JP5512494B2 - High-strength, high-toughness non-tempered hot forged parts and manufacturing method thereof - Google Patents

High-strength, high-toughness non-tempered hot forged parts and manufacturing method thereof Download PDF

Info

Publication number
JP5512494B2
JP5512494B2 JP2010254500A JP2010254500A JP5512494B2 JP 5512494 B2 JP5512494 B2 JP 5512494B2 JP 2010254500 A JP2010254500 A JP 2010254500A JP 2010254500 A JP2010254500 A JP 2010254500A JP 5512494 B2 JP5512494 B2 JP 5512494B2
Authority
JP
Japan
Prior art keywords
mass
less
ferrite
hot forged
tempered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010254500A
Other languages
Japanese (ja)
Other versions
JP2012102390A (en
Inventor
エライジャ 柿内
俊夫 村上
剛史 有川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010254500A priority Critical patent/JP5512494B2/en
Publication of JP2012102390A publication Critical patent/JP2012102390A/en
Application granted granted Critical
Publication of JP5512494B2 publication Critical patent/JP5512494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、自動車、船舶などの輸送機のエンジンおよび足回り等を構成するコンロッド、クランクシャフト、ハブなどの構成部品として用いられる高強度・高靭性非調質熱間鍛造部品およびその製造方法に関する。   The present invention relates to a high-strength, high-toughness non-heat treated hot forged part used as a component such as a connecting rod, a crankshaft, a hub, etc. constituting an engine and undercarriage of a transport machine such as an automobile or a ship, and a manufacturing method thereof .

従来より、輸送機の構成部品として用いられる熱間鍛造部品は、部品の軽量化のために、部品の降伏強度の高強度化が求められている。そして、熱間鍛造部品を非調質のままで高強度化するため、中炭素鋼に所定量のVを添加した鋼の適用が進んでいる。Vは、冷却中に炭化物および炭窒化物として析出し、析出強化により降伏強度向上に寄与する。炭化物および炭窒化物のサイズが微細であるほど、また、体積率が大きいほど析出強化量は増加する。   2. Description of the Related Art Conventionally, hot forged parts used as components of transport aircraft have been required to increase the yield strength of the parts in order to reduce the weight of the parts. And, in order to increase the strength of hot forged parts while maintaining non-tempered steel, the application of steel in which a predetermined amount of V is added to medium carbon steel is in progress. V precipitates as carbides and carbonitrides during cooling and contributes to yield strength improvement by precipitation strengthening. The precipitation strengthening amount increases as the size of the carbides and carbonitrides becomes finer and as the volume ratio increases.

例えば、特許文献1には、中炭素鋼にV:0.05〜0.5質量%とCa:0.0005〜0.02質量%を添加した組成を有し、熱間鍛造後の組織がフェライト−パーライトであり、さらにCa含有量が40質量%を超える硫化物の面積率が30%以下、Ca含有量が0.3〜40質量%である硫化物の面積率が10%以上であることを特徴とする非調質熱間鍛造部品が記載されている。しかしながら、特許文献1では、鍛造後、空冷するだけで十分な冷却制御がなされていないため、微細析出物の析出量が増加せず、析出強化量が向上しない。その結果、非調質熱間鍛造部品の降伏強度が高強度化しないという問題がある。   For example, Patent Document 1 has a composition in which V: 0.05 to 0.5 mass% and Ca: 0.0005 to 0.02 mass% are added to medium carbon steel, and the structure after hot forging is Ferrite-pearlite, and the area ratio of sulfides having a Ca content exceeding 40% by mass is 30% or less, and the area ratio of sulfides having a Ca content of 0.3 to 40% by mass is 10% or more. Non-tempered hot forged parts are described. However, in Patent Document 1, after forging, air cooling is not performed and sufficient cooling control is not performed. Therefore, the precipitation amount of fine precipitates does not increase, and the precipitation strengthening amount does not improve. As a result, there is a problem that the yield strength of the non-tempered hot forged part does not increase.

また、特許文献2には、中炭素鋼にV:0.30質量%超0.70質量%以下、Ti:0.003〜0.050質量%を添加した組成を有する鋼を、十分な高温で鍛造し、その後300℃まで0.05℃/秒以上2℃/秒未満の平均冷却速度で冷却することを特徴とする非調質熱間鍛造部品およびその製造方法が記載されている。しかしながら、特許文献2でも、単調な冷却パターンしかとらないため、フェライト中の微細析出物の析出強化量が適切に制御されず、析出強化量が低いフェライトが局所的に形成されてしまう。その結果、析出強化量が低いフェライトが降伏強度を律速するため、非調質熱間鍛造部品の降伏強度が高強度化しないという問題がある。   Patent Document 2 discloses a steel having a composition obtained by adding V: more than 0.30% by mass to 0.70% by mass and Ti: 0.003 to 0.050% by mass to medium carbon steel at a sufficiently high temperature. A non-tempered hot forged part and a method for producing the same are described, which are characterized by being forged at a temperature of 300 ° C. and then cooled to an average cooling rate of 0.05 ° C./second or more and less than 2 ° C./second. However, even in Patent Document 2, since only a monotonous cooling pattern is taken, the precipitation strengthening amount of fine precipitates in ferrite is not appropriately controlled, and ferrite having a low precipitation strengthening amount is locally formed. As a result, there is a problem that the yield strength of non-tempered hot forged parts does not increase because ferrite with a low precipitation strengthening rate determines the yield strength.

さらに、輸送機の構成部品として用いられる熱間鍛造部品では、高靭性化も重要な特性として求められている。一般的に、鋼を高強度化するに従い、靭性は低下する。   Further, in hot forged parts used as components of transport aircraft, high toughness is also required as an important characteristic. Generally, as steel becomes stronger, the toughness decreases.

前記問題を解決するために、例えば、特許文献3、4では、中炭素鋼にV:0.05〜0.5質量%およびNb:0.005〜0.1質量%の1種または2種を添加した組成を有する鋼を製造し、その鋼をAc3点以上950℃以下(特許文献3)またはAc3点以上1350℃以下(特許文献4)に加熱し、真歪量(対数歪量)で0.3〜3の加工を与える熱間鍛造を未再結晶上限温度以下(実施例で900℃未満)700℃以上(特許文献3)または800℃未満700℃以上(特許文献4)で少なくとも1回以上行い、Ar3点以下500℃以上の温度域を0.1℃/sec≦冷速(CR)≦(2.5ε+1)℃/sec(ε:対数歪量)で冷却して、平均粒径10μm以下のフェライト−パーライト組織を得ることを特徴とする非調質熱間鍛造部品の製造方法が記載されている。   In order to solve the above problem, for example, in Patent Documents 3 and 4, one or two kinds of V: 0.05 to 0.5 mass% and Nb: 0.005 to 0.1 mass% are added to the medium carbon steel. Is manufactured, and the steel is heated to Ac3 point or higher and 950 ° C. or lower (Patent Document 3) or Ac3 point or higher and 1350 ° C. or lower (Patent Document 4), and the true strain amount (logarithmic strain amount) is obtained. Hot forging that gives a working of 0.3 to 3 is at least 1 at non-recrystallization upper limit temperature (lower than 900 ° C. in examples) 700 ° C. or higher (Patent Document 3) or lower than 800 ° C. and 700 ° C. or higher (Patent Document 4). The temperature range of Ar 3 point or less and 500 ° C. or more was cooled at 0.1 ° C./sec≦cooling rate (CR) ≦ (2.5ε + 1) ° C./sec (ε: logarithmic strain), and the average particle size Non-refining characterized by obtaining a ferrite-pearlite structure of 10 μm or less Manufacturing method between the forged parts are described.

特開平11−350065号公報JP-A-11-350065 特開平07−3386号公報Japanese Patent Application Laid-Open No. 07-3386 特開2003−147481号公報Japanese Patent Laid-Open No. 2003-147481 特開2003−147482号公報JP 2003-147482 A

しかしながら、特許文献3、4では、低温鍛造を行うため変形抵抗が大きくなり鍛造が困難となり、非調質熱間鍛造部品の生産性が低下するという問題がある。しかも、特許文献3、4では、降伏強度:1000MPa以上を得るためには、低温鍛造時の真歪量を2.3以上(実施例参照)とする必要があり、さらに鍛造が困難となり、非調質熱間鍛造部品の生産性が低下する。また、鍛造後の冷速(冷却速度)が最大でも3℃/sec(実施例参照)であるため、フェライト変態温度が十分低温化されず、変態に伴い析出した微細析出物(炭化物)が粗大化し、析出強化を十分に活用できない。その結果、非調質熱間鍛造部品の降伏強度が高強度化しないという問題がある。   However, Patent Documents 3 and 4 have a problem that since low-temperature forging is performed, deformation resistance becomes large and forging becomes difficult, and productivity of non-tempered hot forged parts decreases. Moreover, in Patent Documents 3 and 4, in order to obtain a yield strength of 1000 MPa or more, the amount of true strain during low-temperature forging needs to be 2.3 or more (see Examples), and forging becomes difficult. Productivity of tempered hot forged parts decreases. In addition, since the cooling rate after forging (cooling rate) is 3 ° C./sec (see Examples) at the maximum, the ferrite transformation temperature is not sufficiently lowered, and fine precipitates (carbides) precipitated with the transformation are coarse. And precipitation strengthening cannot be fully utilized. As a result, there is a problem that the yield strength of the non-tempered hot forged part does not increase.

本発明は、前記問題を鑑みてなされたものであって、その課題は、鍛造温度を低温化することなく、高い降伏強度および靭性を有する非調質熱間鍛造部品およびその製造方法を提供することにある。   The present invention has been made in view of the above problems, and its object is to provide a non-tempered hot forged part having high yield strength and toughness without lowering the forging temperature and a method for producing the same. There is.

前記課題を解決するために、本発明に係る高強度・高靭性非調質熱間鍛造部品は、C:0.20〜0.80質量%、Si:0.50質量%以下、Mn:0.40〜1.00質量%、P:0.050質量%以下、S:0.050質量%以下、V:0.20〜0.80質量%、Nb:0.02〜0.30質量%、N:0.0100質量%以下を含有し、残部がFeおよび不可避的不純物である組成からなり、旧オーステナイト粒のGf粒度番号が7以上であるフェライト−パーライト組織からなり、フェライトおよびパーライト中の直径:10nm以下の(V、Nb)C析出物の個数密度が5000個/μm以上であることを特徴とする。 In order to solve the above-mentioned problem, the high-strength and high-toughness non-tempered hot forged part according to the present invention has C: 0.20 to 0.80 mass%, Si: 0.50 mass% or less, Mn: 0 .40 to 1.00 mass%, P: 0.050 mass% or less, S: 0.050 mass% or less, V: 0.20 to 0.80 mass%, Nb: 0.02 to 0.30 mass% N: 0.0100% by mass or less, with the balance being Fe and inevitable impurities, consisting of a ferrite-pearlite structure in which the austenite grain has a Gf particle size number of 7 or more, in ferrite and pearlite Diameter: The number density of (V, Nb) C precipitates of 10 nm or less is 5000 pieces / μm 2 or more.

前記構成によれば、中炭素鋼にVに加えてNbを複合添加した鋼組成を有することにより、鍛造後のオーステナイト再結晶粒の粗大化を析出NbCがピン止めするため、Gf粒度番号が所定値以上の微細な旧オーステナイト粒を有するフェライト−パーライト組織が得られる。その結果、非調質熱間鍛造部品の靭性が高くなる。また、フェライト中に析出する所定直径以下の微細な(V、Nb)C析出物の個数密度が所定値以上であることにより、非調質熱間鍛造部品のビッカース硬さが400Hv以上となり、降伏強度が高くなる。   According to the said structure, since it has the steel composition which added Nb in addition to V to medium carbon steel, since precipitation NbC pins the coarsening of the austenite recrystallized grain after forging, Gf grain size number is predetermined. A ferrite-pearlite structure having fine prior austenite grains exceeding the value can be obtained. As a result, the toughness of the non-tempered hot forged part is increased. Moreover, when the number density of fine (V, Nb) C precipitates having a predetermined diameter or less precipitated in ferrite is equal to or higher than a predetermined value, the Vickers hardness of the non-tempered hot forged part becomes 400 Hv or higher, yielding. Strength increases.

また、本発明に係る高強度・高靭性非調質熱間鍛造部品の製造方法は、前記高強度・高靭性非調質熱間鍛造部材の製造方法であって、前記組成からなる鋼素材を下記式(1)で算出されるTNbCとなるように加熱処理する加熱処理工程と、加熱処理された鋼素材を、1050℃以上で前記加熱温度以下の鍛造温度で熱間鍛造し、その熱間鍛造の際の真歪量が0.3以上である熱間鍛造工程と、熱間鍛造終了後、3.0℃/秒以上の冷却速度で急冷却し、その急冷却の際の急冷却終了温度が550〜720℃である急冷却工程と、急冷却終了後、0.1℃/秒以上1.5℃/秒以下の冷却速度で緩冷却し、その緩冷却の際の緩冷却終了温度が400℃以下である緩冷却工程とを含むことを特徴とする。
−14000/(log([%C]・0.01)−7.58)−273≦TNbC(℃)≦−14000/(log([%C]・([%Nb]−0.01))−7.58)−273・・・(1)
(ただし、前記式(1)において、[%C]、[%Nb]は、前記C、前記Nbの各含有量(質量%)とする。)
Further, the method for producing a high-strength, high-toughness non-tempered hot tempered part according to the present invention is a method for producing the high-strength, high-toughness non-tempered hot tempered part , wherein the steel material comprising the composition is A heat treatment step of heat-treating so as to be TNbC calculated by the following formula (1), and hot-forging the heat-treated steel material at a forging temperature of 1050 ° C. or higher and lower than the heating temperature, the heat A hot forging process in which the amount of true strain during hot forging is 0.3 or more, and after completion of hot forging, rapid cooling is performed at a cooling rate of 3.0 ° C./second or more, and rapid cooling during the rapid cooling is performed. A rapid cooling process with an end temperature of 550 to 720 ° C., and after the rapid cooling, slowly cool at a cooling rate of 0.1 ° C./second or more and 1.5 ° C./second or less, and finish the slow cooling in the slow cooling And a slow cooling step in which the temperature is 400 ° C. or lower.
−14000 / (log ([% C] · 0.01) −7.58) −273 ≦ T NbC (° C.) ≦ −14000 / (log ([% C] · ([% Nb] −0.01) ) -7.58) -273 (1)
(However, in the formula (1), [% C] and [% Nb] are the contents (mass%) of C and Nb.)

前記手順によれば、加熱処理工程において、TNbCの範囲に加熱することにより、Vを完全に固溶させつつ、一部の(例えば、0.01質量%以上の)Nbを固溶させ、同時に、残りの(例えば、0.01質量%以上の)Nbを未固溶とし、鍛造時に生じる再結晶オーステナイト粒をピン止めするNbCを確保することにより、高ビッカース硬さ(高強度化)・旧オーステナイト粒微細化(高靭化)を実現することができる。 According to the above procedure, in the heat treatment step, by heating to the range of TNbC , while completely dissolving V, a part (for example, 0.01% by mass or more) of Nb is dissolved. At the same time, the remaining Nb (for example, 0.01% by mass or more) Nb is not dissolved yet, and by securing NbC for pinning recrystallized austenite grains generated during forging, high Vickers hardness (high strength) The refinement of prior austenite grains (higher toughness) can be realized.

そして、熱間鍛造工程において、1050℃以上加熱処理工程の加熱温度以下で、真歪量が0.3以上となるように熱間鍛造を行うことにより、析出強化に寄与しない粗大な(V,Nb)Cの析出を抑制することができ、かつ、加熱段階から析出していたNbCのピン止めによる微細再結晶オーステナイト組織が得られ、所定値以上のGf粒度番号の旧オーステナイト粒を有するフェライト−パーライト組織を得ることが可能となる。   And, in the hot forging process, by performing hot forging so that the true strain amount is 0.3 or more at 1050 ° C. or more and below the heating temperature of the heat treatment process, coarse (V, Nb) Ferrite having a prior austenite grain with a Gf grain size number greater than or equal to a predetermined value, by which the precipitation of C can be suppressed, and a fine recrystallized austenite structure is obtained by pinning of NbC that has been precipitated from the heating stage. A pearlite structure can be obtained.

そして、冷却工程において、急冷停止温度(550〜720℃)までの平均冷却速度が3.0℃/s以上となるように急冷却し、急冷却終了後、400℃以下までの平均冷却速度が0.1℃/s以上1.5℃/s以下となるように緩冷却を行うことにより、オーステナイト中での粗大な(V,Nb)Cの発生を抑制しつつ、フェライト−パーライトを低温で変態させることで相界面析出を微細に分散させることができ、微細な(V、Nb)C析出物を所定値以上の個数密度で得ることが可能となり、高強度化を実現することができる。なお、高温で鍛造するため、変形抵抗が少なく、容易に生産できる。   Then, in the cooling step, rapid cooling is performed so that the average cooling rate to the quenching stop temperature (550 to 720 ° C.) is 3.0 ° C./s or higher, and after the rapid cooling is finished, the average cooling rate to 400 ° C. or lower is obtained. By performing slow cooling so as to be 0.1 ° C./s or more and 1.5 ° C./s or less, the generation of coarse (V, Nb) C in austenite is suppressed, and ferrite-pearlite is reduced at a low temperature. By transforming, phase interface precipitates can be finely dispersed, and fine (V, Nb) C precipitates can be obtained with a number density of a predetermined value or more, and high strength can be realized. In addition, since it forges at high temperature, there is little deformation resistance and it can manufacture easily.

本発明に係る非調質熱間鍛造部品は、高いビッカース硬さ(降伏強度)および微細な旧オーステナイト粒(高靭性)を有することができる。また、本発明に係る非調質熱間鍛造部品の製造方法は、鍛造温度を低温化することなく、高いビッカース硬さ(降伏強度)および微細な旧オーステナイト粒(高靭性)を有する非調質熱間鍛造部品を製造でき、かつ、生産性も向上する。   The non-tempered hot forged part according to the present invention can have high Vickers hardness (yield strength) and fine prior austenite grains (high toughness). Further, the method for producing a non-tempered hot forged part according to the present invention is a non-tempered material having high Vickers hardness (yield strength) and fine prior austenite grains (high toughness) without lowering the forging temperature. Hot forged parts can be manufactured and productivity is improved.

本発明に係る高強度・高靭性非調質熱間鍛造部品の鋼組織を示すもので、(a)は実施例No.4におけるフェライト−パーライト組織の光学顕微鏡写真、(b)は比較例No.15におけるフェライト−パーライト組織の光学顕微鏡写真である。1 shows the steel structure of a high-strength, high-toughness non-tempered hot forged part according to the present invention. 4 is an optical micrograph of the ferrite-pearlite structure in FIG. 15 is an optical micrograph of a ferrite-pearlite structure in FIG. 本発明に係る高強度・高靭性非調質熱間鍛造部品の鋼組織を示すもので、(a)は実施例No.4における(V、Nb)C析出物のTEM写真、(b)は比較例No.8における(V、Nb)C析出物のTEM写真である。1 shows the steel structure of a high-strength, high-toughness non-tempered hot forged part according to the present invention. 4 is a TEM photograph of (V, Nb) C precipitate in FIG. 8 is a TEM photograph of (V, Nb) C precipitate in FIG. 本発明に係る高強度・高靭性非調質熱間鍛造部品の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the high strength and toughness non-tempered hot forged part which concerns on this invention.

本発明に係る高強度・高靭性非調質熱間鍛造部品(以下、非調質熱間鍛造部品と称す)について説明する。   The high strength and high toughness non-tempered hot forged part (hereinafter referred to as non-tempered hot forged part) according to the present invention will be described.

本発明に係る非調質熱間鍛造部品は、所定量のC、Si、Mn、P、S、V、NbおよびNを含有し、残部がFeおよび不可避的不純物である組成からなり、微細な旧オーステナイト粒を有するフェライト−パーライト組織からなり、フェライトおよびパーライト中の微細な(V、Nb)C析出物の個数密度が所定値以上であることを特徴とする。以下に、組成および組織の限定理由について説明する。   The non-tempered hot forged part according to the present invention contains a predetermined amount of C, Si, Mn, P, S, V, Nb, and N, and the balance is Fe and inevitable impurities. It consists of a ferrite-pearlite structure having prior austenite grains, and the number density of fine (V, Nb) C precipitates in the ferrite and pearlite is not less than a predetermined value. The reasons for limiting the composition and structure will be described below.

(C:0.20〜0.80質量%)
Cは、V、Nbと結び付き(V、Nb)炭化物および(V、Nb)炭窒化物(両者を(V、Nb)C析出物と称す)を析出させ、析出強化量を高めることでフェライト−パーライトの硬さを向上させ、非調質熱間鍛造部品の降伏強度の高強度化に寄与する元素である。C量が0.20質量%未満であると、(V、Nb)C析出物の析出強化量が低くなり、降伏強度が低下する。一方で、C量が0.80質量%を超えると、フェライト変態やパーライト変態が抑制されるため、ベイナイトが形成されるようになり降伏強度が低下する。また、C量は、好ましくは0.30〜0.60質量%、さらに好ましくは0.40〜0.50質量%である。
(C: 0.20 to 0.80 mass%)
C is combined with V and Nb to precipitate (V, Nb) carbide and (V, Nb) carbonitride (both are referred to as (V, Nb) C precipitates), and increases the amount of precipitation strengthening. It is an element that improves the hardness of pearlite and contributes to increasing the yield strength of non-tempered hot forged parts. When the C content is less than 0.20% by mass, the precipitation strengthening amount of the (V, Nb) C precipitate is decreased, and the yield strength is decreased. On the other hand, when the amount of C exceeds 0.80% by mass, ferrite transformation and pearlite transformation are suppressed, so that bainite is formed and the yield strength is lowered. Moreover, C amount becomes like this. Preferably it is 0.30-0.60 mass%, More preferably, it is 0.40-0.50 mass%.

(Si:0.50質量%以下)
Siは、固溶強化で非調質熱間鍛造部品の降伏強度の高強度化に寄与する元素である。Si量が0.50質量%を超えると、焼入れ性が高くなり、ベイナイトが形成され、非調質熱間鍛造部品の降伏強度低下の要因となる。なお、0質量%でもよい。
(Si: 0.50 mass% or less)
Si is an element that contributes to increasing the yield strength of non-tempered hot forged parts by solid solution strengthening. When the amount of Si exceeds 0.50% by mass, the hardenability is increased, bainite is formed, and the yield strength of the non-tempered hot forged part is reduced. In addition, 0 mass% may be sufficient.

(Mn:0.40〜1.00質量%)
Mnは、固溶強化で非調質熱間鍛造部品の降伏強度の高強度化に寄与する元素である。Mn量が0.40質量%未満であると、固溶量が少なく、非調質熱間鍛造部品の降伏強度が低下する。一方で、Mn量が1.00質量%を超えると、焼入れ性が高くなり、ベイナイトが形成され、非調質熱間鍛造部品の降伏強度が低下する要因となる。
(Mn: 0.40 to 1.00% by mass)
Mn is an element that contributes to increasing the yield strength of non-tempered hot forged parts by solid solution strengthening. When the amount of Mn is less than 0.40% by mass, the amount of solid solution is small and the yield strength of the non-tempered hot forged part is lowered. On the other hand, when the amount of Mn exceeds 1.00 mass%, hardenability will become high, a bainite will be formed and it will become a factor which the yield strength of a non-tempered hot forging part falls.

(P:0.050質量%以下)
Pは、不可避的不純物として含有される元素であるが、0.050質量%を超えて含有すると非調質熱間鍛造部品を脆化させる。なお、0質量%でもよい。
(P: 0.050 mass% or less)
P is an element contained as an unavoidable impurity, but if it exceeds 0.050% by mass, it causes embrittlement of the non-tempered hot forged part. In addition, 0 mass% may be sufficient.

(S:0.050質量%以下)
Sは、MnSを形成し、非調質熱間鍛造部品の切削性改善に寄与する元素であるが、0.050質量%を超えて含有すると、非調質熱間鍛造部品の延性および靭性を低下させる。なお、0質量%でもよい。
(S: 0.050 mass% or less)
S is an element that forms MnS and contributes to the improvement of the machinability of the non-tempered hot forged part. However, when the content exceeds 0.050% by mass, the ductility and toughness of the non-tempered hot forged part are increased. Reduce. In addition, 0 mass% may be sufficient.

(V:0.20〜0.80質量%)
Vは、フェライトおよびパーライト中のラメラフェライト中にNbとともに炭化物および炭窒化物として析出することでフェライトおよびパーライトを強化し、非調質熱間鍛造部品の降伏強度の高強度化に寄与する元素である。従来からV添加は活用されていたものの、鍛造後の冷却制御無しでV添加量を単調に増やすだけでは、フェライト変態中にV炭化物およびV炭窒化物の相界面析出が起こりにくくなり、降伏強度が低下する。
(V: 0.20 to 0.80 mass%)
V is an element that strengthens ferrite and pearlite by precipitating as carbide and carbonitride together with Nb in lamellar ferrite in ferrite and pearlite, and contributes to increasing the yield strength of non-tempered hot forged parts. is there. Although V addition has been used in the past, if the V addition amount is increased monotonically without cooling control after forging, phase interface precipitation of V carbide and V carbonitride is less likely to occur during ferrite transformation, yield strength. Decreases.

V量が0.20質量%未満では、V炭化物およびV炭窒化物の析出強化量が低く、非調質熱間鍛造部品において、微細な(V、Nb)C析出物の個数密度が所定値未満となり、強度が低下する。一方で、V量が0.80質量%を超えると、フェライト・パーライト変態が抑制されるようになるため、ベイナイトが形成されたり、変態温度が低くなりすぎてフェライト中での相界面析出が起こりにくくなり、逆に強度の低下を招く。また、V量は、好ましくは0.35〜0.80質量%、さらに好ましくは0.45〜0.80質量%である。   When the amount of V is less than 0.20% by mass, the precipitation strengthening amount of V carbide and V carbonitride is low, and the number density of fine (V, Nb) C precipitates is a predetermined value in a non-tempered hot forged part. The strength is lowered. On the other hand, if the amount of V exceeds 0.80% by mass, ferrite-pearlite transformation is suppressed, so that bainite is formed or the transformation temperature becomes too low and phase interface precipitation in ferrite occurs. On the contrary, the strength is reduced. Moreover, V amount becomes like this. Preferably it is 0.35-0.80 mass%, More preferably, it is 0.45-0.80 mass%.

(Nb:0.02〜0.30質量%)
Nbは、フェライトおよびパーライト中のラメラフェライト中にVとともに炭化物および炭窒化物として析出することでフェライトおよびパーライトを強化し、非調質鍛造部品の降伏強度の高強度化に寄与する元素である。また、NbはVが完全に固溶するような高温域においても一部は未固溶状態のNbCとして存在する。そして、NbCがオーステナイト再結晶粒のピン止め粒子として作用し、再結晶オーステナイト組織の微細化に寄与する。その結果、高靭性のフェライト−パーライト組織が得られる。
Nbの含有量が0.02質量%未満では、非調質鍛造部品において、旧オーステナイト粒のGf粒度番号が所定値未満となり、靭性が低下する。一方で、Nbの含有量が0.30質量%を超えると、降伏強度および靭性の向上効果が飽和する。
したがって、Nbの含有量は、0.02〜0.30質量%とする。
なお、Nbの含有量は、好ましくは0.05〜0.25質量%、さらに好ましくは0.15〜0.23質量%である。
(Nb: 0.02-0.30 mass%)
Nb is an element that strengthens ferrite and pearlite by precipitating as carbide and carbonitride together with V in lamellar ferrite in ferrite and pearlite, and contributes to increasing the yield strength of non-tempered forged parts. Further, Nb partially exists as NbC in an insoluble state even in a high temperature range where V is completely dissolved. NbC acts as pinning particles for the austenite recrystallized grains, contributing to refinement of the recrystallized austenite structure. As a result, a tough ferrite-pearlite structure is obtained.
When the content of Nb is less than 0.02% by mass, in the non-tempered forged part, the Gf particle size number of the prior austenite grains becomes less than a predetermined value, and the toughness decreases. On the other hand, when the Nb content exceeds 0.30 mass%, the yield strength and toughness improving effects are saturated.
Therefore, the Nb content is 0.02 to 0.30 mass%.
The Nb content is preferably 0.05 to 0.25% by mass, and more preferably 0.15 to 0.23% by mass.

(N:0.0100質量%以下)
Nは、VまたはNbと高温で結合して炭窒化物を形成する元素である。N量が0.0100質量%を超えると、粗大な炭窒化物を形成する。そして、高温域でNと結合した分、相界面析出で微細に析出させ得るV、Nb量が減少するので、その分析出強化量が低下し、降伏強度が低下するようになる。また、N量は、好ましくは0.0090質量%以下、さらに好ましくは0.0080質量%以下である。なお、0質量%でもよい。
(N: 0.0100 mass% or less)
N is an element that forms carbonitride by bonding with V or Nb at a high temperature. When the amount of N exceeds 0.0100% by mass, coarse carbonitride is formed. Since the amount of V and Nb that can be finely precipitated by phase interface precipitation is reduced by the amount of N combined in the high temperature region, the analysis strengthening amount is reduced and the yield strength is reduced. Moreover, N amount becomes like this. Preferably it is 0.0090 mass% or less, More preferably, it is 0.0080 mass% or less. In addition, 0 mass% may be sufficient.

(不可避的不純物)
不可避的不純物は、例えば、Sn、Sb等の元素であって、本発明の効果を妨げない範囲で含有するものである。
(Inevitable impurities)
Inevitable impurities are elements such as Sn and Sb, for example, and are contained within a range that does not hinder the effects of the present invention.

(旧オーステナイト粒:Gf粒度番号が7以上)
旧オーステナイト粒は、Gf粒度番号が大きいほど、粒径が微細となる。そして、旧オーステナイト粒が微細であるほど、非調質熱間鍛造部品の靭性が向上する。したがって、旧オーステナイト粒のGf粒度番号は7以上、好ましくはGf粒度番号が8以上、さらに好ましくはGf粒度番号が9以上である。
(Old austenite grains: Gf grain number 7 or more)
The prior austenite grains become finer as the Gf grain size number is larger. And the toughness of a non-tempered hot forged part improves, so that a prior austenite grain is fine. Therefore, the Gf particle size number of the prior austenite grains is 7 or more, preferably the Gf particle size number is 8 or more, more preferably the Gf particle size number is 9 or more.

(フェライト−パーライト組織)
V、Nbを十分に添加した場合、高温で起こる拡散変態で形成されるフェライトおよびパーライトは相界面析出した(V、Nb)C析出物の析出強化により降伏強度を大きく上昇させることができる。一方、ベイナイト、マルテンサイトといった低温で起こる変態現象の場合、引張強度は向上するものの、(V、Nb)C析出物が相界面析出することができないため降伏強度は逆に低下する。そのため、ベイナイトやマルテンサイトが混在すると降伏強度が確保できなくなるため、フェライト−パーライト組織にする必要がある。また、フェライト−パーライト組織にすることによって、非調質熱間鍛造部品で遅れ破壊が生じる心配がなくなる。フェライト−パーライト組織とは、面積率で95%以上がフェライト−パーライト組織となっているものとする。
(Ferrite-pearlite structure)
When V and Nb are sufficiently added, the yield strength of ferrite and pearlite formed by diffusion transformation occurring at high temperatures can be greatly increased by precipitation strengthening of (V, Nb) C precipitates precipitated at the phase interface. On the other hand, in the case of a transformation phenomenon occurring at a low temperature such as bainite and martensite, although the tensile strength is improved, the (V, Nb) C precipitate cannot be precipitated at the phase interface, and therefore the yield strength is decreased. For this reason, when bainite or martensite is mixed, the yield strength cannot be secured, so it is necessary to have a ferrite-pearlite structure. Further, by adopting a ferrite-pearlite structure, there is no risk of delayed fracture occurring in non-tempered hot forged parts. With a ferrite-pearlite structure, 95% or more of the area ratio is a ferrite-pearlite structure.

(フェライトおよびパーライト中の(V、Nb)C析出物の個数密度:直径10nm以下のものが5000個/μm以上)
フェライト−パーライト変態時に相界面析出した(V、Nb)C析出物は組織を析出強化させ、降伏強度の向上に寄与する。析出強化量は、析出物の占める体積率が大きいほど、また、析出物粒径が小さいほど向上する。したがって、(V、Nb)C析出物は、なるべく微細なものが多いほど好ましいため、直径10nm以下の(V、Nb)C析出物の個数密度を5000個/μm以上とする。また、個数密度は、好ましくは直径10nm以下の(V、Nb)C析出物が6000個/μm以上、さらに好ましくは直径10nm以下の(V、Nb)C析出物が7000個/μm以上である。
(Number density of (V, Nb) C precipitates in ferrite and pearlite: 5000 / μm 2 or more having a diameter of 10 nm or less)
The (V, Nb) C precipitate deposited at the phase interface during the ferrite-pearlite transformation strengthens the structure and contributes to the improvement of the yield strength. The amount of precipitation strengthening increases as the volume fraction occupied by the precipitate increases and as the precipitate particle size decreases. Therefore, since the (V, Nb) C precipitates are preferably as fine as possible, the number density of (V, Nb) C precipitates having a diameter of 10 nm or less is set to 5000 / μm 2 or more. The number density is preferably 6000 / μm 2 or more of (V, Nb) C precipitates having a diameter of 10 nm or less, more preferably 7000 / μm 2 or more of (V, Nb) C precipitates having a diameter of 10 nm or less. It is.

本発明に係る非調質熱間鍛造部品の製造方法について図3を参照して説明する。
本発明に係る非調質熱間鍛造部品の製造方法は、加熱処理工程S1と、熱間鍛造工程S2と、急冷却工程S3と、緩冷却工程S4とを含む。以下、各工程について説明する。
A method for manufacturing a non-tempered hot forged part according to the present invention will be described with reference to FIG.
The method for manufacturing a non-tempered hot forged part according to the present invention includes a heat treatment step S1, a hot forging step S2, a rapid cooling step S3, and a slow cooling step S4. Hereinafter, each step will be described.

(加熱処理工程S1)
加熱処理工程S1は、前記組成からなる鋼素材をTNbCの範囲となるように加熱する工程である。
ここで、TNbCは、−14000/(log([%C]・0.01)−7.58)−273≦TNbC(℃)≦−14000/(log([%C]・([%Nb]−0.01))−7.58)−273・・・(1)で表わされる。ただし、前記式(1)において、[%C]、[%Nb]は、前記C、前記Nbの各含有量(質量%)とする。この工程により、鋼素材のV全量、およびNbの一部が固溶化する。加熱温度がTNbCの範囲の下限未満であると、Nbが0.01質量%以上固溶せず、非調質鍛造部品において、微細な(V、Nb)C複合析出物の個数密度が所定値未満となり、降伏強度が低下する。一方、加熱温度がTNbCの範囲の上限を超えると、未固溶Nbが0.01質量%以下となり、再結晶オーステナイト粒をピン止めするNbCが十分に確保されず、再結晶オーステナイト粒が粗大になり靭性が低下する。
また、TNbCの範囲に加えて、加熱温度の上限は、鋼の溶融温度未満とすることが好ましく、設備の能力等から、1300℃程度とすることがさらに好ましい。
ここで、TNbCはNbCの溶解度積(今井勇之進、庄野凱旋夫、鉄と鋼、1966年、p.110)から式変形して導出した温度であり、当該温度範囲の下限未満の温度に加熱することで固溶Nbが0.01質量%以下となり、当該温度範囲の上限を超える温度に加熱することで未固溶Nbが0.01質量%以下となる。
なお、加熱処理工程での温度とは、加熱処理工程での被加工材の最高到達温度とする。また、鋼素材は、例えば、鋳造および/または鍛造加工、押出加工によって作製される。
(Heat treatment step S1)
Heat treatment process S1 is a process of heating the steel raw material which consists of the said composition so that it may become the range of TNbC .
Here, T NbC is −14000 / (log ([% C] · 0.01) −7.58) −273 ≦ T NbC (° C.) ≦ −14000 / (log ([% C] · ([% Nb] -0.01))-7.58) -273 (1). However, in said Formula (1), [% C] and [% Nb] are taken as each content (mass%) of said C and said Nb. By this process, the total amount of V of the steel material and a part of Nb are dissolved. When the heating temperature is less than the lower limit of the range of TNbC , Nb does not dissolve in 0.01% by mass or more, and the number density of fine (V, Nb) C composite precipitates is predetermined in the non-tempered forged part. It becomes less than the value, yield strength decreases. On the other hand, when the heating temperature exceeds the upper limit of the range of TNbC , undissolved Nb becomes 0.01% by mass or less, NbC for pinning the recrystallized austenite grains is not sufficiently secured, and the recrystallized austenite grains are coarse. And toughness decreases.
Moreover, in addition to the range of TNbC , the upper limit of the heating temperature is preferably less than the melting temperature of steel, and more preferably about 1300 ° C. from the capacity of the equipment.
Here, TNbC is a temperature derived by equation transformation from the solubility product of NbC (Yoshiyuki Imai, Tetsuo Shono, Iron and Steel, 1966, p.110), and is a temperature below the lower limit of the temperature range. Is heated to a temperature exceeding the upper limit of the temperature range, and non-solid Nb is reduced to 0.01% by mass or less.
Note that the temperature in the heat treatment step is the highest temperature of the workpiece in the heat treatment step. Further, the steel material is produced by, for example, casting and / or forging and extrusion.

(熱間鍛造工程S2)
熱間鍛造工程S2は、加熱処理された鋼素材を、1050℃以上で前記加熱温度以下の鍛造温度で熱間鍛造する工程で、その熱間鍛造の際の真歪量を0.3以上とする。そして、熱間鍛造工程S2では、高靭性な微細組織が得られる。一般に、高靭性な微細組織を得るには、低温域で鍛造を行う必要があるが、本発明では、高温域で析出したNbCがピン止め粒子として作用するため、高温鍛造を行っても、微細な再結晶オーステナイト粒が得られ、非調質熱間鍛造部品の旧オーステナイト粒のGf粒度番号が7以上となる。また、高温鍛造のため変形抵抗が小さくなる。
(Hot forging process S2)
Hot forging step S2 is a step of hot forging a heat-treated steel material at a forging temperature not lower than 1050 ° C. and not higher than the heating temperature, and the true strain amount during hot forging is not less than 0.3. To do. In the hot forging step S2, a tough microstructure is obtained. Generally, in order to obtain a high toughness microstructure, it is necessary to perform forging in a low temperature range. However, in the present invention, NbC precipitated in a high temperature range acts as pinning particles. Recrystallized austenite grains are obtained, and the Gf grain size number of the prior austenite grains of the non-tempered hot forged parts is 7 or more. In addition, deformation resistance is reduced due to high temperature forging.

鍛造温度が1050℃未満であると、(V、Nb)C析出物がオーステナイト中に析出するようになる。特にNbは析出し易い。(V、Nb)C析出物がオーステナイト中に析出すると、フェライトおよびパーライト変態時にフェライトおよびパーライト中に微細に相界面析出できる(V、Nb)C析出物の析出量が低下するため、析出強化量が低下する。その結果、非調質熱間鍛造部品におけるフェライトおよびパーライト中の微細な(V、Nb)C析出物の個数密度が所定値以下となり、強度が低下する。また、鍛造温度の上限値は、設備の能力等から前記加熱処理工程S1の加熱温度以下とする。   When the forging temperature is lower than 1050 ° C., (V, Nb) C precipitates are precipitated in austenite. In particular, Nb tends to precipitate. When the (V, Nb) C precipitate is precipitated in austenite, the precipitation amount of (V, Nb) C precipitate that can be finely precipitated in the ferrite and pearlite during ferrite and pearlite transformation decreases. Decreases. As a result, the number density of fine (V, Nb) C precipitates in the ferrite and pearlite in the non-tempered hot forged part becomes a predetermined value or less, and the strength decreases. In addition, the upper limit value of the forging temperature is set to be equal to or lower than the heating temperature in the heat treatment step S <b> 1 from the capacity of the equipment.

前記加熱処理工程S1では鋼素材をTNbCの範囲の高温で加熱するため、熱間鍛造前の鋼素材のオーステナイト粒は粗大化している。したがって、熱間鍛造工程S2において、NbCのピン止めによる微細再結晶オーステナイト粒を得るには、真歪量で0.3以上の熱間鍛造を行い、オーステナイト粒の再結晶を促進させる必要がある。好ましくは真歪量で0.4以上の熱間鍛造、さらに好ましくは真歪量で0.5以上の熱間鍛造を行う。そして、真歪量は、熱間鍛造時の変形抵抗が高くなりすぎないよう、5.0以下であることが好ましい。
なお、真歪量は、ln[(熱間鍛造前の被加工材の断面積)/(熱間鍛造後の被加工材の断面積)]で計算された歪量である。
In the heat treatment step S1, since the steel material is heated at a high temperature in the range of TNbC , the austenite grains of the steel material before hot forging are coarsened. Therefore, in order to obtain fine recrystallized austenite grains by pinning NbC in the hot forging step S2, it is necessary to perform hot forging with a true strain amount of 0.3 or more to promote recrystallization of austenite grains. . Preferably, hot forging with an amount of true strain of 0.4 or more is performed, more preferably hot forging with an amount of true strain of 0.5 or more. The true strain amount is preferably 5.0 or less so that the deformation resistance during hot forging does not become too high.
The true strain amount is a strain amount calculated by ln [(cross-sectional area of the workpiece before hot forging) / (cross-sectional area of the workpiece after hot forging)].

(急冷却工程S3)
急冷却工程S3は、熱間鍛造終了後、3.0℃/秒以上の冷却速度で急冷却する工程で、その急冷却の際の急冷却終了温度を550〜720℃とする。そして、急冷却工程S3では、フェライト変態前にオーステナイト域で析出・粗大化する(V、Nb)C析出物の量が減少し、相界面析出量が増加することによって、析出強化量が最大化する。
(Rapid cooling step S3)
The rapid cooling step S3 is a step of rapid cooling at the cooling rate of 3.0 ° C./second or more after completion of hot forging, and the rapid cooling end temperature at the time of rapid cooling is set to 550 to 720 ° C. In the rapid cooling step S3, the amount of (V, Nb) C precipitates precipitated and coarsened in the austenite region before ferrite transformation decreases, and the amount of precipitation at the interface increases, thereby maximizing the amount of precipitation strengthening. To do.

熱間鍛造終了後、緩冷却(冷却速度:3.0℃/秒未満)すると、フェライト変態開始前にオーステナイト域で(V、Nb)C析出物が析出し、粗大化する。そのためV、Nbの相界面析出量が減少し、析出強化量が低下する。また、緩冷却すると、フェライト変態が開始する温度が高温化する。特に、NbCのピン止め効果により再結晶オーステナイト粒が微細化した結果、オーステナイト粒界面が増加し、フェライト変態が促進される。フェライト変態温度が高いと、相界面析出が起こる際の(V、Nb)C析出物の析出駆動力が低下するので核生成する(V、Nb)C析出物のサイズが粗大になったり、相界面析出自体が起こらなくなったりして、局所的に析出強化量が小さなフェライトが形成される。その結果、非調質熱間鍛造部品の降伏強度を改善することができない。   After the hot forging is completed, if it is slowly cooled (cooling rate: less than 3.0 ° C./second), (V, Nb) C precipitates are precipitated and coarsened in the austenite region before the start of ferrite transformation. Therefore, the amount of precipitation at the V / Nb phase interface decreases, and the amount of precipitation strengthening decreases. In addition, when the cooling is slow, the temperature at which the ferrite transformation starts increases. In particular, as a result of the recrystallized austenite grains being refined by the pinning effect of NbC, the austenite grain interface increases and the ferrite transformation is promoted. When the ferrite transformation temperature is high, the precipitation driving force of (V, Nb) C precipitates when phase interface precipitation occurs decreases, so that the size of nucleated (V, Nb) C precipitates becomes coarse, Interfacial precipitation itself does not occur, and ferrite with a small precipitation strengthening amount is locally formed. As a result, the yield strength of non-tempered hot forged parts cannot be improved.

降伏強度を改善するには、析出強化量の小さなフェライトが形成される温度域、すなわち、熱間鍛造終了温度から急冷却終了温度(550〜720℃)までの温度帯をフェライトが形成されない冷却速度(3.0℃/秒以上)で冷却すればよい。急冷却の冷却速度の好ましい範囲は5.0℃/秒以上、さらに好ましくは10℃/秒以上である。また、急冷却終了温度の好ましい範囲は570〜680℃、さらに好ましくは590〜660℃である。   In order to improve the yield strength, the cooling rate at which the ferrite is not formed in the temperature range where the ferrite with a small precipitation strengthening amount is formed, that is, the temperature range from the hot forging end temperature to the rapid cooling end temperature (550 to 720 ° C.). It may be cooled at (3.0 ° C./second or more). The preferable range of the rapid cooling rate is 5.0 ° C./second or more, more preferably 10 ° C./second or more. Further, the preferable range of the rapid cooling end temperature is 570 to 680 ° C, more preferably 590 to 660 ° C.

急冷却終了温度が720℃を超えると、微細な(V、Nb)C析出物の個数密度が所定値未満となり、非調質熱間鍛造部品の降伏強度を改善できない。一方、急冷却終了温度が550℃未満であると、ベイナイトが形成されるとともに、微細な(V、Nb)C析出物の個数密度が所定値未満となり、非調質熱間鍛造部品の降伏強度を改善できない。   When the rapid cooling end temperature exceeds 720 ° C., the number density of fine (V, Nb) C precipitates becomes less than a predetermined value, and the yield strength of the non-tempered hot forged part cannot be improved. On the other hand, when the rapid cooling end temperature is less than 550 ° C., bainite is formed and the number density of fine (V, Nb) C precipitates is less than a predetermined value, and the yield strength of the non-tempered hot forged part. Cannot be improved.

(緩冷却工程S4)
緩冷却工程S4は、急冷却終了後、0.1℃/秒以上1.5℃/秒以下の冷却速度で緩冷却する工程で、その緩冷却の際の緩冷却終了温度を400℃以下とする。そして、緩冷却工程S4では、フェライト変態が促進され、相界面析出により析出する(V、Nb)C析出物の個数密度が増加する。
(Slow cooling step S4)
The slow cooling step S4 is a step of slow cooling at a cooling rate of 0.1 ° C./second or more and 1.5 ° C./second or less after the end of the rapid cooling, and the slow cooling end temperature during the slow cooling is 400 ° C. or less To do. In the slow cooling step S4, ferrite transformation is promoted, and the number density of (V, Nb) C precipitates precipitated by phase interface precipitation increases.

V添加した場合、フェライトやパーライトの核生成が強く抑制されるため、急冷却終了温度から緩冷却終了温度までの温度域を1.5℃/秒を超える冷却速度で冷却すると、フェライト・パーライト変態が完了せずベイナイトやマルテンサイトが形成される。その結果、非調質熱間鍛造部品において、微細な(V、Nb)C析出物の個数密度が所定値未満となり、降伏強度が低下する。したがって、ベイナイトやマルテンサイトが形成されない1.5℃/秒以下の冷却速度で冷却する必要がある。一方、冷却速度が0.1℃/秒未満と小さい場合には、特別な徐冷・保温設備が必要になったり、生産性が極度に低下する。また、徐冷中に(V、Nb)C析出物が粗大化し、析出強化量が低下する。その結果、非調質熱間鍛造部品において、微細な(V、Nb)C析出物の個数密度が所定値未満となり、降伏強度が低下する。また、緩冷却終了温度が400℃を超える場合には、フェライト−パーライト変態が完了せず、(V、Nb)C析出物の個数密度が所定値未満となり、降伏強度が不足する。   When V is added, nucleation of ferrite and pearlite is strongly suppressed. Therefore, when the temperature range from the rapid cooling end temperature to the slow cooling end temperature is cooled at a cooling rate exceeding 1.5 ° C./second, the ferrite-pearlite transformation Is not completed, and bainite and martensite are formed. As a result, in the non-tempered hot forged part, the number density of fine (V, Nb) C precipitates becomes less than a predetermined value, and the yield strength decreases. Therefore, it is necessary to cool at a cooling rate of 1.5 ° C./second or less at which bainite and martensite are not formed. On the other hand, when the cooling rate is as low as less than 0.1 ° C./second, a special slow cooling / warming facility is required or productivity is extremely reduced. Further, during the slow cooling, the (V, Nb) C precipitate is coarsened and the precipitation strengthening amount is reduced. As a result, in the non-tempered hot forged part, the number density of fine (V, Nb) C precipitates becomes less than a predetermined value, and the yield strength decreases. On the other hand, when the end temperature of the slow cooling exceeds 400 ° C., the ferrite-pearlite transformation is not completed, the number density of (V, Nb) C precipitates is less than a predetermined value, and the yield strength is insufficient.

なお、本発明に係る非調質熱間鍛造部品の製造方法は、前記工程以外の工程、例えば、加熱処理工程の前に鋼素材を所定形状に整える工程や、緩冷却工程の後に非調質熱間鍛造部品を放冷する工程等、を含む構成となっていてもよい。   The method for producing a non-tempered hot forged part according to the present invention is a non-tempered step after a step other than the above-described steps, for example, a step of preparing a steel material into a predetermined shape before the heat treatment step, or a slow cooling step. It may be configured to include a step of cooling the hot forged part.

