JP4651762B2 - Epoxy resin composition and cured product thereof - Google Patents

Epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP4651762B2
JP4651762B2 JP29504099A JP29504099A JP4651762B2 JP 4651762 B2 JP4651762 B2 JP 4651762B2 JP 29504099 A JP29504099 A JP 29504099A JP 29504099 A JP29504099 A JP 29504099A JP 4651762 B2 JP4651762 B2 JP 4651762B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
flame retardant
cured product
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29504099A
Other languages
Japanese (ja)
Other versions
JP2001114986A (en
Inventor
博之 矢野
正史 梶
和彦 中原
陽一 川野
哲生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP29504099A priority Critical patent/JP4651762B2/en
Publication of JP2001114986A publication Critical patent/JP2001114986A/en
Application granted granted Critical
Publication of JP4651762B2 publication Critical patent/JP4651762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハロゲン系難燃剤、アンチモン化合物を含まなくても、難燃性に優れると共に、速硬化性、流動性等の成形性に優れ、かつ機械的強度、耐熱性、低吸湿性、半田リフロ−性等に優れた硬化物を与えるエポキシ樹脂組成物に関するものである。
【0002】
【従来の技術】
エポキシ樹脂を主剤とする樹脂組成物は、注型、封止、積層板等の電気・電子分野に広く使用されている。この電気・電子分野に使用されるエポキシ樹脂組成物は、火災に対する安全性確保の観点から、世界各国において難燃性に関する規格が定められており、この難燃規格を満足するために、多種多様の難燃剤が使用されている。
【0003】
特に、半導体の分野においては、プリント基板への部品の実装の方法として、従来のピン挿入方式から表面実装方式への移行が進展しているため、特に半田リフロ−性に優れた電子部品封止用材料、プリント基板用材料が望まれている。すなわち、表面実装方式においては、パッケージ全体、プリント基板全体が半田温度まで加熱されるため、熱衝撃によるパッケージクラック、プリント基板の信頼性不良が大きな問題点となってきている。更に、近年、半導体素子の高集積化、素子サイズの大型化、配線幅の微細化も急速に進展しており、これらの問題が一層深刻化してきている。
【0004】
とりわけ、電子材料用途のエポキシ樹脂組成物においては、難燃規格を満足し、しかも機械的強度、耐熱性、低吸湿性、半田リフロ−性等の物性面に優れていることから、従来から臭素系難燃剤又は臭素系難燃剤と三酸化アンチモンの組み合わせが、難燃剤として大部分に用いられている。しかし、昨今は、環境、安全面、更には材料としての信頼性向上の観点から、ハロゲン系難燃剤およびアンチモン化合物を用いない難燃化の手法、すなわち難燃剤が望まれている。
【0005】
ハロゲン系難燃剤やアンチモン化合物を用いない難燃化の手法としては、例えば特開平10−279813に記載されているように、水酸化アルミニウム、水酸化マグネシウムなどの水和金属化合物を用いる方法があるが、この方法では難燃規格を満足するためには水和金属化合物の添加量を多くしなければならず、半田リフロ−性、耐湿信頼性などの物性の低下を招きやすい。また、その他の方法としては、例えば特開平9−235449に記載されているように、有機リン酸エステル類を用いる方法があるが、この方法でも難燃規格を満足するためには添加量を多くしなければならず、半田リフロ−性、耐湿信頼性などの物性の低下、揮発性にともなう金型汚れ、ホスフィンガスなどの有害ガスの発生などの問題点がある。また、シリコ−ン化合物を用いる方法においても、難燃規格を満足するためには添加量を多くしなければならず、半田リフロ−性、耐湿信頼性などの物性の低下の問題点がある。
【0006】
【発明が解決しようとする課題】
したがって、本発明の目的はハロゲン系難燃剤やアンチモン化合物を含まなくても、エポキシ樹脂組成物としての難燃性に優れると共に、速硬化性、流動性等の成形性に優れ、かつ機械的強度、耐熱性、低吸湿性、半田リフロ−性等に優れた硬化物を与え、特に表面実装型の半導体素子等の電子部品封止用、プリント基板用等のエポキシ樹脂組成物を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記問題点に鑑み鋭意検討した結果、軟化点、窒素気流下で700℃まで昇温したときの残炭率、13C-核磁気共鳴スペクトルにおける芳香族指数(fa)が特定の範囲にある多環芳香族系物質を、難燃剤としてエポキシ樹脂組成物に特定の割合で含有させることにより、上記目的を達成し得ることを見いだし、本発明を完成するに至った。
【0008】
すなわち、本発明は、(A)エポキシ樹脂、(B)硬化剤を含有するエポキシ樹脂組成物において、軟化点が10〜250℃、窒素気流下で700℃まで昇温したときの残炭率が10wt%以上であり、13C-核磁気共鳴スペクトルにおける芳香族指数(fa)が0.85以上である多環芳香族系物質を、難燃剤としてエポキシ樹脂100重量部に対して1〜100重量部含有すること、且つ該多環芳香族系物質がアントラセン又はピレンをp−キシレングリコ−ルを用いてオリゴマ−化することにより得られるアントラセン系オリゴマー又はピレン系オリゴマーであることを特徴とするエポキシ樹脂組成物並びにこのエポキシ樹脂組成物を硬化して得られる硬化物である。
【0009】
本発明のエポキシ樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤を含有するものであるが、難燃剤として含有する多環芳香族系物質を含有する。この多環芳香族系物質は、軟化点が10〜250℃、窒素気流下で700℃まで昇温したときの残炭率が10wt%以上であり、13C-核磁気共鳴スペクトルにおける芳香族指数(fa)が0.85以上である必要があり、これはアントラセン系オリゴマー及びピレン系オリゴマーから選択される
【0010】
本発明の難燃剤として使用される多環芳香族系物質(以下、本難燃剤ともいう)には上記軟化点等の要件を満たすものであれば、制限はないが、高分子量の多環芳香族炭化水素、高分子量のヘテロ複素多環芳香族化合物、あるいはこれらのアルキル、ヒドロキシ置換体等を主とする高沸点物又は蒸留残さ、あるいはこれらと架橋剤とから得られる樹脂、オリゴマー等が挙げられる。好適には、コールタールや石炭液化油等の石炭系重質油や蒸留残さであるピッチ類、ナフタレン等の縮合多環炭化水素類を触媒を用いて重縮合させて得られる合成ピッチ、石油系改質油の重質油や蒸留残さ、例えばアスファルト類などのほか、多環芳香族化合物と架橋剤とから得られる多環芳香族樹脂又はオリゴマーなどがある。
【0011】
本難燃剤は、芳香族炭化水素又は芳香族炭化水素を主とするもの又はこれを原料とするものであることが好ましいが、芳香環内に窒素、酸素、硫黄などのヘテロ原子を含んでいる場合も含む。また、ピッチ等の蒸留残さのような混合物であるときは、芳香族化合物以外の成分が混入したり、ヘテロ環化合物が混入したりすることがある。
【0012】
ピッチ類は、石炭を乾留するときに発生するコ−ルタ−ルを、例えば300〜370℃で蒸留したときの残さとして、更にはこの残さを特定の条件で蒸留、あるいは溶剤分離法や遠心沈降法により溶剤不溶分などの特定成分を除去、あるいは熱処理やその他の処理を施すことなどにより製造される。
石油系重質油は、原油を蒸留、精製して、ナフサ、ガソリン、灯油、軽油などの成分を取り除いたときの残さとして、更にはこの残さ又は留分を特定の条件で蒸留や改質その他の処理を施すことなどにより製造される。
多環芳香族樹脂又はオリゴマ−としては、ナフタレン、アントラセン、ピレン等の多環芳香族系物質を、p−キシレングリコ−ル、あるいはホルムアルデヒドなどの架橋剤を用いてオリゴマ−化することなどにより製造される。本発明でいうアントラセン系オリゴマー、ピレン系オリゴマーは、アントラセン、ピレンを上記のような架橋剤を用いてオリゴマ−化して得られるものである。
