JP4649857B2 - Manufacturing method of hot forged products with excellent fatigue strength - Google Patents

Manufacturing method of hot forged products with excellent fatigue strength Download PDF

Info

Publication number
JP4649857B2
JP4649857B2 JP2004086310A JP2004086310A JP4649857B2 JP 4649857 B2 JP4649857 B2 JP 4649857B2 JP 2004086310 A JP2004086310 A JP 2004086310A JP 2004086310 A JP2004086310 A JP 2004086310A JP 4649857 B2 JP4649857 B2 JP 4649857B2
Authority
JP
Japan
Prior art keywords
mass
forging
fatigue strength
less
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004086310A
Other languages
Japanese (ja)
Other versions
JP2005232581A (en
Inventor
秀途 木村
清史 上井
明博 松崎
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004086310A priority Critical patent/JP4649857B2/en
Publication of JP2005232581A publication Critical patent/JP2005232581A/en
Application granted granted Critical
Publication of JP4649857B2 publication Critical patent/JP4649857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、条鋼を用いた自動車部品、例えばハブまたは等速ジョイント等に適用して好適な、疲労強度に優れた熱間鍛造品の製造方法に関するものである。   The present invention relates to a method for producing a hot forged product excellent in fatigue strength, which is suitable for application to automobile parts using strip steel, such as a hub or a constant velocity joint.

ハブまたは等速ジョイント等の条鋼製品は、熱間鍛造または転造加工を行い、その後切削を行って製造するのが一般的である。近年、かかる用途の製品については、これらが適用される自動車の軽量化のために、高疲労強度化が求められている。
従来、疲労強度向上のためには、高価な成分元素を添加したり、介在物の最大径を小さくしたり、あるいは介在物の数を減少するのが有効であることが知られている。
In general, a steel bar product such as a hub or a constant velocity joint is manufactured by hot forging or rolling and then cutting. In recent years, high fatigue strength is required for products for such applications in order to reduce the weight of automobiles to which they are applied.
Conventionally, in order to improve fatigue strength, it is known that it is effective to add expensive component elements, reduce the maximum diameter of inclusions, or reduce the number of inclusions.

例えば、上記製品に供する鋼材に関して、Al、N、Ti、ZrおよびS等の各成分を適切に調整した上で、硫化物の最大径を10μm以下、かつ清浄度を0.05mass%以上とすることが、特許文献1に提案されている。
また、特許文献2には、熱間鍛造用の素材として、マルテンサイトを面積率で95〜100%で含有する鋼とすることで、熱間鍛造後に平均結晶粒径が10μm以下のフェライト−パーライトからなる組織の鍛造品を得ることが記載されている。
特開平11−302778号公報 特開2003−147481号公報
For example, with regard to the steel materials used in the above products, after appropriately adjusting each component such as Al, N, Ti, Zr and S, the maximum diameter of sulfide is 10 μm or less and the cleanliness is 0.05 mass% or more. Is proposed in Patent Document 1.
Patent Document 2 discloses a ferrite-pearlite having an average crystal grain size of 10 μm or less after hot forging by using steel containing martensite in an area ratio of 95 to 100% as a material for hot forging. It is described that a forged product having a structure consisting of
Japanese Patent Laid-Open No. 11-302778 Japanese Patent Laid-Open No. 2003-147481

しかしながら、高価な成分元素を添加し、さらに介在物の最大径を小さくし且つ介在物の数を減少させても、熱間鍛造後の放冷過程において結晶粒が成長して粗大化し、上記製品に要求される高い疲労強度は得られないという問題があった。また、疲労強度の向上には結晶粒径の微細化が有効であることが知られており、上記特許文献2の技術のように結晶粒径を微細化した鍛造品であれば、疲労強度の向上も期待できるが、特許文献2の方法では、鍛造前の素材の組織をマルテンサイト組織とするものなので、鍛造用の素材の製造工程、特に熱間圧延工程において圧延後の再加熱や、その後の急冷処理が必要となり、生産性に問題がある。さらに、上記のハブや等速ジョイントをはじめとする鍛造品は、鍛造加工後に冷間加工や切削加工を施すことにより最終製品形状に成形されるが、強度上昇の目的で結晶粒径を微細化すると、逆に冷間加工時の必要荷重が上昇し過ぎたり、冷間加工時に割れが発生するという問題もある。   However, even if expensive component elements are added, the maximum diameter of inclusions is reduced, and the number of inclusions is reduced, crystal grains grow and become coarse in the cooling process after hot forging, and are required for the above products. However, there is a problem that the high fatigue strength is not obtained. Further, it is known that the refinement of the crystal grain size is effective for improving the fatigue strength. If the forged product is refined the crystal grain size as in the technique of Patent Document 2, the fatigue strength is improved. Although improvement can also be expected, since the structure of the material before forging is a martensite structure in the method of Patent Document 2, reheating after rolling in the manufacturing process of the material for forging, particularly in the hot rolling process, There is a problem in productivity because it requires rapid cooling. In addition, forged products such as the above hubs and constant velocity joints are formed into final product shapes by cold working or cutting after forging, but the grain size is refined for the purpose of increasing strength. Then, conversely, there is a problem that the required load at the time of cold working increases excessively or cracks occur at the time of cold working.

本発明は、上記の事情に鑑み開発されたものであり、熱間鍛造工程において組織を適切
に制御することにより、例えば部品の量化、コンパクト化による発生応力の増大から要
求される回転曲げ疲労強度が400MPa以上という、優れた疲労強度を持つ鍛造品の有利な製
造方法について提案することを目的とする
The present invention has been developed in view of the above circumstances, by properly controlling the tissue in hot forging step, rotating bending for example be requested from the increase in parts lighter, caused by compacting stress fatigue The purpose is to propose an advantageous method for producing a forged product having an excellent fatigue strength with a strength of 400 MPa or more .