真空溶製された表1に示す化学成分組成の鋼を1250℃で30分間加熱した後、φ50mmの丸棒材に熱間鍛造して空冷した。
丸棒材のD/4部からφ8×12mmの試験片を切り出し、これを富士電波工機製、サーメックマスターZで表2に示す条件で加工熱処理を施し鍛造材とした。なお、鍛造速度は真歪速度で10s−1とし、そのときの最高荷重を表2に示す。
The steel having the chemical composition shown in Table 1 prepared by vacuum melting was heated at 1250 ° C. for 30 minutes, and then hot-forged into a round bar of φ50 mm and air-cooled.
A test piece of φ8 × 12 mm was cut out from D / 4 part of the round bar, and this was subjected to thermomechanical treatment under the conditions shown in Table 2 with a cermek master Z manufactured by Fuji Electric Koki Co., to obtain a forged material. The forging rate is 10 s −1 in terms of true strain rate, and the maximum load at that time is shown in Table 2.

作製した鍛造材の組織・析出物およびビッカース硬さを以下のように評価した。
鍛造材を、鍛造前の長さ方向と平行に、等しく2分割し、うち片方を用いて切断面を鏡面研磨し、3%ナイタール液で腐食し、元の長さ方向の中心部で、D/4位置を対象に、光学顕微鏡観察を倍率100倍および400倍で行い、組織を同定した。また、旧オーステナイト(γ)粒のGf粒度番号を測定した。Gf粒度番号は、JIS G0551「鋼のオーステナイト結晶粒度試験方法」に準拠して測定し、旧オーステナイト粒界の現出はJIS G0551の付属書1の「a)徐冷法」に従った。5視野観察し、平均値を算出した。その結果を表2に示す。また、光学顕微鏡観察位置付近を対象にビッカース硬さ試験機を用いて、荷重10kgfにて硬さ試験を行い、ビッカース硬さを測定した。5点測定し、平均値を算出した。その結果を表2に示す。なお、ビッカース硬さは400Hv以上を合格とした。
The structure / precipitate and Vickers hardness of the produced forging were evaluated as follows.
The forged material is equally divided into two in parallel with the length direction before forging, and the cut surface is mirror-polished using one of them and corroded with 3% nital liquid, and at the center in the original length direction, D For the / 4 position, optical microscope observation was performed at magnifications of 100 and 400 to identify the tissue. Moreover, the Gf particle size number of the prior austenite (γ) grains was measured. The Gf grain size number was measured in accordance with JIS G0551 “Austenite grain size test method for steel”, and the appearance of old austenite grain boundaries was in accordance with “a) slow cooling method” in Appendix 1 of JIS G0551. Five fields of view were observed, and the average value was calculated. The results are shown in Table 2. Moreover, the hardness test was performed by the load of 10 kgf using the Vickers hardness tester for the optical microscope observation position vicinity, and the Vickers hardness was measured. Five points were measured and the average value was calculated. The results are shown in Table 2. In addition, the Vickers hardness set 400Hv or more as the pass.

光学顕微鏡観察と同位置より抽出レプリカサンプルを作製し、概略900nm×770nmのフェライトおよびパーライト中の領域5視野について倍率100000倍の透過型電子顕微鏡(TEM)像を観察し、直径10nm以下の(V、Nb)C析出物の個数密度の測定を行った。その結果を表2に示す。   An extraction replica sample was prepared from the same position as that observed with the optical microscope, and a transmission electron microscope (TEM) image with a magnification of 100,000 was observed with respect to ferrite having a size of approximately 900 nm × 770 nm and five visual fields in pearlite. , Nb) The number density of C precipitates was measured. The results are shown in Table 2.

表2に示すように、本発明の要件を満足する実施例No.2〜4、16、17は、ビッカース硬さが高く、Gf粒度番号が大きく、微細な旧オーステナイト粒が得られている。また、図1(a)に実施例No.4のフェライト−パーライト組織の光学顕微鏡写真、図2(a)に実施例No.4の(V、Nb)C析出物のTEM写真を示す。
これに対して、本発明の要件を満足しない比較例No.1、5〜15は、ビッカース硬さおよびGf粒度番号の少なくとも1つが劣っている。
As shown in Table 2, Example No. 1 satisfying the requirements of the present invention. Nos. 2 to 4, 16, and 17 have high Vickers hardness, a large Gf particle size number, and fine prior austenite grains. In addition, FIG. 4 shows an optical micrograph of the ferrite-pearlite structure of FIG. 4 shows a TEM photograph of 4 (V, Nb) C precipitates.
On the other hand, comparative example No. which does not satisfy the requirements of the present invention. 1, 5 to 15 are inferior in at least one of Vickers hardness and Gf particle size number.

具体的には、比較例No.1は、V量が請求範囲の下限値未満であるため、微細な(V、Nb)C析出物の個数密度が少なく、ビッカース硬さが劣っている。比較例No.5は、加熱温度および鍛造温度が請求範囲の下限値未満であるため、微細な(V、Nb)C析出物の個数密度が少なく、ビッカース硬さが劣っている。比較例No.6は、鍛造温度が請求範囲の下限値未満であるため、Gf粒度番号が小さく、微細な旧オーステナイト粒が得られていない。また、微細な(V、Nb)C析出物の個数密度が少なく、ビッカース硬さが劣っている。比較例No.7は、真歪量が請求範囲の下限値未満であるため、Gf粒度番号が小さく、微細な旧オーステナイト粒が得られていない。   Specifically, Comparative Example No. In No. 1, since the amount of V is less than the lower limit of the claims, the number density of fine (V, Nb) C precipitates is small, and the Vickers hardness is inferior. Comparative Example No. In No. 5, since the heating temperature and the forging temperature are less than the lower limit values of the claims, the number density of fine (V, Nb) C precipitates is small and the Vickers hardness is inferior. Comparative Example No. In No. 6, since the forging temperature is less than the lower limit of the claims, the Gf grain size number is small, and fine prior austenite grains are not obtained. Further, the number density of fine (V, Nb) C precipitates is small, and the Vickers hardness is inferior. Comparative Example No. In No. 7, since the true strain amount is less than the lower limit value of the claims, the Gf grain size number is small, and fine prior austenite grains are not obtained.

比較例No.8は、急冷却を行わなかったため、微細な(V、Nb)C析出物の個数密度が少なく、ビッカース硬さが劣っている。また、図2(b)に比較例No.8の(V、Nb)C析出物のTEM写真を示す。比較例No.9は、急冷却速度が請求範囲の下限値未満であるため、微細な(V、Nb)C析出物の個数密度が少なく、ビッカース硬さが劣っている。比較例No.10は、急冷却終了温度が請求範囲の上限値を超えるため、微細な(V、Nb)C析出物の個数密度が少なく、ビッカース硬さが劣っている。比較例No.11は、急冷却速度が請求範囲の下限値未満であるため、ベイナイトが形成され、微細な(V、Nb)C析出物の個数密度が少なく、ビッカース硬さが劣っている。   Comparative Example No. Since No. 8 was not rapidly cooled, the number density of fine (V, Nb) C precipitates was small, and Vickers hardness was inferior. In addition, FIG. 8 shows a TEM photograph of 8 (V, Nb) C precipitates. Comparative Example No. In No. 9, since the rapid cooling rate is less than the lower limit of the claims, the number density of fine (V, Nb) C precipitates is small, and the Vickers hardness is inferior. Comparative Example No. No. 10 has a rapid cooling end temperature exceeding the upper limit of the claims, so that the number density of fine (V, Nb) C precipitates is small and Vickers hardness is inferior. Comparative Example No. No. 11 has a rapid cooling rate less than the lower limit of the claims, so that bainite is formed, the number density of fine (V, Nb) C precipitates is small, and Vickers hardness is inferior.

比較例No.12は、緩冷却速度が請求範囲の下限値未満であるため、微細な(V、Nb)C析出物の個数密度が少なく、ビッカース硬さが劣っている。比較例No.13は、緩冷却速度が請求範囲の上限値を超えるため、ベイナイトが形成され、微細な(V、Nb)C析出物の個数密度が少なく、ビッカース硬さが劣っている。比較例No.14は、V量が請求範囲の上限値を超えているため、ベイナイトが形成され、微細な(V、Nb)C析出物の個数密度が少なく、ビッカース硬さが劣っている。比較例No.15は、Nbを含有していないため、Gf粒度番号が小さく、微細な旧オーステナイト粒が得られていない。また、図1(b)に比較例No.15のフェライト−パーライト組織の光学顕微鏡写真を示す。   Comparative Example No. No. 12, since the slow cooling rate is less than the lower limit of the claims, the number density of fine (V, Nb) C precipitates is small, and the Vickers hardness is inferior. Comparative Example No. In No. 13, since the slow cooling rate exceeds the upper limit of the claims, bainite is formed, the number density of fine (V, Nb) C precipitates is small, and the Vickers hardness is inferior. Comparative Example No. No. 14, since the amount of V exceeds the upper limit of the claims, bainite is formed, the number density of fine (V, Nb) C precipitates is small, and the Vickers hardness is inferior. Comparative Example No. Since No. 15 does not contain Nb, the Gf particle size number is small, and fine old austenite grains are not obtained. Further, in FIG. An optical micrograph of 15 ferrite-pearlite structures is shown.

S1 加熱処理工程
S2 熱間鍛造工程
S3 急冷却工程
S4 緩冷却工程
S1 Heat treatment process S2 Hot forging process S3 Rapid cooling process S4 Slow cooling process

Claims (2)

C:0.20〜0.80質量%、
Si:0.50質量%以下、
Mn:0.40〜1.00質量%、
P:0.050質量%以下、
S:0.050質量%以下、
V:0.20〜0.80質量%、
Nb:0.02〜0.30質量%、
N:0.0100質量%以下
を含有し、残部がFeおよび不可避的不純物である組成からなり、
旧オーステナイト粒のGf粒度番号が7以上であるフェライト−パーライト組織からなり、
フェライトおよびパーライト中の直径:10nm以下の(V、Nb)C析出物の個数密度が5000個/μm以上であることを特徴とする高強度・高靭性非調質熱間鍛造部品。
C: 0.20 to 0.80 mass%,
Si: 0.50 mass% or less,
Mn: 0.40 to 1.00% by mass,
P: 0.050 mass% or less,
S: 0.050 mass% or less,
V: 0.20-0.80 mass%,
Nb: 0.02 to 0.30 mass%,
N: 0.0100% by mass or less, with the balance being Fe and inevitable impurities,
It consists of a ferrite-pearlite structure whose Gf particle size number of the prior austenite grains is 7 or more,
A high-strength, high-toughness, non-tempered hot forged part characterized in that the number density of (V, Nb) C precipitates having a diameter of 10 nm or less in ferrite and pearlite is 5000 pieces / μm 2 or more.
請求項1に記載の高強度・高靭性非調質熱間鍛造部品の製造方法であって、
前記組成からなる鋼素材を下記式(1)で算出されるTNbCとなるように加熱処理する加熱処理工程と、
加熱処理された鋼素材を、1050℃以上で前記加熱温度以下の鍛造温度で熱間鍛造し、その熱間鍛造の際の真歪量が0.3以上である熱間鍛造工程と、
熱間鍛造終了後、3.0℃/秒以上の冷却速度で急冷却し、その急冷却の際の急冷却終了温度が550〜720℃である急冷却工程と、
急冷却終了後、0.1℃/秒以上1.5℃/秒以下の冷却速度で緩冷却し、その緩冷却の際の緩冷却終了温度が400℃以下である緩冷却工程とを含むことを特徴とする高強度・高靭性非調質熱間鍛造部品の製造方法。
−14000/(log([%C]・0.01)−7.58)−273≦TNbC(℃)≦−14000/(log([%C]・([%Nb]−0.01))−7.58)−273・・・(1)
(ただし、前記式(1)において、[%C]、[%Nb]は、前記C、前記Nbの各含有量(質量%)とする。)
A method for producing a high-strength, high-toughness non-tempered hot forged part according to claim 1 ,
A heat treatment step of heat-treating the steel material having the above composition so as to be TNbC calculated by the following formula (1);
A hot forging process in which the heat-treated steel material is hot forged at a forging temperature of 1050 ° C. or higher and lower than the heating temperature, and the true strain amount during the hot forging is 0.3 or more;
After completion of hot forging, rapid cooling is performed at a cooling rate of 3.0 ° C./second or more, and a rapid cooling process at a rapid cooling end temperature of 550 to 720 ° C.,
Including a slow cooling step in which the slow cooling is performed at a cooling rate of 0.1 ° C./second or more and 1.5 ° C./second or less after the end of the rapid cooling, and the slow cooling end temperature is 400 ° C. or less. A manufacturing method of high strength and high toughness non-tempered hot forged parts characterized by
−14000 / (log ([% C] · 0.01) −7.58) −273 ≦ T NbC (° C.) ≦ −14000 / (log ([% C] · ([% Nb] −0.01) ) -7.58) -273 (1)
(However, in the formula (1), [% C] and [% Nb] are the contents (mass%) of C and Nb.)
JP2010254500A 2010-11-15 2010-11-15 High-strength, high-toughness non-tempered hot forged parts and manufacturing method thereof Active JP5512494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010254500A JP5512494B2 (en) 2010-11-15 2010-11-15 High-strength, high-toughness non-tempered hot forged parts and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010254500A JP5512494B2 (en) 2010-11-15 2010-11-15 High-strength, high-toughness non-tempered hot forged parts and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012102390A JP2012102390A (en) 2012-05-31
JP5512494B2 true JP5512494B2 (en) 2014-06-04

Family

ID=46393118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010254500A Active JP5512494B2 (en) 2010-11-15 2010-11-15 High-strength, high-toughness non-tempered hot forged parts and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5512494B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5639494B2 (en) * 2011-02-08 2014-12-10 株式会社神戸製鋼所 Manufacturing method of ferrite-pearlite type non-tempered forged parts
JP5639493B2 (en) * 2011-02-08 2014-12-10 株式会社神戸製鋼所 Manufacturing method of ferrite-pearlite type non-tempered forged parts
DE112021001166T5 (en) * 2020-02-21 2022-12-08 Nippon Steel Corporation STEEL WIRE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10195530A (en) * 1996-12-28 1998-07-28 Daido Steel Co Ltd Production of high strength and high toughness ferrite + pearlite type non-tempered forged article
JP4497842B2 (en) * 2003-05-26 2010-07-07 新日本製鐵株式会社 Method for manufacturing ultra-high temperature hot forged non-tempered parts
JP4699341B2 (en) * 2006-11-17 2011-06-08 株式会社神戸製鋼所 High strength hot forged non-tempered steel parts with excellent fatigue limit ratio

Also Published As

Publication number Publication date
JP2012102390A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
KR101520208B1 (en) Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
EP3222742B1 (en) Rolled steel bar or rolled wire material for cold-forged component
JP6432932B2 (en) High strength and high toughness steel parts for machine structures excellent in pitting resistance and wear resistance and method for manufacturing the same
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
JP6401143B2 (en) Method for producing carburized forging
WO2007123164A1 (en) Piston ring material for internal combustion engine
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
CN107614723B (en) Spring steel
JP6620490B2 (en) Age-hardening steel
JP5871085B2 (en) Case-hardened steel with excellent cold forgeability and ability to suppress grain coarsening
JP4631618B2 (en) Manufacturing method of steel parts for bearings with excellent fatigue characteristics
JP5512494B2 (en) High-strength, high-toughness non-tempered hot forged parts and manufacturing method thereof
JP2007211314A (en) Method for hot-forging non-heat-treated parts
JP5204593B2 (en) Manufacturing method of high strength non-tempered hot forged steel
JP5413350B2 (en) Rolled steel for hot forging and method for producing the same
KR20220081375A (en) Steel forged parts and their manufacturing method
JP6828591B2 (en) Bearing steel and bearing parts
KR101301617B1 (en) Material having high strength and toughness and method for forming tower flange using the same
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP2012153916A (en) Method for producing high-strength non-heat-treated hot-forged steel
JP6303866B2 (en) High-strength steel material and manufacturing method thereof
WO2013018893A1 (en) Untempered steel for hot casting, hot-casted untempered article and method for producing same
CN106167879A (en) Maraging steel
JP4121416B2 (en) Non-tempered hot forged parts for machine structure and manufacturing method thereof
JP7287448B1 (en) Warm forged parts for carburizing and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140326

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Country of ref document: JP

Ref document number: 5512494