例えば、ピレンなどの多環芳香族化合物過剰の条件下においてp−キシレングリコ−ルを仕込み、p−トルエンスルホン酸等の酸触媒の存在下に、10〜250℃、好ましくは、100〜200℃の範囲で1〜10時間反応させる方法が挙げられる。反応終了後は、必要に応じて水洗等の方法で触媒を除去することにより、目的の物質を得ることができる。多環芳香族オリゴマ−の分子量は、上記多環芳香族化合物と上記架橋剤を反応させる際の両者のモル比を変えることにより容易に調整できる。すなわち、多環芳香族化合物に対する架橋剤のモル比が大きいほど、得られた多環芳香族オリゴマ−の軟化点および粘度が高くなる。また、上記モル比が小さいほど、多環芳香族オリゴマ−の粘度が低下するが、合成時の未反応多環芳香族化合物が多くなり、樹脂の生産効率が低下する。上記モル比は、実用上2モル以下でなければならず、好ましくは、0.2〜0.7モルの範囲である。0.2モルより少ないと未反応多環芳香族化合物が多くなり、工業上好ましくない。
【0013】
本難燃剤の、軟化点の範囲は10〜250℃、好ましくは30〜150℃である。軟化点がこれより低いものは、一般的に低分子量であり、燃焼時に分解して可燃性物質を生成しやすいため、難燃性に優れたエポキシ樹脂組成物、および硬化物を与えることができない。一方、軟化点がこれより高いものは、一般的に高分子量であり、例えば電子部品封止用のエポキシ樹脂組成物に使用した場合、エポキシ樹脂組成物としての粘度が上昇するため、無機充填材の充填率を高くできず、半田リフロ−性に優れた硬化物を与えることができない。また例えば、プリント基板用のエポキシ樹脂組成物に使用した場合、エポキシ樹脂組成物中での分散性が低下するため、作業性の低下を招くとともに、難燃性に優れたエポキシ樹脂組成物、および硬化物を与えることができない。
【0014】
本難燃剤の、窒素気流下で700℃まで昇温したときの残炭率の範囲は10wt%以上、好ましくは15wt%以上である。残炭率がこれより低いものは、一般的に低分子量であり、燃焼時に分解して可燃性物質を生成しやすいため、難燃性に優れたエポキシ樹脂組成物、および硬化物を与えることができない。
【0015】
本難燃剤の13C-核磁気共鳴スペクトルにおける芳香族指数の範囲は0.85以上、好ましくは0.90以上である。芳香族指数がこれより低いものは、一般的に脂肪族側鎖の割合が高く、燃焼時に分解して可燃性物質を生成しやすいため、難燃性に優れたエポキシ樹脂組成物、および硬化物を与えることができない。
【0016】
本発明のエポキシ樹脂組成物中、難燃剤として使用される本難燃剤の含有量は、エポキシ樹脂100重量部に対して、1〜100重量部であり、好ましくは2〜20重量部の範囲である。これより少ないとエポキシ樹脂組成物としての難燃性の改良効果が小さく、これより多いと硬化性の低下、機械的強度、耐熱性等の物性の低下、硬化成形物表面へのにじみ等の成形性の低下を招く。難燃剤としては、上記本難燃剤のみであっても、他の難燃剤と組合せて使用してもよいが、難燃剤成分の全部又は主たる難燃剤成分であることが好ましく、またハロゲン系難燃剤及びアンチモン系難燃助剤は使用されないことが好ましい。本難燃剤として使用される多環芳香族系物質は、おのおの単独で用いてもよいし、混合使用してもよい。なお、本難燃剤が樹脂又はオリゴマー等である場合は、難燃剤としての作用の他に、他の機能を奏することもあるが、組成物中において主たる難燃機能を果たすという意味に理解される。
【0017】
本発明のエポキシ樹脂組成物に用いられる(A)エポキシ樹脂は、特に限定されるものではなく、分子中にエポキシ基を2個以上有するエポキシ樹脂を使用することができる。例を挙げれば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン等の2価のフェノール類、あるいは、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック等の3価以上のフェノール類から誘導されるグルシジルエーテル化物等があるが、o−クレゾ−ルノボラック型エポキシ樹脂、アラルキル型エポキシ樹脂が好適に使用される。これらのエポキシ樹脂は、1種又は2種以上を混合して用いることができる。
【0018】
o−クレゾ−ルノボラック型エポキシ樹脂は、メチレン基構造を有するものであり、 o−クレゾ−ルをホルムアルデヒドを架橋剤として反応させることにより多価フェノール樹脂を得、その多価フェノール樹脂をエピクロルヒドリンと反応させることにより製造される。また、アラルキル型エポキシ樹脂は、アラルキル型多価フェノ−ル樹脂をエピクロルヒドリンと反応させることにより製造される。アラルキル型多価フェノ−ル樹脂は、アルキル置換又は未置換のベンゼン環、あるいはナフタレン環を有するフェノール性水酸基含有化合物を、特定の芳香族架橋剤と反応させることにより得られる。フェノール性水酸基含有化合物としては、例えば、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、エチルフェノール類、イソプロピルフェノール類、ターシャリーブチルフェノール、フェニルフェノール類、カテコール、レゾルシン、ヒドロキノン等のベンゼン環含有化合物、又は、1-ナフトール、2-ナフトール、ナフタレンジオール類等のナフタレン環含有化合物がある。
【0019】
(A)エポキシ樹脂の好ましい軟化点範囲は50℃から120℃の範囲であり、更に好ましい軟化点範囲は60℃から100℃の範囲である。これより低いとエポキシ樹脂組成物としての耐熱性の低下を招き、これより高いと粘度上昇により作業性の低下を招く。
【0020】
本発明のエポキシ樹脂組成物に使用する(B)硬化剤は、特に制限はなく、公知のエポキシ樹脂硬化剤を使用することができるが、好ましくは多価フェノ−ル性化合物である。多価フェノ−ル性化合物としては、エポキシ樹脂硬化剤として公知のものを使用できる他、アラルキル型構造を有する多価フェノ−ル性化合物を使用することができる。アラルキル型構造を有する多価フェノ−ル性化合物は、アルキル置換若しくは未置換のベンゼン環、又はナフタレン環を有するフェノール性水酸基含有化合物と特定の芳香族架橋剤とを反応させることにより製造される。
【0021】
(B)硬化剤の具体例としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、カテコール、ナフタレンジオール類等の2価のフェノール類、あるいは、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノールノボラック、o−クレゾールノボラック、ナフトールノボラック、ポリビニルフェノール等に代表される3価以上のフェノール類、更にはフェノール類、ナフトール類又はビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、カテコール、ナフタレンジオール類等の2価のフェノール類とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、p−キシリレングリコール、 p−キシリレングリコールジメチルエーテル、ジビニルベンゼン、ジイソプロペニルベンゼン、ジメトキシメチルビフェニル類、ジビニルビフェニル、ジイソプロペニルビフェニル類等の架橋剤との反応により合成される多価フェノール性化合物が挙げられる。これら硬化剤は1種又は2種以上を混合して用いることができる。
【0022】
硬化剤、例えば多価フェノール性化合物の好ましい軟化点範囲は、40℃〜150℃の範囲であり、より好ましくは50℃〜120℃の範囲である。これより低いとエポキシ樹脂組成物としての耐熱性の低下を招き、これより高いと粘度上昇により作業性の低下を招く。
【0023】
多価フェノール性化合物を得るために使用される特定の芳香族架橋剤としては、ベンゼン骨格を有するものとビフェニル骨格を有するものがある。
ベンゼン骨格を有するものとしては、o−体、m−体、p−体のいずれでもよいが、好ましくは、m−体、p−体である。具体的には、p−キシリレングリコール、α,α’−ジメトキシ−p−キシレン、α,α’−ジエトキシ−p−キシレン、α,α’−ジイソプロポキシ−p−キシレン、α,α’−ジブトキシ−p−キシレン、m−キシリレングリコール、α,α’−ジメトキシ−m−キシレン、α,α’−ジエトキシ−m−キシレン、α,α’−ジイソプロポキシ−m−キシレン、α,α’−ジブトキシ−m−キシレン、1,4−ジ(2−ヒドロキシ−2−エチル)ベンゼン、1,4−ジ(2−メトキシ−2−エチル)ベンゼン、1,4−ジ(2−エトキシ−2−エチル)ベンゼン、1,4−ジ(2−イソプロポキシ−2−エチル)ベンゼン、1,4−ジ(2−ヒドロキシ−2−プロピル)ベンゼン、1,4−ジ(2−メトキシ−2−プロピル)ベンゼン、1,4−ジ(2−エトキシ−2−プロピル)ベンゼン、1,4−ジ(2−イソプロポキシ−2−プロピル)ベンゼン、1,3−ジ(2−ヒドロキシ−2−エチル)ベンゼン、1,3−ジ(2−メトキシ−2−エチル)ベンゼン、1,3−ジ(2−ヒドロキシ−2−プロピル)ベンゼン、1,3−ジ(2−メトキシ−2−プロピル)ベンゼン、1,2−ジビニルベンゼン、1,3−ジビニルベンゼン、1,4−ジビニルベンゼン、1,2−ジ(2-プロペニル)ベンゼン、1,3−ジ(2-プロペニル)ベンゼン、1,4−ジ(2-プロペニル)ベンゼン等が挙げられる。
