JP5721519B2 - Phenol polymer, its production method and its use - Google Patents

Phenol polymer, its production method and its use Download PDF

Info

Publication number
JP5721519B2
JP5721519B2 JP2011097692A JP2011097692A JP5721519B2 JP 5721519 B2 JP5721519 B2 JP 5721519B2 JP 2011097692 A JP2011097692 A JP 2011097692A JP 2011097692 A JP2011097692 A JP 2011097692A JP 5721519 B2 JP5721519 B2 JP 5721519B2
Authority
JP
Japan
Prior art keywords
epoxy resin
phenol
phenolic polymer
resin composition
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011097692A
Other languages
Japanese (ja)
Other versions
JP2012229312A (en
Inventor
航 高橋
航 高橋
清貴 村田
清貴 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2011097692A priority Critical patent/JP5721519B2/en
Publication of JP2012229312A publication Critical patent/JP2012229312A/en
Application granted granted Critical
Publication of JP5721519B2 publication Critical patent/JP5721519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、フェノール系重合体、その製法およびその用途に関する。さらに詳しくは、本発明は、低溶融粘度で高難燃性である半導体封止材用途に適したフェノール系重合体、その組成物及びその製造法に関する。   The present invention relates to a phenolic polymer, a process for producing the same, and a use thereof. More specifically, the present invention relates to a phenolic polymer suitable for use in a semiconductor sealing material having a low melt viscosity and high flame retardancy, a composition thereof, and a method for producing the same.

フェノールアラルキル樹脂は、エポキシ樹脂の硬化剤として用いると耐熱性、耐湿性、機械的性質等の物性に優れ、しかも低粘度の樹脂が製造可能であり作業性が良好であることから、挿入型用や表面実装用樹脂の用途、特に半導体封止用樹脂として使用されている。   When used as a curing agent for epoxy resins, phenol aralkyl resins have excellent physical properties such as heat resistance, moisture resistance, mechanical properties, etc., and low viscosity resins can be produced and workability is good. And is used as a resin for surface mounting, particularly as a semiconductor sealing resin.

特に近年は、半導体パッケージの小型・薄型化及び形状の複雑化に伴い、半導体封止用樹脂には益々低粘度のものが要求されるようになってきており、低粘度であればその流動性が向上することで複雑形状のパッケージ、例えばBGAなどにも対応が可能となり、またフィラーの高充填化が可能となることで、難燃性、半田耐熱性、耐湿信頼性の面でも有利となる。さらに最近はこれに加えて地球環境に配慮した企業活動の重視により有害性のおそれのある物質の削減・撤廃の動きがあり、ハロゲン系難燃剤及びアンチモン化合物を用いない難燃性に優れたエポキシ樹脂組成物の要求が高まっており、汎用パッケージから先端パッケージ用に至る用途で使用されていたフェノールアラルキル樹脂にもハロゲン系難燃剤及びアンチモン化合物を用いなくとも優れた難燃性を有することが求められている(例えば特許文献1など)。   Particularly in recent years, as semiconductor packages have become smaller, thinner and more complicated in shape, semiconductor sealing resins are increasingly required to have low viscosity. As a result of this improvement, it becomes possible to deal with packages with complex shapes, such as BGA, and because it is possible to increase the filling of the filler, it is advantageous in terms of flame resistance, solder heat resistance, and moisture resistance reliability. . Recently, in addition to this, there has been a movement to reduce or eliminate substances that may be harmful due to the importance of corporate activities in consideration of the global environment. Epoxy has excellent flame resistance without using halogenated flame retardants and antimony compounds. The demand for resin compositions is increasing, and phenol aralkyl resins used in applications ranging from general-purpose packages to advanced packages are also required to have excellent flame retardancy without using halogen flame retardants and antimony compounds. (For example, Patent Document 1).

最近の発明によると、m−キシレン−ホルマリン−メタノール縮合物を用いたフェノールアラルキル樹脂の変性品が報告されており、これはフェノールアラルキル樹脂よりも高流動性でありながら難燃性、耐熱性、硬化性、軟化点は従来のフェノールアラルキル樹脂と同等の特徴を有するが(特許文献2)、今後は上述の理由によりこれまで以上に高流動性が求められるため、現用硬化剤が維持すべき各種実用特性の絞り込みによりさらなる高流動性の特化を図る改良アプローチが必要である。すなわち従来の改良アプローチは、現用品が持つ複数の実用特性を全て維持させようとするあまり高流動性の改良に限度が生じており、今後のニーズ動向を鑑みて必要最小限の実用特性のみを維持するように各種特性項目を適正に取捨選択すればさらなる高流動化の余地が残されていた。   According to a recent invention, a modified product of a phenol aralkyl resin using an m-xylene-formalin-methanol condensate has been reported, which has higher fluidity than a phenol aralkyl resin but is flame retardant, heat resistant, The curability and softening point have the same characteristics as the conventional phenol aralkyl resin (Patent Document 2), but in the future, higher fluidity is required than ever for the above reasons. There is a need for an improved approach to further specialize high fluidity by narrowing down practical properties. In other words, the conventional improved approach is limited in improving the high fluidity so as to maintain all the practical characteristics of the current product, and considering only the minimum necessary practical characteristics in view of future needs trends. If various characteristic items were appropriately selected so that they could be maintained, there was room for further fluidization.

特開平5−97965JP 5-97965 特開2009−242480JP2009-242480

本発明では、従来のフェノールアラルキル樹脂と同等の難燃性と軟化点を持ち、著しく低粘度であるフェノール系重合体、その組成物及びその製造方法を提供することにある。   An object of the present invention is to provide a phenolic polymer having a flame retardancy and a softening point equivalent to those of conventional phenol aralkyl resins and having a remarkably low viscosity, a composition thereof, and a method for producing the same.

下記一般式(1)で示されるフェノール類、下記一般式(2)で示される芳香族化合物、およびm−キシレン・ホルムアルデヒド・メタノールの縮合物との反応において、芳香族化合物のフェノール類に対するモル比が0.10〜0.20、酸素含有率が10〜20wt%、25℃における粘度が70〜150mPa・s、数平均分子量が200〜350であるm−キシレン・ホルムアルデヒド・メタノールの縮合物がフェノール類重量の35〜50wt%使用される条件で反応させて得られるフェノール系重合体を提供する。   In the reaction of the phenols represented by the following general formula (1), the aromatic compound represented by the following general formula (2), and the condensate of m-xylene, formaldehyde and methanol, the molar ratio of the aromatic compound to the phenols Is a condensate of m-xylene, formaldehyde, and methanol having an oxygen content of 10 to 20 wt%, a viscosity at 25 ° C of 70 to 150 mPa · s, and a number average molecular weight of 200 to 350. Provided is a phenolic polymer obtained by reacting under the condition of 35 to 50 wt% of the similar weight.

(式(1)中、Rは水素原子、炭素数1〜6のアルキル基またはアリール基であり、式(2)中、Xはハロゲン、OH基又はOCH基である。) (In formula (1), R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group, and in formula (2), X is a halogen, OH group or OCH 3 group.)

本発明は、前記したフェノール系重合体とエポキシ樹脂からなるエポキシ樹脂組成物を提供する。   The present invention provides an epoxy resin composition comprising the above-described phenolic polymer and an epoxy resin.

前記一般式(1)で示されるフェノール類、前記一般式(2)で示される芳香族化合物、およびm−キシレン・ホルムアルデヒド・メタノールの縮合物との反応において、芳香族化合物のフェノール類に対するモル比が0.10〜0.20、酸素含有率が10〜20wt%、25℃における粘度が70〜150mPa・s、数平均分子量が200〜350であるm−キシレン・ホルムアルデヒド・メタノールの縮合物がフェノール類重量の35〜50wt%使用される条件で反応させて得られるフェノール系重合体の製造方法を提供する。   In the reaction of the phenol represented by the general formula (1), the aromatic compound represented by the general formula (2), and the condensate of m-xylene / formaldehyde / methanol, the molar ratio of the aromatic compound to the phenol Is a condensate of m-xylene, formaldehyde, and methanol having an oxygen content of 10 to 20 wt%, a viscosity at 25 ° C of 70 to 150 mPa · s, and a number average molecular weight of 200 to 350. Provided is a method for producing a phenolic polymer obtained by reacting under the condition that 35 to 50 wt% of the similar weight is used.

本発明によれば、成形材、各種バインダー、コーティング材、積層材などに有効なフェノール系重合体及びその製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the phenolic polymer effective for a molding material, various binders, a coating material, a laminated material, etc. and its manufacturing method are provided.

本発明により、とくにエポキシ樹脂硬化剤として有用であり、とりわけ半導体封止用として用いた場合に、著しい高流動性を有する一方で耐コールドフロー性と耐燃性も併せ持つエポキシ樹脂組成物を形成することができるフェノール系重合体、及びそのエポキシ樹脂組成物が提供される。   According to the present invention, it is particularly useful as an epoxy resin curing agent, and particularly when used for semiconductor sealing, it forms an epoxy resin composition that has both extremely high fluidity while having both cold flow resistance and flame resistance. A phenolic polymer that can be used, and an epoxy resin composition thereof are provided.

本発明は、前記一般式(1)で示されるフェノール類、前記一般式(2)で示される芳香族化合物、およびm−キシレン・ホルムアルデヒド・メタノールの縮合物との反応において、芳香族化合物のフェノール類に対するモル比が0.10〜0.20、酸素含有率が10〜20wt%、25℃における粘度が70〜150mPa・s、数平均分子量が200〜350であるm−キシレン・ホルムアルデヒド・メタノールの縮合物がフェノール類重量の35〜50wt%使用される条件で反応させて得られるフェノール系重合体を提供する。   In the reaction with the phenol represented by the general formula (1), the aromatic compound represented by the general formula (2), and the condensate of m-xylene, formaldehyde and methanol, the present invention Of m-xylene / formaldehyde / methanol having a molar ratio of 0.10 to 0.20, an oxygen content of 10 to 20 wt%, a viscosity at 25 ° C. of 70 to 150 mPa · s, and a number average molecular weight of 200 to 350 Provided is a phenol polymer obtained by reacting the condensate under a condition that 35 to 50 wt% of the phenol is used.

本発明は、前記一般式(1)で示されるフェノール類、前記一般式(2)で示される芳香族化合物、およびm−キシレン・ホルムアルデヒド・メタノールの縮合物との反応において、芳香族化合物のフェノール類に対するモル比が0.10〜0.20、酸素含有率が10〜20wt%、25℃における粘度が70〜150mPa・s、数平均分子量が200〜350であるm−キシレン・ホルムアルデヒド・メタノールの縮合物がフェノール類重量の35〜50wt%使用される条件で反応させて得られるフェノール系重合体の製造方法を提供する。   In the reaction with the phenol represented by the general formula (1), the aromatic compound represented by the general formula (2), and the condensate of m-xylene, formaldehyde and methanol, the present invention Of m-xylene / formaldehyde / methanol having a molar ratio of 0.10 to 0.20, an oxygen content of 10 to 20 wt%, a viscosity at 25 ° C. of 70 to 150 mPa · s, and a number average molecular weight of 200 to 350 Provided is a method for producing a phenol-based polymer obtained by reacting the condensate under the condition that 35 to 50 wt% of the phenol is used.

前記一般式(1)で示されるフェノール類としては、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール、o−エチルフェノール、m−エチルフェノール、p−エチルフェノールなどの単環型フェノール化合物が挙げられ、これらを1種もしくは2種以上使用することができるが、特にフェノールが好ましい。   Examples of the phenols represented by the general formula (1) include phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6- Examples include monocyclic phenol compounds such as xylenol, 3,4-xylenol, 3,5-xylenol, o-ethylphenol, m-ethylphenol, p-ethylphenol, and the use of one or more of them. However, phenol is particularly preferable.

本発明にて使用されるm−キシレン・ホルムアルデヒド・メタノールの縮合物は、m−キシレンをメチレン基で架橋した構造を持ち、かつメチレン基を介して架橋しうる反応性官能基を有するオリゴマー混合物である。これらは、m−キシレン、ホルムアルデヒド、メタノールを酸性触媒存在下で縮合させることで得ることができ、反応性の指標が酸素含有率で与えられる(特開平10−168147)。m−キシレン・ホルムアルデヒド・メタノールの縮合物の酸素含有率、25℃における粘度、数平均分子量は、原料のm−キシレン、ホルムアルデヒド、メタノールの比率によるが、耐燃性と流動性のバランスを考慮すると、酸素含有率が10〜20wt%、25℃における粘度が70〜150mPa・s、数平均分子量としては200〜350の範囲内が好ましい。なお本化合物は市販されており、入手も容易である。(例えばフドー(株)製「ニカノールY-100」)。   The condensate of m-xylene / formaldehyde / methanol used in the present invention is an oligomer mixture having a structure in which m-xylene is crosslinked with a methylene group and having a reactive functional group capable of crosslinking via the methylene group. is there. These can be obtained by condensing m-xylene, formaldehyde, and methanol in the presence of an acidic catalyst, and an index of reactivity is given by oxygen content (Japanese Patent Laid-Open No. 10-168147). The oxygen content of the condensate of m-xylene / formaldehyde / methanol, viscosity at 25 ° C. and number average molecular weight depend on the ratio of m-xylene, formaldehyde and methanol as raw materials, but considering the balance between flame resistance and fluidity, The oxygen content is preferably 10 to 20 wt%, the viscosity at 25 ° C. is 70 to 150 mPa · s, and the number average molecular weight is preferably in the range of 200 to 350. This compound is commercially available and can be easily obtained. (For example, “Nikanol Y-100” manufactured by Fudou Co., Ltd.).

一般式(2)で示される芳香族化合物の例として、1,4−ジ(クロロメチル)ベンゼン、1,4−ジ(ブロモメチル)ベンゼン、1,4−ジ(ヨードメチル)ベンゼン、1,4−ジ(ヒドロキシメチル)ベンゼン、1,4−ジ(メトキシメチル)ベンゼンなどを挙げることができる。これら芳香族化合物のうち入手性の観点から、1,4−ジ(クロロメチル)ベンゼンの使用が好ましい。   Examples of the aromatic compound represented by the general formula (2) include 1,4-di (chloromethyl) benzene, 1,4-di (bromomethyl) benzene, 1,4-di (iodomethyl) benzene, 1,4- Examples include di (hydroxymethyl) benzene and 1,4-di (methoxymethyl) benzene. Of these aromatic compounds, 1,4-di (chloromethyl) benzene is preferably used from the viewpoint of availability.

前記で示されるフェノール系重合体は、前記一般式(1)で示されるフェノール類、前記一般式(2)で示される芳香族化合物、およびm−キシレン・ホルムアルデヒド・メタノールの縮合物を反応させて得ることができる。   The phenolic polymer shown above is reacted with a phenol represented by the general formula (1), an aromatic compound represented by the general formula (2), and a condensate of m-xylene / formaldehyde / methanol. Can be obtained.

前記一般式(1)で示されるフェノール類、前記一般式(2)で示される芳香族化合物、およびm−キシレン・ホルムアルデヒド・メタノールの縮合物の反応においては、適度な分子量とエポキシ樹脂用硬化剤としての優れた性能を有するフェノール系重合体を得るために、芳香族化合物のフェノール類に対するモル比が0.10〜0.20、好ましくは0.12〜0.15、m−キシレン・ホルムアルデヒド・メタノールの縮合物がフェノール類重量の35〜50wt%、好ましくは40〜45wt%で反応させるのがよい。   In the reaction of the phenol represented by the general formula (1), the aromatic compound represented by the general formula (2), and the condensate of m-xylene / formaldehyde / methanol, an appropriate molecular weight and a curing agent for epoxy resin In order to obtain a phenolic polymer having an excellent performance as a molar ratio of aromatic compound to phenol, 0.10 to 0.20, preferably 0.12 to 0.15, m-xylene, formaldehyde, The methanol condensate may be reacted at 35-50 wt%, preferably 40-45 wt% of the weight of phenols.

上記反応は、触媒の存在下又は不存在下、60〜150℃程度の温度で1〜10時間程度反応させることによって得ることができる。すなわち前記(2)式において、XがOH基またはOCH基の場合は酸触媒の存在下で反応させることが必要であり、また前記(2)式においてXがハロゲンの場合には、僅かな水を存在させることによって反応を開始させることができ、また反応によって生じるハロゲン化水素によって反応を促進させることができる。 The above reaction can be obtained by reacting at a temperature of about 60 to 150 ° C. for about 1 to 10 hours in the presence or absence of a catalyst. That is, in the formula (2), when X is an OH group or OCH 3 group, it is necessary to carry out the reaction in the presence of an acid catalyst, and when X is a halogen in the formula (2), a slight amount is required. The reaction can be initiated by the presence of water and can be accelerated by the hydrogen halide produced by the reaction.

上記反応において使用可能な触媒としては、リン酸、硫酸、塩酸などの無機酸、蓚酸、ベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸などの有機酸、塩化亜鉛、塩化第二錫、塩化第二鉄などのルイス酸触媒を単独使用または併用することができる。   Catalysts usable in the above reaction include inorganic acids such as phosphoric acid, sulfuric acid and hydrochloric acid, organic acids such as oxalic acid, benzenesulfonic acid, toluenesulfonic acid, methanesulfonic acid and trifluoromethanesulfonic acid, zinc chloride, and second chloride. Lewis acid catalysts such as tin and ferric chloride can be used alone or in combination.

生成物のフェノール系重合体を半導体封止のような電子材料用途に使用する場合には、酸が残存するのは好ましくないため、酸触媒として塩酸を用いることにより、縮合反応混合物から減圧によって塩化水素を簡単に除去することができるので好ましい。   When the product phenolic polymer is used for electronic material applications such as semiconductor encapsulation, it is not preferable that the acid remains. Therefore, by using hydrochloric acid as the acid catalyst, the condensation reaction mixture is chlorinated under reduced pressure. Hydrogen is preferred because it can be easily removed.

上記縮合反応によって得られる縮合反応混合物から、未反応原料、反応副生物、触媒など低沸点成分を除去することによって、反応生成物であるフェノール系重合体を回収することができる。このような反応生成物は、150℃におけるICI溶融粘度が10〜60mPa・s、好ましくは20〜40mPa・sの範囲にある。また上記反応生成物における未反応原料などの除去のために行われる上記減圧下の分離操作は、通常、130℃以上の温度で行われるので、該操作で得られる溶融状態の反応生成物をそのまま急冷・固化することにより、軟化点(JIS K2207)が55〜70℃程度の非晶性固体として単離することができる。前述の温度範囲の軟化点であれば実用において保管時のコールドフローは問題にならないが、本発明が求める高流動性と耐コールドフロー性とのバランスをさらに考慮すると、その温度範囲は60〜65℃であることがより好ましい。   By removing low-boiling components such as unreacted raw materials, reaction byproducts, and catalysts from the condensation reaction mixture obtained by the condensation reaction, the phenolic polymer that is a reaction product can be recovered. Such a reaction product has an ICI melt viscosity at 150 ° C. of 10 to 60 mPa · s, preferably 20 to 40 mPa · s. The separation operation under reduced pressure, which is performed for removing unreacted raw materials in the reaction product, is usually performed at a temperature of 130 ° C. or higher, so that the molten reaction product obtained by the operation is used as it is. By quenching and solidifying, it can be isolated as an amorphous solid having a softening point (JIS K2207) of about 55 to 70 ° C. If the softening point is within the above temperature range, cold flow during storage is not a problem in practical use, but if the balance between high fluidity and cold flow resistance required by the present invention is further taken into consideration, the temperature range is 60 to 65. More preferably, it is ° C.

このようにして得られる上記反応生成物であるフェノール系重合体は、保管時のコールドフローもなく、成形温度域での溶融粘度が低く加工性に優れており、その硬化物は耐燃性に優れ、成形材、各種バインダー、コーティング材、積層材などに使用することができる。したがってエポキシ樹脂硬化剤として有用であり、エポキシ樹脂系半導体封止材における硬化剤として使用するとコールドフローもなく、流動性に優れたエポキシ樹脂組成物となり、それを硬化させた半導体装置は耐難性に優れる。   The phenolic polymer, which is the reaction product thus obtained, has no cold flow during storage, has a low melt viscosity in the molding temperature range and excellent workability, and its cured product has excellent flame resistance. It can be used for molding materials, various binders, coating materials, laminated materials and the like. Therefore, it is useful as an epoxy resin curing agent, and when used as a curing agent in an epoxy resin-based semiconductor encapsulant, there is no cold flow, and an epoxy resin composition with excellent fluidity is obtained. Excellent.

上記エポキシ樹脂組成物において、上記フェノール系重合体とともに使用することができるエポキシ樹脂としては、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂、フェノール、ナフトールなどのキシリレン結合によるアラルキル樹脂のエポキシ化物、ジシクロペンタジエン型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂などの一分子中にエポキシ基を2個以上有するエポキシ化合物が挙げられる。これらエポキシ樹脂は単独使用でも2種類以上併用してもよい。耐湿性、熱時低弾性率、難燃性を考慮すると、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂などの2官能型エポキシ樹脂や、フェノ−ルビフェニルアラルキル型エポキシ樹脂、フェノール、ナフトールなどのキシリレン結合によるアラルキル樹脂のエポキシ化物などから選ばれる芳香環の多い多官能型エポキシ樹脂を使用するのが好ましい。   Examples of the epoxy resin that can be used with the phenolic polymer in the epoxy resin composition include bisphenol A type epoxy resin, bisphenol F type epoxy resin, cresol novolac type epoxy resin, phenol novolac type epoxy resin, and biphenyl type. Epoxy resins, phenol biphenyl aralkyl type epoxy resins, epoxidized aralkyl resins with xylylene bonds such as phenol and naphthol, glycidyl ether type epoxy resins such as dicyclopentadiene type epoxy resin, dihydroxynaphthalene type epoxy resin and triphenolmethane type epoxy resin Epoxy compounds having two or more epoxy groups in one molecule such as glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, etc. It is below. These epoxy resins may be used alone or in combination of two or more. In consideration of moisture resistance, low elastic modulus during heat and flame retardancy, bifunctional epoxy resins such as bisphenol F type epoxy resin and biphenyl type epoxy resin, phenol biphenyl aralkyl type epoxy resin, xylylene such as phenol and naphthol It is preferable to use a polyfunctional epoxy resin having many aromatic rings selected from epoxidized aralkyl resins by bonding.

エポキシ樹脂の硬化に際しては、硬化促進剤を併用することが好ましい。かかる硬化促進剤としては、エポキシ樹脂をフェノール樹脂系硬化剤で硬化させるための公知の硬化促進剤を用いることができ、例えば、3級アミン化合物、4級アンモニウム塩、イミダゾール類、ホスフィン化合物、ホスホニウム塩などを挙げることができる。より具体的には、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、1,8−ジアザビシクロ(5,4,0)ウンデセン−7などの3級アミン化合物、2−メチルイミダゾール、2,4−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾールなどのイミダゾール類、トリフェニルホスフィン、トリブチルホスフィン、トリ(p−メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィンなどのホスフィン化合物、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラナフトエ酸ボレートなどのホスホニウム塩、トリフェニルホスホニオフェノラート、ベンゾキノンとトリフェニルホスフィンの反応物などのベタイン状有機リン化合物を挙げることができる。中でも低吸水性や信頼性の観点から、ホスフィン化合物、ホスホニウム塩、ベタイン状有機リン化合物の使用が好ましい。   In curing the epoxy resin, it is preferable to use a curing accelerator in combination. As such a curing accelerator, a known curing accelerator for curing an epoxy resin with a phenol resin curing agent can be used. For example, a tertiary amine compound, a quaternary ammonium salt, an imidazole, a phosphine compound, a phosphonium A salt etc. can be mentioned. More specifically, tertiary amine compounds such as triethylamine, triethylenediamine, benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 1,8-diazabicyclo (5,4,0) undecene-7 , 2-methylimidazole, 2,4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, imidazoles such as 2-phenyl-4-methylimidazole, triphenylphosphine, tributylphosphine, tri (p -Phosphine compounds such as methylphenyl) phosphine and tri (nonylphenyl) phosphine, phosphonium salts such as tetraphenylphosphonium tetraphenylborate, tetraphenylphosphoniumtetranaphthoic acid borate, and triphenylphosphonio Enorato, it may be mentioned betaines like organic phosphorus compounds such as the reaction product of benzoquinone and triphenyl phosphine. Among these, from the viewpoint of low water absorption and reliability, use of a phosphine compound, a phosphonium salt, and a betaine-like organic phosphorus compound is preferable.

本発明のエポキシ樹脂組成物には、必要に応じて無機充填剤、カップリング剤、離型剤、着色剤、難燃剤、低応力剤などを添加または予め反応して用いることができる。また他の硬化剤を併用することもできる。このような他の硬化剤の例として、フェノールノボラック樹脂、フェノールアラルキル樹脂、フェノールビフェニルアラルキル樹脂、フェノールナフチルアラルキル樹脂、ナフトールアラルキル樹脂、トリフェノールメタン型ノボラック樹脂などを挙げることができる。   In the epoxy resin composition of the present invention, an inorganic filler, a coupling agent, a release agent, a colorant, a flame retardant, a low stress agent, or the like can be added or reacted in advance if necessary. Other curing agents can be used in combination. Examples of such other curing agents include phenol novolak resins, phenol aralkyl resins, phenol biphenyl aralkyl resins, phenol naphthyl aralkyl resins, naphthol aralkyl resins, and triphenolmethane type novolak resins.

上記エポキシ樹脂組成物を半導体封止用に使用する場合は、無機充填剤の添加は必須である。このような無機充填剤の例として、非晶性シリカ、結晶性シリカ、アルミナ、ガラス、珪酸カルシウム、マグネサイト、クレー、タルク、マイカ、マグネシア、硫酸バリウムなどを挙げることができるが、とくに非晶性シリカ、結晶性シリカ、硫酸バリウムが好ましい。また優れた成形性を維持しつつ充填剤の配合量を高めるために細密充填を可能とするような粒度分布の広い球形の充填剤を使用することが好ましい。   When using the said epoxy resin composition for semiconductor sealing, addition of an inorganic filler is essential. Examples of such inorganic fillers include amorphous silica, crystalline silica, alumina, glass, calcium silicate, magnesite, clay, talc, mica, magnesia, barium sulfate, etc. Silica, crystalline silica, and barium sulfate are preferred. In order to increase the blending amount of the filler while maintaining excellent moldability, it is preferable to use a spherical filler having a wide particle size distribution that enables fine packing.

カップリング剤の例としては、メルカプトシラン系、ビニルシラン系、アミノシラン系、エポキシシラン系などのシランカップリング剤やチタンカップリング剤を、離型剤の例としてはカルナバワックス、パラフィンワックスなど、また着色剤としてはカーボンブラックなどをそれぞれ例示することができる。難燃剤の例としては、リン化合物、金属水酸化物など、低応力剤の例としては、シリコンゴム、変性ニトリルゴム、変性ブタジエンゴム、変性シリコンオイルなどを挙げることができる。   Examples of coupling agents include mercaptosilane-based, vinylsilane-based, aminosilane-based, and epoxysilane-based silane coupling agents and titanium coupling agents. Examples of mold release agents include carnauba wax, paraffin wax, and coloring. Examples of the agent include carbon black. Examples of the flame retardant include phosphorus compounds and metal hydroxides, and examples of the low stress agent include silicon rubber, modified nitrile rubber, modified butadiene rubber, and modified silicone oil.

本発明のフェノール系重合体とエポキシ樹脂の配合比は、耐熱性、機械的特性などを考慮すると、水酸基/エポキシ基の当量比が0.5〜1.5、特に0.8〜1.2の範囲にあることが好ましい。また他の硬化剤と併用する場合においても水酸基/エポキシ基の当量比が上記割合となるようにするのが好ましい。硬化促進剤は、硬化特性や諸物性を考慮すると、エポキシ樹脂100重量部に対して0.1〜5重量部の範囲で使用するのが好ましい。さらに半導体封止用のエポキシ樹脂組成物においては、無機充填剤の種類によっても異なるが、半田耐熱性、成形性(溶融粘度、流動性)、低応力性、低吸水性などを考慮すると、無機充填剤を組成物全体の60〜93重量%を占めるような割合で配合することが好ましい。   The mixing ratio of the phenolic polymer and the epoxy resin of the present invention is such that the equivalent ratio of hydroxyl group / epoxy group is 0.5 to 1.5, particularly 0.8 to 1.2, considering heat resistance, mechanical properties and the like. It is preferable that it exists in the range. Further, even when used in combination with another curing agent, it is preferable that the equivalent ratio of hydroxyl group / epoxy group is the above-mentioned ratio. The curing accelerator is preferably used in the range of 0.1 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin in consideration of curing characteristics and various physical properties. Furthermore, in an epoxy resin composition for semiconductor encapsulation, although it varies depending on the type of inorganic filler, considering the solder heat resistance, moldability (melt viscosity, fluidity), low stress, low water absorption, etc., it is inorganic. It is preferable to blend the filler in a proportion that occupies 60 to 93% by weight of the entire composition.

エポキシ樹脂組成物を成形材料として調製する場合の一般的な方法としては、所定の割合の各原料を、例えばミキサーによって充分混合後、熱ロールやニーダーなどによって混練処理を加え、さらに冷却固化後適当な大きさ粉砕し、必要に応じタブレット化するなどの方法を挙げることができる。このようにして得た成形材料は、例えば低圧トランスファー成形などにより半導体を封止し、半導体装置を製造することができる。エポキシ樹脂組成物の硬化は、例えば100〜250℃の温度範囲で行うことができる。   As a general method for preparing an epoxy resin composition as a molding material, a predetermined proportion of each raw material is sufficiently mixed by, for example, a mixer, then kneaded by a hot roll or a kneader, and further cooled and solidified. Examples of the method include pulverization of a large size and tableting as necessary. The molding material thus obtained can be used for sealing a semiconductor by, for example, low-pressure transfer molding to manufacture a semiconductor device. Curing of the epoxy resin composition can be performed, for example, in a temperature range of 100 to 250 ° C.

以下に実施例、比較例によって本発明をより具体的に説明するが、本発明はこれらの例によって何ら制限されるものではない。   The present invention will be described more specifically with reference to examples and comparative examples below, but the present invention is not limited to these examples.

[実施例1]
フェノール1347.7g(14.336モル)、1,4−ジ(クロロメチル)ベンゼン350.0g(2.000モル)、及びニカノールY−100(フドー(株)製、数平均分子量270)592.7gを、下部に抜出口のある4つ口フラスコに仕込み、温度を上昇させると、系内が50℃でスラリー状態になり、70℃で均一に溶け、塩化水素の発生が始まり、70℃で1時間保持した後、昇温させ95℃で2時間保持後、さらに150℃で1時間熱処理を加えた。反応で出てくる塩化水素はそのまま系外へ揮散させ、アルカリ水でトラップした。この段階で未反応の1,4−ジ(クロロメチル)ベンゼンは残存しておらず、全て反応したことをガスクロマトグラフィで確認した。反応終了後、減圧することにより、系内に残存する塩化水素及び未反応のフェノールを系外へ除去した。最終的に30torrで150℃まで減圧処理することで、残存フェノールがガスクロマトグラフィで未検出になった。この反応生成物を150℃に保持しながら抜き出し、淡黄褐色で透明なフェノール重合体(1)1389.6gを得た。
このフェノール系重合体(1)のJIS K 2207に基づく軟化点は61℃であった。またICI溶融粘度計により測定した150℃における溶融粘度は20mPa・sであった。さらにアセチル化逆滴定法により測定した水酸基当量は178g/eqであった。このフェノール系重合体(1)を3mm以下の粒子に粉砕後、この粉砕物150gを10cm×10cmの正方空間に敷き詰めて上部より7kgの荷重をかけて15℃下1ヶ月放置したが、ブロッキングは観測されなかった。
[Example 1]
Phenol 1347.7 g (14.336 mol), 1,4-di (chloromethyl) benzene 350.0 g (2.000 mol), and Nikanol Y-100 (manufactured by Fudou Co., Ltd., number average molecular weight 270) 592. When 7g was charged into a four-necked flask with an outlet at the bottom and the temperature was raised, the system became a slurry state at 50 ° C, and evenly melted at 70 ° C, and generation of hydrogen chloride started. After holding for 1 hour, the temperature was raised, the temperature was kept at 95 ° C. for 2 hours, and then heat treatment was added at 150 ° C. for 1 hour. Hydrogen chloride produced in the reaction was volatilized out of the system as it was and trapped with alkaline water. At this stage, unreacted 1,4-di (chloromethyl) benzene did not remain, and it was confirmed by gas chromatography that all had reacted. After completion of the reaction, the pressure was reduced to remove hydrogen chloride remaining in the system and unreacted phenol out of the system. Finally, the residual phenol was not detected by gas chromatography by reducing the pressure to 150 ° C. at 30 torr. This reaction product was extracted while maintaining at 150 ° C. to obtain 1389.6 g of a pale yellowish brown and transparent phenol polymer (1).
The softening point of this phenolic polymer (1) based on JIS K 2207 was 61 ° C. The melt viscosity at 150 ° C. measured with an ICI melt viscometer was 20 mPa · s. Furthermore, the hydroxyl group equivalent measured by the acetylated back titration method was 178 g / eq. After pulverizing this phenolic polymer (1) into particles of 3 mm or less, 150 g of this pulverized product was spread in a square space of 10 cm × 10 cm and left standing at 15 ° C. for 1 month with a load of 7 kg. Not observed.

[実施例2]
下記一般式(3)で示されるエポキシ樹脂(日本化薬(株)製NC−3000P、フェノールビフェニルアラルキル型、エポキシ当量272g/eq)、実施例1で得たフェノール系重合体(1)、溶融シリカおよびリン系硬化促進剤テトラフェニルホスホニウムテトラ−p−メチルフェニルボレート(北興産業(株)、TPP−MK)を表2に示す割合
で配合し、充分に混合した後、85±3℃の2本ロールで3分混練し、冷却、粉砕することにより成形用組成物を得た。トランスファー成形機でこの成形用組成物を圧力100kgf/cm2で175℃2分間成形した後、180℃6時間のポストキュアを行い、ガラス転移温度測定用及び難燃性試験用のテストピースを得た。
[Example 2]
Epoxy resin represented by the following general formula (3) (Nippon Kayaku Co., Ltd. NC-3000P, phenol biphenyl aralkyl type, epoxy equivalent 272 g / eq), phenolic polymer (1) obtained in Example 1, molten Silica and phosphorus-based curing accelerator tetraphenylphosphonium tetra-p-methylphenylborate (Hokuko Sangyo Co., Ltd., TPP-MK) were blended in the proportions shown in Table 2 and mixed well, and then 2 at 85 ± 3 ° C. The molding composition was obtained by kneading with this roll for 3 minutes, cooling and grinding. This molding composition was molded at 175 ° C. for 2 minutes at a pressure of 100 kgf / cm 2 using a transfer molding machine, and then post-cured at 180 ° C. for 6 hours to obtain test pieces for measuring the glass transition temperature and for the flame retardancy test. .

(式中、Gはグリシジル基、nは1〜10の数である。) (In the formula, G is a glycidyl group, and n is a number of 1 to 10.)

[比較例1]
下記一般式(4)に示されるフェノールアラルキル樹脂(エア・ウォーター(株)製、HE100C−10)をフェノール重合体(2)とした。
このフェノール系重合体(2)のJIS K 2207に基づく軟化点は63℃であった。またICI溶融粘度計により測定した150℃における溶融粘度は100mPa・sであった。さらにアセチル化逆滴定法により測定した水酸基当量は168g/eqであった。このフェノール系重合体(2)を3mm以下の粒子に粉砕後、この粉砕物150gを10cm×10cmの正方空間に敷き詰めて上部より7kgの荷重をかけて15℃下1ヶ月放置したが、ブロッキングは観測されなかった。
[Comparative Example 1]
A phenol aralkyl resin represented by the following general formula (4) (manufactured by Air Water Co., Ltd., HE100C-10) was used as the phenol polymer (2).
The softening point of this phenol polymer (2) based on JIS K 2207 was 63 ° C. The melt viscosity at 150 ° C. measured with an ICI melt viscometer was 100 mPa · s. Furthermore, the hydroxyl group equivalent measured by the acetylated back titration method was 168 g / eq. After pulverizing this phenolic polymer (2) into particles of 3 mm or less, 150 g of this pulverized product was spread in a 10 cm × 10 cm square space and left to stand at 15 ° C. for 1 month under a load of 7 kg. Not observed.

(式中、nは1〜8の数である。) (In the formula, n is a number of 1 to 8.)

[比較例2]
フェノール168.8g(1.796モル)、1,4−ジ(クロロメチル)ベンゼン77.0g(0.440モル)及びニカノールY−100(フドー(株)製、数平均分子量270)30.4gを、下部に抜出口のある4つ口フラスコに仕込み、温度を上昇させると、系内が50℃でスラリー状態になり、70℃で均一に溶け、塩化水素の発生が始まり、70℃で1時間保持した後、昇温させ95℃で2時間保持後、さらに150℃で1時間熱処理を加えた。反応で出てくる塩化水素はそのまま系外へ揮散させ、アルカリ水でトラップした。この段階で未反応の1,4−ジ(クロロメチル)ベンゼン、ニカノールは残存しておらず、全て反応したことをガスクロマトグラフィで確認した。反応終了後、減圧することにより、系内に残存する塩化水素及び未反応のフェノールを系外へ除去した。最終的に30torrで150℃まで減圧処理することで、残存フェノールがガスクロマトグラフィで未検出になった。この反応生成物を150℃に保持しながら抜き出し、淡黄褐色で透明なフェノール重合体(3)152.1gを得た。
このフェノール系重合体(3)のJIS K 2207に基づく軟化点は64℃であった。またICI溶融粘度計により測定した150℃における溶融粘度は50mPa・sであった。さらにアセチル化逆滴定法により測定した水酸基当量は175g/Eqであった。このフェノール系重合体(3)を3mm以下の粒子に粉砕後、この粉砕物150gを10cm×10cmの正方空間に敷き詰めて上部より7kgの荷重をかけて15℃下1ヶ月放置したが、ブロッキングは観測されなかった。
[Comparative Example 2]
168.8 g (1.796 mol) of phenol, 77.0 g (0.440 mol) of 1,4-di (chloromethyl) benzene and 30.4 g of Nicanol Y-100 (manufactured by Fudou Co., Ltd., number average molecular weight 270) Is added to a four-necked flask with an outlet at the bottom, and when the temperature is raised, the system becomes a slurry at 50 ° C., dissolves uniformly at 70 ° C., and generation of hydrogen chloride begins. After holding for a period of time, the temperature was raised, the temperature was kept at 95 ° C. for 2 hours, and a heat treatment was further added at 150 ° C. for 1 hour. Hydrogen chloride produced in the reaction was volatilized out of the system as it was and trapped with alkaline water. At this stage, unreacted 1,4-di (chloromethyl) benzene and nicanol did not remain, and it was confirmed by gas chromatography that all had reacted. After completion of the reaction, the pressure was reduced to remove hydrogen chloride remaining in the system and unreacted phenol out of the system. Finally, the residual phenol was not detected by gas chromatography by reducing the pressure to 150 ° C. at 30 torr. The reaction product was withdrawn while maintaining at 150 ° C. to obtain 152.1 g of a pale yellowish brown and transparent phenol polymer (3).
The softening point of this phenol polymer (3) based on JIS K 2207 was 64 ° C. The melt viscosity at 150 ° C. measured with an ICI melt viscometer was 50 mPa · s. Furthermore, the hydroxyl group equivalent measured by the acetylation back titration method was 175 g / Eq. After pulverizing this phenolic polymer (3) into particles of 3 mm or less, 150 g of this pulverized product was spread in a 10 cm × 10 cm square space and left to stand at 15 ° C. for 1 month under a load of 7 kg. Not observed.

[比較例3]
実施例2において、実施例1で得たフェノール系重合体(1)に代えて比較例1のフェノール系重合体(2)を用いる以外は同様に成形用組成物を調製し、これよりガラス転移温度測定用及び難燃性試験用のテストピースを得た。
[Comparative Example 3]
In Example 2, a molding composition was prepared in the same manner except that the phenolic polymer (2) of Comparative Example 1 was used in place of the phenolic polymer (1) obtained in Example 1, and the glass transition was obtained therefrom. Test pieces for temperature measurement and flame retardancy test were obtained.

