JP4647503B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP4647503B2
JP4647503B2 JP2006012463A JP2006012463A JP4647503B2 JP 4647503 B2 JP4647503 B2 JP 4647503B2 JP 2006012463 A JP2006012463 A JP 2006012463A JP 2006012463 A JP2006012463 A JP 2006012463A JP 4647503 B2 JP4647503 B2 JP 4647503B2
Authority
JP
Japan
Prior art keywords
air
unit
conditioning
differential pressure
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006012463A
Other languages
Japanese (ja)
Other versions
JP2007192505A (en
Inventor
良一 桜井
晃 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Maeda Corp
Original Assignee
Tokyo Electric Power Co Inc
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Maeda Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2006012463A priority Critical patent/JP4647503B2/en
Publication of JP2007192505A publication Critical patent/JP2007192505A/en
Application granted granted Critical
Publication of JP4647503B2 publication Critical patent/JP4647503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、建物の空調システムに係り、特に、乾式二重床の床下空間を給気経路として利用しながら、1台の空調機で全室を個別に温度制御することができるものに関する。   The present invention relates to an air conditioning system for a building, and more particularly, to one that can individually control the temperature of all rooms with a single air conditioner while using an underfloor space of a dry double floor as an air supply path.

住宅用の空調設備は、入居者自身により室毎に購入設置されるルームエアコンを代表とする冷暖房設備と、浴室天井に設けた換気設備と各室外壁に設けられる自然給気口で構成される24時間換気設備で構成されることが多い。
この場合、1住戸に複数台のエアコン室内機と、屋外やバルコニーに同数のエアコン室外機が設けられることになる。そのため特に室外スペース不足や美観上の問題があった。
これに加えて床暖房設備が設けられることは珍しくなく、暖房設備が二重に設けられる不経済性があった。そして、換気に伴う自然給気口からの冬期冷気は非常に不快で、さらに暖房エネルギーが増大するため、入居者が24時間換気設備を停止したり自然給気口の内部ダンパを閉鎖したりすることは珍しくなかった。
Residential air-conditioning equipment consists of air-conditioning equipment represented by room air-conditioners that are purchased and installed for each room by the residents themselves, ventilation equipment provided on the ceiling of the bathroom, and natural air supply openings provided on the outer walls of each room. Often consists of 24-hour ventilation.
In this case, a plurality of air conditioner indoor units are provided in one dwelling unit, and the same number of air conditioner outdoor units are provided outdoors or on a balcony. For this reason, there was a lack of outdoor space and aesthetic problems.
In addition to this, it is not uncommon for floor heating facilities to be provided, and there was an uneconomical effect that heating facilities were provided twice. And the cold in the winter from the natural air intake due to ventilation is very uncomfortable and the heating energy increases, so the resident stops the ventilation equipment for 24 hours or closes the internal damper of the natural air intake That was not uncommon.

これらに対して、美観やスペース上のニーズと、建設段階で建物にエアコンがビルトインされていることのスマート性や先進性に対するニーズから、1台のエアコン室外機を用いて数台の室内機を個別(室別)に運転できるマルチエアコンが普及し、天井内にエアコン室内機が設置される事例も増え始めている。一方で1台の大容量のエアコン室内機から各室に送風ダクトを配し、全館を冷暖房するセントラル空調システムも、導入数は少ないが実用化されている。換気装置においては、第一種熱交換換気装置を設けて、各室へダクトを配する方式とすることで、給排気間での熱交換を行い省エネルギーと快適性向上を図る事例が増えつつある。   On the other hand, because of the aesthetics and space needs and the need for smartness and advancedness that the air conditioner is built in the building at the construction stage, several indoor units are installed using one air conditioner outdoor unit. Multi-air conditioners that can be operated individually (by room) have become widespread, and the number of cases where air conditioner indoor units are installed in the ceiling is also increasing. On the other hand, a central air-conditioning system in which air ducts are arranged in each room from one large-capacity air-conditioning indoor unit to cool and heat the entire building has been put into practical use although the number of introductions is small. In ventilation systems, there is an increasing number of cases where a first-class heat exchange ventilator is installed and ducts are arranged in each room to exchange heat between the air supply and exhaust to improve energy saving and comfort. .

マルチエアコンは、1台の室外機で2〜4台の室内機を作動できるが、各室の冷暖房負荷が大きく異なる場合に対応する必要があるために制御システムが複雑となり、複雑な制御がなされる条件で運転された場合には、冷暖房効率(成績係数)が低下する問題があった。 そして室毎にエアコンユニットを必要数設置する場合に比べて割高となる問題があった。
またこのマルチエアコンを採用した場合、リビング等の大きな空間では均質な室内環境の実現、美観性向上のため、天井裏に室内機を設置する天井カセット式が採用されることが多いが、階高が必用となり施工費が向上したり、下がり天井により室内空間に圧迫感が生まれる問題があった。
一方で、近年の住宅にはエアコンとは別に床暖房設備も併せて設けられることが多く、暖房設備初期費用が過大となり、省資源面での問題もあった。また近年のエアコンは省エネルギーの観点から冷房運転時の室内機内部蒸発器(熱交換器)の蒸発温度を高めることで機器効率向上が図られており、これに伴い特に梅雨時期に除湿が十分になされない問題も顕在化しつつある。
Multi air conditioners can operate 2 to 4 indoor units with one outdoor unit, but the control system is complicated and complicated control is required because it is necessary to cope with the case where the heating and cooling load in each room is significantly different. When operating under such conditions, there was a problem that the cooling / heating efficiency (coefficient of performance) was lowered. And there was a problem that it becomes expensive compared with the case where the required number of air conditioner units are installed in each room.
Also, when this multi air conditioner is adopted, a ceiling cassette type with indoor units installed in the back of the ceiling is often used to achieve a homogeneous indoor environment and improve aesthetics in large spaces such as living rooms. However, there was a problem that the construction cost was increased, and that the falling ceiling created a feeling of pressure in the indoor space.
On the other hand, in recent homes, floor heating equipment is often provided in addition to the air conditioner, so that the initial cost of the heating equipment is excessive and there is a problem in terms of resource saving. In recent years, air conditioners have been designed to improve equipment efficiency by raising the evaporation temperature of the indoor unit internal evaporator (heat exchanger) during cooling operation from the viewpoint of energy saving. Problems that are not made are becoming apparent.

従来セントラル空調システムでは、多室制御の煩雑さを避けるため全室24時間冷暖房を前提とした方式が殆どであり、この方式では任意に室の冷暖房を停止したり、室別に設定温度を変更したりが出来ないため、不要な光熱費を低減したいといったニーズからあまり普及は進んでいない。
一方で、セントラル空調システムや第一種熱交換換気設備では、各室へ直径75〜150mm程度の空気搬送ダクトが必用なため、特に集合住宅では下がり天井の下がり厚みや下がり部面積が大きくなるため、階高が必用となり躯体施工費が向上したり、室内空間に圧迫感が生まれたりする問題があり普及が進まない。このような問題に対し、集合住宅での乾式二重床の床下空間を冷暖房や換気の搬送路として利用し、天井高さへの影響を低減するアイデアはこれまでに見られ、オフィスでは床吹出し空調システムとして実施例も多い。
Conventional central air-conditioning systems are mostly based on the premise that all rooms are air-conditioned for 24 hours in order to avoid the complexity of multi-room control. In this method, the air-conditioning of the rooms is arbitrarily stopped or the set temperature is changed for each room. It is not so popular because of the need to reduce unnecessary utility costs.
On the other hand, central air conditioning systems and first-class heat exchange ventilation equipment require air transport ducts with a diameter of about 75 to 150 mm in each room, especially in apartment buildings, because the falling ceiling height and falling area are large. However, there is a problem that the floor height is necessary and the construction cost of the frame is improved, and there is a problem that a feeling of pressure is generated in the indoor space, so that the spread does not progress. To solve this problem, there have been ideas to reduce the impact on the ceiling height by using the space under the dry double floor in apartment buildings as a transportation path for air conditioning and ventilation. There are many examples of air conditioning systems.

このような床吹出し空調システムの一例として特許文献1に記載の技術が知られている。この床吹出し空調システムでは、空調域の床下に二重床チャンバが形成され、天井上に天井還気チャンバが形成されている。また、室の一側面には,空調機械室が形成されている。空調機械室には、フィルタ、熱交換器、ファン、その他加湿器などを備える空調機が装置されている。そして、この空調機には還気ダクトと外気取入ダクトが接続されている。そしてこの空調機の稼動により,天井還気チャンバから取込んだ還気と外気を混ぜて、塵埃のろ過、温度調節及び湿度調節を行い、作り出した給気を二重床チャンバに送り、床吹出し口から室に供給するようになっている。
特開2003−322356号公報
A technique described in Patent Document 1 is known as an example of such a floor blowing air conditioning system. In this floor blowing air conditioning system, a double floor chamber is formed under the floor of the air conditioning area, and a ceiling return air chamber is formed on the ceiling. An air conditioning machine room is formed on one side of the room. In the air conditioning machine room, an air conditioner including a filter, a heat exchanger, a fan, and other humidifiers is installed. A return air duct and an outside air intake duct are connected to the air conditioner. By operating this air conditioner, the return air taken from the ceiling return air chamber is mixed with the outside air, the dust is filtered, the temperature is adjusted, and the humidity is adjusted. It is designed to be supplied from the mouth to the room.
JP 2003-322356 A

ところで、特に住宅用システムでは光熱費低減の観点から任意の室を任意に温度設定し、任意に空調停止するといった多室制御が求められる場合が多いが、上記特許文献1を始めとし、これまでの床吹出し空調システムでは、このような多室の細かな制御をするための具体的な機器構成や制御方法についての発明はなされておらず、住宅で採用するには実用面で不十分であった。   By the way, especially in a residential system, there are many cases where multi-room control such as arbitrarily setting the temperature of an arbitrary room and arbitrarily stopping air-conditioning is required from the viewpoint of reducing utility costs. In the floor blow-off air conditioning system, no specific device configuration or control method for fine control of such multiple rooms has been made, and it is not practical enough to be used in a house. It was.