さて、発明者らは、上記の目的を達成すべく、特に鍛造温度に関して鋭意研究を重ねた結果、以下に述べる知見を得た。
(1)鍛造温度を高温γ域から低下するに従って、加えた歪の大小に関わらず結晶粒径は徐々に小さくなるが、細粒化の程度は飽和するとともに、本発明で所期したほどの疲労強度の向上は望めない。
(2)鍛造温度をAl点以下とした場合には、フェライトが延ばされた組織を呈するだけであるから、本発明で所期する疲労強度の向上は勿論望めない。
(3)鍛造温度をAl点以上A3点以下の2相域とした場合、加える歪により組織形態は著しく異なり、歪が少ない場合には、上記(1)と同様の組織および結晶粒径となり、これも本発明で所期したほどの疲労強度の向上は望めない。一方、歪が大きい場合には、2通りの組織形態を呈する。即ち、歪は大きいが歪成分として単軸方向のみが大きい場合には、砕かれたパーライトとともに上記(2)の如きフェライトが延ばされた形態を示し、Al点以下で鍛造した場合に近い組織が得られるため、疲労強度の向上は望めない。しかし、歪が複数方向の成分を有し各成分がともに比較的大きい場合には、結晶粒径は等軸で且つ著しく細かくなり、この状態において初めて疲労強度の格段の向上が発現する。具体的には、複数方向の成分からなる歪が加わるようにするとともに、そのうちの2成分以上の歪が各々0.5以上となるように、鍛造を行った場合に、疲労強度の格段の向上が実現する。
(4)この鍛造条件とすることにより、高価な成分元素を添加せずとも上記の組織を再現することができ、容易に疲労強度の向上が期待できる。
(5)しかも、鍛造工程のうちの最終の鍛造工程のみ、かような鍛造条件とすることによって、十分に上記組織を再現することができ、前工程の熱間鍛造の影響は受けない。
(6)鍛造により鍛造品を成形するにあたり、疲労特性が要求される部位に対してかような鍛造条件を適用し、その後、冷間加工を施す部位に対してはこのような鍛造条件を適用しないことにより、冷間加工を施す部位の結晶粒径が微細化することを抑制でき、容易に冷間加工を行うことができる鍛造品が得られる。
本発明は、上記の知見に立脚するものである。
Now, in order to achieve the above-mentioned object, the inventors have made extensive studies especially on the forging temperature, and as a result, have obtained the following knowledge.
(1) As the forging temperature is lowered from the high temperature γ region, the crystal grain size gradually decreases regardless of the applied strain, but the degree of grain refinement is saturated, and as expected in the present invention. The fatigue strength cannot be improved.
(2) When the forging temperature is set to the Al point or less, the fatigue strength only expected in the present invention cannot be expected since the ferrite only exhibits a stretched structure.
(3) When the forging temperature was 2-phase region below 3 points or more A l points A, Ownership by the distortion added is significantly different, if distortion is small, the same organization and the crystal grain size and the (1) Thus, the fatigue strength cannot be improved as much as expected in the present invention. On the other hand, when the strain is large, two types of tissue forms are exhibited. That is, when the strain is large but only the uniaxial direction is large as a strain component, it shows a form in which the ferrite as in (2) is extended together with the crushed pearlite, which is close to the case of forging below the Al point. Since the structure is obtained, the fatigue strength cannot be improved. However, when the strain has components in a plurality of directions and each component is relatively large, the crystal grain size becomes equiaxed and extremely fine. Only in this state, a marked improvement in fatigue strength appears. Specifically, when forging is performed so that strains composed of components in multiple directions are added, and strains of two or more of those components are each 0.5 or more, a significant improvement in fatigue strength is realized. To do.
(4) By adopting this forging condition, the above structure can be reproduced without adding an expensive component element, and an improvement in fatigue strength can be easily expected.
(5) Moreover, by setting the forging conditions only in the final forging step in the forging step, the above structure can be sufficiently reproduced, and is not affected by the hot forging in the previous step.
(6) When forming a forged product by forging, such forging conditions are applied to the part that requires fatigue characteristics, and then such forging condition is applied to the part to be cold worked. By not doing, it can suppress that the crystal grain diameter of the site | part which performs cold work refines | miniaturizes, and the forged product which can perform cold work easily is obtained.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次の通りである.
1.C:0.3〜0.9mass%、
Si:0.01〜1.2mass%および
Mn:0.01〜2.0mass%
を含有し、残部はFeおよび不可避的不純物の組成になる鋼素材に、複数回の熱間鍛造を施して熱間鍛造品を製造するに際し、最終の鍛造工程において、少なくとも一部には、A点以上A点以下の温度域の下で複数方向成分の歪を加えること、かつ複数方向成分の2成分以上の歪が各々0.5以上であること、を特徴とする疲労強度に優れた熱間鍛造品の製造方法。
That is, the gist configuration of the present invention is as follows.
1. C: 0.3-0.9 mass%
Si: 0.01-1.2mass% and
Mn: 0.01-2.0mass%
When the hot forging product is manufactured by subjecting the steel material having a composition of Fe and inevitable impurities to a plurality of hot forgings in the final forging process, Heat with excellent fatigue strength characterized by applying multi-directional component strain under a temperature range of 1 point or more and A 3 points or less, and having multi-directional component strain of 2 or more components each 0.5 or more A method for manufacturing inter-forged products.

2.上記1において、鋼素材がさらに
Mo:0.05〜0.6mass%、
Al:0.01〜0.06mass%、
Ti:0.005〜0.050mass%、
Ni:1.0mass%以下、
Cr:1.0mass%以下、
V:0.1mass%以下、
Cu:1.0mass%以下、
Nb:0.05mass%以下、
Ca:0.008mass%以下および
B:0.004mass%以下
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする疲労強度に優れた熱間鍛造品の製造方法。
2. In 1 above, the steel material is further
Mo: 0.05-0.6mass%,
Al: 0.01-0.06mass%,
Ti: 0.005 to 0.050 mass%,
Ni: 1.0 mass% or less,
Cr: 1.0 mass% or less,
V: 0.1 mass% or less,
Cu: 1.0 mass% or less,
Nb: 0.05 mass% or less,
A method for producing a hot forged product excellent in fatigue strength, characterized in that the composition contains one or more selected from Ca: 0.008 mass% or less and B: 0.004 mass% or less.

3.上記1または2において、前記少なくとも一部が、疲労強度が求められる部位であり、該疲労強度が求められる部位以外の部位のうち、少なくとも冷間加工が施される部位については、最終の鍛造工程においてA点超の温度域で熱間鍛造を行うことを特徴とする疲労強度に優れた熱間鍛造品の製造方法。 3. In the above 1 or 2, the at least part is a portion where fatigue strength is required, and at least a portion subjected to cold working among portions other than the portion where fatigue strength is required is the final forging step A method for producing a hot forged product excellent in fatigue strength, characterized by performing hot forging in a temperature range of more than 3 points.

本発明によれば、回転曲げ疲労強度が400MPa以上という優れた疲労強度を持つ鍛造製品を安定して容易に製造することができる。   According to the present invention, it is possible to stably and easily produce a forged product having excellent fatigue strength with a rotational bending fatigue strength of 400 MPa or more.

以下、本発明を具体的に説明する。
まず、本発明において、鋼材の成分組成を上記の範囲に限定した理由について説明する。
C:0.3〜0.9mass%
Cは、母材の強度を上昇させるために必要な元素である。ここに、C含有量が0.3mass%に満たないと必要な強度上昇の効果が得られず、一方0.9mass%を超えると被削性や疲労強度、さらに鍛造性の低下を招くため、C量は0.3〜0.9 mass%の範囲に限定した。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition of the steel material is limited to the above range in the present invention will be described.
C: 0.3-0.9mass%
C is an element necessary for increasing the strength of the base material. If the C content is less than 0.3 mass%, the required strength increase effect cannot be obtained. On the other hand, if the C content exceeds 0.9 mass%, the machinability, fatigue strength, and forgeability are further reduced. Was limited to the range of 0.3-0.9 mass%.

Si:0.01〜1.2mass%
Siは、脱酸剤として作用するだけでなく、強度の向上にも有効に寄与するが、含有量が0.01mass%に満たないとその添加効果に乏しく、一方1.2mass%を超えると被削性および鍛造性の低下を招くため、Si量は0.01〜1.2mass%の範囲に限定した。
Si: 0.01-1.2mass%
Si not only acts as a deoxidizer, but also contributes to improving the strength effectively. However, if the content is less than 0.01 mass%, the additive effect is poor, while if it exceeds 1.2 mass%, the machinability is low. In order to reduce the forgeability, the Si content is limited to a range of 0.01 to 1.2 mass%.

Mn:0.01〜2.0mass%
Mnは、強度の向上だけでなく、疲労強度の向上に有効に寄与するが、含有量が0.01mass%に満たないとその添加効果に乏しく、一方2.0mass%を超えると被削性や鍛造性を劣化させるため、Mn量は0.01〜2.0mass%の範囲に限定した。
Mn: 0.01-2.0mass%
Mn contributes not only to improving the strength but also to improving the fatigue strength. However, if the content is less than 0.01 mass%, the additive effect is poor, while if it exceeds 2.0 mass%, machinability and forgeability are reduced. Therefore, the amount of Mn was limited to a range of 0.01 to 2.0 mass%.