[比較例4]
実施例2において、実施例1で得たフェノール系重合体(1)に代えて比較例2で得たフェノール系重合体(3)を用いる以外は同様に成形用組成物を調製し、これよりガラス転移温度測定用及び難燃性試験用のテストピースを得た。
[Comparative Example 4]
In Example 2, a molding composition was prepared in the same manner except that the phenolic polymer (3) obtained in Comparative Example 2 was used instead of the phenolic polymer (1) obtained in Example 1. Test pieces for glass transition temperature measurement and flame retardancy test were obtained.

これら成形材料の物性を、次の方法により測定した。
(1)組成物の溶融粘度
エポキシ樹脂組成物2.5gをタブレットにして、高下式フローテスター(温度175℃、オリフィス径1mm、長さ1mm)にて測定した。
(2)難燃性
厚み1.6mm×幅10mm×長さ135mmのサンプルを用い、UL−94に準拠して残炎時間を測定し評価した。
これらの評価結果を表2に示す。
The physical properties of these molding materials were measured by the following method.
(1) Melt viscosity of the composition 2.5 g of the epoxy resin composition was tableted and measured with a high and low flow tester (temperature 175 ° C., orifice diameter 1 mm, length 1 mm).
(2) Afterflame time was measured and evaluated in accordance with UL-94 using a flame retardant thickness 1.6 mm × width 10 mm × length 135 mm sample.
These evaluation results are shown in Table 2.

表1に記載のフェノール系重合体はそれぞれ同等の軟化点を有し、実用を想定した長期保管においてもコールドフローは観測されなかった。その一方で実施例1のフェノール系重合体の溶融粘度[mPa・s]は0.2であり、実施例1と同じm−キシレン・ホルムアルデヒド・メタノールの縮合物による変性処理を行っている比較例2の0.5に対し40%低く著しい低粘度化を実現した。以上より、本発明が与えるフェノール系重合体は、従来のフェノールアラルキル樹脂タイプの硬化剤と同等の耐コールドフロー性を有しながらも著しい低粘度化を実現していることがわかる。   The phenolic polymers listed in Table 1 each had an equivalent softening point, and no cold flow was observed even in long-term storage assuming practical use. On the other hand, the melt viscosity [mPa · s] of the phenolic polymer of Example 1 is 0.2, and a comparative example in which the modification treatment with the same condensate of m-xylene, formaldehyde, and methanol as in Example 1 is performed. A significant reduction in viscosity was achieved by 40% lower than 0.5 of 2. From the above, it can be seen that the phenolic polymer provided by the present invention achieves a markedly low viscosity while having cold flow resistance equivalent to that of a conventional phenol aralkyl resin type curing agent.

表2において、実施例1樹脂が持つ溶融粘度はエポキシ樹脂組成物として使用されたときに高流動性として発揮されることがわかる。すなわち、実施例2の溶融粘度[Pa・s]は0.7であり比較例4の70%に相当する著しい低粘度である。その上、表中のエポキシ樹脂組成物群の難燃性評価ではFmax、Ftotalともにいずれも同等であることから、実施例1の樹脂は従来のフェノールアラルキル樹脂タイプの硬化剤と同等の耐コールドフロー性に加えて耐燃性も同等であることがわかる。
以上より、本発明が与えるフェノール系重合体は従来のフェノールアラルキル樹脂タイプの硬化剤が有する耐コールドフロー性と耐燃性の特徴を維持しながら著しい高流動性を賦与させたものであり、従来のアプローチではこれら特徴の発揮は困難なものである。
In Table 2, it can be seen that the melt viscosity of Example 1 resin is exhibited as high fluidity when used as an epoxy resin composition. That is, the melt viscosity [Pa · s] of Example 2 is 0.7, which is a remarkably low viscosity corresponding to 70% of Comparative Example 4. In addition, since both Fmax and Ftotal are equivalent in the flame retardancy evaluation of the epoxy resin composition group in the table, the resin of Example 1 has the same cold flow resistance as that of a conventional phenol aralkyl resin type curing agent. It can be seen that in addition to the properties, the flame resistance is equivalent.
As described above, the phenolic polymer provided by the present invention imparts remarkable high fluidity while maintaining the cold flow resistance and flame resistance characteristics of the conventional phenol aralkyl resin type curing agent. It is difficult for these approaches to demonstrate these characteristics.

本発明が与える硬化剤および組成物は、耐コールドフロー性と耐燃性を兼ね備える高流動タイプの半導体封止材料用途に適する。   The hardening | curing agent and composition which this invention provides are suitable for the high fluid type semiconductor sealing material use which combines cold flow resistance and flame resistance.

Claims (13)

下記一般式(1)で示されるフェノール類、下記一般式(2)で示される芳香族化合物、およびm−キシレン・ホルムアルデヒド・メタノールの縮合物との反応において、芳香族化合物のフェノール類に対するモル比が0.10〜0.20、酸素含有率が10〜20wt%、25℃における粘度が70〜150mPa・s、数平均分子量が200〜350であるm−キシレン・ホルムアルデヒド・メタノールの縮合物がフェノール類重量の35〜50wt%使用される条件で反応させて得られるフェノール系重合体。
(式(1)中、Rは水素原子、炭素数1〜6のアルキル基またはアリール基であり、式(2)中、Xはハロゲン、OH基又はOCH基である。)
In the reaction of the phenols represented by the following general formula (1), the aromatic compound represented by the following general formula (2), and the condensate of m-xylene, formaldehyde and methanol, the molar ratio of the aromatic compound to the phenols Is a condensate of m-xylene, formaldehyde, and methanol having an oxygen content of 10 to 20 wt%, a viscosity at 25 ° C of 70 to 150 mPa · s, and a number average molecular weight of 200 to 350. A phenolic polymer obtained by reacting under the condition that 35 to 50 wt% of the similar weight is used.
(In formula (1), R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group, and in formula (2), X is a halogen, OH group or OCH 3 group.)
150℃におけるICI溶融粘度が10〜60mPa・s、および軟化点が55〜70℃である請求項1に記載のフェノール系重合体。   The phenolic polymer according to claim 1, wherein the ICI melt viscosity at 150 ° C is 10 to 60 mPa · s, and the softening point is 55 to 70 ° C. 前記フェノール類がフェノールである請求項1または2に記載のフェノール系重合体。   The phenolic polymer according to claim 1 or 2, wherein the phenol is phenol. 下記一般式(1)で示されるフェノール類、下記一般式(2)で示される芳香族化合物、およびm−キシレン・ホルムアルデヒド・メタノールの縮合物との反応において、芳香族化合物のフェノール類に対するモル比が0.10〜0.20、酸素含有率が10〜20wt%、25℃における粘度が70〜150mPa・s、数平均分子量が200〜350であるm−キシレン・ホルムアルデヒド・メタノールの縮合物がフェノール類重量の35〜50wt%使用される条件で反応させて得られるフェノール系重合体の製造方法。
(式(1)中、R は水素原子、炭素数1〜6のアルキル基またはアリール基であり、式(2)中、Xはハロゲン、OH基又はOCH 基である。)
Phenols represented by the following general formula (1), in the reaction of aromatic compounds, and m- xylene formaldehyde condensate methanol represented by the following general formula (2), the molar ratio of phenol aromatic compound Is a condensate of m-xylene, formaldehyde, and methanol having an oxygen content of 10 to 20 wt%, a viscosity at 25 ° C of 70 to 150 mPa · s, and a number average molecular weight of 200 to 350. A method for producing a phenolic polymer obtained by reacting under the condition that 35 to 50 wt% of the similar weight is used.
(In formula (1), R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an aryl group, and in formula (2), X is a halogen, OH group or OCH 3 group.)
150℃におけるICI溶融粘度が10〜60mPa・s、および軟化点が55〜70℃である請求項4に記載のフェノール系重合体の製造方法。   The method for producing a phenolic polymer according to claim 4, wherein the ICI melt viscosity at 150 ° C is 10 to 60 mPa · s, and the softening point is 55 to 70 ° C. 前記フェノール類がフェノールである請求項4または5に記載のフェノール系重合体の製造方法。   The method for producing a phenolic polymer according to claim 4 or 5, wherein the phenol is phenol. 請求項1〜3のいずれかに記載のフェノール系重合体からなるエポキシ樹脂用硬化剤。   The hardening | curing agent for epoxy resins which consists of a phenol type polymer in any one of Claims 1-3. 請求項1〜3のいずれかに記載のフェノール系重合体からなるエポキシ樹脂用硬化剤とエポキシ樹脂を含有するエポキシ樹脂組成物。   The epoxy resin composition containing the hardening | curing agent for epoxy resins which consists of a phenolic polymer in any one of Claims 1-3, and an epoxy resin. さらに無機充填剤を含有する請求項8に記載のエポキシ樹脂組成物。   Furthermore, the epoxy resin composition of Claim 8 containing an inorganic filler. さらに硬化促進剤を含有する請求項8または9に記載のエポキシ樹脂組成物。   Furthermore, the epoxy resin composition of Claim 8 or 9 containing a hardening accelerator. 半導体封止用である請求項8〜10のいずれかに記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 8, which is for semiconductor encapsulation. 請求項8〜11のいずれかに記載のエポキシ樹脂組成物を硬化してなるエポキシ樹脂硬化物。   The epoxy resin hardened | cured material formed by hardening | curing the epoxy resin composition in any one of Claims 8-11. 請求項11に記載のエポキシ樹脂組成物を用いて半導体素子を封止してなる半導体装置。   The semiconductor device formed by sealing a semiconductor element using the epoxy resin composition of Claim 11.
JP2011097692A 2011-04-25 2011-04-25 Phenol polymer, its production method and its use Active JP5721519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011097692A JP5721519B2 (en) 2011-04-25 2011-04-25 Phenol polymer, its production method and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011097692A JP5721519B2 (en) 2011-04-25 2011-04-25 Phenol polymer, its production method and its use

Publications (2)

Publication Number Publication Date
JP2012229312A JP2012229312A (en) 2012-11-22
JP5721519B2 true JP5721519B2 (en) 2015-05-20

Family

ID=47431143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097692A Active JP5721519B2 (en) 2011-04-25 2011-04-25 Phenol polymer, its production method and its use

Country Status (1)

Country Link
JP (1) JP5721519B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6732657B2 (en) * 2014-11-20 2020-07-29 ソマール株式会社 Powder paint
CN110317559A (en) * 2019-05-22 2019-10-11 广西大学 A kind of meta-xylene modified phenolic resin adhesive and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3978576B2 (en) * 2001-10-16 2007-09-19 三菱瓦斯化学株式会社 Process for producing low-viscosity phenol-modified aromatic hydrocarbon formaldehyde resin
JP5268404B2 (en) * 2008-03-28 2013-08-21 エア・ウォーター株式会社 Phenol polymer, its production method and its use
WO2010140331A1 (en) * 2009-06-03 2010-12-09 住友ベークライト株式会社 Resin composition for semiconductor encapsulation, and semiconductor device
JP5413127B2 (en) * 2009-10-29 2014-02-12 住友ベークライト株式会社 Semiconductor sealing resin composition, semiconductor device using the same, and method for producing semiconductor sealing resin composition
JP5353636B2 (en) * 2009-10-29 2013-11-27 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device using the same
JP5868573B2 (en) * 2010-03-02 2016-02-24 住友ベークライト株式会社 Semiconductor sealing resin composition and semiconductor device
JP2011187892A (en) * 2010-03-11 2011-09-22 Sumitomo Bakelite Co Ltd Semiconductor sealing resin composition and semiconductor device using cured body thereof
US20130009327A1 (en) * 2010-03-15 2013-01-10 Yusuke Tanaka Resin composition for semiconductor encapsulation, and semiconductor device using same
JP5573344B2 (en) * 2010-05-12 2014-08-20 住友ベークライト株式会社 Resin composition for sealing and electronic component device

Also Published As

Publication number Publication date
JP2012229312A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
JP5170493B2 (en) Phenol polymer, its production method and its use
JP5320130B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5931234B2 (en) Method for producing epoxy resin composition
TW201736469A (en) Phenolic resin composition
JP5548562B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5209556B2 (en) Epoxy resin composition and molded article
JP6124865B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP6052868B2 (en) Epoxy resin curing agent, production method, and use thereof
JP4404302B2 (en) Epoxy resin curing agent, composition and use thereof
JP5721519B2 (en) Phenol polymer, its production method and its use
JP5268404B2 (en) Phenol polymer, its production method and its use
JP2005314525A (en) Phenolic polymer, method for producing the same and application thereof
JP4067639B2 (en) Epoxy resin composition and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP5302147B2 (en) Epoxy resin composition for sealing and cured product
JP5946329B2 (en) Phenol oligomer, its production method and use
JP3806222B2 (en) Epoxy resin composition and cured product thereof
JP2001114863A (en) Epoxy resin composition and its cured material
JP5199847B2 (en) Epoxy resin composition and molded article
JP2012172122A (en) Phenolic polymer, production method of the same and application of the same
JP5548792B2 (en) Polyvalent hydroxy resin, production method thereof, epoxy resin composition and cured product thereof
JP2001316453A (en) Epoxy resin composition and semiconductor device
JP4979251B2 (en) Phenol polymer, its production method and its use
JP2010260802A (en) Dihydroxynaphthalene polymer, method of producing the same, and use therefor
JP2001151858A (en) Epoxy resin composition and its cured product

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20131023

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150324

R150 Certificate of patent or registration of utility model

Ref document number: 5721519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250