【0024】
また、ビフェニル骨格を有するものとしては、4,4’−ジヒドロキシメチルビフェニル、2,4’−ジヒドロキシメチルビフェニル、2,2’−ジヒドロキシメチルビフェニル、4,4’−ジメトキシメチルビフェニル、2,4’−ジメトキシメチルビフェニル、2,2’−ジメトキシメチルビフェニル、4,4’−ジイソプロポキシメチルビフェニル、2,4’−ジイソプロポキシメチルビフェニル、2,2’−ジイソプロポキシメチルビフェニル、4,4’−ジブトキシメチルビフェニル、2,4’−ジブトキシメチルビフェニル、2,2’−ジブトキシメチルビフェニル、4,4’−ジ(2−ヒドロキシ−2−エチル)ビフェニル、4,4’−ジ(2−メトキシ−2−エチル)ビフェニル、4,4’−ジ(2−エトキシ−2−エチル)ビフェニル、4,4’−ジ(2−イソプロポキシ−2−エチル)ビフェニル、4,4’−ジ(2−ヒドロキシ−2−プロピル)ビフェニル、4,4’−ジ(2−メトキシ−2−プロピル)ビフェニル、4,4’−ジ(2−エトキシ−2−プロピル)ビフェニル、4,4’−ジ(2−イソプロポキシ−2−プロピル)ビフェニル、2,4’−ジ(2−ヒドロキシ−2−エチル)ビフェニル、2,4’−ジ(2−メトキシ−2−エチル)ビフェニル、2,4’−ジ(2−ヒドロキシ−2−プロピル)ビフェニル、2,4’−ジ(2−メトキシ−2−プロピル)ビフェニル、2,4’−ジビニルビフェニル、2,2’−ジビニルビフェニル、4,4’−ジビニルビフェニル、2,4’−ジ(2-プロペニル)ビフェニル、2,2’−ジ(2-プロペニル)ビフェニル、4,4’−ジ(2-プロペニル)ビフェニル等が挙げられる。メチロール基等の官能基のビフェニルに対する置換位置は、4,4’−位、2,4’−位、2,2’−位のいずれでもよいが、縮合剤として望ましい化合物は4,4’−体であり、全架橋剤中に4,4’−体が50wt%以上含まれたものが特に好ましい。これより少ないと合成された樹脂を硬化させる際の硬化速度が低下したり、得られた硬化物が脆くなる等の欠点がある。
【0025】
本発明のエポキシ樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤及び本難燃剤を公知の方法で混合することにより得られる。本難燃剤は、エポキシ樹脂組成物を製造する際、組成物配合時にそのまま加えるか、又はエポキシ樹脂、硬化剤等の配合物の一部にあらかじめ溶融混合しておき、溶融混合物の形で組成物配合時に加える方法で使用される。但し、より難燃性を中心とする諸特性を向上させるには、本難燃剤のエポキシ樹脂組成物中での分散度が高い方が望ましいので、エポキシ樹脂、硬化剤等の配合物の一部にあらかじめ溶融混合しておき、溶融混合物の形で組成物配合時に加える方法が望ましい。
【0026】
本発明の樹脂組成物には、その用途に応じて上記成分のほか、硬化促進剤、無機充填材、改質剤、その他の添加剤を配合することができる。
【0027】
硬化促進剤としては公知のものを用いることができる。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等があり、具体的には、1,8−ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの三級アミン、2一メチルイミダゾール、2−フェニルイミダゾール、2一フェニルー4一メチルイミダゾール、2一へプタデシルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィンなどの有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレートなどのテトラ置換ホスホニウム・テトラ置換ボレート、2一エチル一4−メチルイミダゾール・テトラフェニルボレート、N一メチルモルホリン・テトラフェニルボレートなどのテトラフェニルボロン塩などがある。添加量としては、通常、エポキシ樹脂100重量部に対して、0.2〜10重量部の範囲である。
【0028】
無機充填剤としては、シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、ムライト、チタニアなどの粉体、又はこれらを球形化したビーズなどが挙げられ、これらを単独でもしくは2種類以上併用して用いることができる。
【0029】
本発明の目的の1つに、表面実装型の半導体素子等の電子部品封止用途があるが、その場合には無機充填材を高含有量含有させることが望ましい。無機充填材の高充填化の観点からは、球状の溶融シリカが好適に使用される。通常、シリカは、数種類の粒径分布を持ったものを組み合わせて使用される。組み合わせるシリカの平均粒径は、0.5ミクロン〜100ミクロンの範囲である。無機充填材の配合量としては70wt%以上が好ましく、更に好ましくは80wt%以上である。これより少ないと、難燃性、および半田リフロ−性の向上効果が小さい。
【0030】
また、本発明の樹脂組成物には、成形時の流動性改良およびリードフレーム、銅箔等との密着性向上の観点より、熱可塑性のオリゴマー類を添加することができる。熱可塑性のオリゴマー類としては、C5系およびC9系の石油樹脂、スチレン樹脂、インデン樹脂、インデン・スチレン共重合樹脂、インデン・スチレン・フェノール共重合樹脂、インデン・クマロン共重合樹脂、インデン・ベンゾチオフェン共重合樹脂等が例示される。添加量としては、通常、エポキシ樹脂100重量部に対して、2〜30重量部の範囲である。更に必要に応じて、本発明の樹脂組成物には、カルナバワックス、エステル系ワックス等の離型剤、エポキシシラン、アミノシラン、ウレイドシラン、ビニルシラン、アルキルシラン、有機チタネート、アルミニウムアルコレート等のカップリング剤、カーボンブラック等の着色剤、シリコンオイル等の低応力化剤、高級脂肪酸、高級脂肪酸金属塩等の滑剤等を配合できる。
【0031】
以上のような原材科を、一般的には、所定の配合量の原材科をミキサー等によって十分混合した後、ミキシングロール、押し出し機などによって混練し、冷却、粉砕することによって、成形材科を調製することができる。
本発明で得られる成形材料を用いて、電子部品を封止するための方法としては、低圧トランスファー成形法が最も一般的であるが、射出成形法、圧縮成形法によっても可能である。
【0032】
【実施例】
以下、実施例により本発明を更に具体的に説明する。
各種物性の測定条件は次のとおりである。
【0033】
(軟化点)
軟化点は、環球法により測定した値であり、融点は毛細管を用いる方法により測定した値である。
(残炭率)
残炭率は、セイコ−電子工業社製、示差熱熱重量同時測定装置TG/DTA220により測定した値である。すなわち、試料10mgを200ml/minで窒素ガスを流した雰囲気中において、10℃/minの昇温速度で常温から700℃まで加熱したときに残る炭素質の残留物質量の初期質量に対する割合を残炭率と定義した。
【0034】
(芳香族指数)
芳香族指数(fa)は、日本電子社製JNM−GX400を用い、NNE法に基づくNMR(13C-核磁気共鳴スペクトル)により測定した値である。すなわち、試料125mgをクロロホルム−d1(CDCl3)0.5mlに溶解させ、常磁性緩和試薬クロム(III)アセチルアセトネ−ト6mgを添加して測定用試料とし、観測周波数100MHz、パルス幅45°パルス、パルス待ち時間2秒の条件により測定した。得られたスペクトルについては、110〜160ppmの範囲を芳香族炭素、10〜60ppmの範囲を非芳香族炭素として帰属させ、その積分値よりそれぞれの炭素分率を求めた。得られた炭素分率から求めた全炭素に対する芳香族炭素の比率をもって芳香族指数(fa)とした。
【0035】
(難燃性)
難燃性は、厚さ1/16インチの試験片を成形し、UL94V−0規格によって評価した。合格とはUL94V−0規格に対して合格ということを示す。また定量的にはn=5の試験での合計フレ−ミング時間を指標として示した。
(熱時硬度)
熱時硬度は175℃にて90秒成形を行った試験片を、バ−コル硬度計にて測定を行った。
(ガラス転移点)
ガラス転移点は、熱機械測定装置により、昇温速度10℃/分の条件で求めた。
(吸水率)
吸水率は、本エポキシ樹脂組成物を用いて50mmφ×3mmの円盤を成形し、ポストキュア後85℃、85%RHの条件で100時間吸湿させたときのものである。
(クラック発生率)
クラック発生率は、QFP−80pin(14×20×2.5mm)を成形し、ポストキュア後、吸水率と同条件の85℃、85%RHの条件で所定の時間吸湿後、260℃の半田浴に10秒間浸漬させた後、パッケージの状態を観察し求めた。
【0036】
実施例1〜6および比較例1〜4
難燃剤として種々の芳香族系物質を使用し、エポキシ樹脂組成物に添加することにより、難燃性を付与し、なおかつ速硬化性、流動性等の成形性に優れ、かつ機械的強度、耐熱性、低吸湿性、半田リフロ−性等に優れた硬化物を得ることを試みたものである。今回の評価において、これらの難燃剤、すなわち多環芳香族系物質の含有率は、エポキシ樹脂100重量部に対して、10重量部とした。実施例および比較例に用いた難燃剤(A1〜A8)の製法又は由来を次に示す。なお、A4〜A5は本難燃剤に該当し、A1〜A3及びA6〜A8は本難燃剤に該当しない。したがって、実施例1〜3及び6は参考例であると理解される。
【0037】
A1:コールタール軟ピッチであり、石炭を乾留して得られるコ−ルタ−ルを300〜370℃で蒸留したときの残さ。
A2:A1からキノリン不溶分を除去したものを、更に減圧蒸留(330〜350℃、10000〜30000Pa)したときの残さ。
A3:A1を減圧蒸留(360〜390℃、9000〜15000Pa)したときの残さ。
A4:アントラセン系オリゴマー。
アントラセン88g(0.495モル)、p−キシレングリコ−ル27.3g(0.198モル)、触媒としてp−トルエンスルホン酸4.6gを仕込み、窒素気流下、180℃に加熱後、攪拌しながら3時間反応させ、生成した水6.5gを回収した。降温後、希釈溶媒としてクロロベンゼンを添加、水洗により触媒を除去後、溶媒のクロロベンゼンを減圧留去して、アントラセン系オリゴマー38gを得た。
A5:ピレン系オリゴマー。
ピレン100g(0.495モル)、p−キシレングリコ−ル27.3g(0.198モル)、触媒としてp−トルエンスルホン酸5.1gを仕込み、窒素気流下、180℃に加熱後、攪拌しながら3時間反応させ、生成した水6gを回収した。降温後、希釈溶媒としてクロロベンゼンを添加、水洗により触媒を除去後,溶媒のクロロベンゼンを減圧留去して、ピレン系オリゴマー40gを得た。
A6:石油の流動接触分解油の重質成分であるデカント油。
A7:市販のナフタレン。
A8:市販のアントラセン。
【0038】
これらの基本特性を表1に示す。
【表1】

Figure 0004651762
【0039】
電子部品等の用途でのエポキシ樹脂組成物としての、難燃性を初めとする特性を評価するために、電子部品封止材料用エポキシ樹脂組成物を作り、この評価を行った。配合条件及び評価条件は次のとおり。
【0040】
エポキシ樹脂成分として、o−クレゾールノボラック型エポキシ樹脂(エポキシ樹脂A:日本化薬製、EOCN-1020-65;エポキシ当量 200、加水分解性塩素 400ppm、軟化点 65℃)を用い、硬化剤としてフェノールノボラック(硬化剤A:群栄化学製、PSM-4261;OH当量103、軟化点 80℃)、又は1−ナフト−ルアラルキル型樹脂(硬化剤B:新日鐵化学製、SN-485;OH当量210、軟化点 85℃)を用いた。更に、充填剤として球状シリカ(平均粒径 18μm)、硬化促進剤としてトリフェニルホスフィン、着色剤としてカ−ボンブラック、離型剤としてカルナバワックス、および表1に示す難燃剤をそれぞれ用い、混練し、エポキシ樹脂組成物を得た。配合割合は、エポキシ樹脂A及び硬化剤A又はBの配合量を表2のとおりとした他は、球状シリカ800部、硬化促進剤1.2部、カーボンブラック5部、カルナバワックス3部の一定とした。なお、硬化剤成分は、エポキシ樹脂成分と当量が等しくなる部数で配合した。また、このときのシリカ含有率は83wt%である。主要成分の配合割合を表2に示す。難燃剤の配合は、実施例3は混練時に粉体混合とした他は、エポキシ樹脂に溶融混合とした。このエポキシ樹脂組成物を用いて175℃にて成形し、175℃にて12時間ポストキュアを行い、硬化物試験片を得た後、各種物性測定に供した。物性測定結果を表3に示す。
【0041】
【表2】
Figure 0004651762
【0042】
【表3】
Figure 0004651762
【0043】
本発明の条件を満たす実施例1〜6は、全て難燃性に優れるとともに、速硬化性、流動性等の成形性に優れ、かつ機械的強度、耐熱性、低吸湿性、半田リフロ−性等に優れた硬化物を与えることがわかる。一方、本発明で規定した条件を満たしていない比較例1〜4は、実施例ほど難燃性が優れてはいない。すなわち、比較例1では、用いた難燃剤A6の、窒素気流下で700℃まで昇温したときの残炭率およびfaが本発明の範囲外にあるため、実施例1〜6ほど難燃性が向上していない。比較例2では、用いた難燃剤A7が、窒素気流下で700℃まで昇温したときの残炭率が本発明の範囲外にあるため、実施例1〜6ほど難燃性が向上していない。比較例3では、用いた難燃剤A8が、窒素気流下で700℃まで昇温したときの残炭率が本発明の範囲外にあるため、実施例1〜6ほど難燃性が向上していない。比較例4では、本発明の難燃剤を全く使用していないため、実施例1〜6ほど難燃性が向上していない。
【0044】
【発明の効果】
本発明のエポキシ樹脂組成物は、ハロゲン系難燃剤、アンチモン化合物を含まなくとも、難燃性に優れると共に、速硬化性、流動性等の成形性に優れ、かつ機械的強度、耐熱性、低吸湿性、半田リフロ−性等に優れた硬化物を与え、特に表面実装型の半導体素子等の電子部品の封止、又はプリント基板等に応用した場合、優れた難燃性と半田リフロ−性を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention is excellent in flame retardancy and excellent in moldability such as fast curability and fluidity without containing halogen-based flame retardant and antimony compound, and has mechanical strength, heat resistance, low moisture absorption, solder The present invention relates to an epoxy resin composition that gives a cured product having excellent reflow properties.
[0002]
[Prior art]
Resin compositions based on epoxy resins are widely used in the electrical and electronic fields such as casting, sealing, and laminates. Epoxy resin compositions used in the electric and electronic fields have standards for flame retardancy in various countries around the world from the viewpoint of ensuring safety against fire. Flame retardants are used.
[0003]
In particular, in the semiconductor field, the transition from the conventional pin insertion method to the surface mounting method is progressing as a method for mounting components on a printed circuit board. Materials and printed circuit board materials are desired. That is, in the surface mounting method, the entire package and the entire printed circuit board are heated to the solder temperature, so that package cracks due to thermal shock and poor reliability of the printed circuit board have become serious problems. Furthermore, in recent years, the integration of semiconductor elements, the increase in element size, and the miniaturization of wiring width are rapidly progressing, and these problems are becoming more serious.
[0004]
In particular, epoxy resin compositions for use in electronic materials satisfy the flame retardant standards and have excellent physical properties such as mechanical strength, heat resistance, low moisture absorption, and solder reflow properties. A flame retardant or a combination of a brominated flame retardant and antimony trioxide is mostly used as a flame retardant. However, recently, from the viewpoints of environment, safety, and improvement in reliability as a material, a flame retarding technique that does not use a halogen-based flame retardant and an antimony compound, that is, a flame retardant is desired.
[0005]
As a flame-retarding method not using a halogen-based flame retardant or an antimony compound, there is a method using a hydrated metal compound such as aluminum hydroxide or magnesium hydroxide, as described in, for example, JP-A-10-279813. However, in this method, in order to satisfy the flame retardant standard, the amount of the hydrated metal compound must be increased, and physical properties such as solder reflow properties and moisture resistance reliability are liable to be lowered. In addition, as another method, for example, as described in JP-A-9-235449, there is a method using an organic phosphate ester. However, even in this method, in order to satisfy the flame retardant standard, the addition amount is increased. There are problems such as deterioration of physical properties such as solder reflow property and moisture resistance reliability, mold contamination due to volatility, and generation of harmful gases such as phosphine gas. Also in the method using a silicon compound, the amount added must be increased in order to satisfy the flame retardant standard, and there is a problem of deterioration in physical properties such as solder reflow property and moisture resistance reliability.
[0006]
[Problems to be solved by the invention]
Therefore, the object of the present invention is excellent in flame retardancy as an epoxy resin composition, excellent in moldability such as fast curability and fluidity, and mechanical strength, even without containing a halogen flame retardant or an antimony compound. To provide a cured product excellent in heat resistance, low moisture absorption, solder reflow properties, etc., and particularly to provide an epoxy resin composition for encapsulating electronic components such as surface mount type semiconductor elements, printed circuit boards, etc. is there.
[0007]
[Means for Solving the Problems]
As a result of intensive studies in view of the above problems, the present inventors have found that the softening point, the residual carbon ratio when the temperature is raised to 700 ° C. under a nitrogen stream,13The above object can be achieved by incorporating a polycyclic aromatic material having an aromatic index (fa) in a specific range in the C-nuclear magnetic resonance spectrum into the epoxy resin composition in a specific ratio as a flame retardant. As a result, the present invention has been completed.
[0008]
  That is, in the epoxy resin composition containing (A) an epoxy resin and (B) a curing agent, the present invention has a residual carbon ratio when the softening point is 10 to 250 ° C. and the temperature is raised to 700 ° C. under a nitrogen stream. 10 wt% or more,131-100 parts by weight of a polycyclic aromatic substance having an aromatic index (fa) of 0.85 or more in C-nuclear magnetic resonance spectrum is contained as a flame retardant with respect to 100 parts by weight of epoxy resin.And the polycyclic aromatic substance is an anthracene oligomer or pyrene oligomer obtained by oligomerizing anthracene or pyrene using p-xylene glycol.And a cured product obtained by curing the epoxy resin composition.
[0009]
  The epoxy resin composition of the present invention contains (A) an epoxy resin and (B) a curing agent, but contains a polycyclic aromatic material contained as a flame retardant. This polycyclic aromatic material has a softening point of 10 to 250 ° C. and a residual carbon ratio of 10 wt% or more when heated to 700 ° C. under a nitrogen stream.13The aromatic index (fa) in the C-nuclear magnetic resonance spectrum must be 0.85 or higher,Selected from anthracene oligomers and pyrene oligomers.
[0010]
The polycyclic aromatic substance used as the flame retardant of the present invention (hereinafter also referred to as the present flame retardant) is not limited as long as it satisfies the above-mentioned softening point and the like, but has a high molecular weight. Examples include aromatic hydrocarbons, high molecular weight hetero-heteropolycyclic aromatic compounds, or high-boiling products or distillation residues mainly composed of alkyl and hydroxy substituents thereof, or resins and oligomers obtained from these and cross-linking agents. It is done. Preferably, coal-based heavy oil such as coal tar or coal liquefied oil, pitches that are distillation residue, synthetic pitch obtained by polycondensation using condensed polycyclic hydrocarbons such as naphthalene using a catalyst, petroleum-based In addition to heavy oil of modified oil and distillation residue such as asphalts, there are polycyclic aromatic resins or oligomers obtained from polycyclic aromatic compounds and crosslinking agents.
[0011]
The flame retardant is preferably mainly composed of aromatic hydrocarbons or aromatic hydrocarbons, or those based on them, but contains heteroatoms such as nitrogen, oxygen and sulfur in the aromatic ring. Including cases. Moreover, when it is a mixture like distillation residue, such as pitch, components other than an aromatic compound may mix, or a heterocyclic compound may mix.
[0012]
  For pitches, the coal tar generated when carbonizing coal is distilled, for example, at 300 to 370 ° C., and the residue is distilled under specific conditions, or by solvent separation or centrifugal sedimentation. It is manufactured by removing specific components such as solvent insolubles by the method, or by performing heat treatment or other treatments.
  Petroleum heavy oil is a residue obtained by distilling and refining crude oil to remove components such as naphtha, gasoline, kerosene, and light oil. In addition, the residue or fraction is distilled, reformed, etc. under certain conditions. It is manufactured by performing the process.
  Polycyclic aromatic resins or oligomers are produced by oligomerizing polycyclic aromatic substances such as naphthalene, anthracene, and pyrene using a cross-linking agent such as p-xylene glycol or formaldehyde. Is done.The anthracene oligomer and pyrene oligomer used in the present invention are obtained by oligomerizing anthracene and pyrene using the above-mentioned crosslinking agent.
  For example, p-xylene glycol is charged under an excess of a polycyclic aromatic compound such as pyrene, and 10 to 250 ° C., preferably 100 to 200 ° C. in the presence of an acid catalyst such as p-toluenesulfonic acid. The method of making it react for 1 to 10 hours in the range of this is mentioned. After completion of the reaction, the target substance can be obtained by removing the catalyst by a method such as washing with water as necessary. The molecular weight of the polycyclic aromatic oligomer can be easily adjusted by changing the molar ratio between the polycyclic aromatic compound and the crosslinking agent when they are reacted. That is, the larger the molar ratio of the crosslinking agent to the polycyclic aromatic compound, the higher the softening point and viscosity of the obtained polycyclic aromatic oligomer. In addition, the smaller the molar ratio, the lower the viscosity of the polycyclic aromatic oligomer, but the more unreacted polycyclic aromatic compound at the time of synthesis, and the resin production efficiency decreases. The molar ratio must be 2 mol or less practically, and is preferably in the range of 0.2 to 0.7 mol. When the amount is less than 0.2 mol, the amount of unreacted polycyclic aromatic compound increases, which is not industrially preferable.
[0013]
The range of the softening point of the flame retardant is 10 to 250 ° C, preferably 30 to 150 ° C. Those having a lower softening point generally have a low molecular weight, and are easily decomposed during combustion to produce a flammable substance. Therefore, an epoxy resin composition excellent in flame retardancy and a cured product cannot be obtained. . On the other hand, those having a softening point higher than this are generally high in molecular weight. For example, when used in an epoxy resin composition for encapsulating electronic components, the viscosity as an epoxy resin composition increases. The filling rate cannot be increased, and a cured product excellent in solder reflowability cannot be obtained. Also, for example, when used in an epoxy resin composition for printed circuit boards, the dispersibility in the epoxy resin composition is reduced, so that the workability is reduced and the epoxy resin composition excellent in flame retardancy, and Can not give a cured product.
[0014]
The range of the residual coal rate when the flame retardant is raised to 700 ° C. under a nitrogen stream is 10 wt% or more, preferably 15 wt% or more. Those with a residual carbon ratio lower than this generally have a low molecular weight and are easily decomposed during combustion to generate a flammable substance, so that an epoxy resin composition excellent in flame retardancy and a cured product can be obtained. Can not.
[0015]
Of this flame retardant13The range of the aromatic index in the C-nuclear magnetic resonance spectrum is 0.85 or more, preferably 0.90 or more. Those having an aromatic index lower than this generally have a high proportion of aliphatic side chains, and are easily decomposed during combustion to produce a flammable substance. Therefore, an epoxy resin composition excellent in flame retardancy and a cured product Can not give.
[0016]
In the epoxy resin composition of the present invention, the content of the flame retardant used as a flame retardant is 1 to 100 parts by weight, preferably 2 to 20 parts by weight with respect to 100 parts by weight of the epoxy resin. is there. If it is less than this, the effect of improving the flame retardancy as an epoxy resin composition is small, and if it is more than this, molding properties such as reduced curability, physical strength, heat resistance and other properties, and bleeding on the cured molded product surface It causes a decline in sex. As the flame retardant, the flame retardant alone may be used alone or in combination with other flame retardants. However, the flame retardant is preferably the entirety of the flame retardant component or the main flame retardant component, and is also a halogen flame retardant. And antimony flame retardant aids are preferably not used. The polycyclic aromatic materials used as the flame retardant may be used alone or in combination. In addition, when the present flame retardant is a resin or an oligomer or the like, in addition to the action as a flame retardant, it may have other functions, but is understood to mean that it performs the main flame retardant function in the composition. .
[0017]
The (A) epoxy resin used in the epoxy resin composition of the present invention is not particularly limited, and an epoxy resin having two or more epoxy groups in the molecule can be used. Examples include divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, or tris- (4-hydroxy Phenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, glycidyl ethers derived from trihydric or higher phenols such as phenol novolac, etc., but o-cresol novolac type Epoxy resins and aralkyl epoxy resins are preferably used. These epoxy resins can be used alone or in combination of two or more.
[0018]
The o-cresol novolak type epoxy resin has a methylene group structure, and a polyhydric phenol resin is obtained by reacting o-cresol with formaldehyde as a crosslinking agent, and the polyhydric phenol resin is reacted with epichlorohydrin. Manufactured. Aralkyl epoxy resins are produced by reacting aralkyl polyhydric phenol resins with epichlorohydrin. The aralkyl type polyhydric phenol resin is obtained by reacting a phenolic hydroxyl group-containing compound having an alkyl-substituted or unsubstituted benzene ring or naphthalene ring with a specific aromatic crosslinking agent. Examples of phenolic hydroxyl group-containing compounds include, for example, phenol, o-cresol, m-cresol, p-cresol, ethylphenols, isopropylphenols, tertiary butylphenol, phenylphenols, catechol, resorcin, hydroquinone, etc. There are compounds or naphthalene ring-containing compounds such as 1-naphthol, 2-naphthol, and naphthalenediols.
[0019]
(A) The preferable softening point range of an epoxy resin is the range of 50 to 120 degreeC, and a more preferable softening point range is the range of 60 to 100 degreeC. If it is lower than this, the heat resistance of the epoxy resin composition is lowered, and if it is higher than this, the workability is lowered due to the increase in viscosity.
[0020]
The (B) curing agent used in the epoxy resin composition of the present invention is not particularly limited, and a known epoxy resin curing agent can be used, but a polyhydric phenolic compound is preferable. As the polyhydric phenolic compound, a known epoxy resin curing agent can be used, and a polyhydric phenolic compound having an aralkyl type structure can be used. The polyhydric phenolic compound having an aralkyl type structure is produced by reacting a phenolic hydroxyl group-containing compound having an alkyl-substituted or unsubstituted benzene ring or naphthalene ring with a specific aromatic crosslinking agent.
[0021]
(B) Specific examples of the curing agent include bivalent compounds such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, catechol, and naphthalenediols. Represented by tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol novolak, o-cresol novolak, naphthol novolak, polyvinylphenol, etc. More than trivalent phenols, and also phenols, naphthols or bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, reso Divalent phenols such as syn, catechol, naphthalenediol and formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene glycol, p-xylylene glycol dimethyl ether, divinylbenzene, diisopropenylbenzene, dimethoxymethylbiphenyl And polyphenolic compounds synthesized by reaction with a crosslinking agent such as divinylbiphenyl and diisopropenylbiphenyl. These curing agents can be used alone or in combination of two or more.
[0022]
A preferable softening point range of the curing agent, for example, a polyhydric phenolic compound, is in the range of 40 ° C to 150 ° C, more preferably in the range of 50 ° C to 120 ° C. If it is lower than this, the heat resistance of the epoxy resin composition is lowered, and if it is higher than this, the workability is lowered due to the increase in viscosity.
[0023]
Specific aromatic crosslinking agents used to obtain the polyhydric phenolic compound include those having a benzene skeleton and those having a biphenyl skeleton.
Those having a benzene skeleton may be any of o-, m- and p-forms, preferably m-forms and p-forms. Specifically, p-xylylene glycol, α, α′-dimethoxy-p-xylene, α, α′-diethoxy-p-xylene, α, α′-diisopropoxy-p-xylene, α, α ′ -Dibutoxy-p-xylene, m-xylylene glycol, α, α'-dimethoxy-m-xylene, α, α'-diethoxy-m-xylene, α, α'-diisopropoxy-m-xylene, α, α′-dibutoxy-m-xylene, 1,4-di (2-hydroxy-2-ethyl) benzene, 1,4-di (2-methoxy-2-ethyl) benzene, 1,4-di (2-ethoxy) -2-ethyl) benzene, 1,4-di (2-isopropoxy-2-ethyl) benzene, 1,4-di (2-hydroxy-2-propyl) benzene, 1,4-di (2-methoxy-) 2-propyl) benzene, 1,4-di 2-ethoxy-2-propyl) benzene, 1,4-di (2-isopropoxy-2-propyl) benzene, 1,3-di (2-hydroxy-2-ethyl) benzene, 1,3-di (2 -Methoxy-2-ethyl) benzene, 1,3-di (2-hydroxy-2-propyl) benzene, 1,3-di (2-methoxy-2-propyl) benzene, 1,2-divinylbenzene, 1, Examples include 3-divinylbenzene, 1,4-divinylbenzene, 1,2-di (2-propenyl) benzene, 1,3-di (2-propenyl) benzene, 1,4-di (2-propenyl) benzene, and the like. It is done.
[0024]
Examples of those having a biphenyl skeleton include 4,4′-dihydroxymethylbiphenyl, 2,4′-dihydroxymethylbiphenyl, 2,2′-dihydroxymethylbiphenyl, 4,4′-dimethoxymethylbiphenyl, and 2,4 ′. -Dimethoxymethylbiphenyl, 2,2'-dimethoxymethylbiphenyl, 4,4'-diisopropoxymethylbiphenyl, 2,4'-diisopropoxymethylbiphenyl, 2,2'-diisopropoxymethylbiphenyl, 4,4 '-Dibutoxymethyl biphenyl, 2,4'-dibutoxymethyl biphenyl, 2,2'-dibutoxymethyl biphenyl, 4,4'-di (2-hydroxy-2-ethyl) biphenyl, 4,4'-di (2-Methoxy-2-ethyl) biphenyl, 4,4′-di (2-ethoxy-2-ethyl) Biphenyl, 4,4′-di (2-isopropoxy-2-ethyl) biphenyl, 4,4′-di (2-hydroxy-2-propyl) biphenyl, 4,4′-di (2-methoxy-2-) Propyl) biphenyl, 4,4′-di (2-ethoxy-2-propyl) biphenyl, 4,4′-di (2-isopropoxy-2-propyl) biphenyl, 2,4′-di (2-hydroxy-) 2-ethyl) biphenyl, 2,4′-di (2-methoxy-2-ethyl) biphenyl, 2,4′-di (2-hydroxy-2-propyl) biphenyl, 2,4′-di (2-methoxy) -2-propyl) biphenyl, 2,4′-divinylbiphenyl, 2,2′-divinylbiphenyl, 4,4′-divinylbiphenyl, 2,4′-di (2-propenyl) biphenyl, 2,2′-di (2-propeni E) Biphenyl, 4,4'-di (2-propenyl) biphenyl and the like. The substitution position of a functional group such as a methylol group with respect to biphenyl may be any of 4,4′-position, 2,4′-position, and 2,2′-position, but a desirable compound as a condensing agent is 4,4′-position. It is particularly preferable that the total crosslinking agent contains 50 wt% or more of the 4,4′-isomer. If it is less than this, there are disadvantages such as a decrease in the curing rate when the synthesized resin is cured, and the resulting cured product becomes brittle.
[0025]
The epoxy resin composition of the present invention can be obtained by mixing (A) an epoxy resin, (B) a curing agent and the present flame retardant by a known method. The flame retardant is added as it is when the epoxy resin composition is produced, or it is melted and mixed in advance with a part of the composition such as an epoxy resin and a curing agent, and the composition in the form of a molten mixture. It is used by the method of adding at the time of compounding. However, in order to improve various properties centering on flame retardancy, it is desirable that the degree of dispersion of the flame retardant in the epoxy resin composition is higher, so a part of the blend of epoxy resin, curing agent, etc. It is desirable to melt and mix in advance and add the mixture in the form of a molten mixture at the time of blending the composition.
[0026]
In addition to the above components, the resin composition of the present invention may contain a curing accelerator, an inorganic filler, a modifier, and other additives.
[0027]
A well-known thing can be used as a hardening accelerator. Examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethylamine, Tertiary amines such as ethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, imidazoles such as 2-monomethylimidazole, 2-phenylimidazole, 2-phenyl-4-monomethylimidazole, 2-heptadecylimidazole, tributyl Organic phosphines such as phosphine, methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium / tetraphenylborate, tetraphenylphosphonium / ethyltriphenylborate, tetra Tetra-substituted phosphonium tetra-substituted borate such as Chiruhosuhoniumu-tetrabutyl borate, 2 one ethyl one 4-methylimidazole tetraphenylborate, and the like tetraphenyl boron salts such as N one-methylmorpholine tetraphenylborate. As addition amount, it is the range of 0.2-10 weight part normally with respect to 100 weight part of epoxy resins.
[0028]
Inorganic fillers include powders such as silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, mullite, titania, etc. These may be used, and these may be used alone or in combination of two or more.
[0029]
One of the objects of the present invention is to encapsulate electronic components such as surface-mounted semiconductor elements. In that case, it is desirable to contain a high content of inorganic filler. From the viewpoint of increasing the filling of the inorganic filler, spherical fused silica is preferably used. Usually, silica is used in combination with those having several kinds of particle size distributions. The average particle size of the combined silica ranges from 0.5 microns to 100 microns. The amount of the inorganic filler is preferably 70 wt% or more, more preferably 80 wt% or more. When less than this, the improvement effect of a flame retardance and solder reflow property is small.
[0030]
In addition, thermoplastic oligomers can be added to the resin composition of the present invention from the viewpoints of improving fluidity during molding and improving adhesion to lead frames, copper foils, and the like. Thermoplastic oligomers include C5 and C9 petroleum resins, styrene resins, indene resins, indene / styrene copolymer resins, indene / styrene / phenol copolymer resins, indene / coumarone copolymer resins, indene / benzothiophene. Examples thereof include copolymer resins. As addition amount, it is the range of 2-30 weight part normally with respect to 100 weight part of epoxy resins. Further, if necessary, the resin composition of the present invention includes a release agent such as carnauba wax and ester wax, coupling of epoxy silane, amino silane, ureido silane, vinyl silane, alkyl silane, organic titanate, aluminum alcoholate, and the like. Agents, colorants such as carbon black, low stress agents such as silicone oil, lubricants such as higher fatty acids and higher fatty acid metal salts, and the like.
[0031]
In general, the raw material department as described above is mixed with a predetermined amount of raw material department by a mixer or the like, then kneaded by a mixing roll, an extruder, etc., cooled and pulverized, thereby forming a molding material. Family can be prepared.
As a method for sealing an electronic component using the molding material obtained in the present invention, the low-pressure transfer molding method is the most common, but an injection molding method or a compression molding method is also possible.
[0032]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
The measurement conditions for various physical properties are as follows.
[0033]
(Softening point)
The softening point is a value measured by the ring and ball method, and the melting point is a value measured by a method using a capillary tube.
(Remaining charcoal rate)
The residual charcoal rate is a value measured by Seiko-Electronics Industries, Ltd., simultaneous differential thermothermal weight measuring device TG / DTA220. That is, the ratio of the residual amount of carbonaceous material to the initial mass when the sample was heated from room temperature to 700 ° C. at a rate of temperature increase of 10 ° C./min in an atmosphere in which nitrogen gas was flowed at 200 ml / min was left. It was defined as the charcoal rate.
[0034]
(Aromatic index)
The aromatic index (fa) was measured using NMR (based on the NNE method) using JNM-GX400 manufactured by JEOL Ltd.13(C-nuclear magnetic resonance spectrum). That is, 125 mg of a sample was mixed with chloroform-d1 (CDClThree) Dissolve in 0.5 ml and add 6 mg of paramagnetic relaxation reagent chromium (III) acetylacetonate to make a measurement sample, measured under the conditions of an observation frequency of 100 MHz, a pulse width of 45 ° pulse, and a pulse waiting time of 2 seconds. did. About the obtained spectrum, the range of 110-160 ppm was assigned as aromatic carbon, the range of 10-60 ppm was assigned as non-aromatic carbon, and each carbon fraction was calculated | required from the integrated value. The ratio of aromatic carbon to total carbon obtained from the obtained carbon fraction was defined as the aromatic index (fa).
[0035]
(Flame retardance)
The flame retardancy was evaluated by the UL94V-0 standard by molding a test piece having a thickness of 1/16 inch. “Accepted” indicates that the product has passed the UL94V-0 standard. Quantitatively, the total framing time in the test of n = 5 is shown as an index.
(Heat hardness)
The hardness at the time of heating was measured with a bar hardness meter for a test piece molded at 175 ° C. for 90 seconds.
(Glass transition point)
The glass transition point was calculated | required on the conditions of the temperature increase rate of 10 degree-C / min with the thermomechanical measuring apparatus.
(Water absorption rate)
The water absorption is obtained when a 50 mmφ × 3 mm disk is molded using the epoxy resin composition, and after post-curing, moisture absorption is performed for 100 hours under the conditions of 85 ° C. and 85% RH.
(Crack occurrence rate)
Crack generation rate is QFP-80pin (14 × 20 × 2.5mm), post cure, moisture absorption for 85 hours and 85% RH, the same conditions as the water absorption rate, and a solder bath at 260 ° C After immersing for 10 seconds, the state of the package was observed and determined.
[0036]
Examples 1-6 and Comparative Examples 1-4
  Various aromatic substances are used as flame retardants and added to the epoxy resin composition to impart flame retardancy and excellent moldability such as fast curability and fluidity, as well as mechanical strength and heat resistance. It is an attempt to obtain a cured product having excellent properties, low hygroscopicity, solder reflow properties, and the like. In this evaluation, the content of these flame retardants, that is, polycyclic aromatic substances, was 10 parts by weight with respect to 100 parts by weight of the epoxy resin. The production methods or origins of the flame retardants (A1 to A8) used in Examples and Comparative Examples are shown below. In addition,A4~ A5 corresponds to this flame retardant,A1 to A3 andA6 to A8 do not fall under this flame retardant.Therefore, Examples 1-3 and 6 are understood to be reference examples.
[0037]
A1: A coal tar soft pitch, and the residue when the coal tar obtained by dry distillation of coal is distilled at 300 to 370 ° C.
A2: A residue obtained by further distilling the quinoline-insoluble component from A1 under reduced pressure (330 to 350 ° C., 10,000 to 30,000 Pa).
A3: A residue obtained when A1 was distilled under reduced pressure (360 to 390 ° C., 9000 to 15000 Pa).
A4: Anthracene oligomer.
88 g (0.495 mol) of anthracene, 27.3 g (0.198 mol) of p-xylene glycol and 4.6 g of p-toluenesulfonic acid as a catalyst were added, heated to 180 ° C. under a nitrogen stream, and stirred. The reaction was carried out for 3 hours while recovering 6.5 g of the produced water. After the temperature was lowered, chlorobenzene was added as a diluent solvent, the catalyst was removed by washing with water, and then the solvent chlorobenzene was distilled off under reduced pressure to obtain 38 g of an anthracene oligomer.
A5: Pyrene oligomer.
Pyrene 100 g (0.495 mol), p-xylene glycol 27.3 g (0.198 mol), p-toluenesulfonic acid 5.1 g as a catalyst were charged, heated to 180 ° C. in a nitrogen stream, and stirred. The reaction was continued for 3 hours, and 6 g of the produced water was recovered. After the temperature was lowered, chlorobenzene was added as a diluent solvent, the catalyst was removed by washing with water, and then the solvent chlorobenzene was distilled off under reduced pressure to obtain 40 g of a pyrene oligomer.
A6: Decant oil which is a heavy component of petroleum fluid catalytic cracking oil.
A7: Commercially available naphthalene.
A8: Commercial anthracene.
[0038]
These basic characteristics are shown in Table 1.
[Table 1]
Figure 0004651762
[0039]
In order to evaluate the properties such as flame retardancy as an epoxy resin composition for applications such as electronic parts, an epoxy resin composition for an electronic part sealing material was prepared and evaluated. The blending conditions and evaluation conditions are as follows.
[0040]
As an epoxy resin component, o-cresol novolak type epoxy resin (epoxy resin A: Nippon Kayaku Co., Ltd., EOCN-1020-65; epoxy equivalent 200, hydrolyzable chlorine 400 ppm, softening point 65 ° C.) and phenol as a curing agent Novolac (curing agent A: manufactured by Gunei Chemical Co., PSM-4261; OH equivalent 103, softening point 80 ° C.), or 1-naphtho-aralkyl type resin (curing agent B: manufactured by Nippon Steel Chemical Co., SN-485; OH equivalent) 210, softening point 85 ° C.). Further, spherical silica (average particle size 18 μm) as a filler, triphenylphosphine as a curing accelerator, carbon black as a colorant, carnauba wax as a release agent, and a flame retardant shown in Table 1 were kneaded. An epoxy resin composition was obtained. The blending ratio is constant of 800 parts of spherical silica, 1.2 parts of curing accelerator, 5 parts of carbon black, and 3 parts of carnauba wax except that the blending amounts of epoxy resin A and curing agent A or B are as shown in Table 2. It was. In addition, the hardening | curing agent component was mix | blended by the number of parts in which an equivalent is equal to an epoxy resin component. Further, the silica content at this time is 83 wt%. Table 2 shows the blending ratio of the main components. The flame retardant was blended in the epoxy resin by melt mixing in Example 3 except that powder mixing was performed during kneading. This epoxy resin composition was molded at 175 ° C. and post-cured at 175 ° C. for 12 hours to obtain a cured product test piece, which was then subjected to various physical property measurements. Table 3 shows the physical property measurement results.
[0041]
[Table 2]
Figure 0004651762
[0042]
[Table 3]
Figure 0004651762
[0043]
Examples 1 to 6 satisfying the conditions of the present invention are all excellent in flame retardancy, excellent in moldability such as fast curability and fluidity, and mechanical strength, heat resistance, low moisture absorption, solder reflow properties. It can be seen that an excellent cured product is obtained. On the other hand, Comparative Examples 1 to 4 that do not satisfy the conditions defined in the present invention are not as flame retardant as the examples. That is, in Comparative Example 1, since the residual carbon ratio and fa of the used flame retardant A6 when heated up to 700 ° C. under a nitrogen stream are outside the scope of the present invention, Examples 1 to 6 are more flame retardant. Has not improved. In Comparative Example 2, since the residual charcoal rate when the used flame retardant A7 was heated to 700 ° C. under a nitrogen stream was outside the scope of the present invention, the flame retardancy was improved as in Examples 1 to 6. Absent. In Comparative Example 3, since the residual charcoal rate when the used flame retardant A8 was heated to 700 ° C. under a nitrogen stream was outside the scope of the present invention, the flame retardancy was improved as in Examples 1 to 6. Absent. In Comparative Example 4, since the flame retardant of the present invention is not used at all, the flame retardancy is not improved as much as in Examples 1-6.
[0044]
【The invention's effect】
The epoxy resin composition of the present invention is excellent in flame retardancy, excellent in moldability such as fast curability and fluidity, and has no mechanical strength, heat resistance, low resistance, even if it does not contain a halogen flame retardant and an antimony compound. Gives a cured product with excellent hygroscopicity, solder reflow properties, etc., especially when it is applied to sealing of electronic parts such as surface mount type semiconductor elements or printed circuit boards, etc. Excellent flame retardancy and solder reflow properties Indicates.

Claims (2)

(A)エポキシ樹脂、(B)硬化剤を含有するエポキシ樹脂組成物において、軟化点が10〜250℃、窒素気流下で700℃まで昇温したときの残炭率が10wt%以上であり、13C-核磁気共鳴スペクトルにおける芳香族指数(fa)が0.85以上である多環芳香族系物質を、難燃剤としてエポキシ樹脂100重量部に対して1〜100重量部含有すること、且つ該多環芳香族系物質がアントラセン又はピレンをp−キシレングリコ−ルを用いてオリゴマ−化することにより得られるアントラセン系オリゴマー又はピレン系オリゴマーであることを特徴とするエポキシ樹脂組成物。(A) Epoxy resin, (B) In the epoxy resin composition containing a curing agent, the softening point is 10 to 250 ° C., and the residual carbon ratio when heated to 700 ° C. under a nitrogen stream is 10 wt% or more, Containing 1 to 100 parts by weight of a polycyclic aromatic substance having an aromatic index (fa) in a 13 C-nuclear magnetic resonance spectrum of 0.85 or more as a flame retardant with respect to 100 parts by weight of an epoxy resin, and An epoxy resin composition, wherein the polycyclic aromatic material is an anthracene oligomer or a pyrene oligomer obtained by oligomerizing anthracene or pyrene using p-xylene glycol . 請求項1記載のエポキシ樹脂組成物を硬化して得られる硬化物。  A cured product obtained by curing the epoxy resin composition according to claim 1.
JP29504099A 1999-10-18 1999-10-18 Epoxy resin composition and cured product thereof Expired - Fee Related JP4651762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29504099A JP4651762B2 (en) 1999-10-18 1999-10-18 Epoxy resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29504099A JP4651762B2 (en) 1999-10-18 1999-10-18 Epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2001114986A JP2001114986A (en) 2001-04-24
JP4651762B2 true JP4651762B2 (en) 2011-03-16

Family

ID=17815552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29504099A Expired - Fee Related JP4651762B2 (en) 1999-10-18 1999-10-18 Epoxy resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP4651762B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165816B2 (en) * 2000-03-14 2013-03-21 新日鉄住金化学株式会社 Epoxy resin composition and cured product thereof
US7675185B2 (en) * 2003-12-11 2010-03-09 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing and electronic component

Also Published As

Publication number Publication date
JP2001114986A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
JP5170493B2 (en) Phenol polymer, its production method and its use
KR101211319B1 (en) Biphenylene-Bridged Phenol Novolak Resins and Use Thereof
JP2008189708A (en) Low-melt viscosity phenol novolak resin, method for producing the same and cured product of epoxy resin using the same
JP2008156553A (en) Low-melt-viscosity phenol novolak resin, its preparation method and its use
JP5457304B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP4651762B2 (en) Epoxy resin composition and cured product thereof
JP4067639B2 (en) Epoxy resin composition and cured product
EP0859374A2 (en) Process for producing highly reactive modified phenolic resin, and molding material, material for electrical/electronic parts and semiconductor sealing material
JP5841947B2 (en) Epoxy resin composition and cured product
JP3933763B2 (en) Epoxy resin composition and electronic component
JP5721519B2 (en) Phenol polymer, its production method and its use
JP2001114863A (en) Epoxy resin composition and its cured material
JP5433294B2 (en) Dihydroxynaphthalene-based polymer, production method thereof and use thereof
JPH1129694A (en) Epoxy resin composition and its cured material
JP2001151858A (en) Epoxy resin composition and its cured product
JP4268835B2 (en) Epoxy resin composition and cured product thereof
JP4388153B2 (en) Epoxy resin composition containing aromatic oligomer and cured product thereof
JP5933954B2 (en) Epoxy resin composition and cured product
JP4895076B2 (en) Aromatic hydrocarbon resin, its production method and its use
JP3889482B2 (en) Epoxy resin composition and cured product thereof
JP2009167430A (en) Aromatic oligomer and method for producing the same
JP2001261785A (en) Epoxy resin composition and cured product thereof
JP2005344081A (en) Epoxy resin composition and cured product thereof
JP4979251B2 (en) Phenol polymer, its production method and its use
JPH11343386A (en) Phenol resin composition and epoxy resin composition containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees