、多重化復元部106と、映像復号部107と、音声復号部120と、コンテンツ情報復号部111と、表示部109と、オーディオ制御部121と、システムコントローラ115と、左右のフロントスピーカ129、130と、センタスピーカ131と、サブウーファ132と、リモコン受光部116と、リモコン117と、アンプ125〜128と、ボリューム124と、メモリ118と、操作部119と、セレクタ108、112と、HDMI受信LSI110と、デジタルオーディオインターフェース変調部113と、発光素子114と、双方向インターフェース回路133と、EDID−ROM134を具備している。
チューナ105は、アンテナ104によって受信された放送信号から所望の周波数のチャンネルを選局し、復調処理を行う。なお、アンテナ104によって受信される放送信号は、地上デジタル放送、BSデジタル放送、110度CSデジタル放送等であり、チューナ105によって復調される信号は、コンテンツの映像信号と音声信号および当該コンテンツに関する付加情報が時分割複合化された多重化信号として多重化復元部106に出力される。また、コンテンツとは、放送局からの放送信号によって供給される番組に限らず、インターネット等のネットワークを介して得られる番組を含むものとし、この場合には、ネットワークからコンテンツの映像信号と音声信号および当該コンテンツに関する付加情報が時分割複合化された多重化信号が多重化復元部106に出力される。
多重化復元部106は、チューナ105(もしくはネットワーク、記録媒体の再生装置)から入力された多重化信号を基に、視聴したい番組の映像信号、音声信号、付加情報を分離する。分離した映像信号は映像復号部107に出力され、分離した音声信号は音声復号部120に出力され、分離した付加情報はコンテンツ情報復号部111に出力される。なお、付加情報は、入力信号に多重されているジャンルコードや、EPG(Electronic Programming Guide)等の情報であり、コンテンツのジャンル(「映画」、「ドラマ」、「音楽」、「ドキュメンタリ」、「ニュース」等)が含まれているものとする。
映像復号部107は、多重化復元部106から入力された映像信号を復号化し、復号化された映像信号はセレクタ108を介して表示部109に出力され映像表示される。表示部109としては、液晶ディスプレイ、プラズマディスプレイ、CRT等の表示手段が用いられる。
音声復号部120は、セレクタ112を介して多重化復元部106から入力された音声信号を復号化し、復号化された音声信号は、オーディオ制御部121によって加工された後、ボリューム124を介してアンプ125〜128で増幅され、左右のフロントスピーカ129、130と、センタスピーカ131と、サブウーファ132とから音声出力される。
コンテンツ情報復号部111は、多重化復元部106から入力された付加情報を復号化すると共に、復号化された付加情報からジャンルを抽出し、抽出したジャンルがコンテンツ情報としてシステムコントローラ115に出力される。なお、同一のコンテンツに複数のジャンルが設定されている場合、すなわち付加情報として同一のコンテンツに複数のジャンルが含まれている場合には、抽出した複数のジャンルがシステムコントローラ115に出力される。
オーディオ制御部121は、音声復号部120によって復号化された音声信号に加工を施す音質調整手段であり、チャンネル数変換処理部191と、音場変更処理部192と、強調処理部193と、イコライザ処理部194とからなる。
チャンネル数変換処理部191は、音声復号部120によって復号化された音声信号の入力チャンネル数を変換する機能を有し、チャンネル数変換処理として、例えば、5.1chの音声信号を3.1ch又は1chに、2chの音声信号を1chに、3.1chの音声信号を1chにそれぞれ変換するダウンミックス処理、5.1chの音声信号を3.1ch又は2chに変換するバーチャルサラウンド処理、2chの音声信号を3.1ch又は5.1chに変換するマトリクスデコード処理、1chの音声信号を2chに変換するステレオ変換処理が行われる。
音場変更処理部192は、音場、すなわちリスニング環境を変更する機能を有し、例えば、後方にスピーカが存在しないにもかかわらず、あたかも後方に音源があるかのように感じるバーチャルサラウンド処理、仮想的なスピーカ位置をスピーカの外側に移動させるスピーカ位置変更処理などを行なう。
チャンネル数変換処理部191と音場変更処理部192による処理はバーチャルサラウンドやプロロジック2(登録商法)などの各音場モードを実現する処理であり、以下バーチャルサラウンドにより実現される音場モードを「VSモード」、プロロジック2により実現される音場モードを「PL2モード」と言うことにする。
強調処理部193は、センタスピーカ131からの音声出力を他のスピーカからの音声出力よりも強調する機能を有し、例えば、センタスピーカ131から出力される音声信号のみを増幅するセンタ強調処理、センタスピーカ131から出力される音声信号を増幅すると共に、他のスピーカから出力される音声信号を減幅するバランス調整処理が行われる。このセンタスピーカ131からの音声出力を他のスピーカから音声出力よりも強調する音場モードを「声強調モード」と言うことにする。
イコライザ処理部194は、周波数帯域毎に、ゲインを増減して音質をコントロールする機能を有し、左右のフロントスピーカ129、130の指向性による周波数特性を補正する指向性補正処理を行うと共に、低音を増幅する低音増強処理を行う。
ボリューム124はシステムコントローラ115の指示にしたがって各スピーカの音圧(音量)を制御する。
リモコン受光部116は、リモコン117からの操作信号(赤外線)を受信し、受信した操作信号を電気信号に変換してシステムコントローラ115に出力する。
メモリ118は、コンテンツ情報復号部111によって抽出されたコンテンツ情報が記憶されると共に、コンテンツのジャンルおよびチャンネル数に応じた音場モードが定義されている音場モードテーブルが記憶されている(後述の図9参照)。
HDMI受信用LSI110はHDMIケーブル6を介して受信した信号から映像信号と映像信号を分離再生し、映像信号をセレクタ108へ出力し、音声信号をセレクタ112へ出力する。
セレクタ108はシステムコントローラ115からの指示により映像復号部107からの映像信号、又はHDMI受信用LSI110からの映像信号のいずれか一方を選択して表示部109へ出力する。またセレクタ112はシステムコントローラ115からの指示により多重化復元部106からの音声信号、又はHDMI受信用LSI110からの音声信号のいずれか一方を選択して音声復号部120とデジタルオーディオインターフェース変調部113へ出力する。
デジタルオーディオインターフェース変調部113はセレクタ112から入力した音声データを光ケーブル伝送用信号に変調して発光素子114に出力する。発光素子114はデジタルオーディオインターフェース変調部113からの信号に応じて発光し、この光は光ケーブル18によりオーディオ機器2に向けて伝送される。
また、双方向インターフェース回路133がシステムコントローラ115とHDMIケーブル6のCECラインとの間に備わり、送受信される信号の双方向バッファ回路を構成する。
EDID−ROM134には、テレビ受信機1の映像表示仕様や音声出力仕様が記憶されており、HDMIケーブル6、9のDDCラインを介してオーディオ機器2やレコーダ5にこれらの映像表示仕様又は音声出力仕様情報を伝達する。図示はしていないが、HDMI端子にはホットプラグ検出端子が備わっているので、HDMI端子が接続されたときにホットプラグ検出機能を使用してこれらの映像表示仕様又は音声出力仕様情報がオーディオ機器2あるいはレコーダ5に伝達される。
また、本実施の形態のオーディオ機器2は、システムコントローラ156と、セレクタ142と、音声復調部143と、オーディオ制御部144と、ボリューム147と、アンプ148〜151と、左右のフロントスピーカ152、153と、センタスピーカ154と、サブウーファ155と、HDMI受信用LSI159と、HDMI送信用LSI160と、受光素子140と、デジタルオーディオインターフェース復調部141と、双方向インターフェース回路157と、EDID−ROM158を具備している。
光ケーブル18を介して発光素子114からの音声信号がオーディオ機器2の受光素子140に入力されると、受光素子140は光信号を電気信号に変換して、デジタルオーディオインターフェース復調部141に出力する。デジタルオーディオインターフェース復調部141は光伝送用に変調された信号を復調し、該復調された信号はセレクタ142を介して音声復調部143に入力されて音声信号として復調される。復調された音声信号はオーディオ制御部144に入力される。
オーディオ制御部144に入力された音声信号はオーディオ制御部144によって加工された後、ボリューム147を介してアンプ148〜151で増幅され、左右のフロントスピーカ152、153と、センタスピーカ154と、サブウーファ155とから音声出力される。ボリューム147はシステムコントローラ156の指示にしたがって各スピーカの音圧を制御する。
オーディオ制御部144は、音声復調部143によって復調された音声信号に加工を施す音質調整手段であり、チャンネル数変換処理部181と、音場変更処理部182と、強調処理部183と、イコライザ処理部184とからなる。
チャンネル数変換処理部181は、音声復調部143によって復調された音声信号のチャンネル数を変換する機能を有し、チャンネル数変換処理として、例えば、5.1chの音声信号を3.1ch又は1chに、2chの音声信号を1chに、3.1chの音声信号を1chにそれぞれ変換するダウンミックス処理、5.1chの音声信号を3.1ch又は2chに変換するバーチャルサラウンド処理、2chの音声信号を3.1ch又は5.1chに変換するマトリクスデコード処理、1chの音声信号を2chに変換するステレオ変換処理を行う。
音場変更処理部182は、音場、すなわちリスニング環境を変更する機能を有し、例えば、後方にスピーカが存在しないにもかかわらず、あたかも後方に音源があるかのように感じるバーチャルサラウンド処理、仮想的なスピーカ位置をスピーカの外側に移動させるスピーカ位置変更処理などを行う。
チャンネル数変換処理部181と音場変更処理部182による処理は、前述のチャンネル数変換処理部191、音場変更処理部192と同様に「VSモード」、「PL2モード」などの各音場モードを実現するための処理である。
強調処理部183による処理は、強調処理部193と同様に「声強調モード」を実現するための処理である。
イコライザ処理部184は、イコライザ処理部194と同様に、周波数帯域毎に、ゲインを増減して音質をコントロールする機能を有し、フロントスピーカ152、153の指向性による周波数特性を補正する指向性補正処理を行うと共に、低音を増幅する低音増強処理を行う。
また、双方向インターフェース回路157がシステムコントローラ156とHDMIケーブル6、9のCECラインとの間に備わり、送受信される信号の双方向バッファ回路を構成する。
また、EDID−ROM158には、オーディオ機器2の音声出力仕様が記憶されており、HDMIケーブル6、9のDDCラインを介してテレビ受信機1やレコーダ5にこの音声出力仕様情報を伝達する。図示はしていないが、HDMI端子にはホットプラグ検出端子が備わっているので、HDMI端子が接続されたときにホットプラグ検出機能を使用してこれらの映像表示仕様や音声出力仕様情報がテレビ受信機1あるいはレコーダ5に伝達される。
HDMI受信用LSI159は、HDMIケーブルを介して受信したレコーダ5からの映像信号と映像信号を分離再生し、映像信号をHDMI送信用LSI160へ出力し、音声信号をHDMI送信用LSI160とセレクタ142へ出力する。
また、HDMI送信用LSI160はHDMI受信用LSI159から入力した映像信号と音声信号をHDMIケーブル6のTMDSチャンネル167を介してテレビ受信機1のHDMI受信用LSI110に出力する。HDMI送信用LSI160からHDMI受信用LSI110に出力される信号は、図4に示したようにHDMI規格に基づいた信号(TMDSリンクといわれる映像、音声、クロック信号)とされて送信される。
セレクタ142はシステムコントローラ156からの指示によりデジタルオーディオインターフェース復調部141からの音声信号、又はHDMI受信用LSI159からの音声信号のいずれか一方を選択して音声複合部143へ出力する。
また、本実施の形態のレコーダ5は、システムコントローラ172と、HDMI送信用LSI171を具備している。HDMI送信用LSI171はシステムコントローラ172の指示に従い、レコーダ5内部の記憶手段に記憶した映像データ、HDMI送信用LSI171からオーディオ機器2のHDMI受信用LSI159に向けて映像信号と音声データを送信する。また、システムコントローラ172は、図示されていないホットプラグ検出機能を使用して、テレビ受信機1のEDID−ROMに記憶された映像表示仕様、音声出力仕様、あるいはオーディオ機器2のEDID−ROMに記憶された音声出力仕様のデータをDDCライン166を通して読み取ることができる。また、システムコントローラ172はCECライン165を通してテレビ受信機1又はオーディオ機器2のシステムコントローラ115、156と制御信号の授受ができるようになっている。図示していないがレコーダ内部では、CECラインには双方向バッファ、DDCラインにはEDID ROMがTVの133や134と同様の構成で接続されている。
次に、ユーザによって操作されるリモコン117からの指令により、テレビ受信機1が放送局からの放送番組を受信してテレビ受信機1の表示部109で映像表示し、オーディオ機器2のスピーカ152〜155から音声出力する場合の、映像信号、音声信号、及び制御信号の流れを、図7にしたがって説明する。図7は図6に示した構成図と同じである。
オーディオ機器2の音声出力仕様は、テレビ受信機1がオーディオ機器2にHDMIケーブル6を介して接続された際、システムコントローラ115によりEDID−ROM158の音声出力仕様データが読み取られて、予めメモリ118に記憶されている。
まず、テレビ受信機1はアンテナ104からの放送番組を受信できる状態にあるとする。
ユーザがリモコンを操作して、テレビ受信機1が放送局からの放送番組を受信して映像をテレビ受信機1の表示部109で表示し、音声をオーディオ機器2のスピーカ152〜155から出力するように切り替えるよう指示すると、リモコン117からの指令を受け取ったシステムコントローラ115は、映像復号部107の信号を選択するようにセレクタ108を切り替える。また、多重化復元部106からの信号を選択するようにセレクタ112を切り替える。また、ボリューム124のゲインを0として音声出力がスピーカ129〜132から出力されないように処理する。なお、このときオーディオ制御部121は動作を停止するとよい。
また、システムコントローラ115は、CECラインを通してシステムコントローラ156に音声をオーディオ機器2のスピーカ152〜155から出力するよう指示する。この指令を受け取ったシステムコントローラ156はセレクタ142をデジタルオーディオインターフェース復調部141の信号を選択するように切り替え、また、システムコントローラ115からCECライン169を通して送られてくる放送番組のジャンルと入力チャンネル数に応じて、最適な音場モードになるようにオーディオ制御部144の処理構成を切り替える。
したがって、映像復号部107で復号された映像信号はセレクタ108により選択されて表示部109に送られ、これにより表示部109は放送番組の映像を表示する。この映像信号は図7の実線(イ)で示した信号の流れで示される。
また、コンテンツ情報復号部111で抽出されたジャンルがシステムコントローラ115に出力される。コンテンツ情報復号部111は、多重化復元部106から入力された付加情報を復号化すると共に、復号化された付加情報からジャンルを抽出してシステムコントローラ115に出力される。また、多重化復元部106からの音声信号はセレクタ112により選択されて音声復号部120とデジタルオーディオインターフェース変調部113に出力される。
そして音声復号部120によって音声信号の入力チャンネル数が復号化される。システムコントローラ115は、放送番組のジャンルをコンテンツ情報復号部111から読み取り、また、チャンネル数を音声復号部120から読み取る。システムコントローラ115は、読み取った放送番組のジャンルと入力チャンネル数に応じた信号をオーディオ機器2のシステムコントローラ156に送る。この指令は図7の一点鎖線(ロ)で示した信号の流れで示される。
この放送番組のジャンルと入力チャンネル数に応じた信号を受けたシステムコントローラ156は、オーディオ制御部144に対して、放送番組のジャンルと入力チャンネル数に最適な音場モードを実現するように、オーディオ機器2の出力チャンネル数と音場モードの変更処理を行う。
セレクタ112から出力された音声信号はデジタルオーディオインターフェース変調部113にも出力されているので、この音声信号は、デジタルオーディオインターフェース変調部113、発光素子114、光ケーブル18、受光素子140、デジタルオーディオインターフェース復調部141に伝送される。セレクタ142はデジタルオーディオインターフェース復調部141からの信号を選択し音声復調部143に送る。オーディオ制御部144は既に放送番組のジャンルと入力チャンネル数に最適な音場モードを実現する処理構成に切り替えられているので、オーディオ制御部144により加工が施された音声信号を基にスピーカ152〜155から出力される。この音声信号は図7の点線(ハ)で示した信号の流れで示される。
スピーカ152〜155から出力される音声は、放送番組のジャンルと入力チャンネル数に応じた最適な音場モードを実現する。
次に、ユーザによって操作されるリモコン117からの指令により、レコーダ5の録画番組の映像信号を基にテレビ受信機1で映像表示し、レコーダ5の録画番組の音声信号を基にオーディオ機器2で音声出力する場合の、映像信号、音声信号、及び制御信号の流れを、図8にしたがって説明する。図8は図6に示した構成図と同じである。
オーディオ機器2の音声出力仕様は、レコーダ5がオーディオ機器2にHDMIケーブル9を介して接続された際、システムコントローラ172によりEDID−ROM158の音声出力仕様データが読み取られて、予めシステムコントローラ172の記憶手段に記憶されている。
まず、レコーダ5は放送番組を録画しているとする。このとき、録画情報として放送番組のジャンル情報も記録されている。
ユーザがリモコンを操作して、レコーダ5の映像信号を基にテレビ受信機1で映像表示し、レコーダ5の音声信号を基にオーディオ機器2で音声出力するように切り替えるようシステムコントローラ115に指示すると、リモコン117からの指令を受け取ったシステムコントローラ115は、HDMI受信機110の映像信号を選択するようにセレクタ108を切り替える。また、ボリューム124のゲインを0として音声出力がスピーカ129〜132から出力されないように処理する。
なお、このときテレビ受信機1の放送受信部(チューナ105と、多重化復元部106と、映像復号部107、コンテンツ情報復号部111、)、音声処理部(音声復号部120、オーディオ制御部121、デジタルオーディオインターフェース変調部113、発光素子114)は動作を停止するとよい。
また、システムコントローラ115は、HDMIケーブル6のCECライン169を通してシステムコントローラ156にレコーダ5からの音声信号をオーディオ機器2のスピーカ152〜155で再生するよう指示する。この指令を受け取ったシステムコントローラ156はHDMI受信機159の音声信号を選択するようにセレクタ142を切り替える。また、レコーダ5からHDMIケーブル9のCECライン165を通して送られてくる放送番組のジャンルと入力チャンネル数に応じて、最適な音場モードになるようにオーディオ制御部144の処理構成を切り替える。
したがって、レコーダ5のHDMI送信用LSI171、オーディオ機器2のHDMI受信用LSI159、HDMI送信用LSI160、テレビ受信機1のHDMI受信用LSI110を介して送られた映像信号はセレクタ108により選択されて表示部109に送られ、これにより表示部109は放送番組の映像を表示する。この映像信号の流れは図8の実線(ニ)で示される。
また、システムコントローラ172で抽出されたジャンルとチャンネル数の情報がオーディオ機器2のシステムコントローラ156に出力される。この制御信号の流れは図8の一点鎖線(ホ)で示される。この放送番組のジャンルと入力チャンネル数に応じた信号を受けたシステムコントローラ156は、オーディオ機器2の出力チャンネル数と音場モードの変更処理を行い、録画番組のジャンルと入力チャンネル数に最適な音場モードを実現するように処理構成を切り替える。
レコーダ5のHDMI送信用LSI171、オーディオ機器2のHDMI受信用LSI159を介してセレクタ142に入力された音声信号は、セレクタ142で選択されて音声復調部143に送られる。オーディオ制御部144は既に放送番組のジャンルと入力チャンネル数に最適な音場モードを実現する処理構成に切り替えられているので、オーディオ制御部144により加工が施された音声信号を基にスピーカ152〜155から出力される。この音声信号の流れは図8の点線(ヘ)で示される。スピーカ152〜155から出力される音声は、録画番組のジャンルと入力チャンネル数に応じた最適な音場モードを実現する。
次に、オーディオ制御部121、144の処理構成を、ジャンルと入力チャンネル数に応じた最適な音場モードを実現するための処理構成変更について説明する。
図9は、入力チャンネル数とジャンルにより音場モードを決めるための音場モードテーブルである。
図9に示したように、入力チャンネルが5.1chでジャンルが映画、スポーツ、アニメ、特撮のときには音場モードがVSモードとなり、入力チャンネルが5.1chでジャンルが音楽、劇場、公演のときにはピュア再生モードとなり、入力チャンネルが5.1chでジャンルがニュース、報道、教育、ワイドショーのときには声強調モードとなり、入力チャンネルが5.1chでジャンルがドラマ、バラエティのときには音場モードがOFFモードとなり、入力チャンネルが2chでジャンルが映画、スポーツ、アニメ、特撮のときには音場モードがPL2+VSモードとなり、入力チャンネルが2chでジャンルがドラマ、バラエティのときには音場モードがPL2モードとなり、入力チャンネルが2chでジャンルが音楽、劇場、公演のときには音場モードがピュア再生/OFFモードとなり、入力チャンネルが2chでジャンルがニュース、報道、教育、ワイドショーのときには音場モードが声強調モードとなり、入力チャンネルが1chでジャンルが音楽、劇場、公演のときには音場モードがピュア再生モードとなり、入力チャンネルが1chでジャンルがニュース、報道、教育、ワイドショーのときには音場モードが声強調モードとなり、入力チャンネルが1chでジャンルがドラマ、バラエティのときには音場モードがOFFモードとなる。図9で示した音場モードテーブルは、一例であって、その他の対応関係とすることもできる。
本実施の形態では、この音場モードテーブルがメモリ118に記憶されており、再生する番組のコンテンツ情報からジャンルと入力チャンネル数を抽出し、この音場モードテーブルを参照して、抽出されたジャンルと入力チャンネル数に応じた音場モードが実現されるようにオーディオ制御部121あるいは144の処理構成が切り替えられる。
図10〜図20は、図9の各音場モードにおけるオーディオ制御部121あるいは144の処理を概念的に示したもので、入力チャンネルから出力チャンネルまでの音声信号変換処理が示されている。
符号VSで示されたブロックはバーチャルサラウンド処理ブロック(以下、VS処理ブロックという)である。また、符号PL2で示されたブロックはプロロジック2の処理ブロック(以下、PL2処理ブロックという)である。また、符号Mixerで示されたブロックは音声信号を所定のゲインで混合する処理ブロック(以下、Mixer処理ブロックという)である。符号BASSで示されたブロックは低音の音声信号を合成する処理ブロック(以下、BASS処理ブロックという)である。また、符号VOLで示されたブロックは音声出力信号L、C、Rのゲインを調整する処理ブロック(以下、VOL処理ブロックという)である。また、符号Analog−VOLで示されたブロックは音声出力信号LFEのゲインを調整する処理ブロック(以下、Analog−VOL処理ブロックという)である。
なお、各ブロック内に記入された経路とゲインは、単に入力と出力の間のゲイン関係を示すものである。例えば、VS処理ブロックのバーチャルサラウンド処理はクロストークキャンセル処理を行うので入力信号LS、L、R、C、RSを複雑に組み合わせて処理するが、これらについては表現されていない。
本実施の形態は、番組のジャンルと入力チャンネル数に応じて音場モードを変えるときに、再生音が途切れたり不連続になったりすることがなく、オーディオアンプの出力状態が滑らかに切り替わるように、これら図10〜図20に示した各処理ブロック間の接続と、各処理ブロック内の各入出力ゲインを切り替えるものである。
まず、図10〜図20において、LSは左サラウンドチャンネルの音声信号、Lは左チャンネルの音声信号、Cはセンタスチャンネルの音声信号、Rは右チャンネルの音声信号、RSは右サラウンドチャンネルの音声信号、LFEは低音(20Hz〜120Hz)の効果音の音声信号である。以下の説明で、符号LS、L、R、C、RSを各処理ブロックの入出力に共通に使用するが、各処理ブロックに入力される信号を入力信号(LS入力信号、L入力信号、R入力信号、C入力信号、RS入力信号)、各処理ブロックから出力される信号を出力信号(LS出力信号、L出力信号、R出力信号、C出力信号、RS出力信号)と記載する。また、音声出力用スピーカとしてL出力信号が入力される左スピーカ、R出力信号が入力される右スピーカ、C出力信号が入力されるセンタスピーカの3チャンネル、及び付加的にLFE出力信号が入力される低音用サブウーハスピーカを想定している。
まず、図10の5.1ch入力VSモードについて説明する。
5.1ch入力VSモードはVS処理ブロック201、VOL処理ブロック202、BASS処理ブロック203、AnalogVOL処理ブロック204を含む。
VS処理ブロック201のLS入力信号とL入力信号は、VS処理ブロック201でそれぞれ−6dBだけ大きさが小さくなって合わせられVS処理ブロック201のL出力信号(VOL処理ブロック202のL入力信号)となる。VS処理ブロック201のC入力信号は、大きさは変わらずにVS処理ブロック201のC出力信号となる。VS処理ブロック201のRS入力信号とR入力信号は、VS処理ブロック201でそれぞれ−6dBだけ大きさが小さくなって合わせられVS処理ブロック201のR出力信号(VOL処理ブロック202のL入力信号)となる。
VOL処理ブロック202のL入力信号はVOL処理ブロック202で+6dBだけ大きさが増幅されVOL処理ブロック202のL出力信号となる。VOL処理ブロック202のC入力信号は、大きさは変わらずにVOL処理ブロック202のC出力信号となる。VOL処理ブロック202のR入力信号はVOL処理ブロック202で+6dBだけ大きさが増幅されVOL処理ブロック202のR出力信号となる。
また、BASS処理ブロック203にはLFE入力信号、VS処理ブロック201のL出力信号、R出力信号、及びC出力信号が入力され、入力されたLFE入力信号は−2dB、VS処理ブロック201のL出力信号とR出力信号は−6dB、VS処理ブロック201のC出力信号は−12dBだけBASS処理ブロック203でそれぞれ大きさが変えられて加算器205で加算されBASS処理ブロック203のLFE出力信号となる。
BASS処理ブロック203のLFE出力信号は更にAnalogVOL処理ブロック204で+18dBだけ増幅されてAnalogVOL処理ブロック204のLFE出力信号となる。
次に、図11の5.1ch入力ピュア再生モードについて説明する。
5.1ch入力ピュア再生モードは、Mixer処理ブロック206、VOL処理ブロック202、BASS処理ブロック203、AnalogVOL処理ブロック204を含む。
Mixer処理ブロック206のLS入力信号はMixer処理ブロック206で−3dBだけ大きさが小さくなり、また、L入力信号はMixer処理ブロック206で大きさを変えずに、これら信号は合わされてMixer処理ブロック206のL出力信号(VOL処理ブロック202のL入力信号)となる。Mixer処理ブロック206のC入力信号は、大きさを変えずにMixer処理ブロック206のC出力信号となる。Mixer処理ブロック206のRS入力信号はMixer処理ブロック206で−3dBだけ大きさが小さくなり、また、R入力信号はMixer処理ブロック206で大きさを変えずに、これら信号は合わされてMixer処理ブロック206のR出力信号(VOL処理ブロック202のR入力信号)となる。
VOL処理ブロック202のL入力信号は、VOL処理ブロック202では大きさを変えずにVOL処理ブロック202のL出力信号となる。VOL処理ブロック202のC入力信号は、大きさを変えずにVOL処理ブロック202のC出力信号となる。VOL処理ブロック202のR入力信号は、VOL処理ブロック202では大きさを変えずにVOL処理ブロック202のR出力信号として出力される。
また、BASS処理ブロック203にはLFE入力信号、Mixer処理ブロック206のL出力信号、R出力信号、及びC出力信号が入力され、入力されたLFE入力信号は−2dB、Mixer処理ブロック206のL出力信号、R出力信号、及びC出力信号は−12dBだけBASS処理ブロック203でそれぞれ大きさが変えられて加算器205で加算されBASS処理ブロック203のLFE出力信号となる。
BASS処理ブロック203のLFE出力信号は更にAnalogVOL処理ブロック204で+18dBだけ増幅されてAnalogVOL処理ブロック204のLFE出力信号となる。
次に、図12の5.1ch入力声強調モードについて説明する。
5.1ch入力声強調モードは、Mixer処理ブロック206、VOL処理ブロック202、BASS処理ブロック203、AnalogVOL処理ブロック204を含む。
Mixer処理ブロック206のLS入力信号はMixer処理ブロック206で−3dBだけ大きさが小さくなり、また、L入力信号はMixer処理ブロック206で大きさが変わらずに、これら信号は合わされてMixer処理ブロック206のL出力信号(VOL処理ブロック202のL入力信号)となる。Mixer処理ブロック206のC入力信号は、大きさを変えずにMixer処理ブロック206のC出力信号となる。Mixer処理ブロック206のRS入力信号はMixer処理ブロック206で−3dBだけ大きさが小さくなり、また、R入力信号はMixer処理ブロック206で大きさが変わらずに、これら信号は合わされてMixer処理ブロック206のR出力信号(VOL処理ブロック202のR入力信号)となる。
VOL処理ブロック202のL入力信号は−3dBだけ大きさが小さくなりVOL処理ブロック202のL出力信号となる。VOL処理ブロック202のC入力信号は、大きさを変えずにVOL処理ブロック202のC出力信号となる。VOL処理ブロック202のR入力信号は−3dBだけ大きさが小さくなりVOL処理ブロック202のR出力信号となる。
また、BASS処理ブロック203にはLFE入力信号、Mixer処理ブロック206のL出力信号、R出力信号、及びC出力信号が入力され、入力されたLFE入力信号は−2dB、Mixer処理ブロック206のL出力信号、R出力信号、及びC出力信号は−12dBだけBASS処理ブロック203でそれぞれ大きさが変えられて加算器205で加算されBASS処理ブロック203のLFE出力信号となる。
BASS処理ブロック203のLFE出力信号は更にAnalogVOL処理ブロック204で+18dBだけ増幅されてAnalogVOL処理ブロック204のLFE出力信号となる。
次に、図13の5.1ch入力OFFモードについて説明する。
5.1ch入力OFFモードは、Mixer処理ブロック206、VOL処理ブロック202、BASS処理ブロック203、AnalogVOL処理ブロック204を含む。
Mixer処理ブロック206のLS入力信号はMixer処理ブロック206で−3dBだけ大きさが小さくなり、L入力信号はMixer処理ブロック206で大きさが変わらずに、また、Mixer処理ブロック206のC入力信号はMixer処理ブロック206で−3dBだけ大きさが小さくなり、これら信号は合わされてMixer処理ブロック206のL出力信号(VOL処理ブロック202のL入力信号)となる。Mixer処理ブロック206のRS入力信号はMixer処理ブロック206で−3dBだけ大きさが小さくなり、R入力信号はMixer処理ブロック206で大きさが変わらずに、また、Mixer処理ブロック206のC入力信号はMixer処理ブロック206で−3dBだけ大きさが小さくなり、これら信号は合わされてMixer処理ブロック206のR出力信号(VOL処理ブロック202のR入力信号)となる。
VOL処理ブロック202のL入力信号は、VOL処理ブロック202では大きさを変えずにVOL処理ブロック202のL出力信号として出力される。VOL処理ブロック202のR入力信号は、VOL処理ブロック202では大きさを変えずにVOL処理ブロック202のR出力信号として出力される。
また、BASS処理ブロック203にはLFE入力信号、Mixer処理ブロック206のL出力信号とR出力信号が入力され、入力されたLFE入力信号は−2dB、Mixer処理ブロック206のL出力信号とR出力信号はBASS処理ブロック203で−12dBだけそれぞれ大きさが変えられて加算器205で加算されBASS処理ブロック203のLFE出力信号となる。
BASS処理ブロック203のLFE出力信号は更にAnalogVOL処理ブロック204で+18dBだけ増幅されてAnalogVOL処理ブロック204のLFE出力信号となる。
次に、図14の2ch入力PL2+VSモードについて説明する。
2ch入力PL2+VSモードは、PL2処理ブロック207、VS処理ブロック201、VOL処理ブロック202、BASS処理ブロック203、AnalogVOL処理ブロック204を含む。
PL2処理ブロック207のL入力信号はPL2処理ブロック207で−3dBだけ大きさが小さくなってPL2処理ブロック207のLS出力信号(VS処理ブロック201のLS入力信号)となる。また、PL2処理ブロック207のL入力信号はPL2処理ブロック207で−3dBだけ大きさが小さくなってPL2処理ブロック207のL出力信号(VS処理ブロック201のL入力信号)となる。PL2処理ブロック207のL入力信号とR入力信号は、PL2処理ブロック207でそれぞれ−6dBだけ大きさが小さくなって合わせられPL2処理ブロック207のC出力信号(VS処理ブロック201のC入力信号)となる。PL2処理ブロック207のR入力信号はPL2処理ブロック207で−3dBだけ大きさが小さくなってPL2処理ブロック207のR出力信号(VS処理ブロック201のR入力信号)となる。また、PL2処理ブロック207のR入力信号はPL2処理ブロック207で−3dBだけ大きさが小さくなってPL2処理ブロック207のRS出力信号(VS処理ブロック201のRS入力信号)となる。
VS処理ブロック201のLS入力信号とL入力信号は、VS処理ブロック201でそれぞれ−6dBだけ大きさが小さくなって合わせられVS処理ブロック201のL出力信号(VOL処理ブロック202のL入力信号)となる。VS処理ブロック201のC入力信号はVS処理ブロック201で大きさを変えずにVS処理ブロック201のC出力信号となる。VS処理ブロック201のRS入力信号とR入力信号は、VS処理ブロック201でそれぞれ−6dBだけ大きさが小さくなって合わせられVS処理ブロック201のR出力信号(VOL処理ブロック202のR入力信号)となる。
VOL処理ブロック202のL入力信号はVOL処理ブロック202で+9dBだけ大きさが増幅されVOL処理ブロック202のL出力信号となる。VOL処理ブロック202のC入力信号はVOL処理ブロック202で大きさが+3dBだけ増幅されてVOL処理ブロック202のC出力信号となる。VOL処理ブロック202のR入力信号はVOL処理ブロック202で+9dBだけ大きさが増幅されVOL処理ブロック202のR出力信号となる。
また、BASS処理ブロック203にはVS処理ブロック201のL出力信号、R出力信号、及びC出力信号が入力され、入力されたVS処理ブロック201のL出力信号とR出力信号は−3dB、VS処理ブロック201のC出力信号は−9dBだけBASS処理ブロック203でそれぞれ大きさが変えられて加算器205で加算されBASS処理ブロック203のLFE出力信号となる。BASS処理ブロック203のLFE出力信号は更にAnalogVOL処理ブロック204で+18dBだけ増幅されてAnalogVOL処理ブロック204のLFE出力信号となる。
次に、図15の2ch入力PL2モードについて説明する。
2ch入力PL2モードは、PL2処理ブロック207、VOL処理ブロック202、BASS処理ブロック203、AnalogVOL処理ブロック204を含む。
PL2処理ブロック207のL入力信号はPL2処理ブロック207で−3dBだけ大きさが小さくなってPL2処理ブロック207のL出力信号(VOL処理ブロック202のL入力信号)となる。PL2処理ブロック207のL入力信号とR入力信号は、PL2処理ブロック207でそれぞれ−6dBだけ大きさが小さくなって合わせられPL2処理ブロック207のC出力信号(VOL処理ブロック202のC入力信号)となる。PL2処理ブロック207のR入力信号はPL2処理ブロック207で−3dBだけ大きさが小さくなってPL2処理ブロック207のR出力信号(VOL処理ブロック202のR入力信号)となる。
VOL処理ブロック202のL入力信号はVOL処理ブロック202で+3dBだけ大きさが増幅されVOL処理ブロック202のL出力信号となる。VOL処理ブロック202のC入力信号はVOL処理ブロック202で+3dBだけ大きさが増幅されVOL処理ブロック202のC出力信号となる。VOL処理ブロック202のR入力信号はVOL処理ブロック202で+3dBだけ大きさが増幅されVOL処理ブロック202のR出力信号となる。
また、BASS処理ブロック203にはPL2処理ブロック207のL出力信号、R出力信号、及びC出力信号が入力され、入力されたPL2処理ブロック207のL出力信号、R出力信号、及びC出力信号はBASS処理ブロック203で−9dBだけそれぞれ大きさが変えられて加算器205で加算されBASS処理ブロック203のLFE出力信号となる。
BASS処理ブロック203のLFE出力信号は更にAnalogVOL処理ブロック204で+18dBだけ増幅されてAnalogVOL処理ブロック204のLFE出力信号となる。
次に、図16の2ch入力ピュア再生モード、2ch入力OFFモードについて説明する。
2ch入力ピュア再生/OFFモードは、VOL処理ブロック202、BASS処理ブロッ
ク203、AnalogVOL処理ブロック204を含む。
VOL処理ブロック202のL入力信号はVOL処理ブロック202で大きさが変わらずそのままVOL処理ブロック202のL出力信号となる。また、VOL処理ブロック202のR入力信号はVOL処理ブロック202で大きさが変わらずそのままVOL処理ブロック202のR出力信号となる。
また、BASS処理ブロック203にはL入力信号とR入力信号が入力され、入力されたL入力信号とR入力信号はBASS処理ブロック203でそれぞれ−12dBだけ大きさが変えられ加算器205で加算されBASS処理ブロック203のLFE出力信号となる。
BASS処理ブロック203のLFE出力信号は更にAnalogVOL処理ブロック204で+18dBだけ増幅されてAnalogVOL処理ブロック204のLFE出力信号となる。
次に、図17の2ch入力声強調モードについて説明する。
2ch入力声強調モードは、Mixer処理ブロック206、VOL処理ブロック202、BASS処理ブロック203、AnalogVOL処理ブロック204を含む。
Mixer処理ブロック206のL入力信号はMixer処理ブロック206で−12dBだけ大きさが小さくなりMixer処理ブロック206のL出力信号(VOL処理ブロック202のL入力信号)となる。Mixer処理ブロック206のL入力信号とR入力信号は、Mixer処理ブロック206でそれぞれ−6dBだけ大きさが小さくなって合わせられMixer処理ブロック206のC出力信号(VOL処理ブロック202のC入力信号)となる。Mixer処理ブロック206のR入力信号はMixer処理ブロック206で−12dBだけ大きさが小さくなりMixer処理ブロック206のR出力信号(VOL処理ブロック202のR入力信号)となる。
VOL処理ブロック202のL入力信号はVOL処理ブロック202で+3dBだけ大きさが増幅されVOL処理ブロック202のL出力信号となる。VOL処理ブロック202のC入力信号はVOL処理ブロック202で+3dBだけ大きさが増幅されVOL処理ブロック202のC出力信号となる。VOL処理ブロック202のR入力信号はVOL処理ブロック202で+3dBだけ大きさが増幅されVOL処理ブロック202のR出力信号となる。
また、BASS処理ブロック203にはMixer処理ブロック206のL出力信号とR出力信号、及びC出力信号が入力され、入力されたMixer処理ブロック206のL出力信号、R出力信号、及びC出力信号は−9dBだけBASS処理ブロック203でそれぞれ大きさが変えられて加算器205で加算されBASS処理ブロック203のLFE出力信号となる。
BASS処理ブロック203のLFE出力信号は更にAnalogVOL処理ブロック204で+18dBだけ増幅されてAnalogVOL処理ブロック204のLFE出力信号となる。
次に、図18の1ch入力ピュア再生モードについて説明する。
1ch入力ピュア再生モードは、VOL処理ブロック202、BASS処理ブロック203、AnalogVOL処理ブロック204を含む。
入力されたC入力信号はVOL処理ブロック202で大きさを変えずにそのままVOL処理ブロック202のC出力信号となる。
また、BASS処理ブロック203にはC入力信号が入力され、入力されたC入力信号はBASS処理ブロック203で−12dBだけ大きさを変えられて加算器205を通りBASS処理ブロック203のLFE出力信号となる。
BASS処理ブロック203のLFE出力信号は更にAnalogVOL処理ブロック204で+18dBだけ増幅されてAnalogVOL処理ブロック204のLFE出力信号となる。
次に、図19の1ch入力声強調モードについて説明する。
1ch入力声強調モードは、Mixer処理ブロック206、VOL処理ブロック202、BASS処理ブロック203、AnalogVOL処理ブロック204を含む。
Mixer処理ブロック206のC入力信号はMixer処理ブロック206で−12dBだけ大きさが小さくなってMixer処理ブロック206のL出力信号(VOL処理ブロック202のL入力信号)となる。Mixer処理ブロック206のC入力信号はMixer処理ブロック206で大きさを変えずにそのままMixer処理ブロック206のC出力信号(VOL処理ブロック202のC入力信号)となる。Mixer処理ブロック206のC入力信号はMixer処理ブロック206で−12dBだけ大きさが小さくなってMixer処理ブロック206のR出力信号(VOL処理ブロック202のR入力信号)となる。
VOL処理ブロック202のL入力信号はVOL処理ブロック202で+3dBだけ大きさが増幅されVOL処理ブロック202のL出力信号となる。VOL処理ブロック202のC入力信号はVOL処理ブロック202で+3dBだけ大きさが増幅されVOL処理ブロック202のC出力信号となる。VOL処理ブロック202のR入力信号はVOL処理ブロック202で+3dBだけ大きさが増幅されVOL処理ブロック202のR出力信号となる。
また、BASS処理ブロック203にはMixer処理ブロック206のL出力信号、R出力信号、C出力信号が入力され、入力されたL、R、Cの各出力信号は−9dBだけBASS処理ブロック203でそれぞれ大きさが変えられて加算器205で加算されBASS処理ブロック203のLFE出力信号となる。
BASS処理ブロック203のLFE出力信号は更にAnalogVOL処理ブロック204で+18dBだけ増幅されてAnalogVOL処理ブロック204のLFE出力信号となる。
次に、図20の1ch入力OFFモードについて説明する。
1ch入力OFFモードは、Mixer処理ブロック206、VOL処理ブロック202、BASS処理ブロック203、AnalogVOL処理ブロック204を含む。
Mixer処理ブロック206のC入力信号はMixer処理ブロック206で大きさを変えずにMixer処理ブロック206のL出力信号(VOL処理ブロック202のL入力信号)なる。Mixer処理ブロック206のC入力信号はMixer処理ブロック206で大きさを変えずにMixer処理ブロック206のR出力信号(VOL処理ブロック202のR入力信号)なる。
VOL処理ブロック202のL入力信号はVOL処理ブロック202で大きさを変えずにVOL処理ブロック202のL出力信号となる。VOL処理ブロック202のR入力信号はVOL処理ブロック202で大きさを変えずにVOL処理ブロック202のR出力信号となる。
また、BASS処理ブロック203にはMixer処理ブロック206のL出力信号とR出力信号が入力され、入力されたL、Rの各出力信号はBASS処理ブロック203でそれぞれ−12dBだけ大きさが変えられて加算器205で加算されBASS処理ブロック203のLFE出力信号となる。
BASS処理ブロック203のLFE出力信号は更にAnalogVOL処理ブロック204で+18dBだけ増幅されてAnalogVOL処理ブロック204のLFE出力信号となる。
次に、各音場モード間の遷移のさせ方を説明する。
図21乃至図23を参照して、5.1ch入力OFFモードと5.1ch入力VSモード間の遷移(この遷移における過渡状態を以下過渡状態Aという)の例を説明する。
図21は、図13に示した5.1ch入力OFFモードから図10に示した5.1ch入力VSモードへ遷移させる過渡状態Aの概念図を示している。また、図22は過渡状態Aをタイムチャートで示したものである。また、図23はオーディオ制御部121あるいは144で実現される図13の5.1ch入力OFFモードから図10の5.1ch入力VSモードへの過渡状態Aにおける処理構成の遷移を示したものである。
図13に示した5.1ch入力OFFモード(図21〜図23のA1)から図10に示した5.1ch入力VSモード(図21〜図23のA4)に遷移させるときは、過渡的にMixer処理ブロック206(切り替え前の処理ブロック)とVS処理ブロック201の2つの処理ブロック(切り替え後の処理ブロック)を同時に存在させ、音声出力している一方の処理ブロックによる音声信号がフェードアウトしたタイミングで、他方の処理ブロックによる音声出力に切り替えるようにする。このようにすると切り替えによる異音の発生を防ぐことができる。
まず時間t1で、図13に示した5.1ch入力OFFモードから図10の5.1ch入力VSモードへの音場モードの切り替えが指示されると、VOL処理ブロック202のC出力信号がフェードアウトした状態(図22のa)で、図23のA2に示したようにMixer処理ブロック206の他にVS処理ブロック201が挿入される。
そして、VOL処理ブロック202のL出力信号とR出力信号に対するゲインを徐々に小さく(+0dBから−∞dBにフェードアウト)すると共に、挿入されたVS処理ブロック201のC入力信号をVOL処理ブロック202のC入力信号としてVOL処理ブロック202へ入力し、VOL処理ブロック202のC出力信号に対するゲインを徐々に大きく(−∞dBから+0dBにフェードイン)する(図21〜図23のA2)。
このときBASS処理ブロック203のL、R入力信号に対するゲインは徐々に小さく(−12dBから−∞dBにフェードアウト)され、またBASS処理ブロック203のC入力信号に対するゲインは徐々に大きく(−∞dBから−12dBにフェードイン)される。
次に、VOL処理ブロック202のL出力信号とR出力信号がフェードアウトしている状態(時間t2における図22のb、c)で、VOL処理ブロック202のL入力信号とR入力信号を、図23のA3に示したようにMixer処理ブロック206のL出力信号とR出力信号からVS処理ブロック201のL出力信号とR出力信号に切り替える。
このとき、VOL処理ブロック202のL出力信号とR出力信号はフェードアウトしているので異音は生じない。
その後、VS処理ブロック201のL出力信号とR出力信号に対するゲインを徐々に大きく(−∞dBから+6dBにフェードイン)する(図21〜図23のA3)。このとき、Mixer206からBASS処理ブロック203へ入力されたL、R入力信号のゲインは徐々に大きく(−∞dBから−6dBにフェードイン)される。
VS処理ブロック201のL出力信号とR出力信号のゲインが+6dBになって図23のA4に示した5.1ch入力VSモードの定常状態となる(時間t3〜)。
また、5.1ch入力VSモード(図21〜図23のA4)から5.1ch入力OFFモード(図21〜図23のA1)に遷移させるときは、まず、図10で示したVOL処理ブロック202のL出力信号とR出力信号に対するゲインを徐々に小さくして出力(+6dBから−∞dBにフェードアウト)する(図21〜図23の符号A5)。このとき、BASS処理ブロック203のL、R入力信号に対するゲインは徐々に小さく(−6dBから−∞dBにフェードアウト)される。なお、このとき図22の時間は右から左に逆行するように見る。
次に、VOL処理ブロック202のL出力信号とR出力信号がフェードアウトしている状態(図22のb、c)でVOL処理ブロック202のL入力信号とR入力信号を、図23のA6に示したようにVS処理ブロック201のL出力信号とR出力信号からMixer処理ブロック206のL出力信号とR出力信号に切り替える。
このとき、VOL処理ブロック202のL出力信号とR出力信号はフェードアウトしているので異音は生じない。
その後、VOL処理ブロック202のL出力信号とR出力信号に対するゲインを徐々に大きく(−∞dBから+0dBにフェードイン)すると共に、VS処理ブロック201のC入力信号をVOL処理ブロック202のC入力信号としてVOL処理ブロック202へ入力しているVOL処理ブロック202のC出力信号に対するゲインを徐々に小さく(+0dBから−∞dBにフェードアウト)する(図21〜図23の符号A6で示した)。
このとき、BASS処理ブロック203のL、R入力信号に対するゲインは徐々に大きく(−∞dBから−12dBにフェードイン)され、またBASS処理ブロック203へ入力されたC入力信号に対するゲインは徐々に小さく(−12dBから−∞dBにフェードアウト)される。
VOL処理ブロック202のC出力信号がフェードアウトしている状態(図22のa)で図23のA1に示したようにVS処理ブロック201が除かれて5.1入力OFFモードの定常状態となる。
以上の音場モードの切り替えを図22で見ると、VOL202のL出力信号とR出力信号は徐々に小さくなって再び徐々に大きくなる。また、複数ある出力チャンネルのうち一部の出力チャンネルの切り替えタイミング(C出力信号の切り替えタイミングt1)を他の出力チャンネルの切り替えタイミング(L出力信号とR出力信号の切り替えタイミングt2)に対してずらして切り替えるようになっており、このとき、VOL202のL出力信号とR出力信号が過渡状態Aにおいてその大きさが小さくなる変化を補うように、VOL202のC出力信号は大きくなり、したがって全体の音声は途切れることなく、連続的に滑らかに切り替えられている。また、対応する音声出力がフェードアウトしているときVS処理ブロック201及びMixer206の挿入/切り離しが行われるので、挿入/切り離しに伴う異音は生じない。
図24、図25を参照して、2ch入力ピュア再生/OFFモードと2ch入力PL2モード間の遷移(この遷移における過渡状態を以下過渡状態Bという)の例を説明する。
図24は、図16に示した2ch入力ピュア再生/OFFモードから図15に示した2ch入力PL2モードへ遷移させる過渡状態Bの概念図を示している。また、図25は過渡状態Bをタイムチャートで示したものである。なお、以下の説明ではBASS処理ブロック203のゲインの変化についての説明は省略する。
図16に示した2ch入力ピュア再生/OFFモード(図24、図25のB1)から図15に示した2ch入力PL2モード(図24、図25のB4)に遷移するときは、まず、図16で示したVOL処理ブロック202のL出力信号とR出力信号のゲインを徐々に小さく(+0dBから−∞dBにフェードアウト)すると共に、時間t4におけるVOL処理ブロック202のC出力信号がフェードアウトした状態(図25のd)で挿入されたPL2処理ブロック207のC出力信号のみをVOL処理ブロック202のC入力信号とした後、VOL処理ブロック202のC出力信号に対するゲインを徐々に大きく(−∞dBから+3dBにフェードイン)する(図24、図25のB2)。
次に、VOL処理ブロック202のL出力信号とR出力信号がフェードアウトした状態(時間t5における図25のe、f)でVOL処理ブロック202のL入力信号とR入力信号を図16のような直接入力からPL2処理ブロック207のL出力信号とR出力信号に切り替えた後、VOL処理ブロック202のL出力信号とR出力信号に対するゲインを徐々に大きく(−∞dBから+3dBにフェードイン)する(図21〜図23のB3)。
VOL処理ブロック202のL出力信号とR出力信号が+3dBにフェードアウトした状態で図15で示した2ch入力PL2モードの定常状態となる(時間t6〜)。
また、図15に示した2ch入力PL2モード(図24、図25のB4)から図16に示した2ch入力OFFモード(図24、図25のB1)に遷移するとき(このときも、図25の時間は右から左に逆行するように見る)は、まず、PL2処理ブロック207のL出力信号とR出力信号を入力としているVOL処理ブロック202のL出力信号とR出力信号をフェードアウトするために、VOL処理ブロック202のL出力信号とR出力信号に対するゲインを徐々に小さくして出力(+6dBから−∞dBにフェードアウト)する(図24、図25のB5)。
次に、VOL処理ブロック202のL出力信号とR出力信号がフェードアウトした状態(図25のe、f)で、VOL処理ブロック202のL入力信号とR入力信号をPL2処理ブロック207のL出力信号とR出力信号から図16のように直接入力するように切り替えた後、VOL処理ブロック202のL出力信号とR出力信号に対するゲインを徐々に大きく(−∞dBから+0dBにフェードイン)すると共に、PL2処理ブロック207のC出力信号を入力としているVOL処理ブロック202のC出力信号をフェードアウトするためにVOL処理ブロック202のC出力信号に対するゲインを徐々に小さく(+0dBから−∞dBにフェードアウト)する(図24、図25のB6)。
VOL処理ブロック202のC出力信号がフェードアウトした状態(図25のd)でVOL処理ブロック202は除かれ、図16で示した2ch入力ピュア再生/OFFモードの定常状態となる。
以上の音場モードの切り替えを図25で見ると、LchとRchの音声信号は徐々に小さくなって再び徐々に大きくなる。このとき、LchとRchの音声信号が過渡状態Bにおいてその大きさが小さくなる変化を補うように、Cchの音声信号は大きくなり、したがって全体の音声は途切れることなく、連続的に滑らかに切り替えられている。また、対応する音声出力がフェードアウトしているとき(図25のd、e,fのとき)PL2処理ブロック207の挿入/切り離しが行われるので、挿入/切り離しに伴う異音は生じない。
図26、図27を参照して、2ch入力ピュア再生/OFFモードと2ch入力PL2+VSモード間の遷移(この遷移における過渡状態を以下過渡状態Cという)の例を説明する。
図26は、図16に示した2ch入力ピュア再生/OFFモードと図14に示した2ch入力PL2+VSモード間の過渡状態Cの概念図を示している。また、図27は過渡状態Cをタイムチャートで示したものである。なお、以下の説明ではBASS処理ブロック203のゲインの変化についての説明は省略する。
まず時間t7で、図16に示した2ch入力ピュア再生/OFFモード(図26、図27のC1)から図14に示した2ch入力PL2+VSモード(図26、図27のC4)への音場モードの切り替えが指示されると、図16で示したVOL処理ブロック202のL出力信号とR出力信号に対するゲインを徐々に小さく(+0dBから−∞dBにフェードアウト)すると共に、VOL処理ブロック202のC出力信号がフェードアウトした状態(図27のg)でPL2処理ブロック207とVS処理ブロック201を図14のように挿入し該挿入られたVS処理ブロック201のC出力信号をVOL処理ブロック202のC入力信号とした後、VOL処理ブロック202のC出力信号に対するゲインを徐々に大きく(−∞dBから+3dBにフェードイン)する(図26、図27のC2)。
次に、VOL処理ブロック202のL出力信号とR出力信号がフェードアウトした状態(時間t8における図25のh、i)でVOL処理ブロック202のL入力信号とR入力信号を図16のような直接入力から図14のようなVS処理ブロック201のL出力信号とR出力信号に切り替えた後、VOL処理ブロック202のL出力信号とR出力信号に対するゲインを徐々に大きく(−∞dBから+9dBにフェードイン)する(図21〜図23のC3)。
VOL処理ブロック202のL出力信号とR出力信号が+9dBにフェードアウトした状態で図14に示した2ch入力PL2+VSモードの定常状態となる(時間t9〜)。
また、図14に示した2ch入力PL2+VSモード(図26、図27のC4)から図16に示した2ch入力OFFモード(図26、図27のC1)に遷移するとき(このときも、図27の時間は右から左に逆行するように見る)は、まず、VS処理ブロック201のL出力信号とR出力信号による音声信号をフェードアウトするためにVOL処理ブロック202のL出力信号とR出力信号に対するゲインを徐々に小さくして出力(+9dBから−∞dBにフェードアウト)する(図26、図27のC5)。
次に、VOL処理ブロック202のL出力信号とR出力信号がフェードアウトした状態(図27のh、i)で、VOL処理ブロック202のL入力信号とR入力信号をVS処理ブロック201のL出力信号とR出力信号から図16のように直接入力するように切り替えた後、VOL処理ブロック202のL出力信号とR出力信号に対するゲインを徐々に大きく(−∞dBから+0dBにフェードイン)すると共に、VS処理ブロック201のC出力信号をVOL処理ブロック202のC出力信号からフェードアウトするためにVOL処理ブロック202のC出力信号に対するゲインを徐々に小さく(+3dBから−∞dBにフェードアウト)する(図26、図27のC6)。
VOL処理ブロック202のC出力信号がフェードアウトした状態(図27のg)でVOL処理ブロック202は除かれ、図16で示した2ch入力ピュア再生/OFFモードの定常状態となる。
以上の音場モードの切り替えを図27で見ると、VOL処理ブロック202のL出力信号とR出力信号は徐々に小さくなって再び徐々に大きくなる。このとき、L出力信号とR出力信号がh、iの点でフェードアウトするが、その大きさの変化を補うように、VOL処理ブロック202のC出力信号は大きくなる。したがって全体の音声出力は途切れることなく、連続的に滑らかに切り替えられる。また、図27のg、h,iのように音声出力がフェードアウトしているとき、PL2処理ブロック207とVS処理ブロック201の挿入/切り離しが行われるので、挿入/切り離しに伴う異音は生じない。
図28は、図10乃至図20で示した音場モード全体間の遷移を纏めた音場モード遷移図である。
図28において過渡状態A、B、Cは先に説明したように、その過渡状態において、VS処理ブロック201とPL2処理ブロック207の出力がVOL処理ブロック202の入力に対して切り替えられる。したがって、この過渡状態A、B、CはVOL処理ブロック202の出力信号がフェードアウトしている状態で切り替え、異音が発生しないようにしている。これに対して図28に符号FACTLで示した処理は、その経路両端にある音場モードに遷移するとき、各経路のゲイン設定を滑らかに変化させるだけで遷移させることができ、処理が簡単に行える。この図に示した各音場モード間の遷移において、いずれも再生音が途切れたり不連続になったりすることがなく、オーディオアンプの出力状態を滑らかに切り替えることができる。
図29は過渡状態Aの変形例である。図29のmで囲った部分のC出力信号に示したように、過渡状態AでVOL処理ブロック202のC出力信号を図22で示したVOL処理ブロック202のC出力信号(図22のnで囲った部分のC出力信号)より大きくして、音声出力の音圧が全体として変化しないようにしたものである。なお、t10は切り替え開始の時間、t11はVOL処理ブロック202のL出力信号とR出力信号をフェードアウトさせる時間、t12は切り替え終了時間を示している。また、j、k、lは図22のa、b、cと同様にVOL処理ブロック202のL、R、C出力信号がフェードアウトしている部分を示している。
これは、図23においてA1からA4に遷移させるとき、A2においてVOL処理ブロック202のC出力信号に対するゲインを−∞dBから+XdB(XはL出力信号とR出力信号がフェードアウトしたk、l点の音圧を補ってトータルとして音圧が変化しないような値に設定される)に変化させ、A3においてVOL処理ブロック202のC出力信号に対するゲインをXdBから+0dBに変化させる。
また、A4からA1に遷移させるときも同様に過渡状態Aにおいて全体の音圧が変化しないようにVOL処理ブロック202のC出力信号に対するゲインを変化させる。これは過渡状態B、Cについても同様に行うことができる。
このようにすると音場モードの切り替え時に全体の音圧が変化しないで滑らかに変化させることができ、ユーザにとってより快適な切り替えを実現することができる。
以上の実施の形態の説明では、オーディオ制御部121、144の制御で実現する各音場モードを、図10乃至図20に示すようにしたが、本発明はこれには限定されない。また、入力チャンネル数やジャンルの情報をCECラインを通して伝達する例を説明したが、HDMIケーブルのTMDSチャンネルを利用して伝達することもできる。この場合には伝送先の音声復号部あるいは音声復調部によりこれらの情報を抽出するようにすれば良い。
以上、本実施の形態を具体的に説明したが、本発明は上記実施の形態に限定されず、発明の要旨を逸脱しない範囲で変更して実施することができる。