本発明は上記事情に鑑みてなされたものであり、任意の室を任意に温度設定し、任意に空調するといった多室制御を行うことができる空調システムを提供することを課題としている。   This invention is made | formed in view of the said situation, and makes it a subject to provide the air-conditioning system which can perform multi-room control of arbitrarily setting the temperature of arbitrary rooms and air-conditioning arbitrarily.

上記課題を解決するために、請求項1に記載の発明は、例えば図1〜図3に示すように、空調域4の床下空間3が給気経路とされ、空調ユニット6によって空調された空気が前記給気経路を通って床2に設けられた吹出し口30から前記空調域4に吹出され、該空調域4から前記空調ユニット6に還気する空調システムであって、
前記空調ユニット6は、これによって空調された空気を床下空間3に送風する床下送気ファン17と、床下空間3と空調域4との差圧を検出する静圧差検出器23と、この静圧差検出器23によって検出された差圧に基づいて前記床下送気ファン17の回転数を制御するファン回転数制御器24とを備え、
前記吹出し口30を開閉する開閉ダンパ32と、前記空調域4の温度を検出し、この検出した温度と設定温度との差に基づいて前記開閉ダンパ32を開閉制御する温度調節器35とを有し、
前記温度調節器35による開閉ダンパ32の制御に伴って、前記ファン回転数制御器24によって前記床下送気ファン17の回転数を前記床下空間3と空調域4との差圧が所定値となるように制御するとともに、一定制御する差圧設定値を床下送気ファン17の回転数に基づき可変制御し、
前記空調域内の複数の室の開閉ダンパがひとつでも開となっている場合は、いずれかの室に冷暖房負荷があると判断して、前記差圧設定値を所定の差圧Aとし、
前記開閉ダンパが全て閉鎖されている場合は、いずれの室にも冷暖房が必要でないと判断して、前記差圧設定値を前記差圧Aより低い所定の差圧Bと変更させる2段制御とすることを特徴とする。
例えば、差圧Aは、冷暖房に必要となる風量A(200〜300m3/h)が開状態の開閉ダン
パと床換気開口(開閉ダンパによって開閉される開口以外の開口で、床下空間と空調域とを連通する連通口)の両者を経て床下空間から空調域(室)へ供給されるように15Pa程度に制御され、差圧Bは、24時間換気に必要となる風量B(20m3/h程度)が床換気開口から供給されるように、3Pa程度に制御すればよい。
なお、床吹出しユニットの、床換気開口(開閉ダンパによって開閉される開口以外の開口で、床下空間と空調域とを連通する連通口)を、換気対象室床面積が目盛られたスライド式開口とすれば、設置工事終了後に換気用の所要開口面積を適切に容易に調整できる。ここでの調整機能により全室の開閉ダンパが閉となり、床上下差圧制御が差圧Bとなった時に全室において法定換気回数0.5回/h丁度を満足する風量が空調域(室)へ適切に吹き出される。なお、多室の吹出し口部開閉ダンパが全閉となったかは、自動回転数制御される床下送気ファンの回転数により検知すればよい。その他に当該ファン部に流量センサを設ける方法や、全吹出し口部ダンパへ検知配線を行う方法でももちろん機能するが、配線手間が無い点や、センサが不要な点で床下送気ファン部にて回転数を検知する方法が経済的である。
In order to solve the above problem, the invention described in claim 1 is an air conditioned by an air conditioning unit 6 in which the underfloor space 3 of the air-conditioned area 4 is an air supply path as shown in FIGS. Is an air conditioning system that is blown out from the air outlet 30 provided in the floor 2 through the air supply path to the air conditioning area 4 and returns to the air conditioning unit 6 from the air conditioning area 4.
The air conditioning unit 6 includes an underfloor air supply fan 17 that blows air conditioned by the air to the underfloor space 3, a static pressure difference detector 23 that detects a differential pressure between the underfloor space 3 and the air conditioning area 4, and the static pressure difference. A fan rotation speed controller 24 for controlling the rotation speed of the underfloor air supply fan 17 based on the differential pressure detected by the detector 23;
An open / close damper 32 that opens and closes the outlet 30 and a temperature regulator 35 that detects the temperature of the air-conditioning area 4 and controls the open / close damper 32 based on the difference between the detected temperature and the set temperature. And
Along with the control of the open / close damper 32 by the temperature regulator 35, the fan rotation speed controller 24 sets the rotation speed of the underfloor air supply fan 17 to a predetermined value between the underfloor space 3 and the air conditioning area 4. The differential pressure set value for constant control is variably controlled based on the rotational speed of the underfloor air supply fan 17 ,
If any one of the open / close dampers of the plurality of rooms in the air-conditioning area is open, it is determined that any room has an air-conditioning load, and the differential pressure setting value is set to a predetermined differential pressure A,
A two-stage control for determining that no air conditioning is required in any of the chambers when all of the open / close dampers are closed, and changing the differential pressure setting value to a predetermined differential pressure B lower than the differential pressure A; characterized in that it.
For example, the differential pressure A is an open / close damper in which the air volume A (200 to 300 m3 / h) required for air conditioning is open.
About 15 Pa so that it is supplied from the underfloor space to the air-conditioned area (room) via both the floor and the floor ventilation opening (the opening other than the opening opened and closed by the open / close damper, and the communication port connecting the under-floor space and the air-conditioned area) The differential pressure B may be controlled to about 3 Pa so that the air volume B (about 20 m 3 / h) necessary for 24-hour ventilation is supplied from the floor ventilation opening.
In addition, the floor ventilation opening of the floor blowing unit (the opening other than the opening that is opened and closed by the opening / closing damper and the communication opening that communicates the underfloor space and the air-conditioning area) with the sliding opening with the floor area to be ventilated scaled Then, the required opening area for ventilation can be adjusted appropriately and easily after the installation work is completed. The adjustment function here closes the open / close dampers of all the rooms, and when the floor top / bottom differential pressure control becomes differential pressure B, the air volume that satisfies the legal ventilation rate of 0.5 times / h in all rooms is sent to the air conditioning area (room) Properly blown out. Whether the multi-chamber outlet opening / closing damper is fully closed may be detected based on the number of rotations of the underfloor air supply fan that is controlled automatically. In addition, the method of providing a flow sensor in the fan section and the method of performing detection wiring to all the blowout opening dampers will of course function, but there is no need for a sensor or a sensor is not required. A method for detecting the rotational speed is economical.

請求項1に記載の発明によれば、まず、空調ユニットにおける冷暖房は、空調ユニットのメインスイッチおよび開閉ダンパの作動状況に伴って変化する床下空間と空調域間の差圧と床下送気ファンの送風量の関係にて、発停・制御される。
開閉ダンパは、温度調節器での検知温度と設定温度の偏差比較にのみより開閉制御され、空調ユニットとは配置、電気信号的に独立している。そして、この開閉ダンパが、温度調節器によって開放されると、これに伴って、床下空間と空調域(床上空間)の上下差圧が所定の値で一定となるようにする床下送気ファンのファン回転数制御器によって、床下送気ファン風量が増大するようにファン回転数を制御する。
これにより吹出し口部での床下空間と空調域との間の床上下差圧も概ね一定値で制御されるため、開閉ダンパの開閉に伴う床上下連通開口面積変化に伴い、床上空間(空調域)への送気量が自然に適切に決定される。したがって、複数のそれぞれの室に、吹出し口および開閉ダンパ等を備えた吹出しユニットと温度調節器を設けることによって、一つの空調ユニットによって全室を個別に、任意の温度に設定し、任意に空調できる、すなわち多室制御を行うことができる。
また、一定制御する差圧設定値を床下送気ファンの回転数に基づき可変制御するので、全室で冷暖房設定温度が満たされる若しくは冷暖房が停止されており、全開閉ダンパが閉鎖された時に、床上下差圧制御の設定値を低下させることができるので、換気の所要風量のみを空調域(室)へ給気でき送気エネルギーの無駄を省ける。
According to the first aspect of the present invention, first, the cooling and heating in the air conditioning unit is performed by the differential pressure between the underfloor space and the air conditioning area, which changes with the operating state of the main switch and the opening / closing damper of the air conditioning unit, and the underfloor air supply fan. It is started and stopped and controlled according to the relationship of the air flow.
The open / close damper is controlled to open / close only by comparing the difference between the temperature detected by the temperature controller and the set temperature, and is independent of the air conditioning unit in terms of arrangement and electrical signal. Then, when this open / close damper is opened by the temperature controller, an accompanying lower floor air-feeding fan that makes the differential pressure between the underfloor space and the air-conditioning area (floor space) constant at a predetermined value. The fan rotation speed controller controls the fan rotation speed so that the underfloor air supply fan air volume increases.
As a result, the floor vertical pressure difference between the underfloor space and the air-conditioning area at the air outlet is also controlled at a substantially constant value. Therefore, the floor space (air-conditioning area) ) Is naturally and appropriately determined. Therefore, by providing an air outlet unit and temperature controller with air outlets, opening / closing dampers, etc. in each of the plurality of chambers, all the rooms are individually set to an arbitrary temperature by an air conditioning unit, and are optionally air conditioned. Yes, that is, multi-room control can be performed.
In addition, since the differential pressure set value for constant control is variably controlled based on the number of rotations of the underfloor air supply fan, when the heating / cooling set temperature is satisfied in all the rooms or when the heating / cooling is stopped, and all the open / close dampers are closed, Since the set value of the floor vertical differential pressure control can be reduced, only the required air volume for ventilation can be supplied to the air-conditioning area (room), and waste of air supply energy can be saved.

また、全室で冷暖房設定温度が満たされる若しくは冷暖房が停止されており、全開閉ダンパが閉鎖された時に、床上下の差圧設定値AをBに低下させることで、例えば24時間換気の所要風量のみを室へ給気でき送気エネルギーの無駄を省ける。(住戸全体の床下空間と床上空間(空調域)の床吹出し口以外の開口や建材間の隙間は、通常1cm2/m2(床面積)前後であり、常に床上下差圧を差圧Aで一定制御した場合に、送風量が過剰となる場合が多い。またこの面積は建付け精度により大きく変わるため、この機能が有効となる)。 Also, when the air conditioning set temperature is satisfied in all the rooms or the air conditioning is stopped, and when all the open / close dampers are closed, the differential pressure set value A above and below the floor is reduced to B, for example, 24 hours ventilation is required. Only the air volume can be supplied to the room, and waste of air supply energy can be saved. (The gap between the floor and the floor space of the entire dwelling unit other than the floor outlet and the building material is usually around 1cm2 / m2 (floor area), and the floor differential pressure is always constant at the differential pressure A. In many cases, the amount of air flow becomes excessive when controlled, and this area varies greatly depending on the installation accuracy, so this function is effective).

請求項に記載の発明は、請求項1に記載の空調システムにおいて、
前記空調ユニット6は、空気を加温または冷却する冷暖房ユニット15と換気ユニット8とを備えており、
前記換気ユニット8は、前記還気の一部を外部に放出するとともに、外部の新鮮な空気を、この新鮮な空気と前記還気の一部と熱交換したうえで、前記冷暖房ユニット15に供給することを特徴とする。
The invention according to claim 2 is the air conditioning system according to claim 1 ,
The air conditioning unit 6 includes a cooling / heating unit 15 for heating or cooling air and a ventilation unit 8,
The ventilation unit 8 discharges a part of the return air to the outside and supplies the fresh air outside to the air conditioning unit 15 after exchanging heat with the fresh air and a part of the return air. It is characterized by doing.

請求項に記載の発明によれば、換気ユニットが、還気の一部を外部に放出するとともに、外部の新鮮な空気を、この新鮮な空気と前記還気の一部と熱交換したうえで、冷暖房ユニットに供給するので、上述したような多室制御を行いつつ、換気を効率的にかつ容易に行うことができる。 According to the second aspect of the present invention, the ventilation unit discharges a part of the return air to the outside, and exchanges heat between the fresh fresh air and a part of the return air. Therefore, since it supplies to an air conditioning unit, ventilation can be performed efficiently and easily, performing multi-room control as mentioned above.

請求項に記載の発明は、請求項1または2に記載の空調システムにおいて、
前記冷暖房ユニット15はその還気口15aとエアコン室内機16とを連通する第1空気経路19と、
前記エアコン室内機16と前記床下送気ファン17とを連通する第2空気経路20と、
前記第1空気経路19に対向して配置され、前記第2空気経路20に連通する第3空気経路21と、
前記第1空気経路19と前記第3空気経路21との間に介在され、空気が前記第1空気経路19と第3空気経路21との間で通過可能な蓄熱材18と、
前記第2空気経路20を前記エアコン室内機16がONのときに開放し、OFFのときに閉鎖する流路切替ダンパ22と、
前記蓄熱材18の温度を検出しこの検出値に基づいて前記エアコン室内機16をON・OFF制御する温度センサとを備えていることを特徴とする。
The invention according to claim 3 is the air conditioning system according to claim 1 or 2 ,
The air conditioning unit 15 includes a first air path 19 that communicates the return air opening 15a with the air conditioner indoor unit 16, and
A second air path 20 communicating the air conditioner indoor unit 16 and the underfloor air supply fan 17;
A third air path 21 disposed opposite the first air path 19 and communicating with the second air path 20;
A heat storage material 18 interposed between the first air path 19 and the third air path 21 and allowing air to pass between the first air path 19 and the third air path 21;
A flow path switching damper 22 that opens the second air path 20 when the air conditioner indoor unit 16 is ON and closes when the air conditioner indoor unit 16 is OFF;
And a temperature sensor that detects the temperature of the heat storage material 18 and controls ON / OFF of the air conditioner indoor unit 16 based on the detected value.

請求項に記載の発明によれば、まず、エアコン室内機運転時は一定の送風温度と送風量で定格運転させるとともに、流路切替ダンパを開放とし、停止時には同ダンパを閉鎖する。これにより、エアコン室内機停止時には、還気口から流入してきた室内還気はエアコン室内機を通過せずに、第1空気経路から蓄熱材のみを通過し、第3空気経路から第2空気経路を経て、床下送気ファンによって床下空間に送気される。
一方、エアコン室内機運転時には還気口から流入してきた室内還気は第1空気経路を経てエアコン室内機を通るが、吹出し口の開閉ダンパの開閉状況に伴い変化する床下送気ファンの風量とエアコン室内機の風量(定格風量)のバランスによって、蓄熱材での空気通過方向とその量が自然に変更される。
According to the third aspect of the present invention, first, at the time of the air conditioner indoor unit operation, the rated operation is performed at a constant air temperature and the air flow rate, the flow path switching damper is opened, and the damper is closed when the air conditioner is stopped. Thus, when the air conditioner indoor unit is stopped, the indoor return air flowing in from the return air port does not pass through the air conditioner indoor unit, passes only the heat storage material from the first air path, and passes from the third air path to the second air path. After that, the air is sent to the underfloor space by the underfloor air supply fan.
On the other hand, when the air conditioner indoor unit is operating, the indoor return air flowing in from the return air vent passes through the air conditioner indoor unit via the first air path, and the air flow of the underfloor air supply fan that changes with the opening / closing state of the opening / closing damper of the outlet Depending on the balance of the air volume (rated air volume) of the air conditioner indoor unit, the direction and amount of air passing through the heat storage material are naturally changed.

つまり、床下送気ファン風量がエアコン室内機風量に対して少ない時は、前記蓄熱材にエアコン室内機通過後で冷暖房後の空気が第3空気経路を経て自然に流れ、逆に床下送気ファン風量がエアコン室内機風量より多い時には、第1空気経路を経て還気は第1空気経路を経てエアコン室内機と蓄熱材の両方を通過する作動をする。例えば、エアコン室内機が暖房運転されその時の室内機風量が700m3/hで一定運転され、開閉ダンパは2箇所開放され床下送気ファン風量が600m3/hの時は、蓄熱材を100m3/hの暖房後空気が通過する自然現象が起こり、蓄熱がなされる。この状態が継続し、蓄熱材温度が例えば45℃と高温になった時には、これを温度センサが検出して、この検出値(45℃)に基づいてエアコン室内機は停止(OFF)され、連携する流路切替えダンパが閉鎖されることで、600m3/hの室内還気は蓄熱材を通過し蓄熱材の温熱を吸熱して暖められた後に床下空間へ送気される。その後この状態が継続し、蓄熱材が例えば30℃になり放熱された時には、これを温度センサが検出して、再びエアコン室内機を運転(ON)させる。したがって、エアコン室内機を効率的に制御できる。 That is, when the air flow rate of the underfloor air supply fan is smaller than the air flow rate of the air conditioner indoor unit, the air after cooling and heating naturally flows through the third air path after passing through the air conditioner indoor unit to the heat storage material. When the air volume is larger than the air volume of the air conditioner indoor unit, the return air passes through both the air conditioner indoor unit and the heat storage material via the first air path. For example, when the air conditioner indoor unit is heated and operated at a constant air flow rate of 700 m 3 / h, the open / close dampers are opened at two locations, and the underfloor air supply fan air flow rate is 600 m 3 / h, the heat storage material is 100 m 3. Natural phenomenon occurs when air passes through after heating / h, and heat is stored. When this state continues and the temperature of the heat storage material becomes as high as 45 ° C., for example, this is detected by the temperature sensor, and the air conditioner indoor unit is stopped (OFF) based on this detected value (45 ° C.). By closing the flow path switching damper, the indoor return air of 600 m 3 / h passes through the heat storage material, absorbs the heat of the heat storage material and is warmed, and then is sent to the underfloor space. Thereafter, this state continues, and when the heat storage material reaches, for example, 30 ° C. and is dissipated, the temperature sensor detects this and operates (ON) the air conditioner indoor unit again. Therefore, the air conditioner indoor unit can be controlled efficiently.

本発明によれば、吹出し口の開閉ダンパが、温度調節器によって検出された温度と設定温度との差に基づいて温度調節器によって開放されると、これに伴って、床下空間と空調域(床上空間)の上下差圧が所定の値で一定となるようにする床下送気ファンのファン回転数制御器によって、床下送気ファン風量が増大するようにファン回転数を制御するので、吹出し口部での床下空間と空調域間の床上下差圧も概ね一定値で制御されるため、開閉ダンパの開閉に伴う床上下連通開口面積変化に伴い、床上空間(空調域)への送気量が自然に適切に決定される。したがって、複数のそれぞれの室に、吹出し口および開閉ダンパ等を備えた吹出しユニットと温度調節器を設けることによって、一つの空調ユニットによって全室を個別に、任意の温度に設定し、任意に空調できる、すなわち多室制御を行うことができる。   According to the present invention, when the opening / closing damper of the outlet is opened by the temperature controller based on the difference between the temperature detected by the temperature controller and the set temperature, the underfloor space and the air conditioning area ( The fan speed is controlled by the fan speed controller of the underfloor air supply fan so that the upper and lower differential pressure of the above floor space becomes constant at a predetermined value. Because the floor vertical pressure difference between the underfloor space and the air-conditioning area is controlled at a substantially constant value, the amount of air supplied to the space above the floor (air-conditioning area) with the change in the floor open / close communication opening area due to opening / closing of the open / close damper Is appropriately determined naturally. Therefore, by providing an air outlet unit and temperature controller with air outlets, opening / closing dampers, etc. in each of the plurality of chambers, all the rooms are individually set to an arbitrary temperature by an air conditioning unit, and are optionally air conditioned. Yes, that is, multi-room control can be performed.

以下、図面を参照して本発明の実施の形態について説明する。
(第1の実施の形態)
図1は本実施の形態の空調システム全体の概略を示している。図1に示すように、本実施の形態では、本空調システムを、マンション等の鉄筋コンクリート造りの建物の住戸に適用している。
住戸の躯体床(コンクリートスラブ)1の上方には、所定の間隔をもって床2が設けられている。なお、床2は図示しない支持脚等によって支持されている。このような乾式二重床構造は、床先行工法(従来は、住戸内に間仕切壁を構築してから、二重床を構築する壁先行工法で住戸内装は構築されてきた。)で構築されており、住戸内の床2の下方に住戸内で仕切りが無い床下空間3が形成されている。また、床2の上方は住人の生活空間であり、空調域4とされている。この空調域4内には、図示しない間仕切り壁が複数設けられており、これら間仕切り壁によって、空調域4内を所定の室に区画している。なお、間仕切り壁によって区画された各室どうしは密閉されているのではなくて、例えばドア等に設けられた換気孔、ドアの上下端とドア枠の上下枠との間の隙間、間仕切り壁に設けられた欄間等によって空気が流通可能となっている。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 1 shows an outline of the entire air conditioning system of the present embodiment. As shown in FIG. 1, in this Embodiment, this air-conditioning system is applied to the dwelling unit of reinforced concrete buildings, such as an apartment.
A floor 2 is provided above the housing floor (concrete slab) 1 of the dwelling unit with a predetermined interval. Note that the floor 2 is supported by a support leg or the like (not shown). Such a dry double floor structure is constructed by a floor advance construction method (in the past, the interior of a dwelling unit has been constructed by a wall advance construction method that constructs a double floor after constructing a partition wall in the dwelling unit). An underfloor space 3 without a partition in the dwelling unit is formed below the floor 2 in the dwelling unit. In addition, the upper part of the floor 2 is a living space for residents, and is an air-conditioning area 4. A plurality of partition walls (not shown) are provided in the air conditioning area 4, and the air conditioning area 4 is partitioned into predetermined rooms by these partition walls. It should be noted that the rooms partitioned by the partition walls are not hermetically sealed, for example, ventilation holes provided in doors, gaps between the upper and lower ends of the doors and the upper and lower frames of the door frames, and partition walls. Air can be circulated by the space provided.

コンクリートスラブ1の上面には厚さ25mm程度の樹脂被覆断熱材1a(図2参照)が敷設されており、また床下空間3の外壁に面する部分は十分な断熱が行われている。
前記床2のうち、居室窓際、外壁付近、キッチンユニット足元等の冷暖房や換気の給気が必要な空間(室)の床2には、床吹出しユニット5が設けられている。一方、住戸側には、空調ユニット6がコンクリートスラブ1に設置されており、この空調ユニット6が設置された空間と空調域4とは間仕切壁4aによって仕切られている。
空調域4の床下空間3は給気経路とされており、空調ユニット6によって空調された空気が給気経路を通って床2に設けられた吹出し口を備えた床吹出しユニット5から空調域4に吹出されるようになっている。なお、空調ユニット6によって空調された空気は床吹出しユニット5から行う他に、内装ボードとコンクリート壁の空間を床下空間3と連通させ当該空間3を介して壁に設けた壁吹出し口ユニットより吹き出す方法でもよい。
床下空間3を通る給気(空気)は、床下空間3を通過する間に、暖房時には床2を暖めた後に空調域4へ給気されるため、床2上の表面温度は室温より2〜4℃程度高くなり、足元から暖かい快適な環境を実現する効果がある。
A resin-coated heat insulating material 1a (see FIG. 2) having a thickness of about 25 mm is laid on the upper surface of the concrete slab 1, and a portion facing the outer wall of the underfloor space 3 is sufficiently insulated.
Among the floors 2, a floor blowing unit 5 is provided in the floor 2 of a space (room) that requires air conditioning and ventilation such as near the window of the living room, near the outer wall, and at the foot of the kitchen unit. On the other hand, the air conditioning unit 6 is installed in the concrete slab 1 on the dwelling unit side, and the space in which the air conditioning unit 6 is installed and the air conditioning area 4 are partitioned by a partition wall 4a.
The underfloor space 3 of the air-conditioning area 4 is used as an air supply path, and the air conditioned by the air-conditioning unit 6 is supplied from the floor blowing unit 5 having an outlet provided in the floor 2 through the air-supply path. It has come to be blown out. The air conditioned by the air conditioning unit 6 is supplied from the floor outlet unit 5 and is blown out from the wall outlet unit provided on the wall through the space 3 by connecting the interior board space and the concrete wall space to the underfloor space 3. The method may be used.
Since the supply air (air) passing through the underfloor space 3 passes through the underfloor space 3 and is heated to the air-conditioning area 4 after heating the floor 2 during heating, the surface temperature on the floor 2 is 2 to less than room temperature. The temperature rises by about 4 ° C, and has the effect of realizing a warm and comfortable environment from the feet.

床吹出しユニット5から吹出されて、所定(法定)換気風量(0.5回/h)に相当する一部の空気は、トイレやバス等を経て天井排気口7から換気ユニット8により屋外へ排出され、残りの空気は空調ユニット6に還気されるようになっている。なお、天井9の上方には、天井懐10が設けられており、この天井懐10に排気管11が配管され、この排気管11の一端部が前記天井排気口7に接続され、他端部が換気ユニット8に接続されている。   Part of the air blown out from the floor blowout unit 5 and corresponding to the predetermined (statutory) ventilation air volume (0.5 times / h) is discharged to the outside through the toilet unit, bath, etc., from the ceiling exhaust port 7 through the ventilation unit 8 The remaining air is returned to the air conditioning unit 6. A ceiling pocket 10 is provided above the ceiling 9, an exhaust pipe 11 is piped to the ceiling pocket 10, one end portion of the exhaust pipe 11 is connected to the ceiling exhaust port 7, and the other end portion. Is connected to the ventilation unit 8.

前記換気ユニット8は図2にも示すように、熱交換エレメント8aを備えており、排気管8cによって屋外へ排出する量と同量の外気を吸入管8bによって取り込み、この取り込んだ外気と、前記排気管11を通ってきた排気すべき室内空気とを熱交換エレメント8aによって熱交換を行った後に、熱交換された外気を供給管8dによって空調ユニット6に供給するようになっている。
そして、空調ユニット6に供給された外気と、空調域4からの還気は自然にミキシングされ床下空間3へ送気されるようになっている。なお、空調ユニット6が設置された空間と空調域4とを仕切る間仕切壁4aには、還気口4bが形成されており、空調域4からの還気は還気口4bを通って、空調ユニット6に供給されるようになっている。
As shown in FIG. 2, the ventilation unit 8 includes a heat exchange element 8a, and the intake pipe 8b takes in the same amount of outside air as is discharged to the outside through the exhaust pipe 8c. After heat exchange with the indoor air to be exhausted that has passed through the exhaust pipe 11 by the heat exchange element 8a, the heat exchanged outside air is supplied to the air conditioning unit 6 by the supply pipe 8d.
The outside air supplied to the air conditioning unit 6 and the return air from the air conditioning area 4 are naturally mixed and supplied to the underfloor space 3. Note that a return air port 4b is formed in the partition wall 4a that partitions the space where the air conditioning unit 6 is installed and the air conditioning region 4, and the return air from the air conditioning region 4 passes through the return air port 4b to be air-conditioned. It is supplied to the unit 6.

次に、前記空調ユニット6について、図2を参照して説明する。
空調ユニット6は、前記換気ユニット8と冷暖房ユニット15とを備えている。
冷暖房ユニット15は、エアコン室内機16、床下送気ファン17、空気熱媒式の蓄熱材18、第1空気経路19、第2空気経路20、第3空気経路21、流路切替ダンパ22、静圧差検出器23、ファン回転数制御器24、蓄熱材18の2ヶ所に設けられた温度センサ(図示略)、エアコン発停制御装置(図示略)等を備えている。
Next, the air conditioning unit 6 will be described with reference to FIG.
The air conditioning unit 6 includes the ventilation unit 8 and the air conditioning unit 15.
The air conditioning unit 15 includes an air conditioner indoor unit 16, an underfloor air supply fan 17, an air heat medium heat storage material 18, a first air path 19, a second air path 20, a third air path 21, a flow path switching damper 22, A temperature sensor (not shown), an air conditioner start / stop control device (not shown), and the like provided at two locations of the pressure difference detector 23, the fan rotation speed controller 24, and the heat storage material 18 are provided.

エアコン室内機16は熱交換器16aとファン16bとを備えており、エアコン室外機16c(図1参照)との協働によって、熱交換器16aを介して空気を加温または冷却するものである。また、加温または冷却された空気はファン16bによって、第2空気経路20や第3空気経路21側に排出されるようになっている。
床下送気ファン17は第2空気経路20を通ってきた空気を床下空間3に供給するものである。
空気熱媒式の蓄熱材18は、これを通る空気の熱を蓄熱したり、または蓄熱した熱を放熱できるものである。
The air conditioner indoor unit 16 includes a heat exchanger 16a and a fan 16b, and heats or cools the air through the heat exchanger 16a in cooperation with the air conditioner outdoor unit 16c (see FIG. 1). . The heated or cooled air is exhausted to the second air path 20 or the third air path 21 by the fan 16b.
The underfloor air supply fan 17 supplies air that has passed through the second air path 20 to the underfloor space 3.
The air heat medium type heat storage material 18 can store the heat of the air passing therethrough or can release the stored heat.

第1空気経路19は、冷暖房ユニット15の還気口15aとエアコン室内機16とを連通するものである。また、還気口15aの前部には空気から埃や塵等を取り除くフィルター15bが設けられている。
第2空気経路20は、エアコン室内機16と床下送気ファン17とを連通するものである。
第3空気経路21は、第1空気経路19に蓄熱材18を介して対向して配置され、第2空気経路20に連通するものである。したがって、空気は第1空気経路19と第3空気経路21との間で蓄熱材18を通して行き来可能となっている。
The first air path 19 communicates the return air opening 15 a of the air conditioning unit 15 and the air conditioner indoor unit 16. In addition, a filter 15b that removes dust and the like from the air is provided at the front of the return air port 15a.
The second air path 20 communicates the air conditioner indoor unit 16 and the underfloor air supply fan 17.
The third air path 21 is disposed to face the first air path 19 with the heat storage material 18 interposed therebetween, and communicates with the second air path 20. Therefore, air can go back and forth through the heat storage material 18 between the first air path 19 and the third air path 21.

流路切替ダンパ22は、エアコン室内機16がONのときに開放し、OFFのときに閉鎖するように制御されるものである。
静圧差検出器23は、床下空間3と空調域4との差圧を検出するものである。
ファン回転数制御器24は、静圧差検出器23によって検出された差圧に基づいて床下送気ファン17の回転数を制御するものである。
The flow path switching damper 22 is controlled to open when the air conditioner indoor unit 16 is ON and to close when the air conditioner indoor unit 16 is OFF.
The static pressure difference detector 23 detects a differential pressure between the underfloor space 3 and the air conditioning area 4.
The fan rotation speed controller 24 controls the rotation speed of the underfloor air supply fan 17 based on the differential pressure detected by the static pressure difference detector 23.

また、換気ユニット8は、還気の一部を外部に放出するとともに、外部の新鮮な空気を、この新鮮な空気と前記還気の一部と熱交換したうえで、冷暖房ユニット15の第1空気経路19に供給するようになっている。なお、換気ユニット8は、24時間換気用給排気ファン(図示略)、熱交換エレメント8aを備えている。   Further, the ventilation unit 8 discharges a part of the return air to the outside, and exchanges heat between the fresh air outside and a part of the return air. The air path 19 is supplied. The ventilation unit 8 includes a 24-hour ventilation supply / exhaust fan (not shown) and a heat exchange element 8a.

次に、前記床吹出しユニット5について、図2および図3を参照して説明する。
床吹出しユニット5は、床2に形成された吹出し口30と、この吹出し口30の出口に設けられた保護ガラリ31と、吹出し口30の入り口の一部に設けられて、空調域(室)4への空気の給気量を制御するための電動式の開閉ダンパ32と、前記吹出し口30の入り口の他部(連通口)に設けられたスライド式換気開口部33と、吹出し口30の下方に設けられた受け皿34とを備えている。
保護ガラリ31は、帯板31aに多数の矩形状のスリット31bを所定間隔で形成したものであり、これらスリット31bから空気が吹出されるようになっている。
開閉ダンパ32は中央部を軸として回動することによって、吹出し口30の入り口を開閉するものであり、温度調節器35によって開閉制御されるようになっている。
温度調節器35は、空調域4の温度を検出し、この検出した温度とエアコン室内機16の設定温度との差に基づいて開閉ダンパ32を開閉制御するようになっている。また、温度調節器35には、開閉ダンパ32を手動で開閉操作できる操作スイッチが設けられている。また、開閉ダンパ32の自動制御が不要な空調域4では手動で開閉ダンパ32を制御するスイッチを設けてもよい。
スライド式換気開口部33は、その連通口33aを、スライダ33bを左右に(図3(c)において左右)スライドさせることよって開閉して、連通口33aの面積調整を手動で可能としたものである。
受け皿34は、住人の過失などで吹出し口30から侵入した水分やゴミが床下空間3へ飛散しないように、これら水分やゴミを受けるものである。
Next, the floor blowing unit 5 will be described with reference to FIGS.
The floor blowing unit 5 is provided at a part of the outlet 30 formed in the floor 2, a protective gallery 31 provided at the outlet of the outlet 30, and the inlet of the outlet 30. An electric opening / closing damper 32 for controlling the amount of air supplied to 4, a sliding ventilation opening 33 provided at the other part (communication opening) of the inlet of the outlet 30, A receiving tray 34 provided below.
The protective gallery 31 is formed by forming a large number of rectangular slits 31b in the strip 31a at a predetermined interval, and air is blown out from these slits 31b.
The opening / closing damper 32 opens and closes the entrance of the outlet 30 by rotating around the central portion, and is controlled to be opened and closed by the temperature regulator 35.
The temperature adjuster 35 detects the temperature of the air-conditioning area 4 and controls the opening / closing damper 32 based on the difference between the detected temperature and the set temperature of the air conditioner indoor unit 16. The temperature controller 35 is provided with an operation switch that can manually open and close the open / close damper 32. Further, a switch for manually controlling the open / close damper 32 may be provided in the air-conditioning region 4 where automatic control of the open / close damper 32 is not required.
The sliding ventilation opening 33 is opened and closed by sliding the communication port 33a by sliding the slider 33b to the left and right (left and right in FIG. 3C), and the area of the communication port 33a can be manually adjusted. is there.
The saucer 34 receives moisture and dust so that moisture and dust that have entered through the outlet 30 due to the resident's negligence and the like do not scatter into the underfloor space 3.

前記温度調節器35は、床吹出しユニット5付近の空間温度が検知できればよく、市販される気温センサを内包した壁付け型温度調節器としても、床吹出し口部に放射温度センサを内包させ、室の天井表面温度を検知する温度調整器としてもよく、後者は建築・設備工事の手間を大きく低減できるメリットを有する。
なお、図4に示すように、放射型温度センサ36を使用する場合は、検知温度出力に移動平均処理や所定時間内(1分間程度)の最小値を検出する機能(ボトムホルダ)を設ける。温度検出範囲がφ300mm程度の放射温度センサ36をゆっくりスイングさせることで温度検出する天井部分を移動させ、所定時間内(1分間程度)の最小値を検出する機構がより望ましい。これら機構により、人体や天井照明37といった高温部が検知され開閉ダンパが誤作動することが防げるようになる。なお、図4において、符号36aは温度設定ダイヤル、36b,36cは冷暖切替スイッチ、36dはカバーである。
The temperature controller 35 only needs to be able to detect the space temperature in the vicinity of the floor blowing unit 5, and even as a wall-mounted temperature controller including a commercially available air temperature sensor, a radiation temperature sensor is included in the floor outlet port, It may be a temperature controller that detects the surface temperature of the ceiling, and the latter has the merit of greatly reducing the labor of construction and facilities construction.
As shown in FIG. 4, when using the radiation type temperature sensor 36, a moving average process and a function (bottom holder) for detecting a minimum value within a predetermined time (about 1 minute) are provided for the detected temperature output. A mechanism for detecting the minimum value within a predetermined time (about 1 minute) by moving the ceiling portion where the temperature is detected by slowly swinging the radiation temperature sensor 36 having a temperature detection range of about 300 mm is more desirable. By these mechanisms, it is possible to prevent a high temperature portion such as a human body or the ceiling lighting 37 from being detected and the opening / closing damper from malfunctioning. In FIG. 4, reference numeral 36a is a temperature setting dial, 36b and 36c are cooling / heating changeover switches, and 36d is a cover.

次に、上記構成の空調システムの作動・制御について説明する。なお、図1および図2において矢印は空気の流れを示している。
まず、冷暖房は、空調ユニット6のメインスイッチ及び開閉ダンパ32の作動状況に伴って変化する床下空間3と空調域4間の差圧と床下送気ファン17の送風量の関係にて、発停・制御される。
開閉ダンパ32は、温度調節器35での検知温度と設定温度の偏差比較にのみより開閉制御され、空調ユニット6とは配置、電気信号的に独立している。開閉ダンパ32の作動は、開閉の2段階のほか、設定温度と検知温度の偏差に伴い3段階、4段階とするのが有効である。この時、床上下差圧(床下空間3と空調域4との間の静圧差)が所定の値で一定となるように、床下送気ファン17の回転数をファン回転数制御器24によって制御する。
これにより床吹出しユニット5の床下空間3と吹出口上部空間の床上下差圧も概ね一定値で制御されるため、開閉ダンパ32の開閉に伴う床上下連通開口面積変化に伴い、床上空間(空調域)4への送気量が自然に適切に決定される。
Next, the operation and control of the air conditioning system having the above configuration will be described. In FIGS. 1 and 2, arrows indicate the air flow.
First, air conditioning is started and stopped by the relationship between the differential pressure between the underfloor space 3 and the air conditioning area 4 and the air flow rate of the underfloor air supply fan 17 that change according to the operating state of the main switch of the air conditioning unit 6 and the open / close damper 32.・ Controlled.
The opening / closing damper 32 is controlled to be opened / closed only by comparing the deviation between the temperature detected by the temperature controller 35 and the set temperature, and is independent of the air conditioning unit 6 in terms of arrangement and electrical signal. The operation of the opening / closing damper 32 is effective in three steps and four steps according to the deviation between the set temperature and the detected temperature, in addition to the two steps of opening and closing. At this time, the rotation speed of the underfloor air supply fan 17 is controlled by the fan rotation speed controller 24 so that the differential pressure between the floor and the floor (static pressure difference between the underfloor space 3 and the air-conditioning area 4) is constant at a predetermined value. To do.
As a result, the floor vertical pressure difference between the underfloor space 3 and the air outlet upper space of the floor blowing unit 5 is also controlled at a substantially constant value. Therefore, the floor space (air conditioning) Area) The air supply amount to 4 is appropriately determined naturally.

そして、この床上下差圧の制御設定値は、次のように2段階に変更させるものとした。すなわち、多室の開閉ダンパ32が一つでも開となっている場合は、いずれかの空間(室)に冷暖房負荷があると判断し、制御差圧設定値を差圧Aとし、全て閉鎖されている場合は、いずれの空間(室)も冷暖房が必要でないと判断し、床上下差圧制御設定値を差圧Bと変更させる。ちなみに、差圧Aは、冷暖房に必要となる風量A(200〜300m3/h)が開状態の開閉ダンパ32と床換気開口(連通口)33aから供給されるように15Pa程度に制御され、差圧Bは、24時間換気に必要となる風量B(20m3/h程度)が床換気開口から供給されるように、3Pa程度に制御する。
なお、スライド式換気開口部33の床換気開口(連通口)33aは、換気対象室床面積が目盛られたスライド式開口であるので、設置工事終了後に換気用の所要開口面積を適切に容易に調整できる。ここでの調整機能により全室の開閉ダンパ32が閉となり、床上下差圧制御が差圧Bとなった時に全室において法定換気回数0.5回/h丁度を満足する風量が住戸へ適切に吹き出される。なお、多室の吹出し口30の開閉ダンパ32が全閉となったかは、自動回転数制御される床下送気ファン17の回転数により検知する。その他に当該ファン部に流量センサを設ける方法の他に全吹出し口の開閉ダンパ32へ検知配線を行う方法でももちろん機能するが、配線手間が無い点や、センサが不要な点で床下送気ファン17にて回転数を検知する方法が経済的である。
And the control set value of this floor up-down differential pressure shall be changed in two steps as follows. That is, when even one of the multi-chamber open / close dampers 32 is open, it is determined that there is an air-conditioning load in any space (room), and the control differential pressure setting value is set as the differential pressure A, and all are closed. If it is determined that any of the spaces (rooms) does not require air conditioning, the floor vertical differential pressure control set value is changed to differential pressure B. Incidentally, the differential pressure A is controlled to about 15 Pa so that the air volume A (200 to 300 m 3 / h) necessary for air conditioning is supplied from the open / close damper 32 and the floor ventilation opening (communication opening) 33a. The differential pressure B is controlled to about 3 Pa so that the air volume B (about 20 m 3 / h) necessary for 24-hour ventilation is supplied from the floor ventilation opening.
Since the floor ventilation opening (communication opening) 33a of the sliding ventilation opening 33 is a sliding opening in which the floor area of the ventilation target room is graduated, the required opening area for ventilation can be appropriately and easily made after the installation work is completed. Can be adjusted. The adjustment function here closes the open / close dampers 32 in all rooms, and when the floor up / down differential pressure control becomes differential pressure B, the air volume that satisfies the legal ventilation rate of 0.5 times / h in all rooms is appropriate for the dwelling units. Is blown out. Whether the open / close damper 32 of the air outlet 30 of the multi-chamber is fully closed is detected by the number of rotations of the underfloor air supply fan 17 that is automatically controlled for the number of rotations. In addition to the method of providing a flow sensor in the fan unit, the method of detecting wiring to the opening / closing damper 32 of all the outlets of course also functions. However, the underfloor air supply fan in that there is no wiring effort and no sensor is required. The method of detecting the rotational speed at 17 is economical.

一方、エアコン室内機16は前述したメインスイッチや開閉ダンパ32の作動状況に加えて、蓄熱材18に設けた温度センサの検知温にも基づき発停制御する。蓄熱材18が暖房熱もしくは冷房熱で満たされればエアコン室内機16を停止させ、それら熱が放熱されればエアコン室内機16を運転させるように制御する。
そして、エアコン室内機運転時は一定の送風温度と送風量でエアコン室内機16を定格運転させ、エアコン室内機16の運転時には流路切替ダンパ22を開とし、停止時には同ダンパ22を閉とする。これにより、エアコン室内機停止時には室内還気はエアコン室内機16を通過せずに蓄熱材18のみを通過する。
そして、エアコン室内機運転時には室内還気はエアコン室内機16を通るが、開閉ダンパ32の開閉状況に伴い変化する床下送気ファン17の風量とエアコン室内機風量(定格風量)のバランスによって、蓄熱材18での空気通過方向とその量が自然に変更される。つまり、床下送気ファン風量がエアコン室内機風量に対して少ない時は、蓄熱材18にエアコン室内機16の熱交換器16a通過後で冷暖房後の空気が自然に流れ、逆に床下送気ファン風量がエアコン室内機風量より多い時には、還気はエアコン室内機16と蓄熱材18の両方を通過する作動をする。
On the other hand, the air conditioner indoor unit 16 performs start / stop control based on the detected temperature of the temperature sensor provided in the heat storage material 18 in addition to the operation state of the main switch and the opening / closing damper 32 described above. If the heat storage material 18 is filled with heating heat or cooling heat, the air conditioner indoor unit 16 is stopped, and if the heat is radiated, the air conditioner indoor unit 16 is controlled to operate.
During operation of the air conditioner indoor unit, the air conditioner indoor unit 16 is rated at a constant air temperature and flow rate. When the air conditioner indoor unit 16 is operated, the flow path switching damper 22 is opened, and when the air conditioner indoor unit 16 is stopped, the damper 22 is closed. . Thus, when the air conditioner indoor unit is stopped, the indoor return air does not pass through the air conditioner indoor unit 16 but passes only the heat storage material 18.
During the operation of the air conditioner indoor unit, the indoor return air passes through the air conditioner indoor unit 16, but the heat storage is performed by the balance between the air volume of the underfloor air supply fan 17 and the air conditioner indoor unit air volume (rated air volume) that changes according to the open / close state of the open / close damper 32. The direction and amount of air passing through the material 18 are naturally changed. That is, when the air flow rate of the underfloor air supply fan is less than the air flow rate of the air conditioner indoor unit, the air after cooling and heating naturally flows through the heat storage material 18 after passing through the heat exchanger 16a of the air conditioner indoor unit 16, and conversely, the air flow fan under the floor When the air volume is larger than the air conditioner indoor unit air volume, the return air operates to pass through both the air conditioner indoor unit 16 and the heat storage material 18.

例えば、エアコン室内機16が暖房運転されその時の室内機風量が700m3/hで一定運転され、開閉ダンパ32は2箇所開放され床下送気ファン風量が600m3/hの時は、蓄熱材18を100m3/hの暖房後空気が通過する自然現象が起こり、蓄熱がなされる。この状態が継続し、蓄熱材18の温度が例えば45℃と高温になった時には、エアコン室内機16は停止され、連携する流路切替ダンパ22が閉鎖されることで、600m3/hの室内還気は蓄熱材18を通過し蓄熱材18の温熱を吸熱して暖められた後に床下空間3へ送気される。その後この状態が継続し、蓄熱材18が例えば30℃になり放熱された時には、再びエアコン室内機16を運転させる。 For example, when the air conditioner indoor unit 16 is heated and operated at a constant air flow rate of 700 m 3 / h, the opening / closing damper 32 is opened at two locations, and the underfloor air supply fan air flow rate is 600 m 3 / h, the heat storage material 18 The natural phenomenon of passing air after heating at 100 m 3 / h occurs, and heat is stored. When this state continues and the temperature of the heat storage material 18 becomes as high as 45 ° C., for example, the air conditioner indoor unit 16 is stopped, and the associated flow path switching damper 22 is closed, so that the room of 600 m 3 / h is closed. The return air passes through the heat storage material 18, absorbs the heat of the heat storage material 18 and is warmed, and then is sent to the underfloor space 3. Thereafter, this state continues, and when the heat storage material 18 reaches, for example, 30 ° C. and is radiated, the air conditioner indoor unit 16 is operated again.

以上のように、本実施の形態によれば、開閉ダンパ32が、温度調節器35での検知温度と設定温度の偏差比較にのみより開閉制御され、空調ユニット6とは配置、電気信号的に独立している。そして、この開閉ダンパ32が、温度調節器35によって開放されると、これに伴って、床下空間3と空調域(床上空間)4の上下差圧が所定の値で一定となるように、床下送気ファン17の回転数をファン回転数制御器24によって制御する。
これにより吹出しユニット5での床下空間3と空調域4との間の床上下差圧も概ね一定値で制御されるため、開閉ダンパ32の開閉に伴う床上下連通開口面積変化に伴い、床上空間(空調域)への送気量が自然に適切に決定される。
したがって、複数のそれぞれの室に、吹出し口30や開閉ダンパ32等を備えた床吹出しユニット5と温度調節器35を設けることによって、一つの空調ユニット6によって全室を個別に、任意の温度に設定し、任意に空調できる、すなわち多室制御を行うことができる。
As described above, according to the present embodiment, the opening / closing damper 32 is controlled to be opened / closed only by comparing the deviation between the temperature detected by the temperature regulator 35 and the set temperature, and is arranged and electrically signaled with the air conditioning unit 6. being independent. When the opening / closing damper 32 is opened by the temperature regulator 35, the bottom differential pressure between the underfloor space 3 and the air-conditioned area (floor space) 4 becomes constant at a predetermined value. The rotational speed of the air supply fan 17 is controlled by the fan rotational speed controller 24.
As a result, the floor vertical pressure difference between the underfloor space 3 and the air-conditioning area 4 in the blowout unit 5 is also controlled at a substantially constant value. The amount of air supplied to the (air-conditioning area) is appropriately determined naturally.
Therefore, by providing the floor blowout unit 5 and the temperature controller 35 each having a blowout port 30 and an opening / closing damper 32 in each of the plurality of chambers, all the rooms are individually brought to an arbitrary temperature by the single air conditioning unit 6. It can be set and air-conditioned arbitrarily, that is, multi-room control can be performed.

このように1台の空調ユニット6を使いながら、単純な制御方法と機器構成にて多室制御が可能な全館冷暖房を実現できるため、室外機に要するスペースを縮小できバルコニーや室内の美観向上と省資源が図れる。
また、安定したエアコン室内機16の運転がなされるため機器効率が高まり、エアコンの定格容量ダウンによる低コスト化、耐久性向上、省エネルギーが実現できる。
また床下空間3を給気経路に利用したため、従来のセントラル型空調設備で必要であった給気ダクト及びダクト取付工事が不要となり、初期設備費の低減が可能となり、さらに階高への影響や、下がり天井や機器による室内空間の美観低減を少なくできる。
また、多室の冷暖房自動運転制御を実現し、床吹出しユニット5と温度調節器35が空調ユニット6と完全に独立しているので、設置工事、メンテナンス、制御方法が簡素化でき、費用低減が図れる。
In this way, while using a single air conditioning unit 6, it is possible to realize the entire building air conditioning that can be controlled in multiple rooms with a simple control method and equipment configuration, so the space required for the outdoor unit can be reduced and the aesthetics of the balcony and the room can be improved. Resources can be saved.
Moreover, since the stable operation of the air conditioner indoor unit 16 is performed, the device efficiency is increased, and the cost reduction, the durability improvement, and the energy saving can be realized by reducing the rated capacity of the air conditioner.
In addition, since the underfloor space 3 is used as the air supply path, the air supply duct and duct installation work required in the conventional central type air-conditioning equipment are not required, and the initial equipment cost can be reduced. It is possible to reduce the aesthetic reduction of the indoor space due to falling ceilings and equipment.
In addition, automatic cooling / heating operation control of multiple rooms is realized, and the floor blowing unit 5 and the temperature controller 35 are completely independent of the air conditioning unit 6, so that the installation work, maintenance, and control method can be simplified and the cost can be reduced. I can plan.

さらに冬期には暖房送風にて床2が加熱されるため床暖房効果を保有し、高価な床暖房設備を削減できるとともに、住戸全室でこの効果を得ることができ、さらにはこの床暖房効果も多室制御できる大きなメリットがある。
また、床下送気ファン17での床上下差圧の所定値制御機構により、多室の開閉ダンパ32の開閉状況の種々組み合わせによらず、自然現象に伴って最適風量を送気できる。この機構により空調ユニット6と床吹出しユニット5間に配線を行わず独立して配しても、多室制御がなされるため建築・設備工事費を低減できる。
また、全空調域(室)で冷暖房設定温度が満たされる若しくは冷暖房が停止されており、全開閉ダンパ32が閉鎖された時に、床上下差圧制御の設定値を低下させることで、24時間換気の所要風量のみを空間(室)へ給気でき送気エネルギーの無駄を省け、床吹出ユニットの吹出し面積を大きくする必要がない(住戸全体の床下空間と床上空間の床吹出し口以外の開口や建材間の隙間は、通常1cm2/m2(床面積)前後であり、常に床上下差圧を差圧Aで一定制御した場合に、送風量が過剰となる場合が多い。またこの面積は建付け精度により大きく変わるため、この機能が有効となる)。
Furthermore, since the floor 2 is heated by heating air in winter, the floor heating effect can be maintained, expensive floor heating equipment can be reduced, and this effect can be obtained in all the dwelling units. There is a great merit that multi-room control is possible.
Further, the predetermined value control mechanism of the floor vertical pressure difference in the underfloor air supply fan 17 allows the optimum air volume to be supplied in accordance with a natural phenomenon regardless of various combinations of the open / close states of the multi-room open / close damper 32. Even if the mechanism is independently arranged without wiring between the air conditioning unit 6 and the floor blowing unit 5 by this mechanism, the multi-room control is performed, so that the construction / equipment construction cost can be reduced.
In addition, when the air conditioning setting temperature is satisfied in all the air-conditioning areas (rooms) or the air conditioning is stopped, and the all opening / closing damper 32 is closed, the setting value of the floor vertical differential pressure control is reduced to provide 24-hour ventilation. It is possible to supply only the required air volume to the space (room), eliminate the waste of air supply energy, and it is not necessary to increase the blowout area of the floor blowout unit (opening other than the floor blowout opening of the floor space above the floor and the space above the floor The gap between building materials is usually around 1 cm 2 / m 2 (floor area), and when the floor vertical differential pressure is constantly controlled at the differential pressure A, the air flow is often excessive. This function is effective because it varies greatly depending on the installation accuracy).

また、床吹出しユニット5にスライド換気開口部33と受け皿34を設けたことで、対象空間の法定換気回数0.5回/hを住戸間取りによらず精度よく確保でき、また使用者の過失などで吹出し口30から侵入した水分やゴミが床下に拡散せず、清掃が可能となる。
また、換気ユニット8が、還気の一部を外部に放出するとともに、外部の新鮮な空気を、前記還気の一部と熱交換したうえで、冷暖房ユニット15に供給するので、上述したような多室制御を行いつつ、換気を効率的にかつ容易に行うことができる。
さらに、コンクリートスラブ1の上面に樹脂被覆断熱材1aを敷設し、床下空間3の外壁に面する部分に十分な断熱を施したので、コンクリートスラブへの熱流を低減し、さらに断熱材表面の放射率を高めたことで特に暖房効率が高まり、エアコン定格容量を低減できる。さらには、冬期には暖房送風にて床2が加熱されるため床2から暖かくなり、全室で床暖房効果が得られるため、住戸環境性能が高まると共に、床暖房設備を不要とできる。
In addition, by providing the slide ventilation opening 33 and the tray 34 in the floor blowing unit 5, the legal ventilation frequency of 0.5 times / h in the target space can be ensured accurately regardless of the floor plan of the dwelling unit, and the user's negligence, etc. Thus, moisture and dust that have entered from the outlet 30 do not diffuse under the floor, and cleaning becomes possible.
Further, the ventilation unit 8 discharges a part of the return air to the outside and supplies the fresh air outside to the air conditioning unit 15 after exchanging heat with a part of the return air. Ventilation can be performed efficiently and easily while performing multi-room control.
Furthermore, since the resin-coated heat insulating material 1a is laid on the upper surface of the concrete slab 1 and sufficient heat insulation is applied to the portion facing the outer wall of the underfloor space 3, the heat flow to the concrete slab is reduced, and the radiation of the surface of the heat insulating material is further reduced. Increasing the rate can increase heating efficiency and reduce the rated capacity of the air conditioner. Furthermore, since the floor 2 is heated by heating air in winter, the floor 2 is warmed, and the floor heating effect is obtained in all rooms. Therefore, the dwelling unit environmental performance is improved and the floor heating equipment can be made unnecessary.

図5は、空調ユニットの他の例を示すものである。
この空調ユニット40が、前記空調ユニット6と異なる点は、蓄熱材18を省略した点である。したがって、以下の説明では空調ユニット6と同様の構成要素には、同一符号を付してその説明を省略ないし簡略化する。
FIG. 5 shows another example of the air conditioning unit.
The air conditioning unit 40 is different from the air conditioning unit 6 in that the heat storage material 18 is omitted. Therefore, in the following description, the same components as those of the air conditioning unit 6 are denoted by the same reference numerals, and the description thereof is omitted or simplified.

空調ユニット40は、換気ユニット8と、冷暖房ユニット41とを備えている。
冷暖房ユニット41は、エアコン室内機(熱交換器16a)16、床下送気ファン17、床下空間3と空調域4との差圧を検出する静圧差検出器23、当該差圧を一定制御する床下送気ファン回転数制御器24、エアコン発停制御装置(図示略)等を備えている。
床下送気ファン17は前記空調ユニット6と同様に床上下差圧が所定の制御値となるように床下送気ファン回転数制御器24によって風量が可変制御される。エアコン室内機(熱交換器16a)16は、いずれかの開閉ダンパ32が開の状況で運転させ、全てが閉鎖しているときは停止させる。
この開閉ダンパ32の開閉状況は、前述のように、床下送気ファン17の回転数にて検知することとし、これにより空調ユニット40と床吹出しユニット5は電気的、制御的に独立している。
The air conditioning unit 40 includes a ventilation unit 8 and an air conditioning unit 41.
The air conditioning unit 41 includes an air conditioner indoor unit (heat exchanger 16a) 16, an underfloor air supply fan 17, a static pressure difference detector 23 that detects a differential pressure between the underfloor space 3 and the air conditioning area 4, and an underfloor that controls the differential pressure constant. An air supply fan rotation speed controller 24, an air conditioner start / stop control device (not shown), and the like are provided.
As with the air conditioning unit 6, the underfloor air supply fan 17 is variably controlled by the underfloor air supply fan rotation speed controller 24 so that the differential pressure across the floor reaches a predetermined control value. The air conditioner indoor unit (heat exchanger 16a) 16 is operated when any of the open / close dampers 32 is open, and is stopped when all of the open / close dampers 32 are closed.
As described above, the open / close state of the open / close damper 32 is detected by the number of rotations of the underfloor air supply fan 17, whereby the air-conditioning unit 40 and the floor blowing unit 5 are electrically independent and controllable. .

そして、前記風量可変状況や冷暖房ユニットへの環気温度によらず、冷暖房時それぞれ一定値の空気温度となるように(例えば暖房時:45℃、冷房時:15℃)作動させる。これにより単純な制御にて多室制御が実現する。前記空調ユニット6に比べて蓄熱材18がない分、エアコン室内機16の発停が頻繁となり機器安定運転ができないことや、冬期暖房時の除霜運転時に冷気が床吹出しユニット5から供給されるデメリットがあるが、後者については、床下空間を経由する間に冷気が昇温されるため、影響は大きくない。反面、空調ユニット6をコンパクトとすることができ、当ユニット6の上部を物入れなどに使用できるメリットがある。また、エアコン室内機16の熱交換器通過後の空気温度を一定制御する方式とした結果、冷房時に十分に除湿がなされる効果も得られている。   Then, regardless of the air volume variable status or the temperature of the air circulation to the air conditioning unit, the air temperature is set to a constant value during air conditioning (for example, heating: 45 ° C., cooling: 15 ° C.). This realizes multi-room control with simple control. Compared with the air conditioning unit 6, since there is no heat storage material 18, the air conditioner indoor unit 16 is frequently started and stopped, so that stable device operation is not possible, and cold air is supplied from the floor blowing unit 5 during defrosting operation during winter heating. Although there is a demerit, the latter has no significant effect because the temperature of the cold air rises while passing through the underfloor space. On the other hand, there is a merit that the air conditioning unit 6 can be made compact and the upper part of the unit 6 can be used for a container. Moreover, as a result of adopting a system in which the air temperature after passing through the heat exchanger of the air conditioner indoor unit 16 is controlled to be constant, an effect of sufficiently dehumidifying at the time of cooling is also obtained.

本発明に係る空調システムの一例を示すもので、その概略構成を示す図である。An example of the air-conditioning system which concerns on this invention is shown, and it is a figure which shows the schematic structure. 同、空調ユニットを示す断面図である。It is sectional drawing which shows an air-conditioning unit same as the above. 同、床吹出しユニットを示すもので、(a)は床吹出しユニットを示す断面図、(b)は平面図、(c)はスライド式換気開口部を示す平面図である。FIG. 2 shows a floor blowing unit, in which (a) is a sectional view showing the floor blowing unit, (b) is a plan view, and (c) is a plan view showing a sliding ventilation opening. 同、床吹出しユニットの他の例を示すもので、(a)は床吹出しユニットを示す断面図、(b)は平面図である。The other shows the other example of a floor blowing unit, (a) is sectional drawing which shows a floor blowing unit, (b) is a top view. 同、空調ユニットの他の例を示す断面図である。It is sectional drawing which shows the other example of an air-conditioning unit same as the above.

符号の説明Explanation of symbols

2 床
3 床下空間
4 空調域
5 床吹出しユニット
6,40 空調ユニット
8 換気ユニット
15,41 冷暖房ユニット
15a 還気口
16 エアコン室内機
17 床下送気ファン
18 蓄熱材
19 第1空気経路
20 第2空気経路
21 第3空気経路
22 流路切替ダンパ
23 静圧差検出器
24 ファン回転数制御器
30 吹出し口
32 開閉ダンパ
35 温度制御器
2 Floor 3 Under-floor space 4 Air-conditioning area 5 Floor outlet unit 6, 40 Air-conditioning unit 8 Ventilation unit 15, 41 Air-conditioning unit 15a Return air outlet 16 Air-conditioner indoor unit 17 Under-floor air supply fan 18 Heat storage material 19 First air path 20 Second air Path 21 Third air path 22 Flow path switching damper 23 Static pressure difference detector 24 Fan speed controller 30 Air outlet 32 Open / close damper 35 Temperature controller

Claims (3)

空調域の床下空間が給気経路とされ、空調ユニットによって空調された空気が前記給気経路を通って床に設けられた吹出し口から前記空調域に吹出され、該空調域から前記空調ユニットに還気する空調システムであって、
前記空調ユニットは、これによって空調された空気を床下空間に送風する床下送気ファンと、床下空間と空調域との差圧を検出する静圧差検出器と、この静圧差検出器によって検出された差圧に基づいて前記床下送気ファンの回転数を制御するファン回転数制御器とを備え、
前記吹出し口を開閉する開閉ダンパと、前記空調域の温度を検出し、この検出した温度と設定温度との差に基づいて前記開閉ダンパを開閉制御する温度調節器とを有し、
前記温度調節器による開閉ダンパの制御に伴って、前記ファン回転数制御器によって前記床下送気ファンの回転数を前記床下空間と空調域との差圧が所定の差圧設定値となるように制御するとともに、この差圧設定値を床下送気ファンの回転数に基づき可変制御し、
前記空調域内の複数の室の開閉ダンパがひとつでも開となっている場合は、いずれかの室に冷暖房負荷があると判断して、前記差圧設定値を所定の差圧Aとし、
前記開閉ダンパが全て閉鎖されている場合は、いずれの室にも冷暖房が必要でないと判断して、前記差圧設定値を前記差圧Aより低い所定の差圧Bと変更させる2段制御とすることを特徴とする空調システム。
The underfloor space of the air-conditioning area is an air supply path, and the air conditioned by the air-conditioning unit is blown to the air-conditioning area from the air outlet provided on the floor through the air-supply path, and from the air-conditioning area to the air-conditioning unit A return air conditioning system,
The air conditioning unit is detected by an underfloor air supply fan that blows air conditioned to the underfloor space, a static pressure difference detector that detects a differential pressure between the underfloor space and the air conditioning area, and the static pressure difference detector. A fan rotation speed controller for controlling the rotation speed of the underfloor air supply fan based on the differential pressure,
An open / close damper that opens and closes the outlet, and a temperature regulator that detects the temperature of the air-conditioning area and controls the open / close damper based on a difference between the detected temperature and a set temperature.
Along with the control of the open / close damper by the temperature controller, the fan rotation speed controller controls the rotation speed of the underfloor air supply fan so that the differential pressure between the underfloor space and the air conditioning area becomes a predetermined differential pressure setting value. In addition to controlling, this differential pressure set value is variably controlled based on the rotation speed of the underfloor air supply fan ,
If any one of the open / close dampers of the plurality of rooms in the air-conditioning area is open, it is determined that any room has an air-conditioning load, and the differential pressure setting value is set to a predetermined differential pressure A,
A two-stage control for determining that no air conditioning is required in any of the chambers when all of the open / close dampers are closed, and changing the differential pressure setting value to a predetermined differential pressure B lower than the differential pressure A; An air conditioning system characterized by
請求項1に記載の空調システムにおいて、
前記空調ユニットは、空気を加温または冷却する冷暖房ユニットと換気ユニットとを備えており、
前記換気ユニットは、前記還気の一部を外部に放出するとともに、外部の新鮮な空気を、この新鮮な空気と前記還気の一部と熱交換したうえで、前記冷暖房ユニットに供給することを特徴とする空調システム。
The air conditioning system according to claim 1 ,
The air conditioning unit includes an air conditioning unit and a ventilation unit for heating or cooling air,
The ventilation unit discharges a part of the return air to the outside, and supplies the outside fresh air to the air conditioning unit after exchanging heat with the fresh air and a part of the return air. An air conditioning system characterized by
請求項1または2に記載の空調システムにおいて、
前記冷暖房ユニットはその還気口とエアコン室内機とを連通する第1空気経路と、
前記エアコン室内機と前記床下送気ファンとを連通する第2空気経路と、
前記第1空気経路に対向して配置され、前記第2空気経路に連通する第3空気経路と、
前記第1空気経路と前記第3空気経路との間に介在され、空気が前記第1空気経路と第3空気経路との間で通過可能な蓄熱材と、
前記第2空気経路を前記エアコン室内機がONのときに開放し、OFFのときに閉鎖する流路切替ダンパと、
前記蓄熱材の温度を検出しこの検出値に基づいて前記エアコン室内機をON・OFF制御する温度センサとを備えていることを特徴とする空調システム。
The air conditioning system according to claim 1 or 2 ,
The air conditioning unit has a first air path that communicates the return air port and the air conditioner indoor unit,
A second air path communicating the air conditioner indoor unit and the underfloor air supply fan;
A third air path disposed opposite to the first air path and communicating with the second air path;
A heat storage material interposed between the first air path and the third air path, wherein air can pass between the first air path and the third air path;
A flow path switching damper that opens when the air conditioner indoor unit is ON and closes when the air conditioner indoor unit is OFF;
An air conditioning system comprising: a temperature sensor that detects the temperature of the heat storage material and controls ON / OFF of the air conditioner indoor unit based on the detected value.
JP2006012463A 2006-01-20 2006-01-20 Air conditioning system Active JP4647503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006012463A JP4647503B2 (en) 2006-01-20 2006-01-20 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006012463A JP4647503B2 (en) 2006-01-20 2006-01-20 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2007192505A JP2007192505A (en) 2007-08-02
JP4647503B2 true JP4647503B2 (en) 2011-03-09

Family

ID=38448347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012463A Active JP4647503B2 (en) 2006-01-20 2006-01-20 Air conditioning system

Country Status (1)

Country Link
JP (1) JP4647503B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542430B1 (en) * 2015-05-12 2015-08-11 주식회사 세원기연 Under floor air distribution system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101520482B1 (en) 2007-12-21 2015-05-14 엘지전자 주식회사 Air conditioning apparatus and controlling method for the apparatus
JP5137599B2 (en) * 2008-01-25 2013-02-06 東京電力株式会社 Air conditioning system
JP5359551B2 (en) * 2009-05-22 2013-12-04 富士通株式会社 Air conditioning system
JP6788473B2 (en) * 2016-10-17 2020-11-25 株式会社メックecoライフ Air conditioning system
WO2018211559A1 (en) * 2017-05-15 2018-11-22 日本電気株式会社 Setting value calculation system, method, and program
JP2019120434A (en) * 2017-12-28 2019-07-22 三菱重工サーマルシステムズ株式会社 Air conditioner and controlling method of the same
CN115309064A (en) * 2022-07-29 2022-11-08 青岛海尔科技有限公司 Control method and device for air conditioning equipment, storage medium and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103938A (en) * 1990-08-22 1992-04-06 Maeda Corp Partition wall combination type total enthalpy heat exchanger
JPH0735384A (en) * 1993-07-22 1995-02-07 Sanki Eng Co Ltd Air conditioning apparatus
JPH07260201A (en) * 1994-03-22 1995-10-13 Hitachi Plant Eng & Constr Co Ltd Underfloor air-conditioning system
JPH10110981A (en) * 1996-10-04 1998-04-28 Taikisha Ltd Blower control system
JP2003214663A (en) * 2002-01-25 2003-07-30 Kubota Corp Regenerative air-conditioning apparatus
JP2005265280A (en) * 2004-03-18 2005-09-29 Takasago Thermal Eng Co Ltd Air-conditioning method of floor blowout type
JP2005273970A (en) * 2004-03-24 2005-10-06 Shiraiwa Komusho:Kk Air conditioning system of building

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04103938A (en) * 1990-08-22 1992-04-06 Maeda Corp Partition wall combination type total enthalpy heat exchanger
JPH0735384A (en) * 1993-07-22 1995-02-07 Sanki Eng Co Ltd Air conditioning apparatus
JPH07260201A (en) * 1994-03-22 1995-10-13 Hitachi Plant Eng & Constr Co Ltd Underfloor air-conditioning system
JPH10110981A (en) * 1996-10-04 1998-04-28 Taikisha Ltd Blower control system
JP2003214663A (en) * 2002-01-25 2003-07-30 Kubota Corp Regenerative air-conditioning apparatus
JP2005265280A (en) * 2004-03-18 2005-09-29 Takasago Thermal Eng Co Ltd Air-conditioning method of floor blowout type
JP2005273970A (en) * 2004-03-24 2005-10-06 Shiraiwa Komusho:Kk Air conditioning system of building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101542430B1 (en) * 2015-05-12 2015-08-11 주식회사 세원기연 Under floor air distribution system

Also Published As

Publication number Publication date
JP2007192505A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
JP4647503B2 (en) Air conditioning system
JP3208689U (en) Ventilation and air conditioning structure for highly insulated and airtight houses
US11441796B2 (en) Construction method and design method of air-conditioning system
JP2002340382A (en) House
JP2008134032A (en) Air conditioning system
JP7142969B2 (en) air conditioning system
KR100893835B1 (en) Hybrid Air-Conditioning System and Method for Air-Conditioning Using the System
WO2006035826A1 (en) Ventilator, air conditioner system, ventilation system, and building
JP2006105426A (en) Ventilating device and building
JP4520960B2 (en) Ventilation system
JP4391209B2 (en) Ventilation system
CN213872960U (en) Super-silent non-wind-sense healthy and comfortable household central air-conditioning heating system
JPH11173623A (en) Ventilation system device for housing
JP2003269767A (en) Ventilating and air-conditioning system and building
JPH09210421A (en) Ventilating and air-conditioning system
JP2001108271A (en) Ventilating device, air conditioning and ventilating system as well as building employing the ventilating device
JP3959182B2 (en) Heat exchange ventilation system
JPH04244537A (en) Air conditioning system
JP2011112239A (en) Ventilation air-conditioning system and building
JP2010243075A (en) Ventilation air-conditioning system and building
KR102575089B1 (en) Air conditioning system
KR100627402B1 (en) Ventilation system and radiane floor heating and cooling system capable of ventilating and air-cleaning using the same
JPH0828902A (en) Air conditioner
JPH10220807A (en) Air conditioning system utilizing low double floor
JPH04257636A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4647503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250