以上、基本成分について説明したが、さらなる疲労強度の向上を求める場合には、以下に述べる元素を適宜含有させることができる。
Mo:0.05〜0.6mass%
Moは、フェライト粒の成長を抑制する上で有用な元素であり、そのためには少なくとも0.05mass%を必要とするが、0.6mass%を超えて添加すると被削性の劣化を招くため、Mo量は0.05〜0.6mass%の範囲に限定した。
The basic components have been described above. However, when further improvement in fatigue strength is desired, the following elements can be appropriately contained.
Mo: 0.05-0.6mass%
Mo is an element useful for suppressing the growth of ferrite grains. To do so, at least 0.05 mass% is required, but if added over 0.6 mass%, machinability is deteriorated, so the amount of Mo Was limited to the range of 0.05 to 0.6 mass%.

Al:0.01〜0.06mass%
Alは、鋼の脱酸剤として作用する。しかしながら、含有量が0.01mass%に満たないとその添加効果に乏しく、一方0.06mss%を超えると被削性および疲労強度の低下を招くため、Al量は0.01〜0.06mass%の範囲に限定した。
Al: 0.01-0.06mass%
Al acts as a deoxidizer for steel. However, if the content is less than 0.01 mass%, the effect of addition is poor. On the other hand, if it exceeds 0.06 mss%, the machinability and fatigue strength are reduced, so the Al content is limited to the range of 0.01 to 0.06 mass%. .

Ti:0.005〜0.050mass%
Tiは、TiNのピンニング効果により、結晶粒を微細化するために有用な元素であり、この効果を得るためには少なくとも0.005mass%の添加を必要とするが、0.050mass%を超えて添加すると疲労強度の低下を招くため、0.005〜0.050mass%の範囲に限定した。
Ti: 0.005 to 0.050 mass%
Ti is a useful element for refining crystal grains due to the pinning effect of TiN. To obtain this effect, it is necessary to add at least 0.005 mass%, but if added over 0.050 mass% In order to cause a decrease in fatigue strength, the range is limited to 0.005 to 0.050 mass%.

Ni:1.0 mass%以下
Niは、強度上昇およびCu添加時の割れ防止に有効であり、好ましくは0.05mass%以上で添加するが、Ni量は1.0 mass%を超えて添加すると焼割れを起こし易くなるため、1.0mass%以下に限定した。
Ni: 1.0 mass% or less
Ni is effective in increasing strength and preventing cracking when Cu is added, and is preferably added at 0.05 mass% or more. However, if Ni is added in excess of 1.0 mass%, it tends to cause fire cracking, so 1.0 mass% Limited to:

Cr:1.0 mass%以下
Crは、強度上昇に有効であり、好ましくは0.05mass%以上で添加するが、1.0mass%を超えて添加すると炭化物を安定化させて残留炭化物の生成を促進し、粒界強度を低下させ、また疲労強度の低下も招くことから、1.0mass%以下に限定した。
Cr: 1.0 mass% or less
Cr is effective for increasing the strength, and is preferably added at 0.05 mass% or more, but if added over 1.0 mass%, the carbide is stabilized to promote the formation of residual carbides, and the grain boundary strength is reduced. Moreover, since the fall of fatigue strength is also caused, it limited to 1.0 mass% or less.

V:0.1mass%以下
Vは、炭化物となり析出することでピンニングによる組織微細化効果を発する有用元素であり、好ましくは0.005mass%以上で添加するが、0.1mass%を超えて添加しても効果が飽和するので、0.1mass%以下に限定した。
V: 0.1 mass% or less V is a useful element that produces a microstructure refining effect by pinning by being precipitated as carbide, and is preferably added at 0.005 mass% or more, but even if added over 0.1 mass%, it is effective. Since it is saturated, it was limited to 0.1 mass% or less.

Cu:1.0 mass%以下
Cuは、固溶強化および析出強化によって強度を向上させる有用元素であり、また焼入性の向上にも有効に寄与するため、好ましくは0.1mass%以上で添加するが、含有量が1.0mass%を超えると熱間加工時に割れが発生し易くなり製造が困難となるため、1.0mass%以下に限定した。
Cu: 1.0 mass% or less
Cu is a useful element that improves strength by solid solution strengthening and precipitation strengthening, and also contributes effectively to improving hardenability, so it is preferably added at 0.1 mass% or more, but the content is 1.0 mass%. If it exceeds 1, cracks are likely to occur during hot working and manufacturing becomes difficult, so it was limited to 1.0 mass% or less.

Nb:0.05mass%以下
Nbは、析出により粒成長をピンニングする効果があり、好ましくは0.005mass%以上で添加するが、0.05mass%を超えて添加してもその効果は飽和するため、0.05mass%以下に限定した。
Nb: 0.05 mass% or less
Nb has the effect of pinning grain growth by precipitation, and is preferably added at 0.005 mass% or more, but even if added over 0.05 mass%, the effect is saturated, so it was limited to 0.05 mass% or less.

Ca:0.008mass%以下
Caは、介在物を球状化し、疲労特性を改善する有用元素であり、好ましくは0.001mass%以上で添加するが、0.008mass%を超えて添加すると介在物が粗大化し疲労特性を劣化させる傾向にあるため、0.008mass%以下に限定した。
Ca: 0.008 mass% or less
Ca is a useful element that spheroidizes inclusions and improves fatigue properties, and is preferably added at 0.001 mass% or more, but if added over 0.008 mass%, inclusions tend to become coarse and deteriorate fatigue properties. Therefore, it is limited to 0.008 mass% or less.

B:0.004mass%以下
Bは、粒界強化により疲労特性を改善するだけでなく、強度を向上させる有用元素であり、好ましくは0.0003mass%以上で添加するが、0.004mass%を超えて添加してもその効果は飽和するため、0.004mass%以下に限定した。
残部はFeおよび不可避的不純物である。不可避的不純物としてはP,S,O,Nが挙げられる。
B: 0.004 mass% or less B is a useful element that not only improves fatigue properties by strengthening grain boundaries but also improves strength. Preferably, B is added at 0.0003 mass% or more, but more than 0.004 mass% is added. However, since the effect is saturated, it was limited to 0.004 mass% or less.
The balance is Fe and inevitable impurities. Inevitable impurities include P, S, O, and N.

以上、好適成分組成について説明したが、本発明では、成分組成を上記の範囲に限定することに加えて、以下に述べるとおり鍛造条件を調整することが必要不可欠である。
すなわち、鍛造条件として、鍛造温度をγ域とした場合には、γ域内で鍛造温度を低下しても細粒化の程度は限られるため、所期したほどの疲労強度の向上は望めない。鍛造温度をAl点以下とした場合には、フェライトが延ばされた組織を呈するだけであるから、この場合も所期する疲労強度の向上は望めない。また、これらの温度域では歪の影響は僅かであり、歪を加えることによる組織形態の変化および疲労強度向上への多大な効果は期待できない。従って、疲労強度を確保するべき部位に対しての鍛造については、γ域並びにα域単相の温度域における、鍛造は適していない。
The preferred component composition has been described above, but in the present invention, in addition to limiting the component composition to the above range, it is essential to adjust the forging conditions as described below.
In other words, when the forging temperature is set to the γ region as the forging conditions, the degree of fine grain refinement is limited even if the forging temperature is lowered within the γ region, and thus the fatigue strength cannot be improved as expected. In the case where the forging temperature is set to the Al point or less, since only the structure in which the ferrite is extended is exhibited, the expected improvement in fatigue strength cannot be expected in this case as well. In addition, the influence of strain is slight in these temperature ranges, and a great effect on the change of the structure and the improvement of fatigue strength by applying strain cannot be expected. Therefore, forging in a region where fatigue strength should be ensured, forging in the temperature range of the γ region and the α region single phase is not suitable.

一方、鍛造温度をA点以上A点以下の2相域とした場合、前述した如く、加える歪により組織形態とともに疲労強度は著しく異なるものとなる。換言すると、加える歪を適切に制御したとき、鍛造温度はA点以上A点以下とすることが有効である。従って、まず、疲労強度を確保するべき部位に対しては鍛造温度はA点以上A点以下に規制する必要がある。 On the other hand, when the forging temperature is set to a two-phase region of A 1 point or more and A 3 point or less, as described above, the fatigue strength is remarkably different from the structure morphology due to the applied strain. In other words, when the applied strain is appropriately controlled, it is effective for the forging temperature to be A 1 point or more and A 3 point or less. Therefore, first, it is necessary to regulate the forging temperature to A 1 point or more and A 3 point or less for a portion where fatigue strength should be ensured.

次に、かような温度域下にて、複数方向成分の歪を加えること、かつ複数方向成分の2成分以上の歪が各々0.5以上であること、の条件を満足する鍛造を施すことによって、鍛造を経た製品の組織における、結晶粒径は等軸で且つ微細になり、その結果疲労強度が格段に向上する。   Next, under such a temperature range, by applying forging that satisfies the conditions of applying strain of a multidirectional component and that strain of two or more components of the multidirectional component is 0.5 or more, The crystal grain size in the forged product structure becomes equiaxed and fine, and as a result, the fatigue strength is significantly improved.

なぜなら、複数方向成分の歪を加えることによって、ランダムな粒界面に歪を導入することができるため、結果としてランダムな粒界面からのフェライト核生成が可能となる。さらに、複数方向成分の歪のうち、2成分以上の歪を各々0.5以上とすることによって、単位粒界面積当たりのフェライトの核生成数が劇的に増加し、生成したフェライトが互いにぶつかり合い成長が抑制されるので効果的に微細なフェライト粒が形成される。ちなみに、2成分以上の歪を各々0.5以上とすると、相当歪は1.0以上となる。   This is because strain can be introduced into a random grain interface by applying strain in a multidirectional component, and as a result, ferrite nucleation can be generated from the random grain interface. Furthermore, by setting the strains of two or more of the multidirectional component strains to 0.5 or more, the number of ferrite nucleation per unit grain interfacial area increases dramatically, and the generated ferrite collides with each other and grows. Therefore, fine ferrite grains are effectively formed. Incidentally, if the distortion of two or more components is 0.5 or more, the equivalent distortion is 1.0 or more.

なお、複数の鍛造工程全てを上述の条件とする必要はなく、前段でγ域の鍛造を実施しても、次工程の組織形成に影響を受けないので、最終の鍛造工程のみ上述の条件とすることにより、十分に微細かつ均一な所望の組織を再現することができる。勿論、全ての鍛造工程を上記条件とすることも可能であるが、逆に複数の鍛造工程全てを上述の条件とすると、鍛造温度低下により素材の変形抵抗が上昇し、全行程での鍛造荷重の上昇を招くため、鍛造機能力の観点から好ましくない。   In addition, it is not necessary to set all the forging steps to the above-mentioned conditions. Even if forging in the γ region is performed in the previous stage, it is not affected by the structure formation in the next step. By doing so, a sufficiently fine and uniform desired structure can be reproduced. Of course, it is possible to set all the forging processes to the above conditions, but conversely, if all the forging processes are set to the above-mentioned conditions, the deformation resistance of the material increases due to the forging temperature drop, and the forging load in the whole process Is unfavorable from the viewpoint of forging function.

さらに、所望とする部位のみを上述の鍛造条件とすることが、鍛造荷重の上昇をより良く抑制できるために好適である。すなわち、ハブまたは等速ジョイント等の製品において高い疲労強度が要求される部位は限られているため、所望の部位のみにおいて、上述の鍛造条件を満足すれば、優れた疲労特性の製品が得られる。勿論、鍛造品の全ての部分を、上記条件にて鍛造することも可能であり、要求特性に応じて、本発明の適用範囲を決めればよい。   Furthermore, it is preferable that only the desired part is set as the forging condition described above, because an increase in forging load can be better suppressed. In other words, since parts where high fatigue strength is required in a product such as a hub or a constant velocity joint are limited, a product with excellent fatigue characteristics can be obtained if the above forging conditions are satisfied only in a desired part. . Of course, all parts of the forged product can be forged under the above conditions, and the scope of application of the present invention may be determined according to the required characteristics.

ここで、熱間鍛造後に、冷間加工が施される場合には、疲労強度が要求される部位以外のうち、少なくとも冷間加工が施される部位については、A点超の温度域で最終の熱間鍛造を施すことが好ましい。これは、結晶粒径を微細化することにより、疲労強度は向上するものの、逆に冷間加工性は劣化してしまうため、冷間加工が施される部位については、鍛造温度をA点以上として結晶粒径を大きくすることによって、冷間加工性を維持できるからである。
なお、A点以上A点以下の温度域において、2成分以上の歪が各々0.5以上である複数方向成分の歪を加えるように最終の熱間鍛造を行った部位は、平均結晶粒径が5μm以下の、高い疲労強度を有する組織となる。一方、A点超の温度域で最終の熱間鍛造を行った部位は、平均結晶粒径が8μm以上の、冷間加工に適した組織となる。
Here, when cold working is performed after hot forging, at least a portion subjected to cold working other than a portion where fatigue strength is required is in a temperature range of more than A 3 points. It is preferable to perform the final hot forging. This can be achieved by refining the grain size, although fatigue strength is improved, since the cold workability conversely deteriorate, that portions cold working is performed, the forging temperature A 3 point This is because cold workability can be maintained by increasing the crystal grain size as described above.
In addition, in the temperature range of A 1 point or more and A 3 point or less, the portion where the final hot forging was performed so as to add the strain of the multi-directional component in which the strain of two or more components is 0.5 or more is the average grain size Becomes a structure having a high fatigue strength of 5 μm or less. Meanwhile, the portion subjected to final hot forging in a temperature range of A 3-point than the average crystal grain size of more than 8 [mu] m, a tissue that is suitable for cold working.

ここで、上記の鍛造条件を満足するための方途について、具体的に説明する。
まず、疲労強度を必要とする部位についてA点以上A点以下の温度域に低下させるには、局部水冷を採用すればよく、特に方法は問わない。
Here, a method for satisfying the forging conditions will be specifically described.
First, local water cooling may be adopted to reduce the temperature range of A 1 point or more and A 3 point or less for a portion requiring fatigue strength, and the method is not particularly limited.

次に、上記条件の歪を部分的に加えるための手段の一例を、鍛造品としてハブを製造する場合について、図面を参照して説明する。
さて、ハブは、図1(a)に示す棒鋼(丸棒)を素材として加熱し、図1(b)、(c)および(d)に示す形状へ加工する各鍛造工程(図1の場合3つの鍛造工程)を経て製造されるのが一般的である。図1(d)に示す製品段階のハブ1において、符号1aで示すフランジ根元部は、その他の部分と比較にて高い疲労強度が要求される部位であり、従って、この部分に本発明を適用して疲労強度の向上をはかる場合について、図2を参照して説明する。
Next, an example of means for partially applying the strain under the above conditions will be described with reference to the drawings in the case of manufacturing a hub as a forged product.
The hub is heated by using the steel bar (round bar) shown in FIG. 1 (a) as a raw material, and processed into the shape shown in FIGS. 1 (b), (c) and (d) (in the case of FIG. 1). In general, it is manufactured through three forging steps. In the hub 1 at the product stage shown in FIG. 1 (d), the flange root portion indicated by reference numeral 1a is a portion that requires a higher fatigue strength than the other portions. Therefore, the present invention is applied to this portion. The case where the fatigue strength is improved will be described with reference to FIG.

すなわち、図2(a)〜(d)に示す、素材および各鍛造工程後の形状は、図1(a)〜(d)に示した工程に対応するものであり、図2(a)および(b)は図1(a)および(b)と同じ形状である。次いで、本発明では、図2(c)から(d)に示す最終の鍛造工程において、複数方向成分の歪であって、その2成分以上の歪が各々0.5以上となる歪を導入するために、図2(b)から(c)に至る最終の前段の鍛造において、図2(c)に丸で囲んで示す、図1(d)の1aに対応する部分1bを余盛した形状に成形しておいてから、最終のA点以上A点以下の温度範囲での鍛造工程に供し、この最終鍛造において1b部分に大きな歪とともに複数方向の歪を生じる加工を実現する。かくして得られる図2(d)に示すハブ1は、1a部分がとりわけ優れた疲労特性を有する製品に仕上がるのである。また、ハブでは、図2(d)に示す製品段階のハブ1において、例えば軸端部1cに対しては冷間かしめ加工が行われるため、この部分は結晶粒径が微細化していない方が好ましい。従って、A点以上A点以下の温度範囲での鍛造工程において、上記の軸端部1cの結晶粒径の微細化を防止する必要があり、そのためには、図2(c)における、最終製品の軸端部1cに対応する部分1dについて、鍛造温度をA点超とすることが有効である。 That is, the raw material and the shape after each forging step shown in FIGS. 2 (a) to 2 (d) correspond to the steps shown in FIGS. 1 (a) to 1 (d), and FIG. (B) is the same shape as FIG. 1 (a) and (b). Next, in the present invention, in the final forging process shown in FIGS. 2 (c) to 2 (d), in order to introduce strains having a multi-directional component, the strains having two or more components are each 0.5 or more. In the final forging of the last stage from FIG. 2 (b) to FIG. 2 (c), the part 1b corresponding to 1a in FIG. After that, it is subjected to a forging process in a temperature range of the final A 1 point or more and A 3 points or less, and in this final forging, processing that generates strains in a plurality of directions along with large strains in the 1b portion is realized. The hub 1 shown in FIG. 2 (d) thus obtained is finished into a product in which the portion 1 a has particularly excellent fatigue characteristics. Further, in the hub in the product stage shown in FIG. 2 (d), for example, cold caulking is performed on the shaft end portion 1c. preferable. Therefore, in the forging process in the temperature range of A 1 point or more and A 3 point or less, it is necessary to prevent the crystal grain size of the shaft end portion 1c from being refined. For that purpose, in FIG. the portion 1d corresponding to the shaft end portion 1c of the final product, it is effective to a forging temperature and a 3 points greater.

なお、複数方向成分の歪であって、その2成分以上の歪が各々0.5以上となる歪を導入するための処理としては、その他にも、上述のような円周方向に一様に余盛した形状のみならず、円周方向に不等高さの余盛加工を施してもよく、また、逆に凹みを設け最終鍛造工程で所望する部位に他の部位からの塑性流動が大きくなるような形状としてもよく、特に限定されるものではない。
ちなみに、各方向成分の歪量は有限要素法によって求めることができる。
In addition, as a process for introducing a distortion of a multi-directional component, in which the distortion of the two or more components is 0.5 or more, other than the above, uniformly overlap in the circumferential direction as described above In addition to the shaped shape, it may be subjected to extra-stressing in the circumferential direction, and conversely, a recess is provided so that the plastic flow from other parts increases in the desired part in the final forging process. The shape may be any shape and is not particularly limited.
Incidentally, the amount of distortion of each direction component can be obtained by the finite element method.

また、鍛造終了後の冷却は放冷で良いが、鍛造終了後〜400℃までの平均冷却速度が遅い場合にはフェライトの粒成長を生じ疲労強度の低下を招くため、平均冷却速度は0.3℃/s以上が好ましい。更に、好ましくは0.5℃/s以上である。前記、好適な平均冷却速度を得るには放冷でも十分であるが、熱容量が大きい大物製品の場合には衝風冷却等により為し得る。   Cooling after forging is allowed to cool, but if the average cooling rate from forging to 400 ° C is slow, ferrite grains grow and the fatigue strength decreases, so the average cooling rate is 0.3 ° C. / s or more is preferable. Furthermore, it is preferably 0.5 ° C./s or more. In order to obtain the preferred average cooling rate, cooling is sufficient, but in the case of a large product having a large heat capacity, it can be achieved by blast cooling or the like.

JIS S48C(C:0.48mass%,Si:0.25mass%,Mn:0.7mass%,P:0.01mass%,S:0.01mass%,A点:730℃,A点:780℃)の鋼材を圧延して60mmφ×100mmの棒素材を得た後、種々の温度において、3方向(上、下および長手方向)からそれぞれ圧下率50%となるように、図3に示す工程に従って温間鍛造後空冷し、50×67×85mmの製品を得た。この鍛造によって、棒素材には、3方向の各々に0.7以上の歪が加わったことになる。 Steel material of JIS S48C (C: 0.48 mass%, Si: 0.25 mass%, Mn: 0.7 mass%, P: 0.01 mass%, S: 0.01 mass%, A 1 point: 730 ° C, A 3 points: 780 ° C) After rolling to obtain a bar material of 60mmφ × 100mm, after warm forging according to the process shown in Fig. 3 so that the reduction ratio is 50% from three directions (up, down and longitudinal direction) at various temperatures. Air-cooled to obtain a 50 × 67 × 85 mm product. By this forging, a strain of 0.7 or more was added to each of the three directions in the bar material.

かくして得られた製品について、平均結晶粒径の調査を、ナイタールにて腐食後、光学顕微鏡および走査型電子顕微鏡で行うとともに、回転曲げ疲労試験片を採取して回転曲げ疲労試験に供した。これらの調査および試験結果を、図4にまとめて示す。
なお、回転曲げ疲労試験は、小野式回転曲げ疲労試験機にて、10mmφの平滑形状試験片を用いて、繰返し速度3600cycle/minにて実施し、1×10疲労限を回転曲げ疲労強度として評価した。
The average crystal grain size of the product thus obtained was investigated with an optical microscope and a scanning electron microscope after corrosion with nital, and a rotating bending fatigue test piece was collected and subjected to a rotating bending fatigue test. These investigations and test results are summarized in FIG.
The rotating bending fatigue test was performed with an Ono type rotating bending fatigue tester using a 10mmφ smooth shape test piece at a repetition rate of 3600cycle / min, and the 1 × 10 7 fatigue limit as the rotating bending fatigue strength. evaluated.

図4に示すように、本発明に従う条件の下に得られた製品では、結晶粒径が著しく細かくなるとともに、疲労強度の著しい向上も認められることがわかる。   As shown in FIG. 4, in the product obtained under the conditions according to the present invention, it can be seen that the crystal grain size is remarkably fine and the fatigue strength is remarkably improved.

JIS S53C(C:0.55mass%,Si:0.3mass%,Mn:0.65mass%,P:0.01mass%,S:0.005mass%,A点:730℃,A点:775℃)の鋼材を60mmφに棒圧延し、60mmφの1/4D部から20.8mmφ×47.3mm長さの素材を圧延方向から採取し、1100℃にて31mmφ×21.3mm長さへの据込み鍛造に引き続き、放射温度計にて測定した表面温度が750℃になったところで、後方押出し鍛造後空冷し、外径34.8mmφ×長さ33.3mm、内径25.0mmφ×27.9mmの製品を得た(図5参照)。この製品の図5に番号P〜Pを示した各部から、組織調査を実施した。これらの調査結果を表1に記載する。
なお、鍛造品各部位の歪量および温度は有限要素法により、クーロン摩擦係数0.2および公表されているS53Cの熱物性値を利用して算出した。また、結晶粒径調査は上記実施例1と同様である。
JIS S53C (C: 0.55 mass%, Si: 0.3 mass%, Mn: 0.65 mass%, P: 0.01 mass%, S: 0.005 mass%, A 1 point: 730 ° C, A 3 points: 775 ° C) Rolled to 60mmφ, material of 20.8mmφ × 47.3mm length from 1 / 4D part of 60mmφ was taken from rolling direction, followed by upset forging to 31mmφ × 21.3mm length at 1100 ° C, radiation thermometer When the surface temperature measured in step 750 became 750 ° C., backward extrusion forging and air cooling were performed to obtain a product having an outer diameter of 34.8 mmφ × length of 33.3 mm and an inner diameter of 25.0 mmφ × 27.9 mm (see FIG. 5). A structure investigation was carried out from each part indicated by numbers P 1 to P 8 in FIG. 5 of this product. These survey results are listed in Table 1.
The strain amount and temperature of each part of the forged product were calculated by the finite element method using the Coulomb friction coefficient of 0.2 and the published thermophysical value of S53C. The crystal grain size investigation is the same as in Example 1 above.

表1に示す解析結果より、2成分以上の歪が各々0.5以上の値を示し、且つA点以上A点以下の温度域である部位の結晶粒径は著しく細かくなることが認められる。また、2成分以上の歪が各々0.5以上でも温度がA点以下の部位では、結晶粒は伸長した加工まま組織となり、A点以上の部位では著しい細粒化は認められない。
これらの結果から、熱間鍛造に引き続く最終鍛造工程の鍛造条件としては、2成分以上の歪が各々0.5以上で、且つA点以上A点以下の温度域が好ましいことは明らかである。
From the analysis results shown in Table 1, it can be seen that the strains of two or more components each show a value of 0.5 or more, and the crystal grain size in the temperature range of A 1 point or more and A 3 point or less is remarkably fine. In addition, even when the strains of two or more components are each 0.5 or more, the crystal grain becomes a stretched structure at a site where the temperature is A 1 point or less, and no significant refining is observed at a site of A 3 point or more.
These results, as the forging conditions for subsequent final forging step for hot forging, a strain of more than two components each 0.5 or more, it is clear that and temperature range 3 points or less of one or more points A A is preferred.

Figure 0004649857
Figure 0004649857

表2に示す成分組成になる鋼材を棒素材に圧延後、この棒素材を、鍛造温度1100℃での熱間鍛造に引き続く最終鍛造工程を表3に示す鍛造条件とし、60×60×120mmの製品を得た。かくして得られた製品について、組織調査を行うとともに、回転曲げ疲労試験片および冷間圧縮試験片を採取して、それぞれ回転曲げ疲労試験および冷間圧縮試験に供した。これらの調査および試験結果を、表3に併記する。   After rolling the steel material having the composition shown in Table 2 into a bar material, the final forging process following the hot forging at a forging temperature of 1100 ° C. is set to the forging conditions shown in Table 3, and the bar material is 60 × 60 × 120 mm Got the product. The product thus obtained was subjected to a structure investigation, and a rotational bending fatigue test piece and a cold compression test piece were collected and subjected to a rotational bending fatigue test and a cold compression test, respectively. These surveys and test results are also shown in Table 3.

なお、鍛造時の歪量は、有限要素解析法により、クーロン摩擦係数を0.2として算出した。さらに、組織調査および回転曲げ疲労試験は上記の実施例1と同様である。
また、冷間圧縮試験は、直径8mmφ×長さ12mmの円柱型圧縮試験片を採取し、この試験片を長さ方向に歪み速度を1/sとして3mmまで75%の冷間圧縮を行い、割れの有無で冷間加工性を評価した。
The amount of strain during forging was calculated by a finite element analysis method with a Coulomb friction coefficient of 0.2. Further, the structure investigation and the rotating bending fatigue test are the same as those in Example 1 described above.
In the cold compression test, a cylindrical compression test piece having a diameter of 8 mmφ × length of 12 mm was taken, and the test piece was subjected to 75% cold compression up to 3 mm with a strain rate of 1 / s in the length direction. Cold workability was evaluated by the presence or absence of cracks.

Figure 0004649857
Figure 0004649857

Figure 0004649857
Figure 0004649857

表2から明らかなように、本発明に従い最終鍛造工程の鍛造温度をA点以上A点以下の温度域で、かつ複数方向成分の2成分以上の歪が各々0.5以上とした、発明例No.1,2,9〜12は、いずれも回転疲労強度が400MPa以上という優れた疲労強度を得ることができた。
これに対し、鍛造温度条件がA点超であるNo.3は結晶粒径が粗大となり、疲労強度が低い。また、鍛造温度条件がA点未満であるNo.4は加工組織が残存しており、疲労強度も低かった。さらに、鍛造温度条件がA点未満であり、かつ歪条件が2方向成分につき0.5以上を満足しないNo.6においても加工組織が残留してしまい、疲労強度が低い。
また、成分組成を満足しないNo.7,8およびNo.13〜15の比較例では、回転曲げ疲労強度の不足あるいは冷間加工性の低下を招いた。
As apparent from Table 2, the forging temperature of the final forging step in A 1 point or more A 3 points below the temperature range, and two or more components of the distortion in a plurality of directions component was respectively 0.5 or more in accordance with the present invention, invention examples Nos. 1, 2, 9 to 12 were all able to obtain excellent fatigue strength with a rotational fatigue strength of 400 MPa or more.
On the other hand, No. 3 in which the forging temperature condition is more than A3 has a coarse crystal grain size and low fatigue strength. Further, No.4 forging temperature is less than 1 point A is worked structure remains, the fatigue strength was low. Furthermore, the forging temperature is less than 1 point A, and strain conditions will also worked structure remains in the No.6 not satisfied 0.5 or more per second direction component, a low fatigue strength.
Moreover, in the comparative examples of Nos. 7 and 8 and Nos. 13 to 15 that do not satisfy the component composition, the rotational bending fatigue strength was insufficient or the cold workability was lowered.

JIS S48C(C:0.48mass%、Si:0.25mass%、Mn:0.7mass%、P:0.01mass%、S:0.01mass%、A点:730℃、A点:780℃)の鋼材を圧延して棒鋼となした後、この棒鋼を図2に示したように3段階の熱間鍛造を施して、自動車用のハブの形状に成形を行った。このとき、最も回転曲げ疲労強度が要求される部位であるフランジの根元部および、冷間かしめ加工が施される軸端部について、結晶粒径を種々変化させた。結晶粒径の調整は最終鍛造時の鍛造条件を変化させることで行った。すなわち、中間鍛造後の形状を、図2(c)に示すように、最終形状においてフランジの根元部1aに相当する1b部分に余盛のある形状とし、図2(c)から図2(d)に示す最終鍛造段階において、軸方向の歪量が0.7以上および円周方向の歪量が0.5以上となる条件とし、さらに図2(c)から図2(d)への鍛造段階において、加熱温度を900℃とし、鍛造前に1b部分および1d部分を局所的に冷却して表4に示す温度範囲に調整した後に、熱間鍛造を施した。得られたハブについて、組織観察、疲労試験および冷間圧縮試験を、以下の要領にて実施した。 Steel material of JIS S48C (C: 0.48 mass%, Si: 0.25 mass%, Mn: 0.7 mass%, P: 0.01 mass%, S: 0.01 mass%, A 1 point: 730 ° C, A 3 points: 780 ° C) After rolling into a steel bar, this steel bar was subjected to three-stage hot forging as shown in FIG. 2 to form a hub for an automobile. At this time, the crystal grain size was variously changed for the root portion of the flange, which is the part where the rotational bending fatigue strength is most required, and the shaft end portion where the cold caulking is performed. The crystal grain size was adjusted by changing the forging conditions during final forging. That is, as shown in FIG. 2 (c), the shape after the intermediate forging is a shape having a surplus in the 1b portion corresponding to the root portion 1a of the flange in the final shape, and FIG. 2 (d) to FIG. In the final forging stage shown in FIG. 2), the axial strain amount is 0.7 or more and the circumferential strain amount is 0.5 or more. Further, in the forging stage from FIG. 2 (c) to FIG. 2 (d), heating is performed. The temperature was set to 900 ° C., the 1b portion and the 1d portion were locally cooled before forging and adjusted to the temperature range shown in Table 4, and then hot forging was performed. The obtained hub was subjected to a structure observation, a fatigue test, and a cold compression test in the following manner.

[組織観察]
得られたハブの軸端部1cおよびフランジの根元部1a(図2(d)参照)から、組織観察用サンプルを切り出し、平均結晶粒径の測定を行った。組織観察の方法は、実施例1と同様である。
[疲労試験]
図6に示すように、ハブ1のフランジ部1eにボルト孔2を穿孔し、ボルト3を用いて回転治具4に固定した。さらに、ハブ1の軸部1fの外周面に軸受けボール5を配置するとともにボール押さえ6を装着し、ボール押さえ6に一定の荷重(10kN)を付加した状態でハブ1を一定の回転速度(1500rpm)で回転させる耐久試験を行い、ハブ1が破壊するまでの時間を測定して評価した。表4には、この耐久試験結果を併せて示す。
[冷間圧縮試験]
ハブ1の軸端部1cより直径8mmφ×長さ12mmの円柱型圧縮試験片を採取し、この試験片の長さ方向に歪速度1/sで3mmまで75%の冷間圧縮を行い、割れの有無で冷間加工性を評価した。ここで、円柱試験片の長さ方向をハブの軸方向となるように採取した。
[Tissue observation]
From the obtained shaft end 1c of the hub and the base 1a of the flange (see FIG. 2D), a structure observation sample was cut out and the average crystal grain size was measured. The tissue observation method is the same as in Example 1.
[Fatigue test]
As shown in FIG. 6, the bolt hole 2 was drilled in the flange portion 1 e of the hub 1 and fixed to the rotating jig 4 using the bolt 3. Further, the bearing ball 5 is arranged on the outer peripheral surface of the shaft portion 1f of the hub 1 and the ball presser 6 is mounted, and the hub 1 is moved at a constant rotational speed (1500 rpm) with a constant load (10 kN) applied to the ball presser 6. The durability test for rotating was performed, and the time until the hub 1 was broken was measured and evaluated. Table 4 also shows the results of this durability test.
[Cold compression test]
A cylindrical compression test piece having a diameter of 8 mmφ and a length of 12 mm is taken from the shaft end 1 c of the hub 1, and is subjected to 75% cold compression up to 3 mm at a strain rate of 1 / s in the length direction of the test piece. The cold workability was evaluated by the presence or absence of. Here, the cylindrical specimen was collected so that the length direction of the cylindrical specimen was the axial direction of the hub.

Figure 0004649857
Figure 0004649857

表4より、フランジの根元部の平均結晶粒径が5μm以下であるNo.1〜5では、高い耐久性が得られていることがわかる。この中で、軸端部の鍛造温度をA点超としたNo.2〜5では軸端部の結晶粒径が8μm以上となり、また冷間圧縮試験による割れの発生も認められず、冷間加工性にも優れていた。
一方、フランジの根元部の鍛造温度を710℃とA点未満としたNo.6では、フランジの根元部に加工組織が残留していたため、耐久性が悪かった。
また、フランジの根元部の鍛造温度を800℃とA点超としたNo.7では、フランジの根元部の平均結晶粒径が大きくなっており、耐久性は悪かった。
From Table 4, it can be seen that No. 1 to 5 in which the average crystal grain size of the root portion of the flange is 5 μm or less has high durability. In this, the crystal grain size of No.2~5 the axial end portion of the forging temperature was A 3-point than the shaft end portion becomes more 8 [mu] m, also not recognized the occurrence of cracks due to cold compression test, cold The inter-processability was also excellent.
On the other hand, the No.6 was forging temperature of the root portion of the flange and 710 ° C. and A less than 1 point, since the worked structure at the root portion of the flange was left, poor durability.
Further, the No.7 and the forging temperature of the root portion of the flange and 800 ° C. and A 3 point than has the average crystal grain size of the root portion of the flange is increased, the durability was poor.

ハブの製造における、従来の鍛造工程を示す図である。It is a figure which shows the conventional forge process in manufacture of a hub. ハブの製造における、本発明に従う鍛造工程を示す図である。It is a figure which shows the forge process according to this invention in manufacture of a hub. 実施例1に係る3方向鍛造の模式図である。3 is a schematic diagram of three-way forging according to Example 1. FIG. 鍛造条件と回転曲げ疲労強度および製品粒径との関係を示す図である。It is a figure which shows the relationship between forging conditions, rotation bending fatigue strength, and a product particle size. 実施例2における後方押出し鍛造後の形状および鍛造温度、歪量、結晶粒径を測定した部位を示す模式図である。It is a schematic diagram which shows the site | part which measured the shape after back extrusion forging in Example 2, forging temperature, the amount of distortion, and the crystal grain diameter. ハブの耐久性試験を説明する模式図である。It is a schematic diagram explaining the durability test of a hub.

符号の説明Explanation of symbols

1 ハブ
2 ボルト孔
3 ボルト
4 回転治具
5 軸受けボール
6 ボール押さえ
1 Hub 2 Bolt hole 3 Bolt 4 Rotating jig 5 Bearing ball 6 Ball retainer

Claims (3)

C:0.3〜0.9mass%、
Si:0.01〜1.2mass%および
Mn:0.01〜2.0mass%
を含有し、残部はFeおよび不可避的不純物の組成になる鋼素材に、複数回の熱間鍛造を施して熱間鍛造品を製造するに際し、最終の鍛造工程において、少なくとも一部には、A点以上A点以下の温度域の下で複数方向成分の歪を加えること、かつ複数方向成分の2成分以上の歪が各々0.5以上であること、を特徴とする疲労強度に優れた熱間鍛造品の製造方法。
C: 0.3-0.9 mass%
Si: 0.01-1.2mass% and
Mn: 0.01-2.0mass%
When the hot forging product is manufactured by subjecting the steel material having a composition of Fe and inevitable impurities to a plurality of hot forgings in the final forging process, Heat with excellent fatigue strength characterized by applying multi-directional component strain under a temperature range of 1 point or more and A 3 points or less, and having multi-directional component strain of 2 or more components each 0.5 or more A method for manufacturing inter-forged products.
請求項1において、鋼素材がさらに
Mo:0.05〜0.6mass%、
Al:0.01〜0.06mass%、
Ti:0.005〜0.050mass%、
Ni:1.0mass%以下、
Cr:1.0mass%以下、
V:0.1mass%以下、
Cu:1.0mass%以下、
Nb:0.05mass%以下、
Ca:0.008mass%以下および
B:0.004mass%以下
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする疲労強度に優れた熱間鍛造品の製造方法。
In Claim 1, steel material is further
Mo: 0.05-0.6mass%,
Al: 0.01-0.06mass%,
Ti: 0.005 to 0.050 mass%,
Ni: 1.0 mass% or less,
Cr: 1.0 mass% or less,
V: 0.1 mass% or less,
Cu: 1.0 mass% or less,
Nb: 0.05 mass% or less,
A method for producing a hot forged product excellent in fatigue strength, characterized in that the composition contains one or more selected from Ca: 0.008 mass% or less and B: 0.004 mass% or less.
請求項1または2において、前記少なくとも一部が、疲労強度が求められる部位であり、該疲労強度が求められる部位以外の部位のうち、少なくとも冷間加工が施される部位については、最終の鍛造工程においてA点超の温度域で熱間鍛造を行うことを特徴とする疲労強度に優れた熱間鍛造品の製造方法。 3. The final forging according to claim 1 or 2, wherein at least a part is a part for which fatigue strength is required, and at least a part subjected to cold working among parts other than the part for which fatigue strength is required. A method for producing a hot forged product excellent in fatigue strength, characterized by performing hot forging in a temperature range of more than A 3 points in the process.
JP2004086310A 2004-01-19 2004-03-24 Manufacturing method of hot forged products with excellent fatigue strength Expired - Fee Related JP4649857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086310A JP4649857B2 (en) 2004-01-19 2004-03-24 Manufacturing method of hot forged products with excellent fatigue strength

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004011190 2004-01-19
JP2004086310A JP4649857B2 (en) 2004-01-19 2004-03-24 Manufacturing method of hot forged products with excellent fatigue strength

Publications (2)

Publication Number Publication Date
JP2005232581A JP2005232581A (en) 2005-09-02
JP4649857B2 true JP4649857B2 (en) 2011-03-16

Family

ID=35015835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086310A Expired - Fee Related JP4649857B2 (en) 2004-01-19 2004-03-24 Manufacturing method of hot forged products with excellent fatigue strength

Country Status (1)

Country Link
JP (1) JP4649857B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023321A (en) * 2005-07-14 2007-02-01 Jfe Steel Kk Hot-forged product excellent in fatigue characteristic, and production method therefor
CN105269856A (en) * 2014-06-20 2016-01-27 天津市天锻压力机有限公司 Online fault diagnosis method used for wheel hub molding hydraulic press

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5019727B2 (en) * 2005-07-20 2012-09-05 Ntn株式会社 Wheel bearing device
JP5105725B2 (en) * 2005-08-19 2012-12-26 Ntn株式会社 Wheel bearing device
JP2007038803A (en) * 2005-08-02 2007-02-15 Ntn Corp Bearing device for wheel
JP2007024273A (en) * 2005-07-20 2007-02-01 Ntn Corp Method of manufacturing bearing device for wheel
WO2007010772A1 (en) 2005-07-20 2007-01-25 Ntn Corporation Bearing device for wheel
JP5064240B2 (en) * 2006-07-28 2012-10-31 新日本製鐵株式会社 Surface fine-grained steel parts and manufacturing method thereof
JP5076496B2 (en) * 2006-12-28 2012-11-21 Jfeスチール株式会社 Method and apparatus for cooling hot forged parts, and method for producing hot forged parts
JP4893585B2 (en) * 2007-10-31 2012-03-07 日本精工株式会社 Manufacturing method of wheel bearing rolling bearing unit
JP5136146B2 (en) * 2008-03-24 2013-02-06 日本精工株式会社 Manufacturing method of wheel bearing rolling bearing unit
JP5278660B2 (en) * 2008-04-22 2013-09-04 日産自動車株式会社 Manufacturing method of steel parts
JP2012245946A (en) * 2011-05-31 2012-12-13 Ntn Corp Bearing device for wheel and method of manufacturing the same
WO2012128278A1 (en) * 2011-03-22 2012-09-27 Ntn株式会社 Bearing device for wheel and method of manufacturing same
JP2012197043A (en) * 2011-03-22 2012-10-18 Ntn Corp Bearing device for wheel, and method of manufacturing same
CN102808129A (en) * 2012-08-27 2012-12-05 内蒙古包钢钢联股份有限公司 Niobium microalloyed Si-Mn-B series thermoformed steel plate and thermal treatment process for same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073034A (en) * 1999-08-31 2001-03-21 Natl Res Inst For Metals Production of superfine structure steel
JP2001280360A (en) * 2000-03-29 2001-10-10 Ntn Corp Outer joint member of constant velocity universal joint
JP2003013137A (en) * 2001-04-27 2003-01-15 Kawasaki Steel Corp Method of manufacturing steel
JP2003082444A (en) * 2001-09-14 2003-03-19 Nippon Steel Corp Soft austenitic stainless steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073034A (en) * 1999-08-31 2001-03-21 Natl Res Inst For Metals Production of superfine structure steel
JP2001280360A (en) * 2000-03-29 2001-10-10 Ntn Corp Outer joint member of constant velocity universal joint
JP2003013137A (en) * 2001-04-27 2003-01-15 Kawasaki Steel Corp Method of manufacturing steel
JP2003082444A (en) * 2001-09-14 2003-03-19 Nippon Steel Corp Soft austenitic stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007023321A (en) * 2005-07-14 2007-02-01 Jfe Steel Kk Hot-forged product excellent in fatigue characteristic, and production method therefor
CN105269856A (en) * 2014-06-20 2016-01-27 天津市天锻压力机有限公司 Online fault diagnosis method used for wheel hub molding hydraulic press
CN105269856B (en) * 2014-06-20 2017-05-24 天津市天锻压力机有限公司 Online fault diagnosis method used for wheel hub molding hydraulic press

Also Published As

Publication number Publication date
JP2005232581A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
JP4649857B2 (en) Manufacturing method of hot forged products with excellent fatigue strength
JP4645593B2 (en) Machine structural component and method of manufacturing the same
JP4997721B2 (en) Manufacturing method of hot forged products with excellent fatigue characteristics
JP5458048B2 (en) Case-hardened steel, its manufacturing method, and machine structural parts using case-hardened steel
JP5927868B2 (en) Carburizing steel excellent in cold forgeability and method for producing the same
JP5776623B2 (en) Steel wire rods / bars with excellent cold workability and manufacturing method thereof
JP5407178B2 (en) Steel wire rod for cold forging excellent in cold workability and manufacturing method thereof
CN110546292B (en) High-strength low-thermal expansion alloy wire
MX2013001724A (en) Special steel steel-wire and special steel wire material.
JP2017048459A (en) Steel wire for machine structure component
JP3527641B2 (en) Steel wire with excellent cold workability
EP2982771A1 (en) Method for manufacturing high-strength bolt having excellent tensile strength
JP2004263201A (en) High strength steel having excellent fatigue strength, and its production method
CN113508183A (en) Bar material
JP4631618B2 (en) Manufacturing method of steel parts for bearings with excellent fatigue characteristics
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP4608979B2 (en) Steel materials with excellent fatigue characteristics and steel materials for induction hardening
JP5482342B2 (en) Hot rolled steel for direct cutting and method for producing the same
JP3235442B2 (en) High strength, low ductility non-heat treated steel
JP4576913B2 (en) Manufacturing method of steel for machine structure having excellent fatigue characteristics and machinability
CN108929985B (en) Medium carbon wire rod excellent in strength and cold workability and method for producing same
WO2012067473A2 (en) High-toughness cold-drawn non-heat-treated wire rod, and method for manufacturing same
JP5512494B2 (en) High-strength, high-toughness non-tempered hot forged parts and manufacturing method thereof
WO2004065647A1 (en) High-strength steel product excelling in fatigue strength and process for producing the same
WO2017038436A1 (en) Steel wire for mechanical structure parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Ref document number: 4649857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees